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Simultaneous End-User Programming of Goals and Actions

for Robotic Shelf Organization

Ying Siu Liang1, Damien Pellier1, Humbert Fiorino1, Sylvie Pesty1, and Maya Cakmak2

Abstract— Arrangement of items on shelves in stores or ware-

houses is a tedious, repetitive task that can be feasible for robots

to perform. The diversity of products that are available in stores

and the different setups and preferences of each store makes

pre-programming a robot for this task extremely challenging.

Instead, our work argues for enabling end-users to customize

the robot to their specific objects and setup at deployment

time by programming it themselves. To that end, this paper

contributes (i) a task representation for shelf arrangements

based on a large dataset of grocery store shelf images, (ii)

a method for inferring goal configurations from user inputs

including demonstrations and direct parameter specifications,

and (iii) a system implementation of the proposed approach

that allows simultaneously learning task goals and actions. We

evaluate our goal inference approach with ten different teaching

strategies that combine alternative user inputs in different ways

on the large dataset of grocery configurations, as well as with

real human teachers through an online user study (N=32).

We evaluate our full system implemented on a Fetch mobile

manipulator on eight benchmark tasks that demonstrate end-

to-end programming and execution of shelf arrangement tasks.

I. INTRODUCTION

The supermarkets and grocery stores industry employs
millions of workers for tedious tasks, including restocking
and facing products on shelves1. These tasks have certain
regularities that can be exploited by automation solutions.
For instance, most objects are rectangular prisms (boxes) or
cylinders (cans) and they are often organized on a shelf in
a grid pattern with the label facing forward. On the other
hand, the arrangement task is slightly different for every item,
with varying grid configuration parameters (rows, columns,
stacks, or object distances) due to differences in shelf space,
product types, and product dimensions. Furthermore, differ-
ent robot end-effectors require different ways of manipulat-
ing objects so as to get them tightly arranged in confined
shelf settings. As a result, developing universal robotic shelf
arrangement capabilities that work for all possible items, in
all possible stores is extremely difficult.

Instead, our work argues for robot shelf arrangement tasks
to be programmed by end-users at the time of deployment.
Rather than developing universal capabilities, we embrace
the idea that a robot will be customized to a specific store
and the specific items in it. While this presents a simpler
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Fig. 1. Overview of the developed system that allows users to demonstrate
part of a shelf arrangement task and interact with a GUI to simultaneously
program both the complete task goal (fully specified shelf arrangement) and
the actions for achieving that goal.

programming challenge, enabling end-users to do it is non-
trivial. The system needs to not only be intuitive and easy
to use, but it should also allow efficient programming of
both what the desired arrangement of items looks like and
how the robot can use its manipulator to move each item to
the desired position relative to other items. In this paper we
tackle this challenge.

We propose an approach for enabling users to simulta-
neously program robotic shelf arrangement task goals and
actions for a given item, by demonstrating a few steps of the
shelf stocking task. We develop a user interface to visualize
inferred task goals and actions, as well as enable other user
input to augment their demonstrations. To better understand
common structure in shelf arrangement tasks, we analyzed
the Freiburg dataset of close to 5,000 images covering more
than 2,400 unique grocery items from 25 different categories
[1]. Our goal inference model, based on this dataset, takes
demonstrations and other input from the user and proposes
them most likely shelf arrangements in order to accelerate
the teaching process. We analyze how quickly correct goal
configurations in the dataset can be inferred from user input
according to 10 different teaching strategies. We present an
online user study that empirically investigates strategies that
people use in a simplified arrangement task domain. We
implement our approach on a Fetch mobile manipulator and
demonstrate the programming and execution of 8 arrange-
ment tasks for objects from the dataset.

II. RELATED WORK

Our work relates to several topics explored in previous
robotics research. The larger umbrella of end-user robot



programming has seen a range of recent work focused on
programming of mobile robots [2], social robots [3], [4],
[5], industrial manipulators [6] and mobile manipulators [7],
[8]. The most widely explored approach is Programming by
Demonstration (PbD) which involves taking demonstrations
of a task as input and inferring the goal of the task or a
policy that can be used to accomplish the task [9], [10]. A
majority of the work focuses on directly learning a policy
or modeling higher level actions from lower level control
signals [11], [12], [13], [14], while some explore learning
task goals or task structure represented in various ways [15],
[16], [17], [18], [19]. Most closely related to our work,
Akgun et al. explored simultaneous learning of actions and
goals by demonstration, focusing on manipulation tasks, such
as closing a box and pouring beans into a bowl [20].

