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Abstract

A model of coalescence by internal necking of primary voids is developed which accounts for
the presence of a second population of cavities. The derivation is based on a limit-analysis of a
cylindrical cell containing a mesoscopic void and subjected to boundary conditions describing
the kinematics of coalescence. The second population is accounted locally in the matrix sur-
rounding the mesoscopic void through the microscopic potential of Michel and Suquet (1992)
for spherical voids. The macroscopic criterion obtained is assessed through comparison of its
predictions with the results of micromechanical finite element simulations on the same cell. A
good agreement between model predictions and numerical results is found on the limit-load
promoting coalescence.
Keywords: Ductile materials; Void coalescence; Limit-analysis; Double porous materials; Plastic
compressibility

1 Introduction

Ductile failure is one of the most dominant mode of failure of metallic alloys at room
temperature. It is well recognized that failure is essentially controlled by the nucleation,
growth and coalescence of primary voids (Benzerga and Leblond, 2010; Benzerga et al.,
2016; Pineau et al., 2016). Those primary voids usually nucleate on large inclusions by
particle cracking or interface decohesion, and then grow by diffuse plastic deformation
without notable interactions with neighboring cavities. When the onset of coalescence is
reached, plastic deformation becomes localized between neighboring primary voids, which
accelerates the failure mechanism leading ultimately to the final fracture. It has been
shown that the nucleation and growth of secondary voids in aluminum alloys and in steels
quicken the damage process of primary voids and thus lead to a reduction of ductility
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(Cox and Low, 1974; Marini et al., 1985; Perrin and Leblond, 1990; Fabregue and Par-
doen, 2008). Those secondary voids nucleate in general on much smaller particles and
thus are at least one order of magnitude smaller than primary voids.

The modeling of ductile fracture has first focused on the role played by the primary
voids in the growth phase where plasticity is diffuse, with the pioneering contribution of
Gurson (1977). This model, based on the limit-analysis of a spherical cell containing a
spherical void and made of a von Mises material, has permitted to describe accurately
the effective behavior of porous materials for high values of the stress triaxiality (Tver-
gaard and Needleman, 1984). Due to its intrinsic limitations, this growth model has been
widely extended to account for more realistic microstructures, notably through ellipsoidal
voids (Gologanu et al., 1993; Madou and Leblond, 2012), plastic anisotropy of the matrix
(Monchiet et al., 2008; Keralavarma and Benzerga, 2010; Morin et al., 2015b) and strain
hardening effects (Leblond et al., 1995; Morin et al., 2017). Another framework, based
on non-linear homogenization (Ponte Castaneda, 1991; Willis, 1991), has also been de-
veloped to derive micromechanical void growth models for spherical (Michel and Suquet,
1992) and ellipsoidal (Kailasam and Ponte Castaneda, 1998; Danas and Ponte Castaeda,
2009) cavities. The modeling of void growth has then been followed by the modeling of
coalescence of primary voids where plasticity is this time localized. It started with the
contribution of Thomason (1985) who derived a semi-analytical model providing the limit-
load of coalescence of primary voids. It was then revisited by the determinant work of
Benzerga and Leblond (2014) providing the first micromechanical model of void coales-
cence, and followed by extensions accounting for more realistic situations (Morin et al.,
2015a; Torki et al., 2015; Morin et al., 2016; Hure and Barrioz, 2016; Keralavarma and
Chockalingam, 2016; Keralavarma, 2017; Torki et al., 2017; Gallican and Hure, 2017).

If the importance of secondary voids on ductile failure is well recognized, its modeling, on
the other hand, has only been the focus of a few studies. Most of the efforts have focused
on the influence of a second population on void growth, after the initial work of Perrin and
Leblond (1990, 2000) based on the limit-analysis of a hollow sphere (modeling primary
voids) made of a Gurson model in the matrix (modeling secondary voids). Their model,
restricted to hydrostatic loadings, has been extended to triaxial loadings with different
approaches. Vincent et al. (2009a,b); Julien et al. (2011); Vincent et al. (2014a,b) provided
estimates of the macroscopic yield criterion using a proper combination of limit-analysis
and variational homogenization techniques, while Shen et al. (2012, 2017) performed a
limit-analysis of a hollow sphere made of an elliptic (compressible) criterion of Green type.
In both works, the presence of the second population of cavities lead to a reduction of
ductility. The observations made in those analytical works have been completed by numer-
ical micromechanical simulations (Faleskog and Shih, 1997; Fabregue and Pardoen, 2008;
Khdir et al., 2014; Zybell et al., 2014; Khan and Bhasin, 2017; Boittin et al., 2017), em-
phasizing that the second population of cavities plays mostly a role on the phenomenon of
coalescence of primary voids: the onset of coalescence occurs more quickly and the degra-
dation of the ligament between neighboring primary voids is accelerated by the presence of
a second population. Those observations have motivated the development of coalescence
models accounting for secondary voids, based on phenomenological extensions of Thoma-
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son (1985)’s criterion calibrated with numerical micromechanical simulations (Fabregue
and Pardoen, 2008, 2009; Tekoglu, 2015).

The presence of secondary voids appears to be determinant in the coalescence of pri-
mary voids in many metallic alloys and thus is expected to play an important role on
the final stage of failure of ductile materials. The modeling of this effect is restricted to
phenomenological extensions of classical coalescence models which naturally calls for a
rigorous micromechanical analysis. The development of a micromechanical model of coa-
lescence incorporating the effect of a secondary population of voids thus seems of interest
to reproduce accurately the final stage of failure of many metallic alloys. The aim of this
work is to develop such a model. The paper is organized as follows:

• Section 2 presents the problem considered and notably the theoretical approach of
limit-analysis in the case of Green materials.
• Section 3 is devoted to the derivation of the model of coalescence accounting for the

presence of secondary voids.
• Section 4 compares the predictions of the theoretical model with the results of finite

element simulations for the limit-load of coalescence.
• Finally, Section 5 studies the influence of the plastic porous model considered in the

matrix and compares the proposed model with the existing model of Fabregue and
Pardoen (2008).

