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Abstract

1. The utilisation distribution describes the relative probability of use of a spatial unit by an animal. It is
natural to think of it as the long-term consequence of the animal’s short-termmovement decisions: it is the
accumulation of small displacements which, over time, gives rise to global patterns of space use. However,
most utilisation distribution models either ignore the underlying movement, assuming the independence
of observed locations, or are based on simplistic Brownian motion movement rules.
2. We introduce a new continuous-time model of animal movement, based on the Langevin diffusion.
This stochastic process has an explicit stationary distribution, conceptually analogous to the idea of the
utilisation distribution, and thus provides an intuitive framework to integrate movement and space use.
We model the stationary (utilisation) distribution with a resource selection function to link the movement
to spatial covariates, and allow inference into habitat selection.
3. Standard approximation techniques canbeused toderive thepseudo-likelihoodof theLangevindiffusion
movement model, and to estimate habitat preference and movement parameters from tracking data. We
investigate the performance of the method on simulated data, and discuss its sensitivity to the time scale
of the sampling. We present an example of its application to tracking data of Stellar sea lions (Eumetopias
jubatus).
4. Due to its continuous-time formulation, this method can be applied to irregular telemetry data. It
provides a rigorous framework to estimate long-term habitat selection from correlated movement data.

Keywords: animal movement, continuous time, resource selection, step selection, Langevin diffusion,
potential function, utilisation distribution

1 Introduction

A crucial concept in animal ecology is the utilisation distribution, "the probability density function that
gives the probability of finding an animal at a particular location" (Anderson, 1982). In recent decades,
improvements in tracking technologies have produced large amounts of animal location data, at a high
spatio-temporal resolution. Statistical methods have been developed to estimate the UD from telemetry
observations, and to link animal movement to habitat preferences and space use (Hooten et al., 2017). Most
popular approaches to estimate the utilisation distribution from tracking data are non-parametric, and use
empirical histograms (Nielson and Sawyer, 2013) or kernel density estimation (Anderson, 1982; Worton,

∗Corresponding author: tmichelot1@sheffield.ac.uk

1



1989; Fleming et al., 2015). More recently, interpolationmethods involving Brownian bridges have also been
used (Horne et al., 2007; Kranstauber et al., 2012). A major limitation of such methods, however, is that the
estimation of the utilisation distribution is disconnected from the movement itself, as they either ignore the
sequential structure of data (Anderson, 1982; Worton, 1989; Nielson and Sawyer, 2013), or make unrealistic
Brownian assumptions about the animal’s movement (Horne et al., 2007; Kranstauber et al., 2012; Fleming
et al., 2015).

In those approaches, a (generally two-dimensional) density function is estimated, and can be related to
environmental covariates using regression techniques (Millspaugh et al., 2006; Long et al., 2009; Nielson
and Sawyer, 2013; Zhang et al., 2014). The regression function, formulated in terms of spatial covariates
of interest, is often defined as a resource selection function (RSF, Manly et al., 2007). A RSF links the
distribution of observed locations of an animal to the distribution of resources (or other spatial covariates),
to infer habitat characteristics that are preferred (or “selected”) by the animal. It is based on the idea
that, knowing the habitat composition of a spatial unit, we can predict its long-term utilisation. However,
resource selection models usually assume that telemetry observations are independent, which is unrealistic
for high-frequency movement data.

It is natural to think of the utilisation distribution as a consequence of the movement, which itself
depends on the environment, such that short-term movement decisions give rise to long-term space use.
This idea motivates the development of more mechanistic approaches that link the animal’s movement to
its environment, and, ultimately, a mechanistic movement model with an explicit steady-state distribution,
representing the utilisation distribution.

Following this idea, step selection functionsmodel the likelihood of a step between two points in space as
a combination of a movement kernel and a habitat selection function (Fortin et al., 2005; Forester et al., 2009;
Thurfjell et al., 2014). The parameters of a step selection function describe preference at a local (step-by-step)
level, and strongly depend on the choice of the movement kernel. As such, it is unclear how they can be
used to infer global space use. Potts et al. (2014) and Avgar et al. (2016) have suggested numerical methods
to approximate the utilisation distribution underlying a step selection function model, but it does not take
a parametric closed form.

Hanks et al. (2015) proposed a continuous-time discrete-spacemodel to linkmovement to environmental
drivers. In their framework, the movement is considered as a continuous-timeMarkov process on a discrete
grid of spatial cells. The spatial grid is usually chosen as the grid on which the spatial covariates are
measured, and the observed locations are binned in the cells. Wilson et al. (2018) argued that the limiting
distribution of that movement model can be interpreted as the utilisation distribution of the animal, and
proposed a method to estimate it on a discrete grid. A drawback of that approach is that it describes
movement on a discrete spatial grid, and its formulation is therefore tied to a particular space discretization.

