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Dunkl spectral multipliers with values in UMD
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Luc Deleaval - Christoph Kriegler

December 5, 2016

Abstract
We show a Hörmander spectral multiplier theorem for A = A0 ⊗ IdY acting on the

Bochner space Lp(Rd, h2
κ; Y ), where A0 is the Dunkl Laplacian, h2

κ a weight function in-
variant under the action of a reflection group and Y is a UMD Banach lattice. We follow
hereby a transference method developed by Bonami-Clerc and Dai-Xu, passing through a
Marcinkiewicz multiplier theorem on the sphere. We hereby generalize works for A0 = −∆
acting on Lp(Rd, dx) by Girardi-Weis, Hytönen and others before. We apply our main
result to maximal regularity for Cauchy problems involving A.
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1 Introduction
Let f be a bounded function on (0,∞) and u(f) the operator on Lp(Rd) defined by [f(−∆)g]̂ =
[u(f)g]̂ = f(‖ξ‖2)ĝ(ξ). Hörmander’s theorem on Fourier multipliers [38, Theorem 2.5] asserts

Mathematics subject classification: 42A45, 42B25, 47A60.
Key words: Spectral multiplier theorems, UMD valued Lp spaces, Dunkl Laplacian.
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that u(f) : Lp(Rd) → Lp(Rd) is bounded for any p ∈ (1,∞) provided that for some integer α
strictly larger than d

2 , and q = 2,

(1.1) ‖f‖qHαq := max
k=0,1,...,α

sup
R>0

1
R

∫ 2R

R

∣∣∣tk dk
dtk

f(t)
∣∣∣qdt <∞.

This theorem has many refinements and generalizations to various similar contexts. Namely, one
can ask for different exponents q ∈ [1,∞) in (1.1), and generalize to non-integer α there to get
larger (for smaller q and for smaller α) admissible classes Hαq = {f ∈ L1

loc(0,∞) : ‖f‖Hαq <∞}
of multiplier functions f (see Subsection 2.4). Moreover, it has been a deeply studied question
over the last years to know to what extent one can replace the ordinary Laplacian subjacent
to Hörmander’s theorem by other operators A acting on some Lp(Ω) space. A theorem of
Hörmander type holds true for many elliptic differential operators A, including sub-laplacians
on Lie groups of polynomial growth, Schrödinger operators and elliptic operators on Riemannian
manifolds, see [3, 21, 34, 35]. More recently, spectral multipliers have been studied for operators
acting on Lp(Ω) only for a strict subset of (1,∞) of exponents [9, 18, 19, 20, 48, 49], for
abstract operators acting on Banach spaces [45], and for operators acting on product sets
Ω1×Ω2 [61, 68, 69]. A spectral multiplier theorem means then that the linear and multiplicative
mapping

(1.2) Hαq → B(X), f 7→ f(A),

is bounded, where typically X = Lp(Ω). One important consequence of a spectral multiplier
theorem as in (1.2) is the boundedness of Bochner-Riesz means associated with A. Namely, we
put for β,R > 0

fβR(t) =
{

(1− t/R)β 0 < t 6 R

0 t > 0.

Then fβR belongs to Hαq (with uniform norm bound for R > 0) if and only if β > α − 1
q , for

q ∈ [1,∞) and α > 1
q , see [20, p. 11] and [47]. Thus the boundedness of (1.2) yields boundedness

of the Bochner-Riesz means for fβR(A) if β > α − 1
q . For other applications of a Hörmander

spectral multiplier theorem, see at the end of Subsection 3.2.
On the other hand, in the particular case of A = −∆, another direction of generalization

of Hörmander’s theorem is possible. Namely, [13, 37, 39, 41, 54, 63, 67, 74] have studied for
which Banach spaces Y, the operator f(−∆) ⊗ IdY , initially defined on Lp(Rd) ⊗ IdY extends
to a bounded operator on Lp(Rd;Y ) for any f belonging to some Hörmander class Hαq (or some
Mihlin class, which corresponds essentially to q = ∞ in Hαq ). A necessary condition is that Y
is a UMD space. Moreover, the Fourier type [37], and Rademacher type/cotype [41] of Y play
a role when one strives for better or best possible derivation order α.

In this article, we extend this latter programme partly to Dunkl operators, in place of the
pure Laplacian. “Partly” refers to the fact that we treat only radial multipliers (see [69] for
multivariate Dunkl spectral multipliers in the case Y = C, but with nevertheless restriction on
the underlying reflection group), we restrict to the subclass of Y being a UMD lattice, and we
do not talk about operator valued spectral multipliers, i.e. f in (1.2) is a function with values
in {T ∈ B(X) : T (λ− A)−1 = (λ− A)−1T for all λ ∈ ρ(A)} (although this last part would be
possible to some extent).

Roughly speaking, Dunkl operators are parameterized (with a continuous set of parameters
κ) deformations of the partial derivatives and involve a reflection group W associated with a
root system R (see Subsection 2.5.1. for their definition). A basic motivation for the study of
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these operators comes from the theory of spherical functions in analysis on Lie groups, which can
be, in several situations, regarded as only the W -invariant part of a theory of Dunkl operators.
Indeed, these operators play the role of derivatives for a generalized Laplacian ∆κ (the so-called
Dunkl Laplacian), whose restriction to W -invariant functions is given by

Res ∆κ = ∆ +
∑
α∈R

κ(α) ∂α
〈α, ·〉

,

and this formula coincides for particular root systems and particular values of κ to the radial
part of the Laplace-Beltrami operator of a Riemannian symmetric space of Euclidean type (see
[29]). More generally, Dunkl operators have significantly contributed to the development of har-
monic analysis associated with a root system and to the theory of multivariable hypergeometric
functions. They also naturally appear in various other areas of mathematics, which include
for instance, the theory of stochastic processes with values in a Weyl chamber or the theory
of integrable quantum many body systems of Calogero-Moser-Sutherland type. As regards the
harmonic analysis of Dunkl operators and their related objects, the subjacent analytic struc-
ture has a rich analogy with the Fourier analysis. However, there are still many problems to
be solved and the theory is still at its infancy. One of the main obstruction is the lack of an
explicit formula for the operator Vκ which intertwines the commutative algebra of Dunkl oper-
ators with the algebra of standard differential operators with constant coefficients. Apart from
the case W = Zd2 where the known formula for Vk allows to tackle and bypass some difficulties,
many tools of harmonic analysis are not accessible. However, in this paper, we do not restrict
ourselves to this particular reflection group, and all our results on Dunkl spectral multipliers
are stated and proven for a general reflection group.

Coming back in particular to our Hαq Hörmander theorem, the order of derivation α and the
integration parameter q that we get are

(1.3) α ∈ N, α >
d

2 + γκ + 1
2 , q = 1

where d + 2γκ is the doubling dimension of the Dunkl weight h2
κ on Rd. Note that usually,

one cannot expect to get a Hörmander Hα2 multiplier theorem for α < d
2 + γκ (see e.g. [35]),

and that H
d
2 +γκ+ 1

2 +ε
2 ↪→ H

d
2 +γκ+ 1

2 +ε
1 ↪→ H

d
2 +γκ
2 , for ε > 0, the exponents being sharp in

these embeddings (see Lemma 2.8 2.). Our main Theorem, see Theorem 3.13 and the section
Preliminaries for precisions, states as follows.

Theorem 1.1 Let 1 < p < ∞ and Y = Y (Ω′) be a UMD Banach lattice. Let A be the
Dunkl Laplacian on Rd, associated with both a general finite reflection group and a nonnegative
multiplicity function κ. Let α be as above in (1.3). Assume that m : (0,∞)→ C belongs to Hα1 .
Then m(A)⊗ IdY extends to a bounded operator on Lp(Rd, h2

κ;Y ).

One of the features of the vector valued character of this theorem is that an operator of the
form B = IdLp ⊗ B0 will commute with A (or powers of A) and therefore, spectral theory of
a sum Aβ + B is at hand. Consequently, we apply Theorem 1.1 to existence, uniqueness and
(maximal) regularity of solutions of Cauchy problems or time independent problems involving
Aβ +B, where A is the Dunkl Laplacian, β > 0 is arbitrary and B is as above, see Section 4.

Theorem 1.1 has several ancestors and variants in the literature, where often the lattice
property of Y is not needed. We mention here Girardi and Weis [37] resp. Hytönen [41] for
operator valued resp. scalar valued Fourier multipliers on UMD valued Lp spaces. Note that
in these two works, the Fourier type resp. Rademacher type/cotype enters in the admissible
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choice of the derivation order α = bd/type Y c + 1, which is not necessary in our theorem,
i.e. the value type Y in the derivation order α improves to the best value 2, when applied
to the case of the pure Laplacian, i.e. κ = 0. However, we have to add 1/2 to α due to the
value q = 1 as explained above, and need the lattice property of Y, whereas Hytönen only
needs particular partial derivatives of the multiplier symbol, and Girardi’s and Weis’ result also
applies to operator valued multiplier symbols. As a predecessor of all these results, we mention
the UMD space valued singular integrals of convolution type [5, 12]. More recently, in [7, 8] the
boundedness of vector valued, but holomorphic, spectral multipliers associated with Hermite
and Bessel operators is established, in the case that Y = [H,X]θ is a complex interpolation
space between a Hilbert space and a UMD space. Note that according to [60, Corollary p. 216],
this case is an intermediate case between the bare UMD space case and the UMD lattice case.

The methods of proof that we use for Theorem 1.1 are:

• Maximal estimates for semigroups associated with the Dunkl operator on Rd and on the
sphere Sd−1 [25];

• Square function estimates on Lp(Ω;Y (Ω′)), which is the same as R-boundedness for the
space Lp(Ω;Y ) as soon as Y is a UMD lattice;

• H∞ functional calculus, in particular for vector valued diffusion semigroups [70];

• A reduction method to spherical harmonics, developed in [10, 24, 25, 26], which uses
Cesàro means, that is, smoothed approximate identities similar to the Bochner-Riesz
means fβR(A) above.