Robot shelf stacking was part of the Amazon picking
challenge in the last iteration [21]. Teaching robots to tidy
up shelves was addressed previously by Abdo et al. [22], but
their focus is on dividing different products into categories,
rather than configuring them on a shelf.

Our work argues for using end-user programing for teach-
ing task goals and robot actions to perform arrangement of
grocery items on shelves. Shelf arrangements are different
in every store; only the store owners or staff can correctly
specify the task goals for the robot. Hence, the use of end-
user programming is essential for that part of the problem.
Previous work has explored alternative interfaces, such as
speech or different GUIs for specifying task goals [7], [23],
[24]. On the other hand, programming of actions is not
necessarily tied to end-user programming. An alternative
is to give robots universal capabilities for grasping any
object, planning a motion to move it without collisions,
and placing it in any desired configuration. Motion plans
could further involve non-prehensile actions [25], [26] to
reconfigure objects closer together as in some of the ac-
tions programmed by demonstration in this work. While a
lot of research in robotics focuses on giving robots those
capabilities, they are still far from being universal. Another
approach is for the robot to learn those actions by training
on the job i.e., self-exploration using reinforcement learning,
but is likely undesirable due to long exploration times and
negative impacts of trial errors.

III. APPROACH

Our work aims to enable a user to demonstrate part of
the task of arranging an item on a shelf and have the
robot complete the task on its own. From the few user
demonstrations, the robot needs to infer both what the desired
arrangement of objects is and how to use its end effector
to configure objects in the desired relative configuration.
While both of these are well studied problems, their joint
inference is common in previous work (e.g., [20]). The
specific challenge addressed in this paper is the efficient
inference of the task goal from few demonstrations that
convey both goal and action. To that end we explore two
practical ideas:
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Fig. 2. Main product shape categories, that comprise 90.1% of items in the
dataset, are defined based on the the shape of their base and their tip. The
shape of the tip determines whether the objects can be stacked or not. The
shape of the base determines whether the object is more compactly arranged
on a regular grid (rectangular) or an off-grid arrangement (circular).

1) We perform a thorough analysis of the task domain to
come up with compact domain-specific task represen-
tations that exploit common structure.

2) We augment the user’s input with direct specification
of certain task parameters that are less efficiently
conveyed through demonstrations.

We detail this approach in the following subsections.

A. Freiburg Dataset Analysis

The Freiburg dataset [1] contains 4,947 images of common
grocery items and was originally collected for training visual
classifiers. We labeled the images according to product type
and shelf arrangement. For the shelf arrangement data we
excluded 998 (20.2%) images that either did not show a
supermarket shelf (e.g., product on the table or vending
machine) or that were duplicate images of a product on a
shelf already included. The remaining 3, 949 were used for
understanding the structure of shelf arrangement tasks and
defining a common task representation (Sec. III-B).

Our first observation is that almost all items in stores are
arranged on a 2D or 3D grid. We considered rows to be the
depth (front-to-back), columns the width (left-to-right), and
stacks to be the height (bottom-to-top) of the grid. As the
dataset focused more on product types rather than product
configuration, the configuration parameters were sometimes
not all clearly identifiable. The number of rows was often
not visible but likely to be filled for the entire depth of the
shelf. Thus, we coded the specific number of columns and
stacks and assumed rows to be as many as possible.

Product packaging is often designed with the objective of
compact packaging and efficient use of shelf space in stores.
As a result a large portion of items (54.3% in our dataset)
have a flat top surface that allow stacking, of which 33.9%
are rectangular prisms (i.e., boxes) and 20.4% are cylinders
(i.e., cans). Non-stackable items also have rectangular or
circular bases to stand stably on the shelf surface, but less
regular tops (e.g., bottle lids) that prevent stable stacking. We
consider these objects equivalent to square pyramids (19.5%)
and cones (16.3%). Only 9% of the items did not fit into
the shape categories mentioned above and were categorized
as soft packaging (8.7%) or other (1.3%), e.g., triangular
pyramid or hexagon prism.



Fig. 3. Cylindrical item arranged in (a) regular grid and (b) off-
grid configurations. (c) Soft-packaged item arranged in interleaved grid
configuration.