Recently, Michelot et al. (2017) proposed a step selection model, formulated in terms of an explicit
utilisation distribution. Their approach describes individual movement as a Markov chain in continuous
space, whose stationary distribution is the utilisation distribution. In particular, they suggest that Markov
chain Monte Carlo (MCMC) algorithms, which are used to construct Markov chains with a given stationary
distribution, can be viewed as movement models.

Others have described the position of an animal as a diffusion process which follows the gradient of a
potential surface (Brillinger, 2010; Preisler et al., 2013; Gloaguen et al., 2018). The surface measures the po-
tential interest for the animal, but it is not directly connected to the utilisation distribution. These approaches
offer a wide variety of flexible models to describe movement, but their link to the utilisation distribution
is unclear in the existing literature. Indeed, potential-based models are often based on diffusion processes
that are not stationary (Gloaguen et al., 2018), or lead to unrealistically simple utilisation distributions.
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For example, the stationary distribution is uniform over the study region for Brownian motion movement
models (Skellam, 1951), and it is a normal distribution for Ornstein-Uhlenbeck based movement models
(Blackwell, 1997).

In this work, we describe a new continuous-time and space mechanistic movement model. The animal’s
position is modelled as a diffusion process with a drift towards the gradient of its stationary (utilisation)
distribution, bringing together the ideas of Brillinger (2010) and Michelot et al. (2017). As in Wilson et al.
(2018), the limiting distribution of the process is the utilisation distribution. The movement model is
based on the Langevin diffusion, which has also been used to construct a MCMC algorithm (Roberts and
Rosenthal, 1998). As this model belongs to the class of potential-based models, inference can be performed
from movement data using different estimation methods for stochastic differential equations (SDEs), such
as pseudo-likelihood methods which are simple to implement (Gloaguen et al., 2018). We show here how
this parametric model can also be linked to step selection approaches when the utilisation distribution is
parameterized as a simple function of environmental covariates. Point estimators and confidence intervals
of habitat selection parameters can easily be derived in a classical approximated inference framework.

In Section 2, the proposedmovementmodel is formulated in its general form, and in a specific "covariate-
dependent" form, using a resource selection function. Section 3 describes a pseudo-likelihoodmethod based
on the Euler discretization scheme, for the estimation of habitat selection parameters from telemetry data. In
Section 4, we assess the performance of inference methods in simulations, and we discuss conditions under
which the model parameters can be recovered. In Section 5, we present the analysis of three trajectories
of Stellar Sea Lions (Eumetopias jubatus) with the Langevin movement model, with four environmental
covariates as potential drivers of their movement.

2 Langevin movement model

2.1 General formulation

We denote by Xt ∈ Rd the location of an animal in d-dimensional space at time t ≥ 0, and π : Rd → R its
utilisation distribution (Worton, 1989). The utilisation distribution is the probability density function such
that, for any area A ⊂ Rd,

P(Xt ∈ A) =

∫
A

π(z)dz (1)

In the following, we will focus on the case d = 2, by far the most common in movement ecology, although
the framework could be extended to higher dimensions.

We propose to describe the continuous-time location process of the animal (Xt)t≥0 with a Langevin
diffusion for the density π, defined as the solution to the stochastic differential equation

dXt =
1

2
∇ log π(Xt)dt+ dWt, (2)

where Wt is a standard Brownian motion, ∇ is the gradient operator, and with initial condition X0 =

x0. Under some easily-satisfied technical conditions (that can be found in Dalalyan, 2017), Equation (2)
has a unique solution, which is a continuous-time continuous Markov process. It describes the animal’s
movements as the combination of a drift towards higher values of its utilisation distribution π (informed
by the gradient of log π), and a random component given by the Brownian motion. Crucially, the solution
is a continuous-time Markov process whose asymptotic stationary distribution is π as defined in Equation
(1) (Roberts et al., 1996). The Langevin diffusion is thus a natural choice for the basis of a continuous-time
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model of animal movement, with a known steady-state distribution.
In its standard formulation, however, the Langevin diffusion cannot readily be used to model animal

movement. Indeed, the speed of the process described above is only determined by the shape of the
underlying utilisation distribution π, whereas it should be possible for two animals to move at different
speeds on the same long-term distribution of space use. To allow for this flexibility, we introduce an
additional parameter γ2, and we define the Langevin movement model (with speed), as the solution to

dXt =
γ2

2
∇ log π(Xt)dt+ γdWt, X0 = x0. (3)