The H∞ functional calculus moreover is our starting point upon which we build the Hαq func-
tional calculus. This replaces the usually used selfadjoint calculus approach, which defines f(A)
in (1.2) on L2(Ω)∩Lp(Ω), and which by density gives an a priori meaning to f(A) as an operator
acting on Lp(Ω). Note that on Lp(Ω;Y ), there is no selfadjoint calculus at hand, since L2(Ω;Y )
is not a Hilbert space in general.

We end this introduction with an overview of the following sections. In Section 2, we define
and recall the central notions for this article, namely diffusion semigroups, UMD lattices, R-
boundedness and square functions, functional calculus and Dunkl analysis. In Section 3, we
then develop the proof of the spectral multiplier theorem. In a first place, in Subsection 3.1,
we show a Marcinkiewicz multiplier Theorem 3.2, and then in Subsection 3.2, we deduce the
Hörmander multiplier Theorem 3.13. We end the article with some illustrative applications to
maximal regularity in Section 4.

Note that in the article, the symbol . means an inequality up to a constant independent of
the relevant variables.

2 Preliminaries
In this section, we define and recall the central notions of the article and we prove several
lemmas which will be relevant for the sequel.

2.1 Symmetric contraction semigroups
Definition 2.1 Let (Ω, µ) be a σ-finite measure space. Let (Tt)t>0 be a family of operators
which act boundedly on Lp(Ω) for any 1 6 p <∞. Then (Tt)t>0 is called symmetric contraction
semigroup (on Ω), if
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1. (Tt)t>0 is a strongly continuous semigroup on Lp(Ω) for any 1 6 p <∞;

2. Tt is selfadjoint on L2(Ω) for any t > 0;

3. ‖Tt‖Lp(Ω)→Lp(Ω) 6 1 for any t > 0 and 1 6 p <∞.

If in addition we have

1. Tt is a positive operator for any t > 0;

2. Tt(1) = 1 (note that Tt is bounded on L∞(Ω) by selfadjointness and boundedness on
L1(Ω)),

then (Tt)t>0 is called a diffusion semigroup on Ω.

For a thorough study of diffusion semigroups, we refer the reader to [62] and [40] in the
scalar and the vector valued case respectively.

2.2 UMD lattices
In this article, UMD lattices, i.e. Banach lattices which enjoy the UMD property, play a
prevalent role. For a general treatment of Banach lattices and their geometric properties, we
refer the reader to [52, Chapter 1]. We recall now definitions and some useful properties. A
Banach space Y is called UMD space if the Hilbert transform

H : Lp(R)→ Lp(R), Hf(x) = PV −
∫
R

1
x− y

f(y)dy

extends to a bounded operator on Lp(R;Y ), for some (equivalently for all) 1 < p < ∞ [42,
Theorem 5.1]. The importance of the UMD property in harmonic analysis was recognized
for the first time by Burkholder [14, 15], see also his survey [16]. He settled a geometric
characterization via a convex functional [14] and together with Bourgain [11], they showed that
the UMD property can be expressed by boundedness of Y -valued martingale sequences. As a
survey for UMD lattices and their properties in connection with results in harmonic analysis,
we refer the reader to [60].

We tacitly shall use several times the following almost trivial observation.

Lemma 2.2 Let 1 6 p 6 ∞, (Ω, µ) be a measure space and Y = Y (Ω′) a Banach function
lattice on (Ω′, µ). Let M : Lp(Ω;Y ) → Lp(Ω;Y ) be a sublinear bounded operator on Lp(Ω;Y ),
i.e.

|M(f + g)(ω, ω′)| 6 |M(f)(ω, ω′)|+ |M(g)(ω, ω′)|

for almost all ω ∈ Ω and ω′ ∈ Ω′. Let further T : D ⊆ Lp(Ω;Y ) → Lp(Ω;Y ) be a densely
defined sublinear operator. If |Tf(ω, ω′)| 6 c|Mf(ω, ω′)| for f ∈ D and almost all ω ∈ Ω and
ω′ ∈ Ω′, then ‖Tf‖Lp(Ω;Y ) 6 c‖M‖ ‖f‖Lp(Ω;Y ) for any f ∈ D.

Proof : This follows immediately from the fact that Lp(Ω;Y ) is a Banach function lattice on
Ω × Ω′, that f 6 g is then given by f(ω, ω′) 6 g(ω, ω′) almost everywhere, and that |f | 6 |g|
implies ‖f‖ 6 ‖g‖ in a Banach lattice.
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2.3 R-boundedness and square functions
Let X be a Banach space and τ ⊂ B(X). Then τ is called R-bounded if there is some C <∞
such that for any n ∈ N, any x1, . . . , xn ∈ X and any T1, . . . , Tn ∈ τ, we have

E
∥∥∥∥ n∑
k=1

εkTkxk

∥∥∥∥
X

6 CE
∥∥∥∥ n∑
k=1

εkxk

∥∥∥∥
X

,

where the εk are i.i.d. Rademacher variables on some probability space, that is, Prob(εk =
±1) = 1

2 . The least admissible constant C is called R-bound of τ and is denoted by R(τ). Note
that trivially, we always have R({T}) = ‖T‖ for any T ∈ B(X).

Let Y = Y (Ω′) be a B-convex Banach lattice. Then we have the norm equivalence

(2.1) E
∥∥∥∥ n∑
k=1

εkyk

∥∥∥∥
Y

∼=
∥∥∥∥( n∑

k=1
|yk|2

) 1
2
∥∥∥∥
Y

uniformly in n ∈ N [53]. In particular, this also applies to Lp(Ω;Y ), 1 < p <∞, since this will
also be a B-convex Banach lattice. We deduce the following lemma.

Lemma 2.3 Let T be a bounded (linear) operator on a B-convex Banach lattice Y (Ω′). Then
its tensor extension T ⊗ Id`2 , initially defined on Y (Ω′) ⊗ `2 ⊂ Y (Ω′; `2) is again bounded, on
Y (Ω′; `2). In particular, if Y (Ω′) is a UMD lattice, then Y (Ω′; `2) is also a UMD lattice.

Proof : Let (ek)k be the canonical basis of `2. We have∥∥∥(T ⊗ Id`2)
( n∑
k=1

yk ⊗ ek
)∥∥∥

Y (Ω′;`2)
=
∥∥∥∥( n∑

k=1
|Tyk|2

) 1
2
∥∥∥∥
Y

∼= E
∥∥∥ n∑
k=1

εkTyk

∥∥∥
Y

6 R({T})E
∥∥∥ n∑
k=1

εkyk

∥∥∥
Y

∼= ‖T‖
∥∥∥∥( n∑

k=1
|yk|2

) 1
2
∥∥∥∥
Y

.

This shows the first part. For the second part, we note that if Y (Ω′) is UMD, then the Hilbert
transform H : Lp(R;Y ) → Lp(R;Y ) is bounded for all 1 < p < ∞. Since Lp(R;Y ) is again a
B-convex Banach lattice, by the first part, we have that H : Lp(R;Y (Ω′; `2))→ Lp(R;Y (Ω′; `2))
is bounded. Hence by definition, Y (Ω′; `2) is a UMD (lattice).

2.4 Holomorphic (H∞) and Hörmander (Hα
p ) functional calculus

In this subsection, we recall the necessary background on functional calculus that we will treat
in this article. Let −A be a generator of an analytic semigroup (Tz)z∈Σδ on some Banach
space X, that is, δ ∈ (0, π2 ], Σδ = {z ∈ C\{0} : | arg z| < δ}, the mapping z 7→ Tz from
Σδ to B(X) is analytic, Tz+w = TzTw for any z, w ∈ Σδ, and limz∈Σδ′ , |z|→0 Tzx = x for any
strict subsector Σδ′ . We assume that (Tz)z∈Σδ is a bounded analytic semigroup, which means
supz∈Σδ′ ‖Tz‖ <∞ for any δ′ < δ.

It is well-known [36, Theorem 4.6, p. 101] that this is equivalent to A being pseudo-ω-
sectorial for ω = π

2 − δ, that is,

1. A is closed and densely defined on X;
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2. The spectrum σ(A) is contained in Σω (in [0,∞) if ω = 0);

3. For any ω′ > ω, we have supλ∈C\Σω′ ‖λ(λ−A)−1‖ <∞.

We say that A is ω-sectorial if it is pseudo-ω-sectorial and has moreover dense range. In the
sequel, we will always assume that A has dense range, to avoid technical difficulties. If A does
not have dense range, but X is reflexive, which will always be the case in this article, then we
may take the injective part A0 of A on R(A) ⊆ X [50, Proposition 15.2], which then does have
dense range. Here, R(A) stands for the range of A. Then −A generates an analytic semigroup
on X if and only if so does −A0 on R(A). This parallel will continue this section, i.e. the
functional calculus for A0 can be extended to A in an obvious way, see [44, Illustration 4.87].

For θ ∈ (0, π), let

H∞(Σθ) = {f : Σθ → C : f analytic and bounded}

equipped with the uniform norm ‖f‖∞,θ. Let further

H∞0 (Σθ) =
{
f ∈ H∞(Σθ) : ∃ C, ε > 0 : |f(z)| 6 C min(|z|ε, |z|−ε)

}
.