2 Position of the problem

2.1 Preliminaries

We are interested in the modeling of ductile porous solids containing two populations of
cavities of separate size. A typical example of double porous solids is irradiated uranium
dioxide (UO2), represented in Figure 1(a). When irradiated, its microstructure shows two
populations of cavities, spherical cavities at the smallest scale (microscopic scale) and
spheroidal cavities at the larger scale (mesoscopic scale). When the deformation localizes,
coalescence of primary voids is observed, promoted by the presence of secondary voids.
In order to describe the influence of the secondary voids on the coalescence of primary
ones, the strategy adopted in this work is to consider a periodic arrangement of primary
voids subjected to boundary conditions mimicking the kinematics of coalescence. Since
our objective is to derive an analytical model, it is not reasonable to consider a com-
plete description of secondary voids as shown in Figure 1(b). Thus, secondary voids are
accounted for through a homogenized model of plastic porous materials, in the matrix sur-
rounding the primary void (see Figure 1(c)). We are then looking for the overall behavior
of primary voids embedded in some compressible material and subjected to boundary con-
ditions of coalescence type. We assume that secondary voids will not grow significantly so
no localization between them is allowed. This assumption is supported by the simulations
of Zybell et al. (2014) emphasizing that secondary voids promote coalescence of primary
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Fig. 1. Scale transition approach for the modeling of double porous materials in the coalescence
phase. (a) Example of a double porous material (micrography of irradiated UO2 after Dubourg
et al. (2005)). (b) “Discrete” cell model accounting explicitly for the second population of voids.
(c) “Homogenized” cell model accounting for the second population of voids through an homog-
enized model of plastic porous solids.

voids without any microscopic localization. Thus, coalescence between secondary voids
is disregarded in the present work so they will be modeled using a homogenized model
accounting solely for void growth.

Geometry. The elementary cell considered to derive the coalescence criterion is, fol-
lowing Benzerga and Leblond (2014), a cylindrical cell Ω containing a cylindrical void ω
(Figure 2). The cylindrical geometry is characterized by dimensionless parameters (Benz-
erga and Leblond, 2014; Morin et al., 2016): the void aspect ratio W ≡ h/R, the ligament
parameter χ ≡ R/L and the cell aspect ratio λ ≡ H/L. A fourth, useful parameter related
to the first three is the volume fraction of the voided band c = h/H = Wχ/λ. The local
orthonormal basis associated with the cylindrical coordinates r, θ, z is denoted (er, eθ, ez)
and that associated with the Cartesian coordinates x1, x2, x3 is denoted (e1, e2, e3), with
e3 = ez.
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Fig. 2. Geometry of the problem.

Coalescence is supposed to occur in the plane e1–e2, due to a major applied stress parallel
to the axis e3. Coalescence starts when the strain rate localizes in the horizontal ligament
between neighbouring voids (Koplik and Needleman, 1988). The cell is then divided into
two parts, the central one Ωlig containing the plastic horizontal inter-void ligament and
the void ω, and the rigid regions above and below the void denoted Ω−Ωlig (see Figure 2).

Boundary conditions. The cell is subjected to boundary conditions of the form{
vr(r = L, z) = 0, −H ≤ z ≤ H,
vz(r, z = ±H) = ±D33H, 0 ≤ r ≤ L.

(1)

The cylindrical shape of the cell and the quasi-periodic boundary conditions considered
are an approximation of elementary cell in a periodic material in a coalescence regime
(see Koplik and Needleman (1988); Morin et al. (2015a)).

Material. In order to account for a secondary void population, we consider that the
plastic horizontal inter-void ligament obeys Green’s criterion

ϕ(σ) = Nσ2
eq +

9

2
Mσ2

m − σ2
0 = 0, ∀x ∈ Ωlig − ω, (2)

where σ0 is the yield stress. This type of criterion, which accounts for the material com-
pressibility through the material parameters N and M , has been previously considered
to derive macroscopic models for the growth of primary voids (Shen et al., 2012, 2017).
Here, we consider Michel and Suquet (1992)’s potential for plastic porous solids which
corresponds to the particular case

M =
1

2 (ln(fs))
2 ; N =

1 + 2fs/3

(1− fs)2
, (3)
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where fs denotes the volume fraction of the second population. It should be noted that
fs can reach high values and can even be greater than the porosity of the primary void
as long as there is no interaction between secondary voids to avoid their coalescence.
In practice, it is likely that secondary voids will coalesce if fs is roughly higher than
10−1; this choice is quite arbitrary since coalescence does not depend on the porosity
but on the distribution of cavities (Thomason, 1985; Benzerga and Leblond, 2010). Thus,
as a first approximation, it is reasonable to consider that the present analysis is valid if
0 ≤ fs ≤ 10−1. Michel and Suquet (1992)’s criterion has been chosen over Gurson (1977)’s
classical model for porous materials because the integration of the local plastic potential
(in the derivation of the macroscopic criterion) will be incontestably easier with an elliptic
criterion. The consequences of this choice are discussed in Section 5.1.