In the following, γ2 will be referred to as the speed parameter. The model is parameterized in terms of
γ2 (rather than γ) as it is also the variance parameter of the random Brownian motion component. Figure
1 shows two tracks simulated from the Langevin movement model on an artificial utilisation distribution,
for two different values of γ2. Although the two tracks explore space at very different speeds, they have the
same equilibrium distribution.
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∆ = 1000

γ2 = 100

Figure 1: Left: Artificial utilisation distribution π. Right: Trajectories simulated from the Langevin movement model on π,
with two different values of the speed parameter γ2 (1 and 100), after ∆ = 50 and ∆ = 1000 time units. Although the process
with γ2 = 1 is much slower to explore space, the properties of the Langevin equation guarantee that both processes have the same
stationary distribution π.

2.2 Including covariates

We link the utilisation distribution of the animal to spatial covariates with the standard parametric form of
resource selection functions (RSF),

π(x|β) =
exp

(∑J
j=1 βjcj(x)

)
∫

Ω
exp

(∑J
j=1 βjcj(z)

)
dz
, (4)

where cj(x) is the value of the j-th covariate at location x, Ω ⊂ Rd is the study region, and β = (β1, . . . , βJ)′

is a vector of unknown parameters. Larger values of βj indicate stronger selection of the j-th covariate. The
denominator in the right-hand side of Equation (4) is a normalising constant, and is necessary to ensure

4



that π(x|β) is a probability density function with respect to x.
Note that Equation (3) requires log π to be a smooth function, i.e. with continuous first-order partial

derivatives. If π is modelled by a resource selection function (Equation (4)), then

∇ log π(x|β) =

J∑
j=1

βj∇cj(x). (5)

Therefore, it is supposed here that all covariates cj are differentiable, and that their gradient can be
computed at each point x, either analytically, or by numerical approximation. In most real data sets, the
covariate functions cj are measured at discrete points in space. There is generally no analytical form for
the gradient, and it is necessary to interpolate the covariate fields so that its gradient can be approximated.
In Sections 4.2 and 5, bilinear interpolation is considered to obtain continuous covariate functions. As
a consequence of this interpolation, the Langevin movement model cannot handle categorical covariates.
Indeed, a categorical covariate field cannot be interpolated into a continuous function, and it is generally
not possible to derive a measure of its gradient.

3 Inference

The continuous-time location process of the animal (Xt)t≥0 is observeddiscretely at times t0 < t1 < · · · < tn,
and these observations aredenotedby (x0,x1, . . . ,xn). We considerJ spatial covariates c1, . . . , cJ , measured
on a grid over the study region. θ denotes the vector of all parameters of the Langevin movement model
defined in Section 2, i.e. θ = (β1, . . . , βJ , γ

2). This section describes an inference method to estimate θ, from
telemetry and habitat data.

3.1 Euler approximation of the likelihood

The likelihood of the observed locations, given θ, can be expressed using the transition density of the process
(Xt)t≥0. The transition density is the probability density function of the random variableXt+∆ given that
Xt = xt, and we denote it by q∆(x|xt,θ). By the Markov property of the solution to Equation (3), and
assuming that the first position is deterministic, the likelihood function is

L(θ;x0:n) =

n−1∏
i=0

q∆i
(xi+1|xi,θ), (6)

where x0:n is shorthand for the set of observations, and ∆i = ti+1 − ti.
As discussed in Gloaguen et al. (2018), in many practical cases, the density q∆ is intractable, and the

likelihood L(θ;x0:n) cannot be evaluated. To circumvent this problem, pseudo-likelihood approaches can
be used as approximations. In these approaches, the intractable transition density in Equation (6) is replaced
by the p.d.f. of a known distribution (usually, Gaussian), with moments given by a discretisation scheme.

The most common pseudo likelihood approach for discretely observed diffusion is the Euler discretiza-
tion scheme (Iacus, 2009). In the Euler discretization (for d = 2), the transition density of the Langevin
diffusion is approximated by the following Gaussian density between ti and ti+1, for i = 0, . . . , n− 1,

Xi+1|{Xi = xi} = xi +
γ2∆i

2
∇ log π(xi|β) + εi+1, εi+1

ind∼ N
(
0, γ2∆iI2

)
, (7)

where I2 is the 2 × 2 identity matrix. Under this approximation, the transition density of the process can

5



then be written
q∆i(xi+1|xi,θ) = φ

(
xi+1

∣∣∣∣xi +
γ2∆i

2
∇ log π(xi|β); γ2∆iI2

)
,

where φ(·|µ; Σ) is the p.d.f. of the multivariate normal distribution with mean µ and covariance matrix Σ.
This expression can be plugged into Equation (6) to obtain the likelihood of a track x0:n.