For an ω-sectorial operator A and θ ∈ (ω, π), one can define a functional calculus H∞0 (Σθ) →
B(X), f 7→ f(A) extending the ad hoc rational calculus, by using a Cauchy integral formula.
If moreover, there exists a constant C < ∞ such that ‖f(A)‖ 6 C‖f‖∞,θ, then A is said
to have bounded H∞(Σθ) calculus and the above functional calculus can be extended to a
bounded Banach algebra homomorphism H∞(Σθ)→ B(X). This calculus also has the property
fz(A) = Tz for fz(λ) = exp(−zλ), z ∈ Σπ

2−θ.

Lemma 2.4 Let ω ∈ (0, π) and A be an ω-sectorial operator on X having an H∞(Σθ) calculus
for some θ ∈ (ω, π). Let (fn)n be a sequence in H∞(Σθ) such that fn(λ)→ f(λ) for any λ ∈ Σθ
and supn ‖fn‖∞,θ <∞. Then for any x ∈ X, f(A)x = limn fn(A)x.

Proof : See [50, Theorem 9.6] or [23, Lemma 2.1].
The following classical lemma will be useful at several instances A proof for the case p = 1

can be found e.g. in [42, Proposition 2.1.1], and for a detailed study of the case p =∞, see [51].

Lemma 2.5 Let p = 1 or p = ∞ and T : Lp(Ω) → Lp(Ω) be a bounded operator. Let Y be
any Banach space. Then T ⊗ IdY : Lp(Ω)⊗ IdY → Lp(Ω;Y ) extends to a bounded operator on
Lp(Ω)⊗ Y ⊆ Lp(Ω;Y ) (equality here if p = 1) with norm ‖T‖Lp(Ω)→Lp(Ω).

Proof : Suppose first p =∞. We have∥∥∥T ⊗ IdY
(∑
k

fk ⊗ yk
)∥∥∥
L∞(Y )

= esssupx∈Sd−1

∥∥∥∑
k

Tfk(x)yk
∥∥∥
Y

= esssupx∈Sd−1 sup
‖y∗‖Y ∗61

∣∣∣∣∣T∑
k

fk(x)〈yk, y∗〉

∣∣∣∣∣
= sup
‖y∗‖Y ∗61

esssupx∈Sd−1

∣∣∣∣∣T∑
k

fk(x)〈yk, y∗〉

∣∣∣∣∣
6 sup
‖y∗‖Y ∗61

‖T‖L∞→L∞
∥∥∥∑
k

fk(·)〈yk, y∗〉
∥∥∥
L∞

= ‖T‖L∞→L∞
∥∥∥∑
k

fk ⊗ yk
∥∥∥
L∞(Y )

,
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where the last equality follows by going the steps before backwards, with T replaced by IdL∞
and ‖T‖ taken as a fixed factor.

Now the claim for p = 1 follows essentially from duality. Namely, fix
∑
k fk ⊗ yk ∈ L1 ⊗ Y,

and take in the following the supremum over those
∑
l gl ⊗ zl ∈ L∞ ⊗ Y ∗ of norm less than 1.

Then ∥∥∥(T ⊗ IdY )
∑
k

fk ⊗ yk
∥∥∥
L1(Y )

6 sup

∣∣∣∣∣〈(T ⊗ IdY )
∑
k

fk ⊗ yk,
∑
l

gl ⊗ zl〉

∣∣∣∣∣
= sup

∣∣∣∣∣∣
∑
k,l

〈Tfk, gl〉〈yk, zl〉

∣∣∣∣∣∣
= sup

∣∣∣∣∣〈∑
k

fk ⊗ yk, (T ∗ ⊗ IdY ∗)
∑
l

gl ⊗ zl〉

∣∣∣∣∣
6 sup

∥∥∥∑
k

fk ⊗ yk
∥∥∥
L1(Y )

‖T ∗‖L∞→L∞
∥∥∥∑

l

gl ⊗ zl
∥∥∥

= ‖T‖L1→L1

∥∥∥∑
k

fk ⊗ yk
∥∥∥
L1(Y )

.

We record the following proposition for later use.

Proposition 2.6 Let Tt = exp(−tA) be a symmetric contraction semigroup on Ω.

1. Let Y be a UMD lattice. Then Tt extends to a bounded analytic semigroup on Lp(Ω;Y )
for any 1 < p < ∞. Moreover, its negative generator A has a bounded H∞(Σθ) calculus
for some θ < π

2 .

2. Let Y be a general Banach space and 1 6 p <∞. Then Tt extends to a contractive strongly
continuous semigroup on Lp(Ω;Y ).

Proof : 1. See [70, Theorem 4].
2. According to Lemma 2.5, Tt extends to a contraction on L1(Ω;Y ) and L∞(Ω)⊗ Y , and

thus, by complex interpolation [6, 5.1.2 Theorem part 2] also for any 1 < p <∞. The semigroup
property of Tt is clear. To prove the strong continuity, we can restrict to a dense subspace of
Lp(Ω;Y ). Since we have p <∞, Lp(Ω)⊗ Y is such a dense subspace, and for f =

∑
k fk ⊗ yk,

we clearly have (Tt ⊗ IdY )f =
∑
k Ttfk ⊗ yk →

∑
k fk ⊗ yk as t→ 0.

For further information on theH∞ calculus, we refer e.g. to [50]. We now turn to Hörmander
function classes and their calculi.

Definition 2.7 Let p ∈ [1,∞) and α > 1
p . We define the Hörmander class by

Hαp =
{
f : (0,∞)→ C bounded and continuous, sup

R>0
‖φf(R ·)‖Wα

p (R)︸ ︷︷ ︸
:=‖f‖Hαp

<∞
}
.

Here φ is any C∞c (0,∞) function different from the constant 0 function (different choices of
functions φ resulting in equivalent norms) and Wα

p (R) is the classical Sobolev space.

The Hörmander classes have the following properties.
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Lemma 2.8 1. Assume that α ∈ N and 1 6 p < ∞. Then a locally integrable function
f : (0,∞)→ C belongs to the Hörmander class Hαp if and only if

α∑
k=0

sup
R>0

∫ 2R

R

∣∣∣tk dk
dtk

f(t)
∣∣∣pdt/t <∞,

if and only if

max
k=0 or k=α

sup
R>0

∫ 2R

R

∣∣∣tk dk
dtk

f(t)
∣∣∣pdt/t <∞,

and the above quantities are equivalent to ‖f‖pHαp .

2. We have the continuous embeddings H∞(Σθ) ↪→ Hαq ↪→ Hαp ↪→ Hβq for θ ∈ (0, π), p < q

and α > β + 1
p −

1
q .

3. Hαp is a Banach algebra for the pointwise multiplication.

4. The mapping Hαp → Hαp , m 7→ m((·)γ), is an isomorphism for any γ > 0.

Proof : See [44, Section 4.2.1] for everything except the second claimed equivalence in 1. For
the latter, we note that for 0 6 l 6 k, we have∫ 2

1

∣∣∣ dl
dtl

f(t)
∣∣∣pdt . ∫ 2

1

∣∣∣ dk
dtk

f(t)
∣∣∣pdt+

∫ 2

1
|f(t)|pdt

according to [1, Theorem 5.2]. Now for a function g ∈ W k
p (R, 2R), take f(t) = g(Rt), and

substitute this in the above formula. One readily obtains that the first displayed term in 1. is
dominated by the second displayed term. The converse estimate is trivial.

We can base a Hörmander functional calculus on theH∞ calculus by the following procedure.

Definition 2.9 We say that a 0-sectorial operator has a bounded Hαp calculus if for some θ ∈
(0, π) and any f ∈ H∞(Σθ), ‖f(A)‖ 6 C‖f‖Hαp (6 C ′‖f‖∞,θ).

In this case, theH∞(Σθ) calculus can be extended to a bounded Banach algebra homomorphism
Hαp → B(X) in the following way. Let

Wα
p =

{
f : (0,∞)→ C : f ◦ exp ∈Wα

p (R)
}

equipped with the norm ‖f‖Wα
p

= ‖f ◦ exp ‖Wα
p (R). Note that for any θ ∈ (0, π), the space

H∞(Σθ) ∩Wα
p is dense in Wα

p [47]. Since Wα
p ↪→ Hαp , by the above density, we get a bounded

mapping Wα
p → B(X) extending the H∞ calculus.

Definition 2.10 Let (φk)k∈Z be a sequence of functions in C∞c (0,∞) with the properties that
suppφk ⊂ [2k−1, 2k+1] and

∑
k∈Z φk(t) = 1 for all t > 0. Then (φk)k∈Z is called a dyadic

partition of unity.

Let (φk)k∈Z be a dyadic partition of unity. For f ∈ Hαp , we have that φkf ∈ Wα
p , hence

(φkf)(A) is well-defined. Then it can be shown that for any x ∈ X,
∑n
k=−n(φkf)(A)x converges

as n→∞ and that it is independent of the choice of (φk)k∈Z. This defines the operator f(A),
which in turn yields a bounded Banach algebra homomorphism Hαp → B(X), f 7→ f(A). This
is the Hörmander functional calculus. For details of this procedure, we refer to [44, Sections
4.2.3 - 4.2.6].
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2.5 Dunkl transform, h-harmonic expansion, weighted space on the
unit sphere

2.5.1 The Dunkl transform

We recall some basic concepts of Dunkl operators which will be needed in the article. For
more details on Dunkl’s analysis, the reader may especially consult [33, 59] and the references
therein. We can all the same point out that the theory was originally developed by Dunkl
to bypass the classical approach to the construction of orthogonal polynomials as spherical
functions on homogeneous spaces. The introduction of the differential-difference operators (and
their related objects) now called Dunkl operators turned out to be a powerful tool in harmonic
analysis associated with Coxeter groups, in the theory of multivariable special functions, in
the theory of stochastic processes with values in Weyl chambers or in the theory of integrable
quantum many body systems of Calogero-Moser-Sutherland type, for instance.