2.2 Principles of limit-analysis

The macroscopic yield locus of the double porous material can be determined using the
upper-bound theorem of limit-analysis (see e.g. Leblond et al. (2018)); it is described by
the parametric equation

Σ =
∂Π

∂D
(D), (4)

where the macroscopic stress and strain rate tensors Σ and D are defined as the volume
averages of their microscopic counterparts σ and d. The macroscopic plastic dissipation
Π(D) in equation (4) is defined here by:

Π(D) = inf
v∈K(D)

(1− cχ2)〈π(d)〉Ω−ω, (5)

where the set K(D) consists of velocity fields v kinematically admissible with D and
where the notation 〈.〉Ω−ω stands for volume averaging over the volume Ω−ω. In the case
of a Green material obeying criterion (2), the microscopic plastic dissipation π(d) reads
(Shen et al., 2012)

π(d) = σ0

√
2
d2

m

M
+
d2

eq

N
, (6)

where deq is the von Mises equivalent strain rate and dm the mean strain rate, both
associated with the velocity field v and defined by

deq =

√
2

3
d′ : d′, d′ = d− dmI, dm =

1

3
trd. (7)
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3 A macroscopic criterion for void coalescence in plastic solids containing
two populations of cavities

3.1 Trial velocity field

The trial velocity field we are looking for must be compressible and should verify two
properties:

(1) When the porosity of the second population becomes zero, that is when the matrix
obeys incompressible von Mises criterion (i.e. fs = 0, M = 0 and N = 1), the veloc-
ity field should verify the property of incompressibility (see Benzerga and Leblond
(2014); Morin et al. (2015a); Hure and Barrioz (2016) for existing incompressible
velocity fields).

(2) When there is no primary void but only secondary voids, the problem reduces to a
full cylinder made of a Green material subjected to uniaxial tension. In this case,
the cylinder can deform in contrast with the incompressible case. The most simple
assumption to describe this kinematic consists in a linear axial velocity field.

The full velocity field proposed consists in some interpolation of the two fields just ex-
pounded and is taken to be of the form

vr(r, z) = (1− α)vinc
r (r, z),

vz(z) = (1− α)vinc
z (z) + βD33z,

(8)

where vinc denotes an “incompressible” field describing the kinematic of coalescence for a
von Mises material, α and β parameters accounting for the compressibility and the term
D33z corresponds to the deformation of the full compressible cylinder.

The parameters α and β are necessarily linked by boundary conditions (in z = h)

(1− α)D33H + βD33h = D33H, (9)

which leads to β =
α

c
. Consequently, the velocity field for the coalescence of a double

porous material reads 
vr(r, z) = (1− α)vinc

r (r, z),

vz(z) = (1− α)vinc
z (z) +

α

c
D33z.

(10)

The parameter α, which permits to account for the compressibility, plays the same role
as the parameter A of Vincent et al. (2009a); Shen et al. (2012). It should be noted that
the value of the parameter α is not known at this stage and will be classically determined
in order to minimize the macroscopic plastic dissipation.
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Regarding the choice of the “incompressible” velocity field, it has been shown in Morin
et al. (2015a) that a good candidate is the so-called “continuous velocity field”, which is
very close to the exact velocity field calculated numerically in a large range of geometric
parameters. Therefore, we will consider in this work that the incompressible velocity field
is given by 

vinc
r (r, z) =

H

h2
D33 (h− z)

(
L2

r
− r

)
,

vinc
z (z) = 2

H

h2
D33

(
hz − z2

2

)
.

(11)

3.2 Strain rate and microscopic plastic dissipation

The non-zero components of the strain rate associated to the velocity field defined by
equations (10) and (11) read

drr ≡
∂vr
∂r

= (1− α)dinc
rr ,

dθθ ≡
vr
r

= (1− α)dinc
θθ ,

dzz ≡
∂vz
∂z

= (1− α)dinc
zz +

α

c
D33,

drz ≡
1

2

∂vr
∂z

= (1− α)dinc
rz ,

where the components of the “incompressible” strain rate tensor are given by

dinc
rr =

H

h2
D33

(
h− z

)(−L2

r2
− 1

)
,

dinc
θθ =

H

h2
D33

(
h− z

)(L2

r2
− 1

)
,

dinc
zz = 2

H

h2
D33

(
h− z

)
,

dinc
rz = − H

2h2
D33

(
L2

r
− r

)
.

In order to calculate the microscopic plastic dissipation defined by equation (6), we need
the expressions of the mean and equivalent strain rate. The mean strain rate is directly
given by

dm =
αD33

3c
. (12)

It is interesting to note that the mean strain rate is uniform in the ligament and depends
on the parameter α. In particular the value α = 0 leads to dm = 0 which is consistent
with the fact that the velocity field reduces in this case to the “incompressible” velocity
field of Morin et al. (2015a).
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Let us derive now the equivalent strain rate. First, the deviatoric part d
′

of the strain
rate d reads 

d
′

rr = (1− α)dinc
rr −

αD33

3c
, d

′

θθ = (1− α)dinc
θθ −

αD33

3c
,

d
′

zz = (1− α)dinc
zz +

2αD33

3c
, d

′

rz = (1− α)dinc
rz .

The square of the equivalent strain rate thus reads

d2
eq =

2

3

(
d

′2
rr + d

′2
θθ + d

′2
zz + 2d

′2
rz

)
= (1− α)2 (dinc

eq )2 +
4(1− α)α

3c
D33d

inc
zz +

4

9

(
α

c

)2

D2
33,

(13)
where the expression of the “incompressible” equivalent strain rate dinc

eq is given by

(dinc
eq )2 =

H2

3h4
D2

33

4(h− z)2

(
L4

r4
+ 3

)
+

(
L2

r
− r

)2
 . (14)

We thus have

d2
eq =

(1− α)2 H
2

3h4

4(h− z)2

(
L4

r4
+ 3

)
+

(
L2

r
− r

)2
+

α

c
(1− α)

8H

3h2

(
h− z

)
+

4

9

(
α

c

)2
D2

33.

