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The orbital contribution to the magnetic moment of the transition metal ion in the isostruc-
tural weak ferromagnets ACO3 (A=Mn,Co,Ni) and FeBO3 was investigated by a combination of
first-principles calculations, non-resonant x-ray magnetic scattering and x-ray magnetic circular
dichroism. A non-trivial evolution of the orbital moment as a function of the 3d orbitals filling is
revealed, with a particularly large value found in the Co member of the family. Here, the coupling
between magnetic and lattice degrees of freedom produced by the spin-orbit interaction results in a
large single-ion anisotropy and a peculiar magnetic-moment-induced electron cloud distortion, evi-
denced by the appearance of a subtle scattering amplitude at space group-forbidden reflections and
significant magnetostrictive effects. Our results, which complement a previous investigation on the
sign of the Dzyaloshinskii−Moriya interaction across the series, highlight the importance of spin-
orbit coupling in the physics of weak ferromagnets and prove the ability of modern first-principles
calculations to predict the properties of materials where the Dzyaloshinskii−Moriya interaction is a
fundamental ingredient of the magnetic Hamiltonian.

I. INTRODUCTION

Recent studies of the weak ferromagnetic carbon-
ates ACO3 (A=Mn,Co,Ni)1 and FeBO3

2 represent the
first systematic experimental and theoretical investiga-
tion of the changes in the sign and magnitude of the
Dzyaloshinskii−Moriya interaction (DMI) across a series
of insulating 3d transition metal (TM) compounds. The
combination of novel resonant x-ray diffraction technique
and modern first-principles calculations revealed a dra-
matic evolution of the sign of the DMI as the 3d or-
bitals of the TM are gradually filled with electrons. The
ability to accurately model the DMI is essential for the
fundamental understanding of a plethora of exotic non-
collinear magnetic ground states, such as spin spirals3

and Skyrmions4–6, and their exploitation as candidate
materials for spintronics applications.

The DMI has its microscopic origin in spin-orbit cou-
pling (SOC)7,8. In the common paradigm of the physics
of TM oxides, SOC is regarded as negligible for 3d elec-
trons, where its role is merely as a small perturbation to
the ground-state Hamiltonian9. This contrasts with the
case of heavier (4d and 5d) TM compounds, where SOC
competes with the crystal field and other relevant en-

ergy scales on an equal footing and gives rise to more
exotic ground states10. Nonetheless, even for 3d TM
compounds, SOC is expected to have a significant im-
pact on the magnetic properties of the system whenever
a finite orbital moment is present9. A substantial un-
quenched orbital contribution to the magnetic moment
has been indeed reported for several 3d oxides11–18. In
this case, the coupling between spin and orbital moment
caused by the spin-orbit interaction can generally pro-
duce a strong magnetoelastic coupling and lead to the
appearance of a large single-ion anisotropy and magne-
tostrictive effects9. The magnetic properties will then
considerably differ from the case a spin-only system with
quenched orbital degrees of freedom.

A careful determination of the strength of the orbital
moment and its impact on the magnetic ground state is
of particular interest for the weak ferromagnets ACO3

(A=Mn,Co,Ni) and FeBO3, where SOC, and the result-
ing DMI, underpins one of the most peculiar aspects of
the physics of this system, i.e. the existence of a weak
net magnetization. Weak ferromagnets also represent an
ideal model system for (i) their manageable magnetic
unit cell, in contrast to the more complex spin-spiral
and Skyrmion states of interest in light of spintronics
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applications and (ii) the availability of state of the art
calculations1,2 which can be conveniently used to pre-
dict the relative orbital and spin contribution to the TM
magnetic moment.

In this paper we present a detailed investigation into
the role of the orbital moment in the isostructural
weak ferromagnets ACO3 (A=Mn,Co,Ni) and FeBO3 by
means of a combination of theoretical calculations, Non-
resonant X-ray Magnetic Scattering (NXMS) and X-ray
Magnetic Circular Dichroism (XMCD). While MnCO3

and FeBO3 behave as almost pure spin systems, a size-
able orbital contribution to the magnetic moment was
found in CoCO3 and NiCO3. In particular, a large orbital
moment is present in the Co compound which results in
a remarkable coupling between lattice and magnetic de-
grees of freedom. The latter is unveiled by a sizeable
magnetocrystalline anisotropy of the magnetic interac-
tions and, more spectacularly, by the emergence of an
unusual space-group-forbidden scattering process.

The paper is organized as follows. A brief description
of the samples is given in § II, while the theoretical cal-
culations and the NXMS and XMCD experimental setup
are outlined in § III. § IV presents the results of the
DFT calculations and the NXMS measurements on the
orbital contribution to the magnetic moment across the
series. § V includes specific findings on CoCO3, in par-
ticular: § V A outlines the XMCD measurements used to
support the NXMS results on the size of the orbital mo-
ment, § V B discusses the role of the magnetocrystalline
anisotropy in the NXMS data and § V C deals with the
space-group forbidden scattering and its microscopical
interpretation based on the multiplet calculations. Fi-
nally, the concluding remarks are presented in § VI.

II. SAMPLES

The weak ferromagnetic carbonates ACO3

(A=Mn,Co,Ni) and FeBO3 are isostructural com-
pounds, with the trigonal R3̄c crystal symmetry19–22

(Fig. 1). The latter consists of alternating TM and
oxygen-carbon/boron layers, such that each TM ion
is at the center of a distorted TMO6 octahedra. The
TM magnetic moments of ACO3 (FeBO3) display
an analogous antiferromagnetic (AFM) order at low
(room) temperature: the moments lie in the crystal ab
basal plane, and are coupled ferromagnetically in each
TM layer and antiferromagnetically between adjacent
layers. The moments in different layers, however, are
not exactly antiparallel one to another: the finite DMI
causes the moments to be slightly canted and results
in a small net magnetization in the basal plane of the
crystal1,2,23 (Fig. 1). The single crystals used in the
present investigation are the same as Ref. 1 and 2, which
the reader is referred to for further details on the crystal
and magnetic structures and the sample growth.

a b

c

TM

C/B

O

FIG. 1. (Color online) Trigonal crystal structure (space group
R3̄c, No. 167) of the weak ferromagnets ACO3 (A=Mn,Co,Ni)
and FeBO3 in the hexagonal axes description. Large blue
spheres: transition metal (TM) atoms (Mn, Fe, Co, Ni);
medium-size yellow spheres: C/B; small red spheres: O. The
arrows represent the magnetic moments of the TM atoms in
the AFM phase.