Let d ∈ N \ {0}. Let W ⊂ O(Rd) be a finite reflection group associated with a reduced root
system R (not necessarily crystallographic) and let κ : R → [0,+∞[ be a multiplicity function,
that is, a W -invariant function. The (rational) Dunkl operators Dκ

ξ on Rd, introduced in [32],
are the following κ-deformations of directional derivatives ∂ξ by reflections

Dκ
ξ f(x) = ∂ξf(x) +

∑
α∈R+

κ(α)f(x)− f(σα(x))
〈x, α〉

〈ξ, α〉, x ∈ Rd,

where 〈·, ·〉 denotes the standard Euclidean inner product, σα denotes the reflection with respect
to the hyperplane orthogonal to α and R+ denotes a positive subsystem of R. The definition
is of course independent of the choice of the positive subsystem since κ is W -invariant. These
operators map Pdn to Pdn−1, where Pdn is the space of homogeneous polynomials of degree n in
d variables, and they mutually commute. The Dunkl Laplacian is ∆κf =

∑d
i=1(Dκ

ei)
2f , where

(ei)16i6d is the canonical basis of Rd, and can be written explicitly as follows (see [32])

∆κf(x) = ∆f(x) + 2
∑
α∈R+

κ(α)
(
∂αf(x)
〈α, x〉

− ‖α‖
2

2
f(x)− f(σα(x))

〈α, x〉2

)
.

It generates a semigroup Hκt on Lp(Rd, h2
κ), 1 6 p < ∞, which is a diffusion semigroup in the

sense of Definition 2.1 [30, Theorem 2.6] (see also [56, 58]), where the weight h2
κ defined on Rd

by
h2
κ(x) =

∏
α∈R+

|〈x, α〉|2κ(α)

is invariant under the action of W and homogeneous of degree 2γκ, with

γκ =
∑
α∈R+

κ(α).

The Dunkl operators give rise to a rich analytic structure since they are also intertwined with
the usual derivatives. Indeed, there exists a unique linear isomorphism Vκ (called intertwining
operator) on P =

⊕
n>0 Pdn such that

Vκ(Pdn) = Pdn, Vκ|Pd0
= Id|Pd0

, Dκ
ξ Vκ = Vκ∂ξ ∀ξ ∈ Rd.

Unfortunately, the intertwining operator is explicitly known only in some special cases but for
a general reflection group, we all the same have the following significant Laplace-type represen-
tation due to Rösler (see [57]): for every x ∈ Rd, there exists a unique probability measure dµκx,
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compactly supported in the convex hull of the orbit of x under the action of W (among other
properties) such that for any P ∈ P

VκP (x) =
∫
Rd
P (ξ)dµκx(ξ),

and this formula allows to extend it to various larger function spaces. For y ∈ Cd, let

Eκ(x, y) = Vκ
(
e〈·,y〉

)
(x), x ∈ Rd,

where 〈·, ·〉 denotes the bilinear extension of the Euclidean inner product to Cd × Cd. Then
Eκ(·, y) is the unique real-analytic solution of the spectral problem

Dκ
ξ f = 〈ξ, y〉f ∀ξ ∈ Rd, f(0) = 1,

and moreover, Eκ extends to a holomorphic function on Cd ×Cd, see [55]. This kernel, the so-
called Dunkl kernel, gives rise to an integral transform which generalizes the Euclidean Fourier
transform. For every f ∈ L1(Rd, h2

κ), the Dunkl transform of f , denoted by Fκf , is defined by

Fκf(x) = cκ

∫
Rd
Eκ(−ix, y)f(y)h2

κ(y)dy, x ∈ Rd,

where c−1
κ =

∫
Rd e

−‖x‖2/2h2
κ(x)dx is a Mehta-type constant. We point out that the Dunkl

transform coincides with the Euclidean Fourier transform when κ = 0 (since D0
ξ = ∂ξ and

V0 = Id) and that it is more or less a Hankel transform when d = 1 (and then W ' Z2).
The Dunkl transform has the following properties, where for a given Banach lattice Y =

Y (Ω′), we denote by Lp(Rd, h2
κ;Y ) the Bochner space of classes of functions f : Rd → Y such

that

‖f‖κ,p;Y =
(∫

Rd
‖f(y)‖pY h

2
κ(y)dy

) 1
p

<∞,

with the standard modification if p =∞. If Y = C, we usually omit Y in the notations.

Lemma 2.11 1. If f ∈ L1(Rd, h2
κ) then Fκf ∈ C0(Rd).

2. Fκ is an isomorphism of the Schwartz class S(Rd) onto itself, and F2
κf(x) = f(−x).

3. The Dunkl transform has a unique extension to an isometric isomorphism of L2(Rd, h2
κ).

4. Let f ∈ L1(Rd, h2
κ). If Fκf is in L1(Rd, h2

κ), then we have the inversion formula

f(x) = cκ

∫
Rd
Eκ(ix, y)Fκf(y)h2

κ(y)dy.

5. For f ∈ S(Rd), we have ∆κ(f) = F−1
κ [−‖ξ‖2Fκf(ξ)], and the semigroup Hκt generated by

the Dunkl Laplacian satisfies Hκt (f) = F−1
κ [e−t‖ξ‖2Fκf(ξ)].

6. For m : (0,∞) → C a bounded measurable function and Y a Banach space, Tm(f) =
F−1
κ [m(‖ξ‖)Fκf(ξ)] is a well defined element of C0(Rd;Y ) for f ∈ S(Rd)⊗ Y.

7. Let Y be a UMD lattice and 1 < p < ∞. Then −∆κ is an ω-sectorial operator for some
ω < π

2 on Lp(Rd, h2
κ;Y ), in particular injective with dense range.
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8. Let Y be a UMD lattice and 1 < p < ∞. Let q ∈ [1,∞) and α > 1
q . Let A = −∆κ be the

negative generator of the Dunkl heat semigroup Hκt on Lp(Rd, h2
κ;Y ). Let ω < θ ∈ (0, π)

such that A is ω-sectorial on Lp(Rd, h2
κ;Y ).

(a) Suppose that for any m ∈ H∞0 (Σθ), the above operator Tm, initially defined on
S(Rd) ⊗ Y, extends to a bounded operator on Lp(Rd, h2

κ;Y ) and ‖Tm‖ 6 C‖m‖Hαq .
Then A has a Hörmander Hαq calculus and m(A) = Tm̃ for m ∈ Hαq and m̃(t) =
m(t2).

(b) Suppose that there is a C <∞ such that for any m ∈ H∞0 (Σθ),

‖m(A)‖Lp(Rd,h2
κ;Y )→Lp(Rd,h2

κ;Y ) 6 C‖m‖Hαq .

Then A has a Hαq calculus, for any m ∈ Hαq , Tm defined above extends to a bounded
operator on Lp(Rd, h2

κ;Y ) and m(A) = Tm̃.

Proof : For parts 1.,2.,3.,4.,5., we refer to [28], [66].
For 6., we note that Fκf belongs again to S(Rd) ⊗ Y, so ξ 7→ m(‖ξ‖)Fκf(ξ) belongs to

L1(Rd)⊗ Y. Now apply part 1.
For 7., note that since ∆κ generates a diffusion semigroup, it is pseudo-ω-sectorial for some

ω < π
2 on Lp(Rd, h2

κ;Y ) according to Proposition 2.6. Then the fact that A = −∆κ is injective
on Lp(Rd, h2

κ;Y ) (equivalently, has dense range, equivalently is ω-sectorial) can be seen as
follows. According to [50, Proposition 15.2], it suffices to show that t(t + A)−1f → 0 for any
f ∈ Lp(Rd, h2

κ;Y ), as t → 0. Since supt>0 ‖t(t + A)−1‖ < ∞ by pseudo-sectoriality of A, it
suffices to consider f ∈ S(Rd)⊗ Y. For these f, we have

t(t+A)−1f = F−1
κ

[ t

t+ ‖ξ‖2Fκ(f)(ξ)
]
→ 0

in C0(Rd;Y ) by dominated convergence, since | t
t+‖ξ‖2 | 6 1 and Fκ(f) ∈ S(Rd)⊗Y according to

part 2. By [50, Proposition 15.2], we already know that t(t+A)−1f converges in Lp(Rd, h2
κ;Y ),

so by unicity of the limit, it converges to 0 in Lp(Rd, h2
κ;Y ).

We turn to 8. It follows from 5. and the representation formula

(λ−A)−1 = −
∫ ∞

0
eλte−tAdt

for <λ < 0 that Tm̃ = m(A) for m(t) = (λ− t)−1. This identity can be extended for λ ∈ C\Σω,
where ω < θ and σ(A) ⊂ Σω, by analytic continuation. Then the identity follows for any
m ∈ H∞0 (Σθ) from the Cauchy formula defining the H∞0 calculus. We now show step by step
that Tm̃ = m(A) holds for m ∈ H∞(Σθ), for m ∈ Wα

q and for m ∈ Hαq , under either the
assumptions 8. (a) or 8. (b). Each time, it will suffice by linearity and density to show the
identity applied to f ⊗ y with f ∈ S(Rd) and y ∈ Y. So let m ∈ H∞(Σθ). Let

ρn(λ) =
(

λ

(1 + λ)2

) 1
n

∈ H∞0 (Σθ).

We have ρn(λ)→ 1 for any λ ∈ Σθ and supn ‖ρn‖∞,θ = supn ‖ρ1‖
1
n

∞,θ <∞. The assumption 8.
(b) readily implies that A has an H∞(Σθ) calculus by Lemma 2.8 2., whereas 8. (a) also implies
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it via the already provided identity Tm̃ = m(A) for m ∈ H∞0 (Σθ). Thus, by the Convergence
Lemma 2.4, we have with mn := mρn,

m(A)(f ⊗ y) = lim
n
mn(A)(f ⊗ y)

= lim
n
F−1
κ [mn(‖ξ‖2)Fκf(ξ)]⊗ y

= F−1
κ [m(‖ξ‖2)Fκf(ξ)]⊗ y

= Tm̃(f ⊗ y),

the first limit in Lp(Rd, h2
κ;Y ), the second limit in C0(Rd;Y ), by 1. and dominated convergence.