The Euler discretization can also be used to simulate (approximately) from the Langevin movement
model, as illustrated in the simulations of Section 4. The quality of the scheme decreases for longer time
steps of simulation (Kessler et al., 2012, Chapter 1).

3.2 Maximum likelihood estimation

The pseudo-likelihood function could be optimised numerically to obtain estimates of all model parameters.
However, if π is modelled with the resource selection function of Equation (4), the maximum likelihood
estimate θ̂ can simply be obtained using standard linear model equations.

Plugging Equation (5) into Equation (7), we can write a standard linear model, in the following matrix
form. Let Yi = (Xi+1 −Xi)/

√
∆i be the (two-dimensional) normalized random increment of the process

between ti and ti+1, and denote

Y =



Y0,1

...
Yn−1,1

Y0,2

...
Yn−1,2


, D =

1

2



∂c1(x0)
∂z1

∂c2(x0)
∂z1

. . . ∂cJ (x0)
∂z1

...
...

∂c1(xn−1)
∂z1

∂c2(xn−1)
∂z1

. . . ∂cJ (xn−1)
∂z1

∂c1(x0)
∂z2

∂c2(x0)
∂z2

. . . ∂cJ (x0)
∂z2

...
...

∂c1(xn−1)
∂z2

∂c2(xn−1)
∂z2

. . . ∂cJ (xn−1)
∂z2

,


,

where Yi = (Yi,1, Yi,2), and ∂/∂zi denotes the partial derivative with respect to the i-th spatial coordinate.
Moreover, let T∆ be the (2n) × (2n) diagonal matrix with i-th and (n + i)-th diagonal terms equal to√

∆i−1, for i = 1, . . . , n. Then, the Euler approximation of the Langevin movement model can be rewritten
as

Y = (T∆D)ν +E, (8)

where E is a 2n-vector of N(0, γ2) variables, and ν = γ2β. The estimators for ν and γ2 are derived from
standard linear model theory, as

ν̂ =
(
DᵀT 2

∆D
)−1

DᵀT∆Y ,

and
γ̂2 =

1

2n− J
‖Y − Ŷ ‖2,

where Ŷ = (T∆D)ν̂ is the predicted value of Y . In Appendix A, we show that an unbiased estimator of β
is then given by

β̂ =
(2n− J − 2)ν̂

(2n− J)γ̂2
,

with the following covariance formula

Cov(β̂j , β̂k) =
2βjβk

2n− J − 4
+

Υjk

γ2

(
1 +

2

2n− J − 4

)
,

6



where Υjk :=
[
(DᵀT 2

∆D)−1
]
jk
. Using the asymptotic normality of maximum likelihood estimators, we can

obtain a confidence interval of any level α ∈ (0, 0.5), that is valid for a large enough n. For each covariate
coefficient βj ,

CIα(βj) =

[
β̂j + zα/2 ×

√
V(β̂j); β̂j − zα/2 ×

√
V(β̂j)

]
where zα/2 is the quantile of level α/2 of a standard Gaussian distribution, and V(β̂j) = Cov(β̂j , β̂j). The
detail of the derivation is given in Appendix A.

The results above derive from the use of a linear model to approximate the solution to a SDE.
For the Langevin movement model based on a RSF, as defined in Section 2, the Euler approximation

therefore provides explicit estimates and confidence intervals. Note that the Euler estimator is biased due to
the approximation made in Equation (7) (see Kessler et al., 2012, Chapter 1). Therefore, both the estimate
and the confidence interval must be interpreted with caution, as they depend on the quality of the scheme.
The potential use of other discretization schemes is discussed in Section 6.

4 Simulation study

In this section, we assess the performance of the inference method described in Section 3 in two simula-
tion scenarios. In both cases, we simulate movement tracks from the Langevin process, using the Euler
discretization given in Equation 7. We simulate covariates and define an artificial utilisation distribution,
expressed as a resource selection function, as shown in Equation (4). The objective is to recover the habitat
selection parameters {β1, . . . , βJ} and the speed parameter γ2.

4.1 Scenario 1

We first consider a fully controlled simulation scenario, where the covariate fields are given by smooth
analytical functions. In this idealized case, the gradient of the covariate functions, and thus of the utilisation
distribution, can be calculated exactly at any point in the plane. The utilisation distribution π is defined as
a RSF (Equation (4)) of three covariates c1, c2 and c3, given by

cj(z) = αj exp(−(z − aj)ᵀΣj(z − aj))× sin
(
ωj1(z1 − aj1)

)
× sin

(
ωj2(z1 − aj2)

)
, j = 1, 2,

c3(z) =‖ z ‖2,

where alphaj ,aj = (aj1, a
j
2), ωj = (ωj1, ω

j
2), and Σj = diag{σj1, σ

j
2} are known simulation parameters whose

values are given in Appendix B. For the simulations, we choose the resource selection parameters β1 = −1,
β2 = 0.5, and β3 = −0.05, and the speed parameter γ2 = 1.