III. METHODS

A. First-principles calculations

The orbital and spin moments of the selected com-
pounds were calculated using the Vienna ab initio simu-
lation package (VASP)24,25 within the local density ap-
proximation taking into account the on-site Coulomb in-
teraction U and SOC (LDA + U + SO)26. The calcu-
lations are the same as outlined in our recent resonant
scattering investigation1, where further details on the cal-
culation methods can be found. The initial magnetisa-
tion directions were set to lie along the x direction, with
x perpendicular to a 2-fold axis and contained in a c
glide plane of the R3̄c structure. This results in having a
canted AFM state, which is the lowest-energy state for all
compounds. The results will be discussed and compared
to the experiment in § IV. Values of spin and orbital
moments reported in the present work are projections of
the magnetisation density onto a sphere around the cor-
responding TM ion. Due to covalent bonding of the TM
3d orbitals with the oxygens 2p states, part of the mag-
netisation density appears on the ligand sites. The latter
also contributes to the net magnetic moment.
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Compound
Magnetic

ion
Z

3d

electrons

AFM

sublattice

Calculated spin and orbital angular momenta Measured

|l|/|s|sx sy sz lx ly lz |l|/|s|

MnCO3 Mn2+ 25 5.0
A 2.252 0.002 0 0.002 0 0

0.0009 0.05(2)
B -2.252 0.002 0 -0.002 0 0

FeBO3 Fe3+ 26 5.8
A 2.059 0.029 0 0.021 0 0

0.010 0.03(2)
B -2.059 0.029 0 -0.021 0 0

CoCO3 Co2+ 27 7.1
A 1.289 -0.108 -0.010 0.736 -0.058 -0.004

0.57 0.7(2)
B -1.289 -0.108 0.010 -0.736 -0.058 0.004

NiCO3 Ni2+ 28 8.2
A 0.801 -0.105 0 0.190 -0.024 0

0.24 0.3(2)
B -0.801 -0.105 0 -0.190 -0.024 0

TABLE I. Spin and orbital angular momenta in units of h̄ for the different compounds of the series A(C,B)O3 (A=Mn,Fe,Co,Ni)
as derived from DFT calculations and measured by means of NXMS. The xyz reference frame is defined such that x is
perpendicular to a 2-fold axis and contained in a c glide plane of the R3̄c structure and z is parallel to the crystallographic c
axis.

B. Non-resonant X-ray Magnetic Scattering

The NXMS27,28 measurements were performed in ver-
tical scattering geometry at beamline I16 of the Dia-
mond Light Source, Didcot UK29. The crystals were
mounted on the sample rotational stages of the 6-circle
kappa diffractometer with the c axis of the R3̄c trigo-
nal structure aligned vertically. A standard closed-cycle
cryostat was used to cool down the ACO3 samples below
the Néel transition temperature of the canted AFM struc-
ture, while the data on FeBO3 were collected at room
temperature. A magnetic field µ0H ≈ 35 mT, sufficient
to drive the canted AFM structure into a single-domain
phase30,31, was applied to the ab plane of the crystal
using the rotating permanent magnet setup already suc-
cessfully employed in our recent resonant x-ray scattering
measurements1,2.

The diffracted signal arising from several space-group
forbidden reflections of the type (00L),L = 6n + 3 and
(HH̄L),L = 2n+1 was measured using linearly polarized
radiation (30× 200µm2 spot size), with the electric field
vector of the incident x-rays lying in the horizontal plane
(referred to as σ polarization following the conventions
by Blume and Gibbs 28). For each reflection, the scat-
tered signal for both the rotated (σ − π′) and unrotated
(σ−σ′) polarization channels was measured as a function
of the magnetic field direction (where σ′ and π′ denote
the polarization of a scattered beam whose electric field
vector is perpendicular or parallel to the scattering plane,
respectively). The latter is described by the angle η: this
is defined such that the field lies in the vertical scattering
plane (pointing towards the detector) for η = 0◦ and is
perpendicular to the latter for η = 90, 270◦.

Polarization analysis of the scattered beam was
achieved by means of the (004) reflection from a pyrolytic
graphite (PG) single crystal [with the exception of the
data presented in § V B, for which the (006) was used].
The total scattered intensity without polarization anal-

ysis was also measured for MnCO3, FeBO3 and CoCO3

in order to correct for the different reflection efficiencies
of the PG crystal in the σ − π′ and σ − σ′ polarization
channels (see Appendix B). The energy of the incident
beam was kept fixed to E = 5.223 keV (E = 7.684 keV
for the data of § V B), chosen for being away from any
sample absorption edges and for minimizing the cross-
talk between the two orthogonal light polarizations. For
most of the measured reflections, equivalent data sets
were collected at several different sample azimuths ψ31,
whose values were selected to minimize the contribution
of multiple scattering to the diffracted intensity. The
corresponding results were then averaged. All the ψ val-
ues reported in this paper are defined with respect to
the (100) azimuthal reference [ψ = 0◦ when the (100)
reciprocal direction lies in the scattering plane pointing
towards the detector].

C. X-ray Magnetic Circular Dichroism

XMCD was measured on a single crystal of CoCO3 at
the high-field magnet end station (BLADE) of beamline
I10 of the Diamond Light Source. A thin film of Pt (≈
2 nm) was deposited via sputter coating on the crystal’s
facet orthogonal to the c axis at the Research Complex
at Harwell (Didcot, UK) prior to the XMCD measure-
ments. The purpose of the Pt coating was to create an
electrical contact with the illuminated area of the sample.
The latter allowed the drain current of photo electrons
to be extracted thus making total electron yield (TEY)
detection possible despite the strong insulating character
of CoCO3. The crystal was clamped on a electrically-
grounded copper holder and inserted in the UHV sample
environment of the I10 superconducting magnet with the
coated surface facing the incident beam.

The measurements were performed at a shallow (20◦)
incident x-ray angle, so that the external magnetic field,
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FIG. 2. (Color online) Representative magnetic reflections dependence on the magnetic field direction for two different po-
larization states of the diffracted x-ray beam in CoCO3. The data points represent the diffracted intensity integrated over
a rocking scan while the solid curves correspond to the best fit to Eq. (4). The data were collected at T = 5 − 6 K and
ψ = 83◦, 0◦, 108◦, 30◦ for the (003), (107), (1̄17) and (009) reflection, respectively. A small constant background originating
from residual multiple scattering has been removed from all the data sets. For each reflection, the intensity is normalized to
the maximum value across both polarization channels. A schematic drawing of the vertical scattering geometry, along with the
definition of the u1u2u3 reference frame used to express the cross sections of Eq. (1) and the magnetic field angle η, is reported
in the top panel.

directed along the incident beam wave vector, was almost
perpendicular to the c axis. A relatively small field value
(µ0H = 0.4 T) was used: this was chosen to be suffi-
ciently large to suppress the magnetic domains structure

and thus generate a net magnetization along the field
while being, at the same time, small enough not to sig-
nificantly perturb the in-plane canted AFM order of the
Co2+ moments. X-ray Absorption Spectroscopy (XAS)
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measurements were collected across the Co L3 (778.2 eV)
and L2 (793.1 eV) edges for opposite helicities of the inci-
dent circularly-polarized soft x-ray beam (20 × 100µm2

spot size) and opposite directions of the external field.
Several XAS spectra were collected and averaged for each
permutation of light polarization and field direction and
the resulting spectra combined to obtain the XMCD sig-
nal.

IV. EVOLUTION OF THE ORBITAL MOMENT
IN (Co,Ni,Mn)CO3 AND FeBO3

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Q/4π (Å −1)

0.0

0.5

1.0

1.5

l(
Q

)/
s(
Q

)

MnCO3

FeBO3

CoCO3

NiCO3

FIG. 3. (Color online) Orbital-to-spin angular momenta ratio
for the compounds of the series A(C,B)O3 (A=Mn,Fe,Co,Ni)
as a function of the momentum transfer. For each compound,
the l(Q)/s(Q) value for each magnetic reflection (and the cor-
responding errorbar) was calculated combining the measure-
ments at different temperatures and azimuth values31. The
dashed line represents a fit to Eq. (3) of the CoCO3 data
considering an isotropic approximation of the magnetic form
factors.