It follows Tm̃ = m(A) for m ∈ H∞(Σθ), and that A has a Hαq calculus, since

‖m(A)‖ 6 lim sup
n
‖mn(A)‖

. lim sup
n
‖mn‖Hαq

. ‖m‖Hαq lim sup
n
‖ρn‖Hαq

. ‖m‖Hαq lim sup
n
‖ρn‖θ,∞

. ‖m‖Hαq .

Now let m ∈ Wα
q , and mn a sequence in H∞(Σθ) ∩Wα

q approximating m in Wα
q . We have

m(A)(f ⊗ y) = lim
n
mn(A)(f ⊗ y)

= lim
n
Tm̃n(f ⊗ y)

= lim
n
F−1
κ [mn(‖ξ‖2)Fκf(ξ)]⊗ y

= F−1
κ [m(‖ξ‖2)Fκf ]⊗ y,

where the last limit holds by Wα
q ↪→ L∞(0,∞) and dominated convergence, plus part 1. Thus,

m(A) = Tm̃ for m ∈ Wα
q .

Let finally m ∈ Hαq . Let (φk)k∈Z be a dyadic partition of unity as in Definition 2.10. Then

m(A)(f ⊗ y) = lim
n

n∑
k=−n

(φkm)(A)(f ⊗ y) = lim
n

n∑
k=−n

T
φ̃km

(f ⊗ y) = Tm̃(f ⊗ y),

the second limit holding by almost the same argument as before in the case Wα
q .

We now turn to h-harmonic expansions and analysis on the sphere.

2.5.2 h-harmonic expansions and analysis on the sphere.

For more details on h-harmonic expansions and analysis on the sphere, the reader may consult
the expertly written book of Dai-Xu [26]. For d > 2, we let Sd−1 = {x ∈ Rd : ‖x‖ = 1}, and for
1 6 p <∞ and Y a Banach lattice, we let Lp(Sd−1, h2

κ;Y ) be the Bochner space of equivalence
classes of measurable functions f : Sd−1 → Y such that

‖f‖Lp(Sd−1,h2
κ;Y ) :=

(
aκ

∫
Sd−1

‖f(y)‖pY h
2
κ(y)dy

) 1
p

<∞,
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with the standard modification if p = ∞. Here, the measure on Sd−1 is surface measure and
a−1
κ =

∫
Sd−1 h

2
κ(y)dy. By abuse of notation, we also write ‖f‖Lp(Sd−1,h2

κ;Y ) = ‖f‖κ,p;Y .
Let P ∈ Pdn. Then P is called an h-harmonic polynomial of degree n if ∆κP = 0. It is well-

known (see [31]) that a homogeneous polynomial is an h-harmonic polynomial if it is orthogonal
to all polynomials of lower degree with respect to the inner product of L2(Sd−1, h2

κ). For j > 0,
we let projκj : L2(Sd−1, h2

κ)→ L2(Sd−1, h2
κ) be the orthogonal projection with image the space

of all h-harmonics of degree j. The projection projκj has the following integral representation

projκj f(x) = aκ

∫
Sd−1

f(y)Pκ
j (x, y)h2

κ(y)dy, x ∈ Sd−1,

with (see [71, Theorem 3.2, (3.1)])

Pκ
j (x, y) = j + λκ

λκ
Vκ

[
Cλκj

(
〈x, ·〉

)]
(y), x, y ∈ Sd−1,

where

(2.2) λκ = d

2 + γκ − 1

and where Cλκj is the standard Gegenbauer (or ultraspherical) polynomial of degree j and index
λκ (see [64] for instance). Now, let

c−1
λκ

=
∫ 1

−1
(1− t2)λκ− 1

2 dt =
√
π

Γ(λκ + 1
2 )

Γ(λκ + 1) .

Then, according to [72], we define for f ∈ L1(Sd−1, h2
κ) and g ∈ L1([−1, 1], ωλκ), with ωλκ the

weight for which the Gegenbauer polynomials are orthogonal, that is ωλκ(t) = (1− t2)λκ− 1
2 ,

f ∗ g(x) = aκ

∫
Sd−1

f(y)Vκ
[
g
(
〈x, ·〉

)]
(y)h2

κdy,

and this generalized convolution, which reduces when κ = 0 to the spherical convolution [17],
satisfies Young-type inequalities [72, Proposition 2.2]. We now state the following lemma, which
will be useful in the sequel.

Lemma 2.12 For j > 0, 1 < p < ∞ and any Banach space Y, the operator projκj extends
boundedly to Lp(Sd−1, h2

κ;Y ), and we have, for j large enough, the norm estimate

‖projκj ‖Lp(Sd−1,h2
κ;Y )→Lp(Sd−1,h2

κ;Y ) . j2λκ .

Proof : Let x ∈ Sd−1. Write for any j > 0

projκj f(x) = aκ

∫
Sd−1

f(y)Pκ
j (x, y)h2

κ(y)dy =
(
f ∗
[j + λκ

λκ
Cλκj

])
(x).

Thus, by Young-type inequalities for the generalized convolution on the sphere, we have both
the inequalities

‖projκj f‖L1(Sd−1,h2
κ) 6 ‖f‖L1(Sd−1,h2

κ)

∥∥∥j + λκ
λκ

Cλκj

∥∥∥
L1([−1,1],ωλκ )

‖projκj f‖L∞(Sd−1,h2
κ) 6 ‖f‖L∞(Sd−1,h2

κ)

∥∥∥j + λκ
λκ

Cλκj

∥∥∥
L1([−1,1],ωλκ )

.

14



Besides, ∥∥∥j + λκ
λκ

Cλκj

∥∥∥
L1([−1,1],ωλκ )

= cλκ
j + λκ
λκ

∫ 1

−1
|Cλκj (t)|(1− t2)λκ− 1

2 dt

6
j + λκ
λκ

(2λκ)j
j! ,

where we have used the inequality (see for instance [4, p. 350])

|Cλκj (t)| 6 Cλκj (1) = (2λκ)j
j! ,

with (x)n the so-called Pochhammer symbol. Moreover, since we can write (x)n = Γ(x+n)
Γ(x) ,

Stirling’s formula Γ(a) '
√

2πaa− 1
2 e−a gives us

(2.3) (2λκ)j
j! = Γ(2λκ + j)

Γ(2λκ)Γ(j + 1) ' C(λκ)j2λκ−1.

We can conclude, for j large enough, that∥∥∥j + λκ
λκ

Cλκj

∥∥∥
L1([−1,1],ωλκ )

. j2λκ ,

and therefore, we have both the inequalities

‖projκj ‖L1(Sd−1,h2
κ)→L1(Sd−1,h2

κ) . j2λκ

‖projκj ‖L∞(Sd−1,h2
κ)→L∞(Sd−1,h2

κ) . j2λκ .

We can tensorise these estimates to get estimates on Bochner spaces, namely according to
Lemma 2.5

‖projκj ‖Lp(Sd−1,h2
κ;Y )→Lp(Sd−1,h2

κ;Y ) . j2λκ

holds for p = 1,∞, (Lp(Sd−1, h2
κ;Y ) replaced by L∞(Sd−1, h2

κ)⊗ Y
L∞(Sd−1,h2

κ;Y )
for p = ∞)

which then implies by interpolation [6, 5.1.2 Theorem part 2] that the latter estimates holds
also for p ∈ (1,∞).

We close this section with some facts on both a generalized Poisson and heat semigroup on
(Sd−1, h2

κ(y)dy). We first recall their definition (see [25, p. 482]).

Definition 2.13 The Poisson semigroup Tκt on (Sd−1, h2
κ(y)dy) is defined by

Tκt f =
∞∑
j=0

e−jtprojκj f, t > 0.

The heat semigroup Hκ
t on (Sd−1, h2

κ(y)dy) is defined by

Hκ
t f =

∞∑
j=0

e−j(j+2λκ)tprojκj f, t > 0.

The following statement will be of particular interest.
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Lemma 2.14 Both the Poisson and the heat semigroup are diffusion semigroups.

Proof : That they are semigroups is clear from the fact that the projκj are projections. The
contractivity of Hκ

t on Lp(Sd−1, h2
κ) for all 1 6 p 6 ∞ and t > 0 is proved in [25, Proof

of Lemma 2.2]. This yields the strong continuity of both semigroups on L2. Indeed, strong
continuity Tκt f → f and Hκ

t f → f (t→ 0) is clear for elements of the form f =
∑J
j=0 projκj g (J

finite), since e−tj → 1 and e−tj(j+2λκ) → 1 uniformly for j = 0, . . . , J as t → 0. Now use a 3ε
argument for general f ∈ L2. Then the strong continuity extrapolates on Lp by contractivity.
It is proved in [25, Proof of Lemma 2.2] that Hκ

t are positive operators, and [25, (2.10)] yields
then that Tκt is also a positive operator. We finally show that Tκt (1) → 1 and Hκ

t (1) → 1 as
t → ∞. This will imply that Tκt (1) = 1, and the same for Hκ

t . Indeed, Tκt+s(1) = Tκt T
κ
s (1), so

1 = lims→∞ Tκt+s(1) = Tκt lims→∞ Tκs (1) = Tκt (1). We have

Tκt (1) = projκ0 (1) +
∞∑
j=1

e−tjprojκj (1).