TABLE I
THE DISTRIBUTION OF SHELF ARRANGEMENT PARAMETER VALUES

ACROSS THE FREIBURG DATASET.

stacks
columns 1 2 3 4 >4

1 49.4% 4.4% 0.7% 0.2% 2.3% 57%

2 29.6% 3.4% 0.4% 0.0% 1.4% 35%

3 5.8% 0.5% 0.0% 0.0% 0.0% 6%

4 1.3% 0.2% 0.0% 0.0% 0.1% 2%

5 0.1% 0.0% 0.0% 0.0% 0.0% 0%

6 0.0% 0.0% 0.0% 0.0% 0.0% 0%

7 0.0% 0.0% 0.0% 0.0% 0.0% 0%

86% 8% 1% 0% 4% 100%

We also observe that items with rectangular bases are
most compactly arranged on a grid with both side surfaces
touching the neighboring items (Fig. 3a). Whereas objects
with circular bases can be more tightly arranged when two
consecutive rows are offset by half the radius length of
the item, which we refer to as an off-grid arrangement
(Fig. 3b). Despite the compactness advantage, only a small
percentage (1.75%) of the dataset included off-grid config-
urations. Although a majority of items were observed to
be arranged as compactly as possible (touching neighboring
items on all sides), some arrangements left space between
objects, possibly to allow customers to take items without
knocking down others. We observed that at least 0.26% of
arrangements left space between items either on the row or
column direction (not possible in the stacking direction due
to gravity).

B. Shelf Arrangement Representation

Based on the common product arrangements observed in
the dataset, we propose a simplified grid-based task repre-
sentation with the following variables: number of columns
(m), rows (n), stacks (s), row distance (dn) and column
distance (dm), where m,n, s � 1, and d

m
, d

n 2 {0, 1}
represent the binary state for touching and not touching
respectively. Thus, we represent a shelf arrangement task
(where the shelf is orthogonal to the robot) as a tuple ⌧ =
(n,m, s, d

n
, d

m). Table I shows the distribution of the values
for these variables observed in the Freiburg dataset. Note
that this representation excludes soft-packaged or irregularly
shaped items, as well as off-grid arrangements. However, the
representation could easily be extended for more complex
tasks, such as continuous values for d

n and d
m, variables

describing off-grid configurations, or variables for orientation
of the items.

C. Goal Inference from Demonstration

The problem of goal inference is the estimation of most
likely shelf arrangement based on the input obtained from the
user. We represent this as a maximum a posteriori estimation
problem, i.e., :

⌧
⇤ = argmax

⌧i2T
P (⌧i|D) (1)

where T is the set of all possible shelf configurations and
D = {Aj , Oj}Mj=1 is the set of M demonstrations provided
by the user with Aj actions each leading to the placement
of one additional object on the shelf. Hence, each Oj

corresponds to configurations (x, y, ✓, s) 2 (SE2 ⇥ N) (s
for stack number) of j objects that have been placed so far
on the shelf surface or on top of another object. Since the
demonstrations are assumed to be progressions of the same
shelf configuration task, the goal inference only depends on
the latest shelf configuration OM rather than all of D.

Given the M object configurations in OM we estimate the
current shelf arrangement ⌧M = (nM ,mM , sM , d

n
M , d

m
M )

as follows. The number of rows and columns are deter-
mined by separately finding alignments (i.e., values within
a small distance) in x and y dimensions of the objects. The
number of aligned groups gives the number of estimated
rows and columns (nM ,mM ). The number of stacks (sM )
is estimated as the highest stack number of any object in
the demonstrated configuration. The contact between rows
and columns (dnM , d

m
M ) are estimated based on the majority

relation between rows and columns.
Next, we substitute ⌧M for D and use the Bayes Rule

to calculate the posteriors of the term we would like to
maximize as follows:

P (⌧i|⌧M ) =
P (⌧M |⌧i)P (⌧i)P

⌧j2T
P (⌧M |⌧j)P (⌧j)

We assume that the probability P (⌧M |⌧i) is zero for all ⌧i
whose row, column, and stack parameter values are already
exceeded in ⌧M . Similarly, any arrangement ⌧i whose binary
variable (dn, dm) is contradicted in the demonstration is
considered zero. Note that d

n and d
m are only relevant if

there are at least two rows or columns respectively (n>1,
m>1). We initialize the priors P (⌧i) based on their observed
occurrence in the dataset (Sec. III-A). To have a finite set of
possible shelf configurations we bound the grid parameters
based on the dataset as well, where m 2 [1..7], n 2 [1..2]
and s 2 [1..5], where n = 2 corresponds to having as many
rows as possible based on the shelf, rather than an exact
number of rows.