The orbital and spin angular momenta derived from
the DFT calculations are summarized in Table I. The
calculations predict a negligible orbital contribution to
the total angular momentum of the Mn2+ and Fe3+ ions.
On the other hand, a significant orbital angular momen-
tum is found in CoCO3 and NiCO3. The orbital angular
momentum is particularly large for the Co2+ ion, where it
reaches almost 60% of the spin value. This peculiar trend
does not find a trivial explanation in a simple isolated-ion
picture. Although Hund’s coupling applied to Mn2+ and
Fe3+ (3d5, l = 0, s = 5/2) predicts a zero orbital mo-
ment, the orbital contribution should be larger in Ni2+

(3d8, l = 3, s = 1) than in Co2+ (3d7, l = 3, s = 3/2).
Moreover, despite the nominal 3+ oxidation state of the
magnetic ion in FeBO3, the calculations predict a co-
valent, rather than ionic, character for the Fe-O bond:
this results in an electronic configuration close to 3d6

(l = 2, s = 2), which is then expected to host a finite

orbital moment.
In order to verify the theoretical predictions, we com-

bined the well-established polarization dependence of
NXMS28 with our novel rotating magnet technique1,2.
The diffracted intensity arising from the long-range AFM
order of the A(C,B)O3 compounds was probed at several
space-group forbidden reflections below the Néel transi-
tion temperature. A complete summary of the reflections
measured for each compound can be found in the Sup-
plemental Material31 along with the relevant experimen-
tal parameters. The scattered signal is purely magnetic
in origin, as proved by the fact that the signal vanishes
upon warming above TN following the expected critical
behaviour as a function of temperature31. The only ex-
ception is represented by the (1̄05) and (2̄07) reflections
in CoCO3, which will be discussed in §V C. For each re-
flection, the signal was measured in both the σ − σ′ and
σ−π′ channels as a function of a 360◦ rotation of the ex-
ternal field in the basal plane of the crystal. The canted
AFM structure rotates in response to the application of
the field1,2: the corresponding magnetic field dependence
of the scattered intensity can then be exploited to extract
the relative orbital and spin contribution to the magnetic
moment, as described in the following.

Given an incident σ-polarized x-ray beam, the NXMS
amplitudes (neglecting a constant imaginary pre-factor)
for σ′ and π′-polarized scattering read as follows28:

Mσσ′ = sin 2θ S2

Mσπ′ = 2 sin2 θ [cos θ (L1 + S1) + sin θ S3] (1)

where θ is the Bragg angle of the measured (HKL) reflec-
tion and Li and Si are the components of the orbital (L)
and spin (S) structure factors in the u1u2u3 reference
frame defined in Ref. 28, respectively. As shown in the
schematic of Fig. 2, the latter is defined such that u3 is
antiparallel to the scattering vector Q = kout − kin, u1

lies in the scattering plane and points towards the de-
tector and u2 is orthogonal to the scattering plane. The
magnetic structure factors represent the Fourier trans-
forms of the orbital and spin magnetization densities and
thus directly depend on the direction of the magnetic
moments. In the specific case of the magnetic reflections
under study, they are given by (see Appendix A for a
detailed derivation):

Li = CL(µ̂
(i)
A − µ̂

(i)
B )

Si = CS(µ̂
(i)
A − µ̂

(i)
B ) (2)

where µ̂
(i)
A [µ̂

(i)
B ] is the i-th component of the magnetic

moment (expressed as unit vector) of the A (B) sublat-
tice along the ui direction of the u1u2u3 frame. CL and
CS are constants terms, whose ratio depends on the rel-
ative magnitude of the orbital (l) and spin (s) angular
momenta and the orbital [fl(Q)] and spin [fs(Q)] form
factors:

CL
CS

=
l(Q)

s(Q)
=
|l|
|s|
fL(Q)

fS(Q)
(3)



6

where Q is the modulus of the momentum transfer asso-
ciated to the reflection (HKL) considered and the form
factors are defined such that fl(0) = fs(0) = 1 (Ap-
pendix A) [note that the quantity of Eq. (3) could have
been alternatively defined in terms of the magnetic mo-
ments µL = −µBl and µs = −2µBs, leading to a factor
of 2 difference].
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XMCD = XAS− - XAS+ (×5)∫
  XMCD (×5)

FIG. 4. (Color online) Absorption spectra measured with
the external magnetic field parallel (XAS−) and antiparal-
lel (XAS+) to the helicity of the incident circularly polarized
light and corresponding circular dichroism (XMCD). The data
were collected at T = 3 K using a magnetic field µ0H = 0.4 T
applied in the ab plane of the crystal. The dashed grey line
represents the integrated XMCD signal used for the applica-
tion of the sum rules: the l/s value refers to corresponding
orbital-to-spin angular momenta ratio. The XAS data are
normalized such that the post-edge spectral weight is equal
to unity.

In the case of negligible magnetocrystalline anisotropy
(see § V B for the case when this assumption no longer
holds), the sum µ̂A+ µ̂B of the moments of the two sub-
lattices aligns along the direction of the rotating external
field H(η): the difference µ̂A− µ̂B of Eq. (2), perpendic-
ular to the field, is forced to follow and causes the scat-
tering amplitudes to vary accordingly. After inserting
Eq. (3) and (2) into Eq. (1), the corresponding diffracted
intensities are described by the following relations:

Iσσ′(η) ∝ |Mσσ′(η)|2 =
∣∣∣sin 2θ (µ̂

(2)
A − µ̂

(2)
B )(η)

∣∣∣2
Iσπ′(η) ∝ |Mσπ′(η)|2 =

∣∣∣∣2 sin2 θ

[
cos θ

(
l(Q)

s(Q)
+ 1

)
·

· (µ̂
(1)
A − µ̂

(1)
B )(η) + sin θ (µ̂

(3)
A − µ̂

(3)
B )(η)

]∣∣∣2
(4)

where the dependence of the magnetic moments differ-

ences (µ̂
(i)
A − µ̂

(i)
B ) on the field angle η has been empha-

sized. The momentum-dependent orbital-to-spin ratio
l(Q)/s(Q) can be extracted through a fit to Eq. (4) of

the measured dependence of the diffracted intensities on
the magnetic field direction in the σ − π′ and σ − σ′

polarization channels. Data for two different light po-
larizations are needed due to the arbitrary scale factor
relating the modulus square of the scattering amplitudes
to the measured intensities values.