Now projκ0 (1) = 1 and by Lemma 2.12∥∥∥ ∞∑
j=1

e−tjprojκj (1)
∥∥∥
∞

6 e−t
∞∑
j=1

e−t(j−1)∥∥projκj (1)
∥∥
∞ . e−t → 0 (t→∞).

The same argument applies for Hκ
t .

3 Spectral multipliers with values in UMD lattices
3.1 Marcinkiewicz-type multiplier theorem for h-harmonic expansions
In this section, we take d ∈ N with d > 2. Let us begin by recalling the definition of the usual
difference operator.

Definition 3.1 Given a sequence (µj)j>0 of complex numbers, we define recursively

∆µj = µj − µj+1, ∆n+1µj = ∆nµj −∆nµj+1, j > 0, n > 1.

We now state the main result of this section.

Theorem 3.2 Let 1 < p < ∞ and Y = Y (Ω′) be a UMD Banach lattice. Let (µj)j>0 be a
scalar sequence. Suppose that for some integer n0 >

d
2 + γκ = λκ + 1, we have

(C0) supj>0 |µj | 6M <∞,

(Cn0) supj>0 2j(n0−1)∑2j+1

l=2j |∆n0µl| 6M <∞.

Then (µj)j>0 defines an Lp(Sd−1, h2
κ;Y ) multiplier, that is∥∥∥∥ ∞∑

j=0
µjprojκj f

∥∥∥∥
κ,p;Y

6 cpM‖f‖κ,p;Y ,

where the constant cp is independent of f and (µj)j>0.
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This theorem generalizes the scalar case proved by Dai and Xu in [25]. Therefore, if we
specialize Theorem 3.2 to Y = C and κ = 0, then we recover the famous Marcinkiewicz type
theorem for zonal multipliers due to Bonami-Clerc [10].

The proof, which is divided into several lemmas and a proposition, follows the strategy of
Bonami-Clerc adapted in the Dunkl setting by Dai-Xu. A crucial role in the proof will be
played by several kinds of Littlewood-Paley type g-functions closely related to Cesàro means
for h-harmonic expansions. Let us begin with the following notation. Let (Tκt )t>0 be the
generalized Poisson semigroup on Lp(Sd−1, h2

κ;Y ). Then we set

(3.1) Pκr = Tκ− log(r), 0 < r < 1.

The first lemma will provide a new equivalent norm on Lp(Sd−1, h2
κ;Y ), in terms of a well

suited g-function.

Lemma 3.3 Let 1 < p < ∞ and Y = Y (Ω′) be a UMD Banach lattice. Then, for any
f ∈ Lp(Sd−1, h2

κ;Y ), we have the two-sided estimate

1
c
‖f‖κ,p;Y 6

∥∥∥∥∥
(∫ 1

0
(1− r)

∣∣∣ ∂
∂r
Pκr f

∣∣∣2dr) 1
2
∥∥∥∥∥
κ,p;Y

6 c‖f‖κ,p;Y ,

where in the first inequality we assume that
∫
Sd−1 f(y)h2

κ(y)dy = 0.

Proof : The semigroup (Tκt )t>0 is a diffusion semigroup, so its vector-valued extension on
Lp(Sd−1, h2

κ;Y ) has an H∞(Σω) calculus of some angle ω < π
2 , thanks to Proposition 2.6.

According to [70, Proposition 9], we have, for any f ∈ Lp(Sd−1, h2
κ;Y ), the following square

function estimate ∥∥∥∥∥
(∫ ∞

0
t
∣∣∣ ∂
∂t
Tκt f

∣∣∣2dt) 1
2
∥∥∥∥∥
κ,p;Y

6 C‖f‖κ,p;Y .

We next show that we also have the converse estimate to the previous one, under the additional
assumption that

∫
Sd−1 f(y)h2

κ(y)dy = 0. Note that

lim
t→∞

Tκt f = lim
t→∞

∞∑
j=0

e−jtprojκj f = projκ0f

is the projection onto the kernel of the negative generator Ap of (Tκt )t>0 (its version on
Lp(Sd−1, h2

κ;Y )), according to the decomposition Lp(Sd−1, h2
κ;Y ) = Ker(Ap) ⊕ R(Ap), valid

for any negative generator of an analytic semigroup on a reflexive space [50, Proposition 15.2].
Since

projκ0f = aκ

∫
Sd−1

f(y)h2
κ(y)dy = 0,

our particular f must lie in R(Ap). Consider now the part Ãp of Ap on R(Ap) [50, Proposition
15.2], which has dense range. Then according to [50, Lemma 9.13], we have the partition

f =
∫ ∞

0
ψ(tÃp)f

dt

t
=
∫ ∞

0
ψ(tAp)f

dt

t
,

for ψ ∈ H∞0 (Σπ
2−ε) of dtt -integral 1, as an improper integral, under the additional assumption

that f ∈ R(Ap) ∩ D(Ap). Here, D(Ap) stands for the domain of Ap. Apply this partition to
ψ(t) = cte−t · te−t, we get

〈f, g〉 = c

∫ ∞
0
〈tApTκt f, tAp∗Tκt

∗g〉dt
t
,
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for any g ∈ Lp∗(Sd−1, h2
κ;Y ∗). This implies∣∣〈f, g〉∣∣ . ∫ ∞

0

∣∣〈tApTκt f, tAp∗Tκt g〉∣∣dtt
=
∫ ∞

0

∣∣∣∣∫
Sd−1

∫
Ω′
tApT

κ
t (f)(y, ω′) · tAp∗Tκt (g)(y, ω′)dω′h2

κ(y)dy
∣∣∣∣ dtt

6
∫
Sd−1

∫
Ω′

∫ ∞
0

∣∣∣tApTκt (f)(y, ω′) · tAp∗Tκt (g)(y, ω′)
∣∣∣ dt
t
dω′h2

κ(y)dy

6
∫
Sd−1

∫
Ω′

(∫ ∞
0

∣∣∣tApTκt (f)(y, ω′)
∣∣∣2 dt
t

) 1
2

·
(∫ ∞

0

∣∣∣tAp∗Tκt (g)(y, ω′)
∣∣2 dt
t

) 1
2

dω′h2
κ(y)dy

6

∥∥∥∥∥
(∫ ∞

0
t
∣∣∣ ∂
∂t
Tκt f

∣∣∣2dt) 1
2
∥∥∥∥∥
κ,p;Y

∥∥∥∥∥
(∫ ∞

0
t
∣∣∣ ∂
∂t
Tκt g

∣∣∣2dt) 1
2
∥∥∥∥∥
κ,p∗;Y ∗

.

Applying now the upper estimate for g and on Lp∗(Sd−1, h2
κ;Y ∗), we get

∣∣〈f, g〉∣∣ . ∥∥∥∥∥
(∫ ∞

0
t
∣∣∣ ∂
∂t
Tκt f

∣∣∣2dt) 1
2
∥∥∥∥∥
κ,p;Y

‖g‖κ,p∗;Y ∗ .

Taking the supremum over all g of norm 6 1 yields the desired estimate under the additional
assumption f ∈ R(Ap) ∩D(Ap). Since R(Ap) ∩D(Ap) is dense in R(Ap) [50, Proposition 9.4],
we deduce

(3.2) ‖f‖κ,p;Y .

∥∥∥∥∥
(∫ ∞

0
t
∣∣∣ ∂
∂t
Tκt f

∣∣∣2dt) 1
2
∥∥∥∥∥
κ,p;Y

. ‖f‖κ,p;Y ,

the lower estimate under the assumption
∫
Sd−1 f(y)h2

κ(y)dy = 0.
We next deduce from (3.2) the stated g-function norm equivalence of the lemma. To this

end, we proceed by a modification of the proof in [26, p. 38-39]. By the change of variable
r = e−t, we get

g0(f) :=
(∫ ∞

0
t
∣∣∣ ∂
∂t
Pκe−tf

∣∣∣2dt) 1
2

=
(∫ 1

0
r| log(r)|

∣∣∣ ∂
∂r
Pκr f

∣∣∣2dr) 1
2

.

Now, we write

g(f) =
(∫ 1

0
(1− r)

∣∣∣ ∂
∂r
Pκr f

∣∣∣2dr) 1
2

.

We shall show that ‖g(f)‖κ,p;Y . ‖f‖κ,p;Y and ‖g0(f)‖κ,p;Y . ‖g(f)‖κ,p;Y , which completes
the proof.

Since (1− r) ' r| log r| for 1
2 6 r < 1, we have

(3.3) g(f) .
(∫ 1

2

0
(1− r)

∣∣∣ ∂
∂r
Pκr f

∣∣∣2dr) 1
2

+
(∫ 1

1
2

r| log r|
∣∣∣ ∂
∂r
Pκr f

∣∣∣2) 1
2

.

The first term on the right hand side, we estimate by

sup
06r6 1

2

∣∣∣ ∂
∂r
Pκr f

∣∣∣ 6 sup
06r6 1

2

∞∑
j=1

jrj−1|projκj f | =
∞∑
j=1

j21−j |projκj f |.
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By Lemma 2.12, we can sum over j > 1 to get∥∥∥∥ sup
06r6 1

2

∣∣∣ ∂
∂r
Pκr f

∣∣∣ ∥∥∥∥
κ,p;Y

. ‖f‖κ,p;Y .

Use now (3.3) to deduce that

‖g(f)‖κ,p;Y . ‖f‖κ,p;Y + ‖g0(f)‖κ,p;Y . ‖f‖κ,p;Y .