The first two covariates are smooth functions, for which the gradient can easily be derived. The third
covariate is the squared distance to the centre of the map, and is used to include a weak force of attraction
towards the centre (here, the point (0, 0), somewhat related to the home range of the individual). These
three covariates functions are shown in Figure 2.

Inference was performed independently on 600 data sets. Each data set was a trajectory of 300 points,
simulated from the Langevin movement model. The tracks were first generated at a fine time resolution
(∆ = 0.01), to minimise the effect of the Euler approximation, and they were then thinned to time intervals
of 0.5 time units.

7
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Figure 2: Artificial covariates fields for the simulation scenario of Section 4.1.

We estimated all model parameters using the Euler method, presented in Section 3.2. We considered
two different settings: (i) the true analytic gradient is used in the estimation, and (ii) the covariates are
discretized on a 8× 8 regular grid, and the gradient is obtained through the interpolation of the covariates.
This second setting corresponds to the more realistic case where covariates are only observed on a discrete
grid, and the gradient needs to be approximated. The gradient approximations were performed for the
covariates c1 and c2 using the R package nloptr (Ypma et al., 2014). The gradient of the Euclidean distance
c3 is computed exactly in both cases, as it would be in a real analysis.

Boxplots of the parameter estimates in the 600 replications are shown in Figure 3. All parameters were
correctly estimated in this benchmark scenario, even when the covariates were discretized to a coarse grid.

β3 γ2
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Figure 3: Estimates for model parameters on 600 experiments replications of scenario 1. The dotted lines show the real values used
in the simulations.
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4.2 Scenario 2

We considered a second simulation scenario, with randomly-generated covariate fields on a discrete grid,
more similar to real environmental data. The main objective of this scenario is to investigate the effect of the
sampling frequency on the estimation.

To simulate covariates, we used a procedure similar to that described by Avgar et al. (2016). We defined
a spatial grid over [−50, 50] × [−50, 50], with cells of size 1. For each cell, a random uniform value was
generated on (0, 1), and the covariate field was obtained with a two-dimensional moving average filter
over a circular region of radius ρ. Here, ρ measures the degree of spatial autocorrelation of the simulated
covariate. We then normalized the covariate field, to range between 0 and 1. Using this procedure, we
simulated two covariates c1 and c2, with the same autocorrelation parameter ρ = 10. Then, we simulated
trajectories from the Euler scheme described in Equation (7), with π defined as the (normalized) RSF with
coefficients (β1, β2) = (2, 4)′. Plots of the simulated covariates, and of the utilisation distribution used in
the simulations, are shown in Figure 4.
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25

50

−50 −25 0 25 50
x

y
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1.00
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−50 −25 0 25 50
x

y
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−50 −25 0 25 50
x

y

2e−04

4e−04

6e−04

8e−04

π

Figure 4: Simulated covariate fields c1 and c2, and utilisation distribution obtained withβ = (2, 4)′. used in the second simulation
scenario.

We simulated 200 trajectories from the Langevin movement model, at a fine temporal resolution of ∆ =

0.01. We then subsampled each trajectory, for different time resolutions∆ ∈ {0.01, 0.02, 0.05, 0.1, 0.25, 0.5, 1},
to emulate data sets obtained at different observation rates. From each thinned data set, we kept the first
250 locations of each of the 200 trajectories, leading to a total of 50,000 locations.

We fitted the Langevin movement model to each thinned data set, using the estimators given in Section
3.2. We evaluated the gradients of the covariates at each simulated location with a bilinear interpolation
method. This procedure was done using the function interp.surface from the R package fields (Douglas
Nychka et al., 2017). We then obtained the approximated gradient of the interpolated covariates with the R
package nloptr. Point estimates and 95% confidence intervals of the habitat selection parameters β and the
speed parameter γ2 are displayed in Figure 5.