Representative data measured in CoCO3 for four dif-
ferent magnetic reflections are displayed in Fig. 2 along
with the best fits to Eq. (4). The data were collected
by measuring the integrated intensity of the diffraction
peak over a rocking scan of the sample at each value
of the magnetic field angle η. The magnetic intensity
displays very well defined 180◦-periodic sinusoidal oscil-
lations, which are out of phase in the two polarization
channels. For any given reflection, the l(Q)/s(Q) ratio
is encoded in the relative amplitude of the σ − σ′ and
σ − π′ intensity modulations. It should be noted that
the measured σ−σ′ / σ−π′ amplitude ratio is also sub-
ject to a trivial azimuth-dependent geometrical factor re-
lated to the components of the magnetic moments in the

u1u2u3 reference frame [i.e. the quantities (µ
(i)
A − µ

(i)
B )

of Eq. (4)]: this explains why the two symmetrically-
equivalent (107) and (1̄17) reflections show significantly
different amplitudes in Fig. 2 despite being characterized
by the same value for the orbital-to-spin ratio. The data
are of extremely high quality since the magnetic field
measurements of Fig. 2 are performed without moving
the sample. Therefore, variations in the self-absorption
and grain hopping caused by the sphere of confusion of
the diffractometer, which affect more conventional az-
imuthal scans, are not present in this case.

a

b

M

H

βα 0°

30°

90°

150°

210°

270°

330°

Easy	axes

FIG. 5. (Color online) Direction of the weak net magnetiza-
tion M as a function of the external magnetic field H direc-
tion in the basal plane of the crystal for different values of the
anisotropy parameter h = µ0HM

K
discussed in the text. Each

curve α(β) corresponds to a solution of Eq. (7) for a different
value of h. The inset shows the definitions of the magnetiza-
tion (α) and external magnetic field (β) angles in the ab basal
plane of the R3̄c crystal structure.
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FIG. 6. Calculated dependence of the (009) magnetic reflection in the σ − π′ polarization channel on the external magnetic
field direction for different values of the anisotropy parameter h = µ0HM

K
discussed in the text. The diffracted intensity was

calculated using analogous solutions of Eq. (7) to the ones shown in Fig. 5.

The l(Q)/s(Q) values (averaged over all the measured
temperatures and sample azimuths31) corresponding to
different space-group forbidden reflections are shown as a
function of the momentum transfer in Fig. 3 for the differ-
ent compounds of the family. Following from Eq. (3), the
relative orbital and spin contribution to the total angu-
lar momentum of each compound, i.e. |l|/|s| = l(0)/s(0),
can be ultimately extracted by extrapolating the ratio
l(Q)/s(Q) to Q = 0. This can be achieved by a fit to
Eq. (3) of the measured l(Q)/s(Q) values assuming an
isotropic approximation of the orbital and spin magnetic
form factors (see Appendix A for more details). The fit
for the case of the CoCO3 is reported as a dashed line in
Fig. 3. The resulting |l|/|s| values are reported in Table I
along with the corresponding values from DFT calcula-
tions.

There is generally a very good agreement between the
measurements and the calculations. Importantly, the
trend across the series of compounds is confirmed: while
MnCO3 and FeBO3 behave as almost pure spin sys-
tems, a significant unquenched orbital moment is found
for both CoCO3 and NiCO3. In particular, the pre-
dicted large value of the orbital moment in CoCO3 is
confirmed. This is somewhat consistent with previous
studies on crystals14,15,18 and thin films32 of CoO, where
a large orbital moment was also found. As we will show
in § V, the presence of a large orbital moment is con-
firmed by XMCD measurements and results in the emer-
gence of several interesting phenomena in the physics of
CoCO3. When comparing the measurements with the
calculations, it is important to bear in mind that due to
the covalent bonding of the TM 3d orbitals with the oxy-
gen 2p states, part of the magnetisation density appears
on the ligand sites. While the NXMS measurements are
sensitive to both, the DFT calculations neglect the oxy-
gen contribution. This could explain, for instance, the
partial discrepancy (still within the experimental uncer-
tainty) between the measured and calculated value for
CoCO3. This seems to be confirmed by the XMCD mea-
surements outlined in § V A, which probes selectively the

magnetization of the TM ion.
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FIG. 7. (Color online) Dependence of the CoCO3 (009) re-
flection on the magnetic field direction in σ − π′ at different
temperatures across the Néel transition at TN = 16.7(5) K31.

V. THE PECULIAR CASE OF CoCO3

A. XMCD investigation of the orbital moment in
CoCO3

One of the main results of the previous section is the
presence of an unusually large unquenched orbital mo-
ment in CoCO3. In order to confirm this finding, we
performed XMCD measurements at the Co L edges as
described in § III C. The results are shown in Fig. 4,
where the absorption spectra obtained by combining the
field and polarization reversal measurements are plotted
along with the corresponding dichroism. The presence of
a significant unquenched orbital moment is immediately
evident from the much larger XMCD signal at the Co L3
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edge compared to L2. The application of the sum rules
for the spin (µs)

33 and orbital (µl)
34 magnetic moment

to the integrated XMCD signal shown in Fig. 4 leads to
a value of the orbital-to-spin ratio l/s = 2µl/µs = 0.5(1)
which is also confirmed by Co L-edge multiplet simula-
tions (l/s ≈ 0.6) as described in § V C 2. This value
confirms the one derived from our NXMS measurements
within the experimental uncertainty, thus further consol-
idating our findings. One could argue that the nominal
value of the l/s ratio found by means of XMCD is closer
to the calculated one (Table I), which neglects the oxygen
contribution to the total magnetization density. This is
perfectly consistent with the resonant nature of the ab-
sorption process which, contrary to NXMS, selectively
probes the magnetization density localised on the Co2+

ions.

B. Single-ion anisotropy

From the first-principles calculations, we also found
that the large orbital moment in CoCO3 strongly de-
pends on the direction of the field. The latter is usually
accompanied by a large magnetocrystalline anisotropy36,
which we indeed observed and found to be about
9 meV/Co2+. Both effects were shown to originate from
a peculiar combination of the crystal field and Coulomb
correlations within the Co d-shell. In particular, the
large magnetocrystalline anisotropy is caused by the pure
3z2−r2-character of the lowest unoccupied orbital, which
strongly favours in-plane orientation of the orbital mo-
ment, as demonstrated in detail in Ref. 31. The magnetic
anisotropy within the ab plane is expected to be signif-
icantly smaller. However, as we will show hereafter, its
effect on the magnetic field dependence of the scattered
intensity is clearly visible. For a crystal of space group
R3̄c the single-ion anisotropy in the ab plane is described
by the following energy cost per unit volume37:

(
Eanis.
V

)
= K0(T ) +K(T ) cos 6α (5)

where K0(T ) and K(T ) are temperature-dependent con-
stants (in energy per unit volume) which define the
strength of the anisotropy and α is the angle describing
the magnetization direction with respect to the crystal
axes: this is defined such that the net magnetization re-
sulting from the moments canting (which we shall refer
to simply with the term “magnetization” from now on)
is orthogonal to the [100] crystallographic direction for
α = 0◦ (see inset in Fig. 5). This 6-fold energy term
is minimized for α = 30◦ + n60◦ (n integer index) and
thus defines three main easy magnetization axes along
the [100], [110] and [01̄0] crystallographic directions.