We have proved the upper estimate of the lemma. For the lower estimate, we simply use
r| log r| . (1− r) on r ∈ [0, 1], to deduce g0(f) . g(f), and thus,

‖f‖κ,p;Y . ‖g0(f)‖κ,p;Y . ‖g(f)‖κ,p;Y

when
∫
Sd−1 f(y)h2

κ(y)dy = 0.
Now, we shall prove that the Cesàro means of h-harmonic expansions are R-bounded on

Lp(Sd−1, h2
κ;Y ). To this end, we recall some definitions.

Definition 3.4 For δ > 0 and l ∈ N, we put

Aδl =
(
l + δ

l

)
= (l + δ)(l + δ − 1) . . . (δ + 1)

l(l − 1) . . . 1 = Γ(l + δ + 1)
Γ(l + 1)Γ(δ + 1) = (δ + 1)l

l! .

Then, for j > 0 and n > 0, we put

aδ,nj = 1
Aδn

Aδn−jχ06j6n.

We define the Cesàro means of order δ (from now on, just called Cesàro means) by the multiplier

Sδnf =
∞∑
j=0

aδ,nj projκj f.

We can state the R-boundedness of the Cesàro means of h-harmonic expansions. Recall that
we have set λκ = d

2 + γκ − 1.

Lemma 3.5 Let 1 < p <∞, Y = Y (Ω′) be a UMD Banach lattice. Assume that δ > λκ. Then
the Cesàro means (Sδn)n>0 are R-bounded on Lp(Sd−1, h2

κ;Y ), that is,∥∥∥∥∥
( ∞∑
j=0
|Sδnjfj |

2
) 1

2
∥∥∥∥∥
κ,p;Y

6 cp,δ

∥∥∥∥∥
( ∞∑
j=0
|fj |2

) 1
2
∥∥∥∥∥
κ,p;Y

.

Proof : By [26, p. 37], we have the estimate

(3.4) sup
n>0
|Sδnf(x, ω′)| 6 c

[
Mκf(x, ω′) +Mκf(−x, ω′)

]
, x ∈ Sd−1, ω′ ∈ Ω′,

whereMκ is the following well-suited maximal operator for h-harmonic expansions [73, Propo-
sition 2.3] or [25, (1.5)]

Mκf(x) = sup
0<θ6π

∫
Sd−1 |f(y)|Vκ[χB(x,θ)](y)h2

κ(y)dy∫
Sd−1 Vκ[χB(x,θ)](y)h2

κ(y)dy
, x ∈ Sd−1,
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with B(x, θ) = {y ∈ Rd : 〈x, y〉 > cos θ} ∩ {y ∈ Rd : ‖y‖ 6 1}. It is shown in [25, Proof of
Theorem 2.1] that

Mκf(x, ω′) 6 c sup
t>0

1
t

∫ t

0
Hκ
s |f(·, ω′)|(x)ds,

where we recall that Hκ
s is the generalized heat semigroup on (Sd−1, h2

κ(y)dy). Since it is a
symmetric contraction semigroup, by [70, Theorem 1], the Hopf-Dunford-Schwartz maximal
operator

M(H)f = sup
t>0

1
t

∣∣∣∣∫ t

0
Hκ
s fds

∣∣∣∣
is bounded on Lp(Sd−1, h2

κ;Y (Ω′; `2)), Y (Ω′; `2) being again a UMD-lattice according to Lemma
2.3. Therefore, we get∥∥∥∥∥

( ∞∑
j=0
|Sδnjfj |

2
) 1

2
∥∥∥∥∥
κ,p;Y

.

∥∥∥∥∥
( ∞∑
j=0
|Mκfj |2

) 1
2
∥∥∥∥∥
κ,p;Y

.
∥∥M(H)(fj)j>0

∥∥
Lp(Sd−1,h2

κ;Y (Ω′;`2))

.
∥∥(fj)j>0

∥∥
Lp(Sd−1,h2

κ;Y (Ω′;`2))

=

∥∥∥∥∥
( ∞∑
j=0
|fj |2

) 1
2
∥∥∥∥∥
κ,p;Y

.

The second lemma we need, under the assumption that the Cesàro means are R-bounded,
provides us a crucial norm inequality involving both the Cesàro means and the generalized
Poisson semigroup (Pκr in fact) on Lp(Sd−1, h2

κ;Y ).

Lemma 3.6 Let 1 < p <∞ and Y = Y (Ω′) be a UMD Banach lattice. Let δ > 0 and assume
that the Cesàro means (Sδn)n>0 are R-bounded on Lp(Sd−1, h2

κ;Y ). If for j > 1, rj ∈ (0, 1) and
Ij is a subinterval of [rj , 1), then∥∥∥∥∥

( ∞∑
j=1

∣∣Sδnj(Pκrjfj)∣∣2) 1
2
∥∥∥∥∥
κ,p;Y

6 cp

∥∥∥∥∥
( ∞∑
j=1

1
|Ij |

∫
Ij

∣∣Pκr fj∣∣2dr) 1
2
∥∥∥∥∥
κ,p;Y

.

Proof : The proof follows closely the lines of [26, Lemma 4.3.5] which itself follows [10]. We
give some details. Firstly, according to [26, p. 41], we have for j > 1, δ > 0 and 0 < r < 1

∣∣SδnjPκrjfj∣∣2 6 c

nj∑
l=0
|bδl,nj | |S

δ
l fj |2,

where bδl,n are scalars satisfying
∑n
l=0 |bδl,n| 6 cδ. It follows from the R-boundedness of the
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Cesàro means∥∥∥∥∥
( ∞∑
j=1

∣∣Sδnj(Pκrjfj)∣∣2) 1
2
∥∥∥∥∥
κ,p;Y

6 c

∥∥∥∥∥
( ∞∑
j=1

nj∑
l=0
|bδl,nj | |S

δ
l fj |2

) 1
2
∥∥∥∥∥
κ,p;Y

= c

∥∥∥∥∥
( ∞∑
j=1

∞∑
l=0

∣∣∣Sδl (χ06l6nj

√
|bδl,nj |fj

)∣∣∣2) 1
2
∥∥∥∥∥
κ,p;Y

.

∥∥∥∥∥
( ∞∑
j=1

∞∑
l=0

∣∣∣χ06l6nj

√
|bδl,nj |fj

∣∣∣2) 1
2
∥∥∥∥∥
κ,p;Y

=

∥∥∥∥∥
( ∞∑
j=1

nj∑
l=0
|bδl,nj | |fj |

2
) 1

2
∥∥∥∥∥
κ,p;Y

6
√
cδ

∥∥∥∥∥
( ∞∑
j=1
|fj |2

) 1
2
∥∥∥∥∥
κ,p;Y

.

Thus, we have shown

(3.5)

∥∥∥∥∥
( ∞∑
j=1

∣∣Sδnj(Pκrjfj)∣∣2) 1
2
∥∥∥∥∥
κ,p;Y

.

∥∥∥∥∥
( ∞∑
j=1
|fj |2

) 1
2
∥∥∥∥∥
κ,p;Y

.

Now let for each j > 1 and n > 1, (rj,i)2n
i=0 ⊂ Ij be a finite sequence such that rj,i − rj,i−1 =

2−n|Ij | for all 1 6 i 6 2n. Then for each n ∈ N, Rj,n := 2−n
∑2n
i=1 |Pκrj,ifj |

2 is a Riemann sum
over Ω′ of the integral 1

|Ij |
∫
Ij
|Pκr fj |2dr. Thus, by dominated convergence, it follows

(3.6)

∥∥∥∥∥
( ∞∑
j=1

1
|Ij |

∫
Ij

∣∣Pκr fj∣∣2dr) 1
2
∥∥∥∥∥
κ,p;Y

= lim
n→∞

∥∥∥∥∥
(

2−n
∞∑
j=1

2n∑
i=1
|Pκrj,ifj |

2
) 1

2
∥∥∥∥∥
κ,p;Y

.

On the other hand, since for each n > 1, rj < rj,i for all 1 6 i 6 n and j > 1, we have by (3.5)∥∥∥∥∥
( ∞∑
j=1

∣∣Sδnj(Pκrjfj)∣∣2) 1
2
∥∥∥∥∥
κ,p;Y

=

∥∥∥∥∥
(

2−n
2n∑
i=1

∞∑
j=1

∣∣SδnjPκrj/rj,i(Pκrj,ifj)∣∣2) 1
2
∥∥∥∥∥
κ,p;Y

.

∥∥∥∥∥
(

2−n
2n∑
i=1

∞∑
j=1
|Pκrj,ifj |

2
) 1

2
∥∥∥∥∥
κ,p;Y

.

We conclude with (3.6).
Before stating a proposition which is a key step in the proof of Theorem 3.2, we need the

following functional which is closely related to the Cesàro means of h-harmonic expansions.

Definition 3.7 Let δ > 0. We define the functional gδ(f), for given f ∈ Lp(Sd−1, h2
κ;Y ), by

gδ(f) =
( ∞∑
n=1

∣∣Sδ+1
n f − Sδnf

∣∣2 1
n

) 1
2

.

Moreover, let (νk)k>1 be a sequence of nonnegative numbers such that

sup
n>1

1
n

n∑
k=1

νk = M <∞.
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We define the functional g∗δ (f), for given f ∈ Lp(Sd−1, h2
κ;Y ), by

g∗δ (f) =
( ∞∑
n=1

∣∣Sδ+1
n f − Sδnf

∣∣2 νn
n

) 1
2

.

Remark 3.8 Note that if in particular νk = 1 for all k > 1, then g∗δ (f) = gδ(f).

The following proposition gives us two important norm inequalities involving the Littlewood-
Paley functions gδ(f) and g∗δ (f).

Proposition 3.9 Let 1 < p < ∞ and Y = Y (Ω′) be a UMD Banach lattice. Let δ > 0. If
f ∈ Lp(Sd−1, h2

κ;Y ) satisfies
∫
Sd−1 f(y)h2

κ(y)dy = 0, then

‖f‖κ,p;Y 6 cp,δ‖gδ(f)‖κ,p;Y .