(15)

The microscopic plastic dissipation consequently reads

π(d) =σ0D33


(

4

9N
+

2

9M

)(
α

c

)2

+
(1− α)2

N

H2

3h4

4(h− z)2

×
(
L4

r4
+ 3

)
+

(
L2

r
− r

)2
+

α(1− α)

cN

8H

3h2

(
h− z

)
1/2

. (16)

3.3 Macroscopic plastic dissipation

The microscopic plastic dissipation (16) obtained for the velocity field (10) is now inte-
grated in order to provide an upper estimate Π+(D) of the macroscopic plastic dissipation
Π(D) defined by equation (5). In the following, the upper indice + will be omitted for
conciseness. The upper estimate of the macroscopic plastic dissipation thus reads

Π(D) =
1

vol(Ω)

∫
Ωlig−ω

π(d) dΩ,

=
σ0D33

vol(Ω)

∫ L

R

∫ h

0


(

4

9N
+

2

9M

)(
α

c

)2

+
(1− α)2

N

H2

3h4

4(h− z)2

×
(
L4

r4
+ 3

)
+

(
L2

r
− r

)2
+

α(1− α)

cN

8H

3h2

(
h− z

)
1/2

4πrdrdz. (17)
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After the change of variables u = r2/L2 and v = (h − z)/L and some calculations, the
macroscopic plastic dissipation reads

Π(D) =
σ0D33

Wχ

∫ 1

χ2

∫ Wχ

0


(

4

9N
+

2

9M

)
α2 +

(1− α)2

3N(Wχ)2

(1− u)2

u

+ 4
(1 + 3u2)

u2
v2

+
8α(1− α)

3NWχ
v


1/2

dudv. (18)

The macroscopic plastic dissipation (18) involves a double integral but this should not
be a real issue since it may be easily evaluated numerically with a reasonable number
of integration points. It is worth noting that the integration over the variable v can be
performed analytically by using the following relation∫ √

1 +Av +Bv2dv =
(A+ 2Bv)

√
Av +Bv2 + 1

4B

−

(
A2 − 4B

)
log
(

2
√
B
√
Av +Bv2 + 1 +A+ 2Bv

)
8B3/2

, (19)

at the expense of a less user-friendly model.

3.4 Effective macroscopic criterion

First, we need to determine the value of α. The optimal parameter, denoted αopt, is that
minimizing the macroscopic plastic dissipation. Thus, it verifies

∂Π

∂α
(αopt) = 0. (20)

In practice, the parameter αopt can be determined numerically. Tabulated values for a
great number of geometrical parameters χ and W and various porosities fs are given in
Appendix A.

Then, the macroscopic criterion is expressed as the macroscopic axial stress Σ33 promoting
plastic flow given by

Σ33 =
∂Π

∂D33

=
Π

D33

. (21)

The semi-analytical expression of the macroscopic yield criterion therefore finally reads

Φ(Σ;χ,W, fs) =
|Σ33|
σ0

− 1

Wχ

∫ 1

χ2

∫ Wχ

0


(

4

9N
+

2

9M

)
α2

opt

+
(1− αopt)

2

3N(Wχ)2

[
(1− u)2

u
+ 4

1 + 3u2

u2
v2

]

+
8αopt(1− αopt)

3NWχ
v


1/2

dudv ≤ 0. (22)
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3.5 Evolution equations of internal parameters

In order to get a full model of plasticity, it is necessary to complete the yield criterion
by evolution equations of internal parameters. This corresponds to the microstructural
parameters defining primary voids (χ and W ), secondary voids (fs) and hardening (σ0).
The rates of the ligament parameter χ̇ and the void aspect ratio Ẇ read

χ̇ =
Ṙ

L
, Ẇ =

ḣR− Ṙh
R2

, (23)

where Ṙ and ḣ are given by the trial velocity field (10). Since vr depends on the variables
r and z, it is necessary to consider some average value of it over the variable z so Ṙ is
uniform; the following assumption is made:

Ṙ ≈ 1

h

∫ h

0
vr(R, z)dz. (24)

The evolution equations pertaining to primary voids are thus given by

χ̇ =
1− αopt

2

(
1

χ
− χ

)
D33

c
,

Ẇ = W

(
1− 1− αopt

2

(
1

χ2
− 1

))
D33

c
. (25)

The rate of the porosity of the second population ḟs is obtained from the mass balance
equation

ḟs = (1− fs)tr(d), (26)

where d is the strain rate associated with the trial velocity field (10). From equation (12),
the mean strain rate is uniform in the ligament so the evolution equation pertaining to
secondary voids is simply given by

ḟs = (1− fs)αopt
D33

c
. (27)

Finally, isotropic hardening is accounted for following Gurson (1977)’s classical heuristic
approach. The yield limit σ0 is replaced in the criterion by some “average yield stress” σ̄
given by

σ̄ ≡ σ(ε̄) (28)

where σ(ε) is a function providing the local yield limit as a function of the local cumulated
plastic strain ε, and ε̄ represents some “average equivalent strain” in the porous material.
The evolution of ε̄ is governed by the following equation:

(1− cχ2)σ̄ ˙̄ε = Σ33D33. (29)

This equation expresses the heuristic assumption that the plastic dissipation in the hetero-
geneous porous material is equal to that in a fictitious “equivalent” homogeneous material
with equivalent strain ε̄ and yield stress σ̄.
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4 Numerical results

The aim of this section is to assess numerically the coalescence criterion derived in Sec-
tion 3.