In the presence of an external magnetic field H(β) the
total energy per unit volume can be written as [dropping
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FIG. 8. (Color online) Fit detail of two representative data
sets of Fig. 7 measured well below and close to the Néel tran-
sition. The solid lines represent the best fit to the calculated
intensity (see Fig. 6) leaving the anisotropy constant K as a
free parameter. The results of the fit of the data sets at all
temperatures are shown in Fig. 9.

the constant K0 in Eq. (5)]:

E

V
=
Eanis.
V

+
Efield
V

=

= K(T ) cos 6α− µ0HM(T ) cos (α− β) (6)

where M(T ) is the temperature-dependent magnitude of
the magnetization. Analogous to the magnetization an-
gle α, β defines the direction of the external magnetic
field with respect to the orthogonal to the [100] direction.
This is related to the angle η used to express the mag-
netic field dependence of the scattered intensity through
the relation β = ψ − η + 60◦, where ψ is the sample az-
imuth and the 60◦ offset is simply due to the initial mag-
net position with respect to the crystal axes. In Eq. (6),
Efield represents the Zeeman interaction of the net mag-
netic moment with the external field. For the case of
negligible anisotropy considered in § IV (Eanis. ≈ 0),
the Zeeman term forces the magnetization to align par-



9

4 6 8 10 12 14 16 18
T(K)

0

2

4

6

8

10

12

14
K

 (
n
e
V

/C
o

2
+

)
Fit: ∝ (TN − T)2, TN = 17.9 (3) K

Data

FIG. 9. (Color online) Temperature dependence of the in-
plane anisotropy constant K in CoCO3. The data points were
obtained through analogous fits to the ones shown in Fig. 8.
The solid line represent the best fit to the quadratic law ∝
(TN − T )2 proposed by Kaczer 35 .

allel to the applied field (α = β). In the general case
of non-negligible anisotropy, however, M and H will lie
along different directions. For any given direction β of
the external field, the equilibrium direction α of the mag-
netization is obtained by minimizing the Hamiltonian of
Eq. (6):

d

dα

(
E

KV

)
= 0 (7)

The solutions α(β) of Eq. (7) can be calculated numer-
ically for different values of the dimensionless parameter

h(T ) =
µ0HM(T )

K(T )
, which expresses the relative strength

of the Zeeman and anisotropy energy terms. These are
plotted over a 180◦-degree range of β values in Fig. 5.
The limiting case of negligible anisotropy considered in
§ IV corresponds to large h values and leads to the triv-
ial solution α = β. At the other extreme, for very large
anisotropy values (small values of h) the magnetization is
locked on the easy magnetization axes (α = 30◦, 90◦ . . .)
regardless of the direction of the field and jumps dis-
continuously from one easy axes to another as the field
rotates. A non-trivial 6-fold periodic function is obtained
in the intermediate regime.

The solutions α(β) can be used to calculate the mag-
netic structure factors (2) and simulate the magnetic
scattering intensities of Eq. (4) for different h values. The
simulations are reported in Fig. 6 for the (009) σ − π′

intensity and three representative h values. For negligi-
ble anisotropy (large h) a smooth sinusoidal oscillation
is obtained, analogous to the data shown in Fig. 2. As
the anisotropy increases (h decreases) the intensity mod-
ulation takes on a peculiar “shark-fin” shape and even-
tually becomes discontinuous. Exactly the same trend is
seen in the measured data as a function of temperature

shown in Fig. 7. Increasing the temperature towards the
Néel transition has, in this case, the effect of weakening
the magnetocrystalline anisotropy: upon warming, the
shark-fin shape progressively disappears and symmetric
sinusoidal oscillations are recovered close to TN .

The scattered intensity calculated from the solutions
of Eq. (7) can be used to fit the experimental data of
Fig. 7 leaving the anisotropy constant K(T ) as a free
fitting parameter and using the magnetization values of
Ref. 38 in the parameter h. The calculations reproduce
extremely well the measurements, as shown in the two
representative fits of Fig. 8 for data collected well be-
low and close to the magnetic transition. The values of
K(T ) obtained from the fits are displayed in Fig. 9. As
expected, the basal plane anisotropy constant decreases
with increasing temperature: a quadratic dependence of
the type ∝ (TN − T )2 is observed over most of the tem-
perature range explored, similar to what was reported by
Kaczer 35 . We find K = 11(2) neV/Co2+ at T = 4 K, in
agreement with a previous estimate35. Although almost 6
orders of magnitude smaller than the out-of-plane value,
the effect of a finite basal plane anisotropy is clearly visi-
ble in the data and proves the extremely high sensitivity
of our novel rotating magnetic technique to small inter-
action terms of the magnetic Hamiltonian.

The anisotropy-induced distortion at low temperature
is not as evident in the data of Fig. 2 collected around
T = 5 K. The two sets of data were measured during
different experiments on two different crystals and sev-
eral factors might explain the observed discrepancy. As
well as differences in the crystal quality (crystal defects
could, for instance, impact the field dependence of the
scattered intensity), a significant beam heating has been
observed in several occasions and might have also played
a role despite the precautions taken to minimize it. The
latter is very sensitive to the exact experimental condi-
tions (which were different for the two data sets), such
as sample mounting and incident flux: a sample temper-
ature just a few degrees higher than the nominal value
could explain the apparent lack of anisotropy in Fig. 2.
Moreover, unlike the data presented in Fig. 2, the mea-
surements of Fig. 7 were not collected integrating the
intensity over a rocking scan at each value of the field
angle. This allowed a much larger number of data points
to be collected in a significantly shorter time (minutes
compared to hours): both the coarser sampling and the
averaging of any long term drifts could be at the origin
of the apparent lack of any significant shark-fin distor-
tion. It should also be noted that the magnetic field
value depends on the exact position of the permanent
magnet used for the measurements. This was fixed on
the diffractometer rotational stages manually: a slightly
different position between the measurements of Fig. 2 and
Fig. 7 is likely to play a role in the observed discrepancy.
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FIG. 10. (Color online) (a-b) (2̄07) intensity magnetic field direction dependence as a function of the sample azimuth ψ for
two different polarization states of the diffracted x-ray beam. For each azimuth value and polarization channel, the measured
intensity (represented through the color scale) as a function of the field direction is normalized to its maximum value. A detail
of the ψ = 65◦ data sets (dashed horizontal lines) is shown in Fig. 11. (c-d) Global fit of the (2̄07) magnetic field dependence
shown in (a-b). The σ − σ′ and σ − π′ data at each azimuth value have been fitted to Eq. (8) and the second of Eq. (4),
respectively, as shown in Fig. 11 for ψ = 65◦. The ratio between the magnetic and forbidden charge amplitudes in σ − σ′ was
kept constant across all ψ values, while the multiple scattering amplitude was left free to vary: the resulting values are plotted
in Fig. 14.

C. Forbidden charge scattering

1. Experimental data and empirical model

One of the most striking manifestations of the large
orbital moment in CoCO3 consists in the appearance of
a peculiar interference pattern in the magnetic field de-
pendence of space-group forbidden reflections. As argued
hereafter, this is the result of the presence of a subtle, ex-
tremely weak, contribution to the scattered intensity in-
duced by the ordered magnetic moment below the Néel
transition. The same effect has not been observed in the
other compounds of the series31 and is thus to be consid-
ered a distinctive aspect of the physics of CoCO3. Of all
the space-group forbidden reflections that we have mea-
sured, this interference is clearly visible only for the (2̄07)
and (1̄05). Here, as shown in Fig. 10(a) for the (2̄07) re-
flection, the dependence of the scattered intensity in the
σ − σ′ channel on the magnetic field direction displays
abrupt variations with the sample azimuth. A similar

effect is also seen by varying the energy of the incident
x-rays31. This contrasts the scattered intensity in σ− π′
[Fig. 10(b)], which, regardless of the ψ and energy value,
exhibits the normal 2-fold oscillation seen for the other
reflections (Fig 2).