While the computation in Eqn. 1 gives a single most likely
configuration, we propose to give the top few arrangements
with the highest likelihoods as suggestions to the user. This
requires ranking all possible arrangements in terms of their
likelihoods, given the demonstration. Since ties are possible
due to equal priors we rank configurations with smaller
parameter values as higher.



D. Goal Inference with Direct Specification
To allow the user to directly specify goal shelf arrangement

parameters to augment demonstrations, we exploit the way
that our goal inference works as described in Sec. III-C. If
the user directly specifies the value of a goal arrangement
parameter, all arrangements that are inconsistent with that
specification are considered to have zero probability. This
corresponds to a slight change in the formulation, where
the input from the user relevant for the inference does not
only include ⌧M but also any direct specification S , where
P (⌧i|S, ⌧M ) is zero if ⌧i is inconsistent with S . This allows
for a fast elimination of many candidate arrangements.

E. Action Representation and Inference
We use a simple action representation proposed in previous

work [27], [28]. We assume that the robot can perceive the
configuration of the shelf and of each object on it. Each
of these perceived entities are considered as potential land-
marks. The action is then represented as a sparse sequence of
end-effector poses relative to one of the landmarks and grip-
per states (open/close). For example, placement of an object
next to another object could be done by moving the gripper
to a pose near the reference object, lower the gripper, open
the gripper, clear the gripper from potential collisions. All of
these poses would be relative to the reference object. Non-
prehensile actions, such as moving the placed object closer
to the reference object, could also be easily represented in
the same way, as poses of the gripper relative to detected
objects.

Such actions can be directly programmed with a single
demonstration using heuristic assignment of poses to land-
marks. The assignment can then be corrected by the user
[28] or through multiple demonstrations of the same step
[29]. We take the first approach; hence an individual action
demonstration in Aj is already an executable action. While
there can be ways to combine multiple demonstrations, in our
implementation the robot randomly chooses an action from
the subset of Aj that is reachable based on the configuration
of landmarks in the scene. Although all demonstrated actions
should be reachable for the objects in the shelf arrangement
that were placed during the demonstration, some actions may
become unreachable when they are shifted for placement
of other objects to complete the desired shelf arrangement.
Hence having multiple demonstrations in Aj is still valuable.

Execution of actions simply involved detecting all land-
marks in the environment, computing the actual configuration
of end-effector poses that are relative to those landmarks, and
then moving through the landmarks one by one.

F. Implementation
We implemented our approach on a Fetch mobile ma-

nipulator which has a 7-DoF arm with a load capacity of
6kg. Our system builds on the open-source system Rapid
PbD2 which implements the action representation described
in Sec. III-E. The robot detects the shelf surface and objects

2https://github.com/jstnhuang/rapid pbd

Fig. 4. The extended Rapid PbD interface with the inferred object
arrangement (purple) visualized overlaying the detected objects (green).

on it using standard Point Cloud Library functionality. As
stacked objects are perceived as one cluster on the surface,
we detect stacking from height changes that are approxi-
mately equivalent to the height of the object measured at the
demonstration of the first action.

We extend the Rapid PbD graphical user interface (GUI) in
several ways. Users first create an empty program using the
GUI. Then they kinesthetically move the robot arm to desired
poses and save poses or change the gripper state through the
GUI. We assume that the items to be placed on the shelf are
always picked up from the same location. Demonstrations
involve a sequence of picking, moving, placing, and possibly
non-prehensile readjusting of one object relative to the shelf
or to another object already on the shelf.

When the user confirms the end of an action demonstration
the robot perceives the end state of the demonstration OM ,
which is expected to include M objects. The robot then infers
⌧M as described in Sec. III-C and visualizes the most likely
configuration overlaid onto the detected objects that are
already placed (Fig. 4). In our implementation the average
row and column distances (dm, d

n � 0) are read from
the demonstrated arrangement and off-grid arrangements are
recognized. The user can create interleaved arrangements
(Fig. 3c) by changing d

m
, d

n on the GUI. It also displays
the top four arrangements that have the highest likelihood
given the demonstrations so far. The GUI allows the user
to select an arrangement from this list or directly specify
task goal parameters (Sec. III-D). When the goal for the
shelf arrangement is confirmed, the robot can execute the
complete shelf arrangement task either continuing from what
has already been demonstrated or starting from scratch.