4.1 Description of the simulations

Numerical simulations are performed with the finite element method using an in-house
code on 2D axymmetric meshes. Boundary conditions of type (1) are considered in order to
impose coalescence. The limit-analysis problem is solved by considering an elastic-plastic
evolution problem without any geometry update nor hardening, for which the limit-load
is reached when the overall stress components no longer evolve (Michel et al., 1999). Two
local behaviors are implemented; the model of Michel and Suquet (1992) is used in order
to assess the model developed, and Gurson (1977)’s model is also considered to study the
effect of the local potential (see Section 5.1). In both cases, a classical return-mapping
algorithm is used to solve the local step (Simo and Taylor, 1986). The macroscopic limit-
load Σ33 is calculated using the formula

Σ33 =
1

vol(Ω)

∫
Ω−ω

σ33 dΩ. (30)

In order to cover a large number of geometrical cases, a specific mesh generator has
been developed. Eight-node quadratic elements subintegrated with 2×2 Gauss points are
used. The mesh procedure, described in Appendix B, permits to obtain a total number
of quadratic elements close to a prescribed value Q taken here as Q = 5000. This dis-
cretization is adequate for the numerical calculations envisaged, further mesh refinement
making no appreciable difference to the results. For illustrative purpose, Figure 3 shows
the meshes used in the cases W = 1, χ = 0.2, c = 0.05 and W = 1, χ = 0.7, c = 0.9. The
meshes contain respectively 5024 elements and 15, 365 nodes (30, 730 degrees of freedom)
and 4767 elements and 14, 766 nodes (29, 532 degrees of freedom).

4.2 Influence of the parameter c

First, we study numerically the influence of the parameter c = h/H. Since the criterion
for double porous materials (22) or any of the existing criteria for incompressible matrices
(Benzerga and Leblond, 2014; Morin et al., 2015a; Hure and Barrioz, 2016) do not depend
on this parameter, it is important to investigate numerically its effect and notably when
it affects the limit-load of coalescence. The evolution of the axial stress Σ33 promoting
coalescence is represented in Figure 4 for W = 1.

The numerical simulations show that the parameter c has an influence only when it reaches
important values (roughly c > 0.5) and when ligaments are thick (roughly χ < 0.4). In
this specific case, an increase of the parameter c, which corresponds to a decrease of
the vertical ligament, results in a decrease of the limit-load: the deformation mechanism
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(a) (b)

Fig. 3. Two examples of meshes used in the finite element calculations. Eight-node quadratic
elements. (a) Mesh of the unit cell in the case W = 1, χ = 0.2 and c = 0.05. (b) Mesh of the
unit cell in the case W = 1, χ = 0.7 and c = 0.9.
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Fig. 4. Numerical results for the influence of the parameter c on the limit-load of coalescence for
W = 1. (a) fs = 10−5, (b) fs = 10−2, (c) fs = 10−1.

depends only on the value of the vertical spacing of the cavities. On the other hand, when
those two conditions are not met, all the limit-loads coincide irrespective of the value of
c, which means that the deformation mechanism does not depend on the vertical spacing
of the cavities.

In order to complete these observations on deformation mechanisms, the distribution of
the local plastic dissipation, defined by equation (16), is represented in Figure 5 in the
case W = 1, χ = 0.3, fs = 10−5 and for two values of c, c = 0.1 or c = 0.9. When c = 0.1,
the plastic dissipation localizes in the horizontal ligament between neighboring voids; this
behavior is always observed for c > 0.5 irrespective of the value of χ and corresponds to
the (classical) mode of coalescence by internal necking. When c = 0.9, the plastic dissi-
pation localizes in the vertical ligament between neighboring voids; this behavior appears
only for high values of c and low values of χ and corresponds to a mode of coalescence in
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columns (Gologanu et al., 2001), which is not the topic of this paper.

(a)

(b)

Fig. 5. Distribution of the numerical local plastic dissipation defined by equation (16) in the
case W = 1, χ = 0.3, fs = 10−5. (a) c = 0.1, (b) c = 0.9. Arbitrary units.

Consequently in the following, only low values of c will be considered in the comparisons
in order to investigate solely coalescence by internal necking.

4.3 Study of coalescence by internal necking

We investigate now the comparison between model predictions and numerical simulations,
only in the case of coalescence by internal necking; thus, the value c = 0.1 is considered in
all the simulations. The limit-loads of coalescence are represented in Figure 6 for various
values of χ, W and fs.

The main observation is that an increase of the second population porosity fs results in
a decrease of the limit-load promoting coalescence Σ33 for a given fixed primary cavity
(corresponding to a couple W and χ), which is in general well reproduced by the model.
In particular, a very good agreement is observed for elongated mesoscopic voids (W = 2)
and all values of the porosity fs. For flat mesoscopic voids (W = 0.5), the model tends
to overestimate the limit-load when χ decreases, but only for low values of the porosity
fs. In this case, the model suffers from the exact same discrepancies than the “incom-
pressible” model of Morin et al. (2015a) when fs = 0, due to an inexact description of
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Fig. 6. Theoretical and numerical limit-loads of coalescence for various values of χ and fs. (a)
W = 0.5 (flat primary voids), (b) W = 1, (c) W = 2 (elongated primary voids).

the distribution of the strain rate 1 (see Morin et al. (2015a)). The mediocre agreement
observed in the incompressible case vanishes when fs increases; an excellent agreement is
even observed for fs = 10−1. It is also interesting to note that the presence of a second
population “regularizes” to some extent the overall behavior: when χ→ 0, the limit-load
becomes finite if fs 6= 0, in contrast with the infinite value observed for fs = 0.

In order to understand more deeply the macroscopic results, the numerical velocity field
is represented in some representative cases, in Figure 7 for a small ligament parameter
χ = 0.3 and in Figure 8 for a more important value χ = 0.6. In each figure, the values
W = [0.5; 1; 2] and fs = [10−5; 10−1] are considered. The analytical velocity field is also
represented for illustrative purpose in Figure 9 for some values of the parameters.