A detail of the (2̄07) magnetic field dependence at
ψ = 65◦ [dashed lines in Fig. 10(a-b)] is shown in
Fig. 11. Magnetic scattering alone cannot account for
the nearly 4-fold pattern observed in the measured in-
tensity in σ − σ′: an extra contribution, displayed as a
green dashed line in Fig. 11(a), must be introduced. The
latter is, in turn, the result of two interfering scattering
amplitudes of charge origin: (i) a sinusoidally-oscillating
forbidden scattering term, CFSσσ′(η), plotted in Fig. 12 as a
function of the field direction and (ii) a field-independent
multiple-scattering amplitude, CMS

σσ′ . As we will argue
more extensively later on, both CFSσσ′(η) and CMS

σσ′ are
real and, as a result, do not interfere with the magnetic
amplitude, which is purely imaginary (i.e. a π/2 phase
shift is present between the charge and magnetic con-
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FIG. 11. (Color online) (2̄07) intensity magnetic field de-
pendence in (a) σ − σ′ and (b) σ − π′ at ψ = 65◦ [dashed
horizontal line of Fig. 10(a-b)]. The symbols represent the
measured diffracted intensity, while the solid line refer to the
global fit as explained in the text. In (a) the dashed green
line and the dash-dot light blue line correspond to the charge
and magnetic contribution to the global fit, respectively. The
data were collected at T = 4 K and are normalized to the
peak intensity of the σ − σ′ channel. A constant background
originating from multiple scattering has been removed from
the σ − π′ data set.

tributions). The total scattered intensity in the σ − σ′
channel is therefore given by:

I
(2̄07),(1̄05)
σσ′ (η) = IMagnetic

σσ′ + IChargeσσ′ ∝

∝ |Mσσ′(η)|2 +
∣∣CFSσσ′(η) + CMS

σσ′

∣∣2 (8)

where IMagnetic
σσ′ = |Mσσ′(η)|2 is given by the first line of

Eq. (4). The charge origin of CFSσσ′(η) is suggested by the
absence of the interference effect in the rotated polariza-
tion channel and further confirmed by its temperature
dependence (Fig. 13): the latter exhibits a critical expo-
nent twice as large as the magnetic one, as expected for
magnetic-induced charge scattering39.

The forbidden amplitude stems from a peculiar dis-
tortion of the Co2+ electron cloud induced by the mag-
netic moment in the magnetically ordered phase. While

a

b

M

H

α 0°
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150°
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270°
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CoCo	e-	cloud	
distortion

μA

FIG. 12. (Color online) Magnetic field dependence of the
forbidden charge scattering amplitude normalized to its peak
value. The drawing illustrates the empirical model for the Co
electron cloud distortion discussed in the text. The Co ion of
one of the two ferromagnetic sublattices (A) is shown together
with the two negative charges used to model the elongation
along the magnetic moment µA direction. The definition of
the field angle α is analogous to the one given in the inset of
Fig. 5 in the case of negligible magnetocrystalline anisotropy
(H ‖M).

a microscopic description requires detailed calculations
of the Co2+ ground-state wave function (see § V C 2),
most aspects of the resulting scattering process are cap-
tured by the simple “toy model” sketched in the drawing
of Fig. 12. This assumes a small elongation of the Co2+

electron cloud along the magnetic moment (µ) direction,
which is modelled by artificially adding a pair of neg-
ative charges to either side of each Co2+ ion along µ.
The electron cloud distortion reduces the symmetry of
the crystal in the magnetically ordered phase such that,
for an arbitrary field direction, only the inversion centre
is left [space group P1 (No.2)]. The two extra charges are
set to rigidly follow the rotation of µ as this is dragged
around by the external field, thus originating the field-
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FIG. 13. (Color online) Temperature dependence of the (2̄07)
magnetic and charge amplitude for ψ = 65◦. The data points
were obtained through fits analogous to the one of Fig. 11.
The solid and dashed lines refer to the best fit to a power law
for the magnetic and charge amplitude with critical exponents
β and γ, respectively.

dependent term CFSσσ′(η) shown in Fig. 12. The latter in-
terferes with the multiple scattering amplitude and gives
rise to the observed magnetic field dependence.

The multiple scattering amplitude CMS
σσ′ plays a key

role in our observations. In particular, it explains
the azimuthal dependence of the scattered intensity of
Fig. 10(a). Contrary to standard Bragg diffraction (also
referred to as two-wave diffraction), where the diffracted
radiation originates from a single scattering event of the
primary beam, in multiple-wave diffraction the secondary
beam originated from the scattering of the incident x-
rays can act as a primary beam for a second scattering
process, thus giving rise to a tertiary reflection40. This
results in additional diffraction peaks, which can appear
at nominally forbidden (HKL) values. Although much
weaker than Bragg reflections, multiple scattering peaks
can have a comparable intensity to the magnetic ones.
The condition for generating multiple-wave diffraction is
much more stringent than in the two-wave case: as a re-
sult, the multiple scattering amplitude displays a strong
dependence on the sample azimuth (see Fig. 14) as op-
posed to Bragg scattering, which does not depend on ψ.
Moreover, while the latter does not change the polar-
ization of the primary beam, multiple scattering can in
general give rise to both σ′ and π′-polarized radiation.

The ψ values at which multiple scattering occurs can
be calculated31,41, and thus avoided, following a simple
kinematical approach. Nonetheless, broad tails are also
present away from the nominal scattering condition and
generally result in a residual contribution in both polar-
ization channels. Because of the inversion centre of the
R3̄c space group, all structure factors, including the mul-
tiple scattering one, are real if one considers only Thom-

FIG. 14. Multiple scattering (a) σ − σ′ amplitude and (b)
σ − π′ intensity azimuthal dependence. The data points
are the results of the fit of the data shown in Fig. 10(a-b),
while the solid line represents calculations performed using a
mixed kinematical/dynamical approach where the standard
kinematical structure factors of the secondary and tertiary
reflection are weighted by terms calculated in a dynamical
framework.

son scattering far from any absorption edge. Therefore,
multiple scattering interferes with the “forbidden” am-
plitude (which turns out to be of Thomson nature and is
thus real), but not with non-resonant magnetic scatter-
ing, which is out of phase by 90◦, and gives rise to the
dramatic evolution with the sample azimuth reported in
Fig. 10. In the absence of the forbidden amplitude, as is
the case for the σ− π′ intensity of all reflections and the
σ − σ′ one when the additional term CFSσσ′(η) is absent
(Fig. 2), multiple scattering simply results in a constant
background superimposed to the intensity of magnetic
origin. A significant multiple scattering background is
responsible for the high-intensity streaks visible in the
σ − π′ color map of Fig. 10(b).

The interference between the amplitude induced by the
electron cloud distortion and multiple scattering repro-
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Hamiltonian parameters (eV) Expectation values

F
(2)
3d−3d F

(4)
3d−3d 10Dq Dσ Hex SOC Ĥ Ŝ2 L̂2 Ĵ2 Ŝx Ŝy Ŝz L̂x L̂y L̂z

7.9072 5.0463 1 0.06 0.0018 0.052 -2.780 3.745 11.675 22.278 -0.791 0.051 0.000 -0.501 0.032 0.000

TABLE II. Hamiltonian parameters used to perform the multiplet calculations of the Co2+ ground-state wave function in
CoCO3 and corresponding expectations values of relevant quantities. The spin and orbital angular momenta components of
one of the two magnetic sublattices, in units of h̄, are expressed in the local xyz cubic frame of the CoO6 octahedra, such that
x is parallel to the a crystallographic axis and z is parallel to the crystallographic c axis.