Our interface also allows users to reuse previously pro-
grammed tasks and actions for shelf arrangement with dif-
ferent objects or grid parameters. To that end the user can set
up full or partial shelf arrangements and then run the object
detection and goal inference. They can also change task
parameters to match the new task. Programmed manipulation
actions can also be transferred in some cases, but need to be
tested and possibly adjusted to work with different objects.



IV. GOAL INFERENCE EVALUATION
We evaluate our approach in three ways. First, in this

section we present (1) a systematic evaluation of the goal
inference on the Freiburg dataset and (2) a user evaluation
through an online study with a simplified interface. Next, in
Sec. V we present the full system evaluation.

A. Teaching Strategies
Our system provides the user with different possibilities

for programming shelf arrangement tasks. As described in
Sec. III-C, at any point during the programming process the
user has three possible actions:

• Demonstrate object placement kinesthetically,
• Specify grid parameters on the interface,
• Select an arrangement from most likely arrangements,
The user can have different strategies for using a combi-

nation of the different actions to minimize cost. Often times,
learning algorithms are evaluated with sample efficiency,
i.e., the number of examples needed to learn a concept.
Similarly, users of our system can try to minimize the
number of programming actions they need to take in order
to correctly teach a shelf arrangement. Alternatively, each
action can be associated with a different cost, such as clock
time and the user can try to minimize that cost.

Given the three programming actions above, we devised
the following programming strategies:

1) Naive demonstration (ND) involves demonstrating the
full shelf arrangement filling up rows, columns, and
stacks in progression.

2) Optimal demonstration (OD) involves giving the mini-
mum number of demonstrations to make the inference
correct; i.e., filling up one row, one column and one
stack.

3) Demonstrate and specify (D&S) involves demonstrat-
ing distances d

m and d
n and specifying remaining

variables n,m, s.
4) Naive specification (NS) involves specifying all values

in order of n,m, s, d
n
, d

m.
5) Prior-aware specification (PaS) involves only specify-

ing values that are different from the most likely values
according to the prior.

These programming strategies are akin to optimal teaching
algorithms that can be devised for a given concept and known
learner [30], [31]. The selection action can be used in combi-
nation with any of these strategies, therefore resulting in 10
teaching strategies. We assume that the interface displays the
top four most likely configurations. Hence if the most desired
arrangement is in the top four, the user can directly select this
configuration and complete the programming process. Note
that in order to learn the action as well as the task goal,
the robot needs to obtain at least one demonstration from
the user, which is not the case for all strategies. However,
for the purposes of the analysis of goal inference, we ignore
that fact. In practice, those strategies that do not involve any
demonstrations would require at least one demonstration in
addition to the other programming steps.
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Fig. 5. Learning curve of 10 teaching strategies for 4 different shelf
arrangements from the Freiburg dataset, with number of actions (x-axis)
and ranking of the ground truth shelf arrangement (y-axis).

Fig. 6. Average number of steps required to infer the correct arrangement
per teaching strategy across the dataset (error bars show standard deviation).

B. Evaluation on the Freiburg Dataset
We measured the performance of each teaching strategy

in terms of the number of steps required to infer the
desired arrangement across the Freiburg dataset. Fig. 5
shows the learning curves for the ten teaching strategies
for four example shelf configurations. We observe that for
simpler configurations (m,n, s  2), strategies that involve
demonstrations are comparable or better than specification
strategies, because (1) dn, dm are automatically inferred from
the object placements and (2) our priors are based on the
dataset where simpler configurations are ranked higher.

For higher m,n, s values, the naive demonstrations be-
come infeasible, optimal demonstrations are bounded by
(n + m + s � 2) steps, while specification strategies are
always bounded by a maximum of 5 steps. The version of
each strategy that involves a final selection step from the top
four arrangements is more efficient or the same (in terms of
number of actions) as the original strategy, since it takes
fewer demonstrations or specifications to get the desired
arrangement in top four versus top one. The most efficient
strategy is the prior-aware specify+select strategy requiring
1.85 steps on average.