The distribution of the numerical velocity field reveals two regimes of deformation: (i) a
regime for which plastic flow is concentrated in both the horizontal and vertical ligaments.
This happens only for small porosities fs, flat primary cavities (W < 1) and small ligament
parameters (χ ≤ 0.4). This has been already investigated for incompressible matrices
(Morin et al., 2015a) and is confirmed here also for small second porosities fs. (ii) A
second regime is observed for which the plastic flow is concentrated only in the ligament
between horizontal mesoscopic cavities. This takes place in the remaining geometrical
cases considered and for all values of the second porosity. The analytical velocity field
permits to reproduce quite accurately the second regime, which explains the relative good
agreement between model’s prediction and numerical results on the macroscopic limit-
load in the geometric cases considered. In particular, this permits to explain why the
model is not suitable for flat voids with a small and quasi-incompressible ligament (first
regime), since plastic flow occurs in the vertical ligaments which is not taken into account
by the model. However, when the second porosity increases (still in the same case of
flat and small mesoscopic voids), the velocity field postulated in the model becomes very

1 Note that it is possible to improve model’s predictions for flat voids using a refined velocity field
(Hure and Barrioz, 2016) or phenomenological modifications (Keralavarma and Chockalingam,
2016; Torki et al., 2017)
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Distribution of the numerical velocity field for a small ligament parameter χ = 0.3. (a)
fs = 10−5 and W = 0.5, (b) fs = 10−5 and W = 1, (c) fs = 10−5 and W = 2, (d) fs = 10−1

and W = 0.5, (e) fs = 10−1 and W = 1, (f) fs = 10−1 and W = 2. Arbitrary units.

(a) (b) (c)

(d) (e) (f)

Fig. 8. Distribution of the numerical velocity field for a moderate ligament parameter χ = 0.6.
(a) fs = 10−5 and W = 0.5, (b) fs = 10−5 and W = 1, (c) fs = 10−5 and W = 2, (d) fs = 10−1

and W = 0.5, (e) fs = 10−1 and W = 1, (f) fs = 10−1 and W = 2. Arbitrary units.

close to the numerical one, resulting in a very good agreement of analytical and numerical
limit-loads as shown in Figure 6(a).
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Distribution of the analytical velocity field. (a) fs = 10−5, χ = 0.3 and W = 0.5, (b)
fs = 10−5, χ = 0.3 and W = 1, (c) fs = 10−5, χ = 0.3 and W = 2, (d) fs = 10−1, χ = 0.6 and
W = 0.5, (e) fs = 10−1, χ = 0.6 and W = 1, (f) fs = 10−1, χ = 0.6 and W = 2. Arbitrary units.

5 Discussion

5.1 Influence of the local potential

In the hypotheses made in the derivation of the model, the model of Michel and Suquet
(1992) has been chosen to describe the second population of cavities. The choice of this
microscopic potential over classical Gurson (1977)’s model was justified by the fact that
it is more convenient to integrate in the calculation of the macroscopic plastic dissipation
(16). If it seems a very hard task to derive a semi-analytical model with Gurson (1977)’s
model in the matrix, it is however possible to investigate the overall behavior with the
numerical micromechanical framework expounded in Section 4.1. Thus, the aim of this
section is to study numerically the influence of the local porous potential on the macro-
scopic response of the double porous material. The numerical limit-loads of coalescence
are represented in Figure 10 in the case of a mesoscopic void with W = 1 and various
porosities of the second population fs, for Michel and Suquet (1992) and Gurson (1977)’s
models.

It is interesting to note that the main differences appear for the intermediate value of the
second population porosity fs = 10−2. This can be qualitatively interpreted by studying
the two other asymptotic cases. When fs → 0, the two models of plastic porous materials
reduce to an incompressible von Mises material and then yield to the same results. The
differences between the two models are thus quite small for fs = 10−5. On the other
hand, when fs → 1, the ligament becomes highly porous and the local stress triaxiality
becomes important. In this case, the plastic potential of Gurson (1977) and Michel and
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Fig. 10. Comparison between the numerical limit-loads of coalescence using Gurson (1977) and
Michel and Suquet (1992) plastic potentials, for W = 1 and various values of χ and fs.

Suquet (1992) becomes again very close since they both predict the same behaviour at
high triaxiality. Thus the predictions are very close for fs = 10−1. Consequently, only
intermediate cases of moderate second porosity fs will lead to (slightly) different results
on the limit-loads for the double porous materials. Thus it appears that the choice of
Michel and Suquet (1992)’s potential for the second population of cavities is a reasonable
choice since it leads to very similar results than Gurson (1977)’s model.

5.2 Comparison with the existing criterion of Fabregue and Pardoen (2008)

Finally, we compare the predictions of the model developed with the existing criterion of
Fabregue and Pardoen (2008, 2009). This model consists in a phenomenological extension
of Thomason (1985)’s criterion given by

ΦFP(Σ;χ,W, fs) =
|Σ33|
σ0

− (1− fs)(1− χ2)

×

0.1

(
1− χ
χW

)2

+ 1.24

√
1

χ

 ≤ 0, (31)

where the parameters χ and W are that defined in Section 2. It should be noted that, in
this model, fs was adjusted using micromechanical finite elements simulations in which
the porosity of secondary voids was local. Two definitions for fs were proposed, (i) as the
mean value over the ligament and (ii) as the maximum value over the ligament, which
gave the best results. Despite the fact that the meaning of fs in Fabregue and Pardoen
(2008)’s model is not the same than that of the present model developed, both models
are ultimately intended to describe the effect of secondary voids through their volume
fraction. Consequently, it seems natural to compare both models for the same value fs.
Comparisons between the predictions of Fabregue and Pardoen (2008, 2009)’s model and
that developed in Section 3 are thus provided for the same microstructural parameters in
Figure 11.