(a) (b) (c)

FIG. 15. (Color online) Charge density of the Co2+ 3d valence electrons for an external field direction (a) 0◦, (b) 60◦ and (c)
90◦ away from the crystallographic a axis as derived from the multiplet calculations discussed in the text. The plots refer to
one of the two Co2+ clusters used for the calculations (cluster two). The colours correspond to different spin directions with
red and blue for down and up character, respectively.

duces extremely well our data: this is clearly shown by
the color map of Fig. 10c, which displays the fit of the
measured intensity of Fig. 10(a) to Eq. (8). The fit of
the σ− π′ intensity [Fig. 10(d)] was performed using the
second line of Eq. (4), analogous to § IV. An arbitrary
positive scale factor, constant throughout all ψ values,
was used for the forbidden charge amplitude of Fig. 12
in the fit of the σ− σ′ intensity. This is because the em-
pirical model is not capable of reproducing a physically-
meaningful value of the scattering amplitude. On the
other hand, the phase of the oscillations (including its
sign) is correctly predicted. This is elegantly proved by
the values of the multiple scattering amplitude CMS

σσ′ ex-
tracted from the fits of Fig. 10(c-d), which are reported
in Fig. 14 along with the amplitude calculated using a
mixed kinematical/dynamical approach where the stan-
dard kinematical structure factors of the secondary and
tertiary reflection were weighted by terms calculated in
a dynamical framework42,43. The ψ dependence of the
measured amplitude, in particular its sign, is remarkably
consistent with the calculations, thus confirming the cor-
rectness of the forbidden amplitude phase.

The empirical model also grasps other significant fea-
tures of the forbidden amplitude that are confirmed by
our form factor calculations (§ V C 2). In particular, it
predicts a vanishing amplitude when (i) the canting of the
Co2+ magnetic moments is set to 0 (perfect AFM align-

ment) or (ii) a specular (00L) reflection is considered.
Within this simple model, a non-vanishing forbidden am-
plitude is expected to be present also for the two equiva-
lent reflections (107), (1̄17). However, this term appears
to be much smaller than the magnetic contribution31 and
is not clearly visible in the measured data. The latter
are well described by the magnetic scattering cross sec-
tions alone. It should be noted that we also investigated
alternative models based on displacements of the differ-
ent atomic species inside the unit cell: however, a satis-
factory description of the observed forbidden amplitude
could not be achieved.

2. Microscopic model and role of SOC

In order to achieve a microscopic understanding of the
electron cloud distortion induced by the ordered moment,
we derived the 3d electron ground-state wave function for
different directions of the external field by means of mul-
tiplet calculations. The latter were carried out using a
Hartree-Fock method in the mean-field approximation,
using the code RCN44 for the radial part of the Co2+

wave function and Quanty45 for the angular part. The
ground state was computed separately for two clusters
of Co2+ ions: the latter correspond to the two unique
orientations of CoO6 octahedra of the R3̄c crystal struc-
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ture, one rotated by 164◦ about the c axis with respect
to the other31. The [1̄11] direction of the local octahedral
frame is parallel to the unit cell c axis for both clusters;
the [110] direction of cluster one (two) is rotated by 22◦

(−142◦) about c relative to the unit cell a axis31. The
Hamiltonian used for the calculations consists of the fol-
lowing terms: (i) Coulomb interaction (F

(2)
3d−3d, F

(4)
3d−3d),

(ii) crystal field (10Dq, Dσ), (iii) SOC, (iv) magnetic ex-
change (Hex) and (v) Zeeman term of interaction with
the external field. Hex is a mean-field term which mimics
the effect of the field produced by the ordered moments.
The values of the main parameters used for the calcu-
lations are summarized in Table II: these were obtained
refining the initial atomic values to reproduce the XMCD
spectra of Fig. 4 (see Supplemental Material31). The cor-
responding ground-state Hamiltonian expectation values
are also summarized in Table II: despite the absolute
values of the spin and orbital moments are somewhat
different from the ones reported in Table I31, a large
value of the orbital contribution (l/s ≈ 0.6) is confirmed.
Moreover, as well as reproducing the absorption spec-
tra, the electronic structure of the Co2+ ion thus cal-
culated is consistent with the one presented in Ref. 46
and reproduces the experimental XMCD spectra well31.
Further information on the crystal field parameters and
additional details on the calculations are reported in the
Supplemental Material31.

The results of the calculations confirm that, as pre-
dicted by our empirical model, the charge density of the
valence 3d electrons depends on the magnetic moment
orientation. This is shown in Fig. 15, where a real-space
representation of the charge density is reported for dif-
ferent directions of the external field. The Co2+ ground-
state wave functions for different field directions can then
be used to calculate the corresponding atomic form fac-
tor: the resulting (2̄07) and (1̄05) scattering amplitudes
show a sinusoidal magnetic field dependence analogous to
the one of Fig. 12. Consistent with the empirical model,
the amplitude vanishes for specular (00L) reflections and
when the magnetic moment canting angle is set to 0.
Most importantly, the multiplet calculations show that
the amplitude also vanishes when the SOC is artificially
switched off31. This attributes the magnetic-moment-
induced distortion of the Co2+ electron cloud to the cou-
pling between lattice and magnetic degrees of freedom
driven by SOC and further highlights the fundamental
role played by the large unquenched orbital moment in
the physics of CoCO3.

D. Magneto-striction

Another distinctive evidence of the elongation of the
Co2+ electron cloud along the magnetic moment direc-
tion is the resulting expansion of the unit cell in-plane
lattice parameters. This is revealed by the angular shift
of the Bragg peak of symmetry-allowed reflections as a
function of the field direction in the magnetically-ordered
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FIG. 16. (Color online) Angular shift of the (119) Bragg peak
as a function of the magnetic field direction at T = 5 K. The
solid line represents a fit to the shift calculated using the unit
cell deformation of Eq. (9). The deformation of the in-plane
lattice parameters resulting from the fit is shown in Fig. 17.
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FIG. 17. (Color online) Relative deformation of the in-plane
lattice parameters of the R3̄c hexagonal unit cell at T = 5 K
as obtained from the fit of the (119) angular shift of Fig. 16.

phase (Fig. 16). Given an expansion ∆l > 0 of the unit
cell along µ, the Bragg angle θ magnetic field dependence
is correctly described by the following field-dependent
lattice parameters distortion:

a(α) = a0 −∆l sin2 α

b(α) = b0 −∆l sin2(60◦ − α) (9)

where a0 (b0) is the value of the lattice parameter a (b)
when the magnetic field is orthogonal to the a (b) axis
[α = 0◦ (60◦)]. The magnitude of the unit cell distortion
∆l can be obtained by fitting the measured shift of the
Bragg peak to the one calculated through the lattice pa-
rameters of Eq. (9). This is shown by the red solid line
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of Fig. 16. The resulting unit cell deformation along the
a and b axes is plotted as function of the field direction
in Fig. 17. The deformation amounts to ≈ 70 ppm at
T = 5 K (which correspond to a change of ≈ 35 fm
in the lattice parameters) and decreases upon warm-
ing towards TN following the same critical behaviour of
magnetic scattering31. This further confirms the magne-
tostrictive origin of the Bragg peak oscillations of Fig. 16
and constitutes further evidence of the coupling between
crystallographic and magnetic properties induced by the
large unquenched orbital moment.