Overall, the average number of steps required to teach
shelf configurations for all teaching strategies (Fig. 6) is low
(between 2-3 actions) despite some outlier cases (e.g., naive
demonstrations requiring over 50 demonstrations Fig. 5d).
This is a positive outcome of using priors that are based
on the dataset, which in turn allows faster inference on the
majority of the data.



Fig. 7. Simplified user-interface created to evaluate our goal inference
model in an online user study. The top part shows the desired configuration
with a picture and the visualization of the current shelf arrangement
inference. The bottom part has three parts corresponding to three types
of programming actions the user can take: demonstration (drag-and-drop
items onto shelf), specification (select parameter values from drop-down
menus), and selection (choose one of the top four most likely arrangements
by clicking on it).

C. User Study Evaluation

Next we conducted a user study on Amazon Mechanical
Turk (AMT) to evaluate the goal inference method and
investigate teaching strategies preferred by human users.
For this, we created a graphical interface for a simplified
2D arrangement task domain, where users had to instruct
the robot how to arrange grocery store items by row and
column. We were interested in measuring how quickly the
desired goal configuration could be inferred from user inputs,
what programming actions were preferred, and how they
performed in comparison to the teaching strategies defined
in Sec. IV-A.

1) Protocol: First users were shown a brief instruction
video on how to perform the different programming actions.
Then the user moved onto programming desired arrange-
ments, which were communicated to them through a grocery
store picture. The user interface, shown in Fig. 7 had
three parts for performing the three programming actions.
Demonstrations were performed by dragging and dropping
items onto a shelf area, which automatically updated the
specification fields with the inferred values of task param-
eters. Specifications were done through drop down menus.
The visualization of the most likely top four arrangements
was updated after every user action. The user could select
one of these by clicking on it. Participants were told to
confirm the inferred arrangement once it matched the desired
arrangement. Each user completed one practice task and 8
arrangement tasks in a randomized order. After the final task,
participants were asked to fill out a questionnaire to provide

Fig. 8. Average number of steps required for 8 arrangement tasks chosen
for the user study, by teaching strategy and human performance (AMT).

further insight into their preferred actions and strategies.
2) Metrics: We recorded the user’s interactions with the

interface, when they performed a demonstration, when they
changed the value of a specification field, when they selected
one of the proposed arrangements, and when they confirmed
the inferred arrangement. We used these recordings to mea-
sure the user’s preferred action and strategy, the number of
steps and time spent per task, and if the inferred arrangement
was correct. In the survey at the end, we asked users about
their most and least preferred teacher actions, to explain their
preference and strategies, and to rate the usefulness of the
proposed likely arrangements on a 4-point Likert scale.

3) Results: The study included 32 participants (21M, 11F)
with an average age of 32.5 years (SD=9.6). Users took an
average of 26.5 seconds (SD=7.8) to complete a task.

a) User performance: Participants correctly completed
an average of 5.6 tasks (SD=1.8), 1.8 tasks (SD=1.6) with
correct number of rows and columns but wrong distances,
and 0.7 (SD=0.9) incorrectly. The wrong distances were
likely caused by the angle of the example pictures, as
some users did not consider objects as touching, e.g., when
they were cone-shaped. Other mistakes were likely due to
mis-counting rows or columns. Fig. 8 shows the average
number of steps taken by participants to complete a task in
comparison to the teaching strategies defined in Sec. IV-A.
Overall users were slightly more efficient than the optimal
demonstration strategy, but worse than most other strategies.

b) User strategies: Fig. 9 shows the strategies em-
ployed by participants across the different shelf configura-
tions they programmed. We see that using specifications was
most common, followed by two strategies that combined
specifications with the other actions. Most users (71.9%)
stated their most preferred action to be specify and the least
preferred to be demonstrate, with 16 (50%) out of 32 users
explaining that they found specification to be “easier”. The
majority (84.4%) of the users found the top 4 proposed
arrangements to be useful, but the select action was not used
as much as specify. Most users (28.1%) who described their
teaching strategy stated specify & select; e.g., “type in the
rows and columns and then pick the picture that was best”.
Few users (9.4%) stated their strategy to be a combination
of the three actions as shown in the tutorial video. One user
mentioned a prior-aware strategy: “I liked to specify exactly
what I wanted, but I also could have adjusted the proposed
configurations a little bit”.
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Fig. 9. Distribution of user strategies employed in the AMT study

TABLE II
BENCHMARK TASKS USED FOR EVALUATING THE FULL SYSTEM

IMPLEMENTATION ON THE FETCH ROBOT.