The model of Fabregue and Pardoen (2008) gives qualitatively a similar behavior than
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Fig. 11. Comparison between the predictions of the present model and that of Fabregue and
Pardoen (2008) for various values of χ and fs. (a) W = 0.5 (flat primary voids), (b) W = 1, (c)
W = 2 (elongated primary voids).

that developed in this work, namely a decrease of the limit-load of coalescence when the
porosity of the second population of cavities increases. However, the limit-load predicted
by Fabregue and Pardoen (2008) is almost always higher, which means that it provides less
accurate results since, from the theory of limit-analysis, the lowest limit-load provides the
best results. Furthermore it should be noted that in the limit χ→ 0 their model diverges
like 1/χ2 even for non-zero values of the porosity of the second population of cavities,
which is not in agreement with the numerical results. However it should be noted that
this model presents the advantage of being completely analytical.

6 Conclusion

The aim of this work was to derive a micromechanical criterion accounting for the presence
of secondary cavities on the coalescence of primary voids. This was done by extending
Benzerga and Leblond (2014) and Morin et al. (2015a)’s approach of coalescence by inter-
nal necking considering Michel and Suquet (1992)’s plastic potential for porous materials
in the matrix surrounding primary voids. The compressibility of the matrix was intro-
duced through a scalar parameter in the trial velocity field, permitting to minimize the
macroscopic plastic dissipation. The model derived, involving the presence of integrals
needing a computational evaluation, has permitted to account micromechanically for the
presence of the second population. The model was then assess numerically using finite
element simulations performed on the same cell than the analytical model. In general,
the predictions of the model are in a very good agreement with the numerical results.
In particular the model permits to reproduce the decrease of the limit-load promoting
coalescence when the porosity of the second population of cavities increases, emphasizing
that the model is suitable to describe the reduction of ductility observed in double porous
materials.
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The present study permits to quantify the influence of the secondary population on the
onset of coalescence of primary voids. In particular, its effect is quite small for typical
values of the internal parameters (basically W > 1, 0.3 < χ < 0.4 and fs > 10−3), em-
phasizing that simpler models (see e.g. Thomason (1985); Benzerga and Leblond (2010);
Morin et al. (2015a); Hure and Barrioz (2016)), which do not account for a second pop-
ulation, are suitable when the porosity fs is quite small. However, the present study also
point out that the effect of fs cannot be neglected when it reaches large values, as observed
in polycristalline UO2 (Vincent et al., 2009b, 2014b).

In order to improve the modeling of ductile materials involving separate populations of
cavities, several directions can be explored:

• A future important work consists in investigating the predictions of the model on actual
evolution problems. The comparison between model’s predictions and the simulations
of Fabregue and Pardoen (2008) will be decisive in order to assess the ability of the
model to capture the loss of ductility due to the presence of secondary voids.
• In practice, ductile failure often occurs under combined tension and shear conditions.

The influence of the shear stress on coalescence by internal necking has been recently
tackled by Torki et al. (2015, 2017) in the case of incompressible materials. It could
be interesting to extend their work to compressible materials in order to reproduce the
reduction of ductility observed in the numerical simulations of Nielsen and Tvergaard
(2011) on metallic materials containing two populations of cavities subjected to intense
shearing.
• Size effects are expected to enhance the ductility of metals when cavities are very small,

which can be the case for the second population. The effects of void size have been
theoretically investigated on the growth (Dormieux and Kondo, 2010) and coalescence
(Gallican and Hure, 2017) of primary nanoscopic voids, but their effects on secondary
voids has only been studied numerically (Zybell et al., 2014). An extension to the
present model to nanoscopic secondary voids could be interested to model nuclear fuel
showing secondary voids of nanometer size (Dubourg et al., 2005).
• The distribution of the second population of cavities and the yield limit was supposed

to be uniform in the present work. In order to provide a better description of the local
fields, it would be interesting to consider an heterogeneous distribution of the second
population of cavities and hardening, using the framework of sequential limit-analysis
(Morin et al., 2017; Leblond et al., 2018).
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A Tabulated values for the optimal parameter αopt

H
HHH

HHW
χ

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.25 0.979 0.962 0.938 0.904 0.857 0.797 0.725 0.643 0.557 0.472
0.5 0.926 0.878 0.816 0.743 0.664 0.585 0.51 0.44 0.378 0.324
0.75 0.866 0.794 0.714 0.632 0.555 0.485 0.422 0.367 0.32 0.279
1 0.812 0.728 0.645 0.566 0.496 0.434 0.38 0.333 0.293 0.26
1.25 0.768 0.681 0.599 0.525 0.461 0.404 0.356 0.314 0.279 0.249
1.5 0.735 0.648 0.569 0.499 0.438 0.386 0.341 0.303 0.27 0.243
1.75 0.709 0.623 0.547 0.481 0.423 0.374 0.332 0.296 0.265 0.239
2 0.689 0.605 0.531 0.468 0.413 0.365 0.325 0.291 0.261 0.236
2.25 0.674 0.592 0.52 0.458 0.405 0.359 0.32 0.287 0.258 0.234
2.5 0.662 0.581 0.511 0.451 0.399 0.355 0.317 0.284 0.257 0.233

Table A.1
Values of the optimal parameter αopt in the case fs = 10−1.