The estimates of the speed parameter γ2 were very close to the true value, for all simulation experiments.
However, therewas a lot of variability in the accuracy and precision of habitat selection parameter estimates.
The uncertainty on the estimates of the habitat selection parameters decreased as the time interval increased.
This is not surprising: all trajectories had the same number of locations, such that those with longer time
intervals explored a larger proportion of the study region. Tracks with longer time intervals therefore
covered a larger range of covariate values. Similarly to standard linear model analyses, the uncertainty on
the coefficients is larger when the observed range of explanatory variables in Equation (8) is narrow. From
∆ = 0.05 to ∆ = 1, the estimates of β1 and β2 both decreased as the time interval increases, leading to an
underestimation of the parameters for longer time intervals. This is a common problem for the estimation
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Figure 5: Estimates of the habitat selection parameters β and of the speed parameter γ2 for different observation intervals, in the
simulation study of Section 4.2. The vertical lines show 95% confidence intervals, and the red dotted lines are the true values of the
parameters. The x axis is on the log scale.

of discretely observed diffusion processes, because the consistency of the estimators requires ∆ to tend
towards 0 (for more details, see Kessler et al., 2012). For long time intervals, the habitat selection parameters
are underestimated in absolute value, i.e. the strength of the (positive or negative) effect is underestimated.
This bias is a side effect of the underestimation of the speed of the process for long time lags between
observations. As the time interval increases, the estimated utilisation distribution becomes flatter, to reflect
our growing uncertainty about the effect of the covariates on the short-term movement. In the extreme,
for very long time intervals, we would have no information about the selection process, and the estimated
utilisation distribution would be flat, corresponding to a uniform distribution of space use over the study
region. Note that, although the strength of selection was underestimated in the simulations with long time
intervals, the sign of the effect – i.e. selection or avoidance – was always estimated correctly (Figure 5).

To investigate the performance of the method for the analysis of data sets collected at irregular time
intervals, we ran a similar experiment where the observations were thinned at random. The results were
very similar to the simulations with regular intervals, and are presented in Appendix C. These findings
confirm that, due to its continuous-time formulation, the Langevin movement model can directly be used
on tracking data collected irregularly.

5 Example analysis

In this section, we fit the Langevin movement model to a data set described byWilson et al. (2018), collected
on Steller sea lions (Eumetopias jubatus) in Alaska. The data set comprises three trajectories, obtained from
three different individuals, for a total of 2672 Argos locations. The time intervals were highly irregular,
with percentiles P0.025 = 6min, P0.5 = 1.28h, P0.975 = 17.4h. In addition to the locations, Wilson et al.
(2018) provided four spatial covariates over the study region, at a resolution of 1km: bathymetry (c1), slope
(c2), distance to sites of interest (c3), and distance to continental shelf (c4). The sites of interest were either
haul-out or rookery sites. Maps of the covariates are shown in Figure 6, and we refer the readers to Wilson
et al. (2018) for more detail about the data set.

To correct for the measurement error, and to follow the preprocessing performed byWilson et al. (2018),
we first fitted a continuous-time correlated random walk (CTCRW) to the tracks, using the R package crawl
(Johnson et al., 2008; Johnson and London, 2018). The CTCRW is a continuous-time state-space model, that
can be used on irregular and noisy telemetry data. The package crawl implements the Kalman filter for this
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Figure 6: Covariate maps for the sea lion analysis.

state-space model. We used the code provided by Wilson et al. (2018) to fit the CTCRW to each track, and
obtained predicted locations for the times of the observations.

We then fitted the Langevinmovementmodel to the filtered tracks, using the inferencemethod of Section
3. Most of the computation time is needed to evaluate the gradient of each covariate at all observed locations,
which took about 1.5 min on a 2GHz i5 CPU. Like in the simulation study of Section 4.2, the covariates were
interpolated, so that their gradient could be evaluated at each filtered location. The point estimates and
95% confidence intervals, obtained from the equations of Section 3.2, are given in Table 1. The estimated
utilisation distribution, and its logarithm (for comparison with Wilson et al., 2018), are plotted in Figure 7.

Estimate 95% CI
β1 1.39 · 10−4 (−3.87 · 10−7, 2.79 · 10−4)
β2 0.12 (−0.14, 0.37)
β3 −2.50 · 10−5 (−3.58 · 10−5, −1.41 · 10−5)
β4 3.47 · 10−6 (2.05 · 10−7, 6.73 · 10−6)

Table 1: Maximum likelihood estimates and 95% confidence intervals obtained with the Euler scheme for the sea lion analysis.

The 95% confidence intervals of the parameters for two of the covariates (bathymetry and slope) include
zero, i.e. we cannot draw conclusions about their effects on the sea lions’ movement. The effect of the
distance to sites of interest, β3, was estimated to be negative. This indicates that the model captures the
attraction of the sea lions towards the sites of interest (rookeries and haul-out sites). On the other hand,
the effect of the distance to the shelf, β4, was estimated to be positive. Although this seems to indicate that
the animals tend to move away from the shelf, it may also be an artifact caused by the strong collinearity
between the covariates c3 and c4.
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Figure 7: Estimated utilisation distribution for the sea lion analysis (left), and its logarithm, for comparison with Wilson et al.
(2018) (right). The black dots are the filtered sea lion locations.