# Grid (n,m,s) Used manipulation actions Product
1 (4,1,1) not-touching Pick and place Tin cans
2 (2,2,2) not-touching Pick and place Tin cans
3 (1,4,1) touching Pick, place, push left Tin cans
4 (1,3,1) close distance Pick, place, push left Cereal boxes
5 (1,3,1) close distance Pick, place, push left Toothpaste
6 (3,3,1) off-grid Pick, place, push left&front Tin cans
7 (3,3,1) off-grid Pick, place, push left&front Soda cans
8 (2,3,1) interleaving Pick and place from top Candy bags

V. SYSTEM EVALUATION

To demonstrate our full system’s ability to learn and exe-
cute shelf arrangement tasks, we defined a list of benchmark
tasks described in Table II. The tasks varied in product type
and grid configuration parameters, some of which required
different manipulation actions (e.g., to place an objects
in touching configurations while avoiding collisions of the
gripper with other objects). We also included more complex
arrangements such as off-grid cylinders and interleaved soft
packaging (Fig. 3(b-c)) which were excluded from our goal
inference analysis due to low frequency in the dataset.

A. Protocol

All tasks were programmed by one of the authors, with a
subset programmed by another author to ensure consistency.
We programmed each arrangement task as efficiently as pos-
sible using the teaching strategies from Sec. IV-A and reusing
previously taught actions. For each task, the experimenter
decided what type of manipulation action was required
depending on the object type and the grid configuration. The
experimenter could also decide if a new action needed to
be demonstrated or if a previously existing one could be
reused (as described in Sec. III-F). The actions were chosen
to be as simple as possible for the given task, omitting
any unnecessary gestures or movements (e.g., if a simple
place action was sufficient, no additional push action should
be taught). When programming an action, the experimenter
could let the robot execute the partial arrangement task for
a subset of objects as part of the programming process to
mitigate errors in the final task execution.

Fig. 10. Snapshots from the executions of the eight system evaluation
benchmark tasks (Table II).

B. Results

We programmed four different manipulation actions to
complete the eight benchmark tasks. Manipulation actions
included pick, place (from front), place from top, push left,
and push left&front. We were able to reuse these actions
for similar tasks by modifying the required steps of the
program. Each task was executed successfully from start to
end at least two times. Fig. 10 shows snapshots from the
action executions of the benchmark tasks. The evaluation
demonstrates our system’s capability to learn manipulation
actions for the main product types, as well as soft packaging
(e.g., candy), which cover 98.7% of the Freiburg dataset3.

VI. DISCUSSIONS

In the AMT study, users performed demonstrations using
drag-and-drop operations which is simpler than stacking
objects on a shelf with a real robot. As users preferred
specification strategies over drag-and-drop demonstrations,
it is likely that demonstrating object stacking would be less
preferred as well. Some limitations of our approach are as
follows.

1) Our system only considers one demonstrated manip-
ulation action, even if multiple demonstrations are
performed. An extension could consider the poses of
multiple action demonstrations and infer an action

3Sample executions of shelf arrangement tasks can be seen at https:
//youtu.be/liaSirH0CeM

https://youtu.be/liaSirH0CeM
https://youtu.be/liaSirH0CeM


adapted to a specific scenario (e.g., only use push ac-
tion if the gripper would collide with other landmarks).

2) The system’s perception system is limited as it does not
recognize separate objects that are too close together.
This limits our ability to detect demonstrated configu-
rations for objects that are meant to be touching.

3) We did not consider the orientation of the object
(e.g., product label facing front) as commonly applied
in shelf organization tasks. Our perception system only
recognizes the object’s bounding box, so an extension
could include better object recognition and object
orientations.

VII. CONCLUSIONS
We present an end-user robot programming system to

efficiently teach a robot shelf arrangement tasks and actions.
We propose augmenting Programming by Demonstration
with domain-aware goal inference and direct user inputs to
accelerate the teaching process. Our task goal representation
is based on an analysis of a large database of grocery store
shelf images. We evaluated our goal inference with different
teaching strategies and with real human teachers. We then
demonstrated our system’s ability to efficiently learn and
perform various shelf arrangement tasks and actions on a
Fetch mobile manipulator.
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