H
HHH

HHW
χ

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.25 0.929 0.877 0.804 0.713 0.609 0.504 0.406 0.322 0.251 0.195
0.5 0.761 0.64 0.521 0.418 0.334 0.267 0.214 0.172 0.14 0.114
0.75 0.602 0.476 0.376 0.299 0.24 0.195 0.16 0.132 0.11 0.092
1 0.493 0.384 0.304 0.244 0.199 0.164 0.136 0.114 0.097 0.082
1.25 0.424 0.331 0.264 0.214 0.176 0.146 0.123 0.104 0.089 0.077
1.5 0.379 0.298 0.239 0.195 0.162 0.136 0.115 0.098 0.085 0.074
1.75 0.348 0.275 0.222 0.183 0.153 0.129 0.11 0.094 0.082 0.072
2 0.326 0.259 0.21 0.174 0.146 0.124 0.106 0.091 0.08 0.07
2.25 0.309 0.247 0.202 0.168 0.141 0.12 0.103 0.089 0.078 0.069
2.5 0.296 0.238 0.195 0.163 0.137 0.117 0.101 0.088 0.077 0.068

Table A.2
Values of the optimal parameter αopt in the case fs = 10−2.

H
HHH

HHW
χ

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.25 0.841 0.737 0.612 0.486 0.373 0.283 0.214 0.161 0.122 0.092
0.5 0.536 0.394 0.291 0.218 0.166 0.128 0.101 0.08 0.064 0.051
0.75 0.351 0.253 0.189 0.144 0.113 0.09 0.073 0.059 0.049 0.041
1 0.262 0.192 0.146 0.114 0.091 0.074 0.061 0.051 0.042 0.036
1.25 0.214 0.159 0.123 0.098 0.079 0.065 0.054 0.046 0.039 0.033
1.5 0.185 0.14 0.11 0.088 0.072 0.06 0.05 0.043 0.037 0.031
1.75 0.166 0.127 0.101 0.082 0.067 0.056 0.048 0.041 0.035 0.03
2 0.153 0.118 0.094 0.077 0.064 0.054 0.046 0.039 0.034 0.029
2.25 0.143 0.112 0.09 0.074 0.061 0.052 0.044 0.038 0.033 0.029
2.5 0.136 0.107 0.086 0.071 0.059 0.05 0.043 0.037 0.032 0.028

Table A.3
Values of the optimal parameter αopt in the case fs = 10−3.
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HHH
HHHW
χ

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.25 0.725 0.576 0.432 0.315 0.229 0.168 0.124 0.092 0.069 0.051
0.5 0.351 0.24 0.17 0.125 0.094 0.072 0.056 0.044 0.035 0.028
0.75 0.208 0.145 0.107 0.081 0.063 0.05 0.04 0.033 0.027 0.022
1 0.15 0.108 0.081 0.063 0.05 0.041 0.033 0.028 0.023 0.02
1.25 0.12 0.089 0.068 0.054 0.044 0.036 0.03 0.025 0.021 0.018
1.5 0.103 0.077 0.06 0.048 0.039 0.033 0.027 0.023 0.02 0.017
1.75 0.092 0.07 0.055 0.045 0.037 0.031 0.026 0.022 0.019 0.016
2 0.084 0.065 0.051 0.042 0.035 0.029 0.025 0.021 0.018 0.016
2.25 0.078 0.061 0.049 0.04 0.033 0.028 0.024 0.02 0.018 0.015
2.5 0.074 0.058 0.047 0.038 0.032 0.027 0.023 0.02 0.017 0.015

Table A.4
Values of the optimal parameter αopt in the case fs = 10−4.

HH
HHHHW

χ
0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.25 0.596 0.431 0.3 0.21 0.149 0.108 0.079 0.059 0.044 0.033
0.5 0.233 0.155 0.109 0.079 0.06 0.046 0.036 0.028 0.022 0.018
0.75 0.133 0.092 0.067 0.051 0.04 0.031 0.025 0.021 0.017 0.014
1 0.094 0.068 0.051 0.04 0.032 0.026 0.021 0.017 0.015 0.012
1.25 0.075 0.055 0.043 0.034 0.027 0.022 0.019 0.016 0.013 0.011
1.5 0.064 0.048 0.038 0.03 0.025 0.02 0.017 0.014 0.012 0.011
1.75 0.057 0.043 0.034 0.028 0.023 0.019 0.016 0.014 0.012 0.01
2 0.052 0.04 0.032 0.026 0.022 0.018 0.015 0.013 0.011 0.01
2.25 0.049 0.038 0.03 0.025 0.021 0.017 0.015 0.013 0.011 0.01
2.5 0.046 0.036 0.029 0.024 0.02 0.017 0.014 0.012 0.011 0.009

Table A.5
Values of the optimal parameter αopt in the case fs = 10−5.

22



B Mesh procedure

The geometry of the unit cell is entirely determined by the triplet (W , χ, c). The mesh
procedure is given by the following steps:

(1) The cell is divided in two parts: (i) the ligament Ωlig − ω (R ≤ r ≤ L, 0 ≤ z ≤ h) is
cut into n×m elements and (ii) the upper region Ω− Ωlig (0 ≤ r ≤ L, h ≤ z ≤ H)
is cut into k × ` elements.

(2) The n×m elements in the ligament are taken identical as square elements with

n = floor(k(1− χ)), m = floor(kWχ), (B.1)

where floor(x) is the classical floor function of x.
(3) In order not to increase uselessly the number of elements when H is bigger than h,

the position and size of the k× ` elements in the upper region follows the geometric
progression

zj = h qj, q = c−
1
` , j = 0, .., `, (B.2)

where zj denotes the axial position of element j. We impose that the height of the
first row of elements has a similar size than the elements of the ligament; ` is then
taken equal to

` = floor

(
ln
(

1

c

)
/ln

(
1 +

1

kWχ

))
. (B.3)

(4) The desired total number of elements is denoted Q; in order to satisfy at best this
objective, the number of elements k is taken equal to

k = floor
(√

Q/(Wχ(1− χ− ln (c)))
)
. (B.4)
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