Wepresented this analysis as a proof of concept for the Langevinmovementmodel, and several directions
could be explored further. As for any regression model, standard model selection criteria such as the AIC
could be used to choose the best set of covariates. Following Wilson et al. (2018), we could also estimate the
parameters separately for the three seals, to capture inter-individual heterogeneity.

6 Discussion

This work introduces a new model of animal movement, based on the Langevin diffusion process, that
integrates the movement with space use and habitat selection. The movement model follows the idea of
potential-based movement models proposed by Preisler et al. (2004) and Brillinger (2010), and it is explicitly
connected to the animal’s utilisation distribution, from stationarity properties of the Langevin diffusion
process (Roberts et al., 1996). If spatial covariates are available, the long-term (utilisation) distribution
can be modelled with a resource selection function, embedded in the movement process, to infer habitat
preferences. The Langevin movement model therefore describes animal movement in response to spatial
covariates, i.e. step selection. Pseudo-likelihood methods can be used to obtain estimates of the habitat
selection parameters in a classical linear model framework, fromwhich an estimated utilisation distribution
can be computed. The Langevin movement model is formulated in continuous time, and it can deal
with location data collected at irregular time intervals, without the need to interpolate them. Similarly,
because it models movement in continuous space (unlike the method presented by Wilson et al. 2018), the
interpretation of the results is not tied to a particular space discretisation.

In this paper, we used the Euler discretization scheme to approximate the likelihood of the model. This
scheme is the most widely-used method to carry out inference for discretely-observed diffusion processes,
when the transition density is not analytically tractable (see Preisler et al., 2004; Brillinger, 2010; Russell
et al., 2018, for applications in ecology). There exist other pseudo-likelihood approaches, and Gloaguen
et al. (2018) argued that better inferences could be obtained with more refined schemes. In particular,
they found that the Ozaki discretization provided more reliable results in their applications. However,
the Ozaki scheme requires the evaluation of the partial derivatives of the drift, i.e. the (partial) second
derivatives of log π in the Langevin movement model. If π is modelled with a resource selection function,
then this would require the evaluation of the second derivatives of the covariate fields, from Equation
(5). In practice, the covariates must be interpolated to a spatially continuous function, and their second
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derivatives computed using numerical methods. To compare the Euler and the Ozaki scheme, we repeated
the simulation study of Section 4.1, using the Ozaki scheme for the estimation. (The results are not shown
here.) The theoretical advantages of the Ozaki scheme were counterbalanced by the need of this second-
order interpolation, and the Euler scheme provided more reliable estimates. Therefore, in the context of
the Langevin movement model, the Euler scheme is typically more robust to numerical approximations. To
avoid any discretization scheme, it would be interesting to consider exact algorithms for diffusion processes,
as suggested in (Gloaguen et al., 2018). However, so far, exact methods of inference have been restricted to
a small class of diffusions, and could not be readily applied to the cases presented here.

In the case study of Section 5, we used a two-stage approach to deal with themeasurement error. We first
fitted a state-space model, the continuous-time correlated random walk, to filter the Argos locations. Then,
we fitted the Langevin movement model to the filtered tracks. There are several drawbacks to the two-stage
approach. Indeed, it is difficult to propagate the uncertainty from themeasurement error (althoughmultiple
imputation could be used; see e.g. Scharf et al., 2017). Besides, the two stages are not consistent, because
the first stage ignores the environmental effects that are estimated in the second stage. To avoid this issue,
the two steps could be integrated into a state-space model that incorporates measurement error directly
on top of the Langevin movement process. The state equation of the full model is given by the transition
density of the Langevin movement model, or a discretization of it (like the one given in Equation (7)). A
natural choice for the observation equation would be x̃i = xi + ηi, where x̃i is the noisy observed location,
xi is the true location, and ηi ∼ N(0, σ2

obsI2) models the measurement error. Under the Euler scheme, the
approximate transition density is normal, and a Kalman filter can be used to compute the pseudo-likelihood
of this hierarchical state-space model. This extension is conceptually straightforward, and should be done
in the near future.
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A Estimators

This appendix proves that β̂ and γ̂2 are unbiased estimators and derived the confidence intervals for the
corresponding parameters.

A.1 Unbiased estimators

We defined ν̂ and γ̂2 as

ν̂ =
(
DᵀT 2

∆D
)−1

DᵀT∆Y ,

γ̂2 =
1

2n− J
‖Y − Ŷ ‖2.