VI. CONCLUDING REMARKS

In conclusion, our combined DFT, NXMS and XMCD
investigation of a series of isostructural weak ferromag-
nets led to the following findings:

• A non-trivial evolution of the orbital contribution
to the magnetic moment with the filling of the TM
ion 3d orbitals is present across the series. In par-
ticular, the value of the orbital moment was found
to be particularly large for CoCO3 as confirmed by
both NXMS and XMCD.

• In CoCO3, SOC couples the large orbital moment
and the spin of the Co2+ ion and results in a strong
single-ion uniaxial anisotropy and a much smaller,
although still clearly visible in our NXMS data,
basal plane anisotropy.

• SOC is also responsible for a distortion of the
Co2+ 3d electron cloud in the magnetically or-
der phase: the latter is evidenced by a sizeable
magneto-striction and, more spectacularly, by the
appearance of a forbidden scattering amplitude at
space-group forbidden reflections.

Our results combined together highlight the importance
of SOC in the physics of weak ferromagnets and show
how, even in the case of 3d transition metal oxides, SOC
can have a significant impact on the magnetic properties
of the system whenever the orbital degrees of freedom are
not quenched. Finally, our investigation also proves the
ability of modern first-principles calculations to predict
the properties of materials which exhibit magnetoelec-
tric coupling, Skyrmion lattices and other non-collinear
magnetic ordering.
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Appendix A: Magnetic structure factors

Following from Blume and Gibbs 28 , the spin and or-
bital magnetic structure factors which appear in the mag-
netic scattering amplitudes of Eq. (1) are defined as fol-
lows:

S =
∑
i

sif
i
s(Q)eiQ·ri

L =
∑
i

lif
i
l (Q)eiQ·ri (A1)

where si (l) and f is(Q) [f il (Q)] is the spin (orbital) an-
gular momentum and magnetic form factor of the i-th
magnetic ion in the crystal unit cell. ri = ua + vb + wc
is the corresponding position vector (with a, b, c direct
lattice basis vectors) and Q = Ha ∗ + Kb ∗ + Lc ∗ is the
momentum transfer of the chosen (HKL) reflection (with
a ∗, b ∗, c ∗ reciprocal lattice basis vectors). The summa-
tion runs over the magnetic ions of the magnetic unit cell,
which, in the case of the compounds of interest for the
present paper, coincides with the crystallographic one.
In the case where j = s + l is a good quantum number,
the following relations hold between the spin and orbital
angular momenta and the total magnetic moment µ of
the magnetic ion39:

s = (g − 1)j =
1− g
g

1

µB
µ

l = (2− g)j =
g − 2

g

1

µB
µ (A2)

where g is the Landé factor. Inserting Eq. (A2) into
Eq. (A1) and extending the summation of Eq. (A1) to the
TM ions inside the R3̄c hexagonal unit cell, the structure



16

factors can be expressed as follows:

S =
1− g
g

fs(Q)
µ

µB

∑
i

µ̂ie
iQ·ri = CS(µ̂A − µ̂B)

L =
g − 2

g
fl(Q)

µ

µB

∑
i

µ̂ie
iQ·ri = CL(µ̂A − µ̂B) (A3)

Here, µ̂ = µ/|µ| is the magnetic moment unit vector,

CS = 3
g − 1

g
fs(Q)

µ

µB
and CL = 3

2− g
g

fl(Q)
µ

µB
. The

quantity 3(µ̂A − µ̂B) simply comes from computing the
summation of Eq. (A3) for the six TM ions (Wyckoff site
b with multiplicity 6) of the R3̄c hexagonal cell. Finally,
Eq. (2) is obtained directly from Eq. (A3) expressing the
difference of the magnetic moments of the two sublattices
with respect to the u1u2u3 reference frame28.

The extraction of the orbital-to-spin angular momenta
ratio |l|/|s| from the quantity (3) appearing in the expres-
sion (4) for the scattered intensity requires the knowledge
of the momentum transfer dependence of the orbital and
spin magnetic form factors. Once this is known, an ex-
trapolation to zero momentum transfer can be performed
as shown in Fig. 3. Although, in general, the form fac-
tors depends on the vector Q, an isotropic approxima-
tion is usually considered, which only takes into account
the dependence on the magnitude Q of the momentum
transfer, such that fs(Q) ≡ fs(Q) and fl(Q) ≡ fl(Q). In
this case, the magnetic form factors can be expressed as
follows47–49:

fs(Q) = 〈j0〉
fl(Q) = 〈j0〉+ 〈j2〉 (A4)

Here, 〈j0〉 and 〈j2〉 are radial integrals of the type

〈jk〉nl (Q) =

∫ ∞
0

R2
nl(r)jk(Qr)r2 dr where Rnl(r) is the

radial part of the magnetic ion wave function and jk(Qr)
is the spherical Bessel function of order k. The radial
integrals (espressed as a function of the normalized mo-
mentum tranfer s = Q/4π = sin θ/λ, being θ the Bragg
angle of the magnetic reflection and λ the wavelength
of the incident x-ray beam) can be approximated by the
following47:

〈j0〉 (s) = Ae−as
2

+Be−bs
2

+ Ce−cs
2

+D

〈j2〉 (s) = s2(A′e−as
2

+B′e−bs
2

+ C ′e−cs
2

+D′) (A5)

where the values of the coefficients are tabulated for dif-
ferent oxidation states of each element in Ref. 47.

Appendix B: Details on the data treatment

As mentioned in § III B, as well as the intensity in the
σ − σ′ and σ − π′ channels, the total NXMS intensity
was also measured in order to correct for the different
reflection efficiencies of the PG analyser crystal in the two
polarization channels. This mainly originates from the
different beam divergence in the vertical and horizontal
plane: as a result, the intensity detected in σ − σ′ and
σ − π′ will generally be different even in the case of an
equal distribution of σ′ and π′ polarization. Using the
total intensity Itot, the measured values of the intensity
in σ − σ′ and σ − π′ can be corrected by introducing a
compensation factor f , which is defined by the following
relation:

Itot = Cσσ′IMeasured
σσ′ + Cσπ′IMeasured

σπ′ =

= Cσσ′(IMeasured
σσ′ + fIMeasured

σπ′ ) (B1)

Here, f =
Cσπ′

Cσσ′
is the ratio of the two arbitrary scale

factors which link the intensity measured in the two po-
larization channels to the total one recorded through the
area detector. In the ideal case in which the reflection
efficiencies for the two polarization channels are equiv-
alent, only one scale factor would be necessary, which
corresponds to having f = 1. In practice, the compen-
sation factor f can be extracted using Eq. (B1) to fit
the total intensity as a function of a 360◦ rotation of
the magnetic field measured with the 2D detector from
the σ − σ′ and σ − π′ magnetic field dependences. The
measured data can then be corrected by multiplying the
intensity in σ − π′ by f : finally, Eq. (4) can be used to
fit the corrected values.
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