Following standard linear model properties, ν̂ ∼ N
(
γ2β,

(
DᵀT 2

∆D
)−1
)
. Besides, Cochran’s theorem

implies that ν̂ and γ̂2 are independent and that (2n − J)γ̂2/γ2 ∼ χ2(2n − J), where γ̂2 is an unbiased
estimator of γ2.

Considering β̃ defined as β̃ = ν̂/γ̂2, we have

E[β̃] = E[ν̂]E
[

1

γ̂2

]
= γ2βE

[
1

γ̂2

]
= γ2β × 2n− J

γ2
E

[
1

2n−J
γ2 γ̂2

]

From the properties given above, we have

1
2n−J
γ2 γ̂2

∼ Inv-χ2(2n− J),

and we obtain
E[β̃] =

2n− J
2n− J − 2

β.

Thus, to obtain an unbiased estimator of β, we define β̂ := (2n− J − 2)/(2n− J)β̃.

A.2 Confidence intervals

As said above, (2n− J)γ̂2/γ2 ∼ χ2(2n− J), so that a confidence interval for γ2 is given by

CIα(γ) =

[
γ̂

2n− J
q1−α/2,2n−J

; γ̂
2n− J
qα/2,2n−J

]
,

where qα/2,2n−J stands for the quantile of order α/2 from a χ2 distribution with 2n − J degrees of
freedom.

It is also straightforward to derive a confidence interval or even a confidence ellipsoid using the distri-
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bution of β̂. We first use the covariance matrix of β̃,

Cov(β̃j , β̃k) = E
[
ν̂j ν̂k
γ̂4

]
− E

[
ν̂j
γ̂2

]
E
[
ν̂k
γ̂

2]
by definition

= E[ν̂j ν̂k]E
[

1

γ̂4

]
− E

[
1

γ̂2

]2

E[ν̂j ]E[ν̂k] by independence of the estimators γ̂ and ν̂.

We now note that

E[ν̂j ν̂k] = Cov(ν̂j , ν̂k) + E[ν̂j ]E[ν̂k]

= γ2Υjk + βjβkγ
4,

where Υjk :=
[
(DᵀT 2

∆D)−1
]
jk
. Moreover:

V
[

1

γ̂2

]
=

2(2n− J)2

γ4(2n− J − 2)2(2n− J − 4)
as γ2

(2n− J)γ̂2
∼ Inv-χ2(2n− J)

E
[

1

γ̂4

]
= V

[
1

γ̂2

]
+ E

[
1

γ̂2

]2

=
(2n− J)2

γ4(2n− J − 2)2

(
2

2n− J − 4
+ 1

)
.

Finally, we can rewrite

Cov(β̃j , β̃k) = V
[

1

γ̂2

]
E[ν̂j ]E[ν̂k] + E

[
1

γ̂4

]
Cov(ν̂j , ν̂k)

=
(2n− J)2

(2n− J − 2)2

{
2βjβk

2n− J − 4
+

Υjk

γ2

(
1 +

2

2n− J − 4

)}
.

B Simulation parameters

The simulation parameters used in Section 4.1 are given in Table A1.

j = 1 j = 2

αj 6 6

aj1 0 −2

aj2 0 π
2

ωj1 0.6 0.1

ωj2 0.2 0.5

σj1 0.4 0.4

σj2 0.4 0.4

Table A1: Simulation parameters for Section 4.1.

C Simulation study with irregular intervals

We repeated the second simulation scenario (Section 4.2), with irregular time intervals. Starting from the
same full simulated data set (∆ = 0.01), we thinned the observations at random, to obtain irregularly-
sampled locations. We ran two experiments: (1) mean time interval ∆̄ = 0.05, (2) mean time interval
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∆̄ = 0.50. The estimates and 95% confidence intervals of the habitat selection parameters β1 and β2 are
given in Table A2. We compare them to the results of the simulations conducted in Section 4.2 with regular
intervals. The estimates obtained in the simulations with regular and irregular time intervals are very
similar, and the standard errors are virtually identical.

regular irregular
Mean interval ∆̄ = 0.05 ∆̄ = 0.5 ∆̄ = 0.05 (SD: 0.045) ∆̄ = 0.5 (SD: 0.49)

β1 2.46 (SE: 0.68) 1.20 (SE: 0.22) 2.15 (SE: 0.69) 0.89 (SE: 0.22)
β2 3.89 (SE: 0.65) 3.07 (SE: 0.21) 3.84 (SE: 0.65) 2.90 (SE: 0.21)

Table A2: Comparison of estimates and standard errors of the habitat selection parameters, for regular and irregular time intervals
of simulation.

This confirms that the continuous-time formulation of the Langevinmovementmodel can accommodate
irregular time intervals, without the need to interpolate prior to the analysis.
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