Conversely, if the Cesàro means (Sδn)n>0 are R-bounded on Lp(Sd−1, h2
κ;Y ), then

‖g∗δ (f)‖κ,p;Y 6 cp,δM‖f‖κ,p;Y ,

where M = supn>1
1
n

∑n
k=1 νk.

Proof : First, recall that we have set in the proof of Lemma 3.3

g(f) =
(∫ 1

0
(1− r)

∣∣∣ ∂
∂r
Pκr f

∣∣∣2dr) 1
2

.

It is shown in [26, Section 4.3.2] that g(f)(x) 6 cδgδ(f)(x). Therefore, it follows immediately
with Lemma 3.3

‖f‖κ,p;Y 6 cp‖g(f)‖κ,p;Y 6 cpcδ‖gδ(f)‖κ,p;Y ,

in the case
∫
Sd−1 f(y)h2

κ(y)dy = 0.
We proceed to the second stated inequality and suppose that the Cesàro means to an order

index δ are R-bounded. We follow closely the lines of [26, Section 4.3.2] but, for the readers’
convenience, we present the proof all the same. First we may assume that n 6

∑n
j=1 νj 6 2n,

since the desired conclusion for general (νj)j>1 can be deduced from this case applied to the
two sequences ν̃j = 1 and ν̃j = M−1νj + 1. Now let µ1 = 1 and µn = 1 +

∑n−1
i=1 νi for n > 2.

Let further rn = 1− 1
µn

and fn = Pκrnf. It is shown in [26, p. 44] that

∣∣Sδ+1
n f − Sδnf

∣∣2 6 c
∣∣Sδ+1
n fn − Sδnfn

∣∣2 + cn−3
n−1∑
j=1

j2∣∣Sδ+1
j fn − Sδj fn

∣∣2.
Therefore, in view of Lemma 3.3, we are left with the task of establishing the following inequal-
ities

(3.7)

∥∥∥∥∥
( ∞∑
n=1

n−1∣∣Sδ+1
n fn − Sδnfn

∣∣2νn) 1
2
∥∥∥∥∥
κ,p;Y

6 c‖g(f)‖κ,p;Y

and

(3.8)

∥∥∥∥∥
( ∞∑
n=1

νn
n4

n−1∑
j=1

j2∣∣Sδ+1
j fn − Sδj fn

∣∣2) 1
2
∥∥∥∥∥
κ,p;Y

6 c‖g(f)‖κ,p;Y .
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We start by showing (3.7). To this end, let η ∈ C∞(R) with η(t) = 1 for |t| 6 1 and η(t) = 0
for |t| > 2. Moreover, for n > 1, let Lκn and L̃κn be the following multipliers

Lκnf =
∞∑
j=0

η
( j
n

)
projκj f, L̃κnf = −

∞∑
j=0

jη
( j
n

)
projκj f.

Comparing symbols of multipliers yields [26, p. 44] for 1 6 j 6 n 6 N

(3.9) Sδ+1
j fn − Sδj fn = (j + δ + 1)−1Pκrn

(
Sδj (L̃κNf)

)
.

Using this last equality specializing to j = n, we obtain by Lemma 3.6∥∥∥∥∥
( N∑
n=1

n−1∣∣Sδ+1
n fn − Sδnfn

∣∣2νn) 1
2
∥∥∥∥∥
κ,p;Y

.

∥∥∥∥∥
( N∑
n=1

νn
n3

∣∣∣Pκrn(Sδn(L̃κN (f)
))∣∣∣2) 1

2
∥∥∥∥∥
κ,p;Y

.

∥∥∥∥∥
( N∑
n=1

νn
n3

1
rn+1 − rn

∫ rn+1

rn

∣∣∣Pκr (L̃κN (f)
)∣∣∣2dr) 1

2
∥∥∥∥∥
κ,p;Y

.

Obviously, we have |Pκr (L̃κN (f))| = r|LκN ( ∂∂rP
κ
r (f))|. Moreover, the operators LκN are uniformly

bounded in N ∈ N on Lp(Sd−1, h2
κ;Y ). Indeed, a straightforward computation gives us

LκNf =
2N∑
j=0

∆l+1η
( j
N

)
AljS

l
jf.

Since we have |∆l+1η
(
j
N

)
| . N−l−1, then

∣∣LκNf ∣∣ . 1
N l+1

2N∑
j=0
|Alj ||Sljf | .

supj>0 |Sljf |
N l+1

2N∑
j=0

Alj .

But
∑2N
j=0A

l
j = Al+1

2N , then we claim (see (2.3)) that

N−l−1Al+1
2N = N−l−1 (l + 2)2N

(2N)! ' c,

and in view of (3.4), choosing l > λκ, the operators LκN are uniformly bounded in N ∈ N
on Lp(Sd−1, h2

κ;Y ). Now, since they are linear, by Lemma 2.3, a single operator LκN is also
bounded on Lp(Sd−1, h2

κ;Y (Ω′;L2([0, 1]; dr))). Therefore,∥∥∥∥∥
( N∑
n=1

νn
n3

1
rn+1 − rn

∫ rn+1

rn

∣∣∣Pκr (L̃κN (f)
)∣∣∣2dr) 1

2
∥∥∥∥∥
κ,p;Y

.

∥∥∥∥∥
( N∑
n=1

νn
n3

1
rn+1 − rn

∫ rn+1

rn

∣∣∣ ∂
∂r
Pκr f

∣∣∣2dr) 1
2
∥∥∥∥∥
κ,p;Y

.

Since rn+1 − rn = νn
µnµn+1

' νn
n2 and 1− r ' 1

n for all r ∈ [rn, rn+1], it follows that∥∥∥∥∥
( N∑
n=1

νn
n3

1
rn+1 − rn

∫ rn+1

rn

∣∣∣ ∂
∂r
Pκr f

∣∣∣2dr) 1
2
∥∥∥∥∥
κ,p;Y

.

∥∥∥∥∥
( ∞∑
n=1

1
n

∫ rn+1

rn

∣∣∣ ∂
∂r
Pκr f

∣∣∣2dr) 1
2
∥∥∥∥∥
κ,p;Y

. ‖g(f)‖κ,p;Y .
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Thus, we have proved that∥∥∥∥∥
( N∑
n=1

n−1∣∣Sδ+1
n fn − Sδnfn

∣∣2νn) 1
2
∥∥∥∥∥
κ,p;Y

. ‖g(f)‖κ,p;Y

and letting N → ∞ yields (3.7). We now turn to the proof of (3.8), which is similar to the
previous one. Indeed, using Lemma 3.6 and (3.9), we have∥∥∥∥∥
( N∑
n=1

νn
n4

n−1∑
j=1

j2∣∣Sδ+1
j fn − Sδj fn

∣∣2) 1
2
∥∥∥∥∥
κ,p;Y

.

∥∥∥∥∥
( N∑
n=1

νn
n4

n−1∑
j=1

∣∣∣Pκrn(Sδj (L̃κN (f)
))∣∣∣2) 1

2
∥∥∥∥∥
κ,p;Y

.

∥∥∥∥∥
( ∞∑
n=1

νn
n4

n−1∑
j=1

1
rn+1 − rn

∫ rn+1

rn

∣∣∣ ∂
∂r
Pκr f

∣∣∣2dr) 1
2
∥∥∥∥∥
κ,p;Y

.

∥∥∥∥∥
( ∞∑
n=1

νn
n3

1
rn+1 − rn

∫ rn+1

rn

∣∣∣ ∂
∂r
Pκr f

∣∣∣2dr) 1
2
∥∥∥∥∥
κ,p;Y

. ‖g(f)‖κ,p;Y .

We obtain (3.8) by letting N →∞. The proof is complete.
In view of Remark 3.8, we immediately obtain the following corollary.

Corollary 3.10 Let 1 < p <∞ and Y = Y (Ω′) be a UMD Banach lattice. If δ > λκ, then

1
cp
‖f‖κ,p;Y 6 ‖gδ(f)‖κ,p;Y 6 cp‖f‖κ,p;Y ,

where in the first inequality we assume that
∫
Sd−1 f(y)h2

κ(y)dy = 0.

We now state the last lemma we shall need for the proof of Theorem 3.2.

Lemma 3.11 Let δ to be the smallest integer strictly larger than λκ and let n0 = δ + 1. Let
(µj)j>0 be a sequence as in the hypotheses of Theorem 3.2, i.e. satisfying (C0) and (Cn0), with
bound M. Write

Mµf =
∞∑
j=0

µjprojκj f

the associated multiplier. Then we have

‖gδ(Mµf)‖κ,p;Y 6 C‖g∗δ (f)‖κ,p;Y ,

where the sequence (νk)k>1 is νk = 1 +
∑δ+1
j=1 |∆jµk|kj and satisfies supn>1

1
n

∑n
j=1 νj 6 cM.

Proof : It is shown in [26, (4.4.2)] that

gδ(Mµf) 6 Cg∗δ (f)

holds pointwise, with the sequence (νk)k>1 given in the lemma. By Lemma 2.2, we immediately
deduce

‖gδ(Mµf)‖p,κ;Y 6 C‖g∗δ (f)‖κ,p;Y .

The statement on (νk)k>1 is shown in [26, p. 47].
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We are now in a position to prove Theorem 3.2.
Proof of Theorem 3.2 : We can assume that µ0 = 0. Indeed,∥∥∥∥ ∞∑

j=0
µjprojκj f

∥∥∥∥
κ,p;Y

6 |µ0| ‖projκ0f‖κ,p;Y +
∥∥∥∥ ∞∑
j=1

µjprojκj f
∥∥∥∥
κ,p;Y

,

and proj0κ is bounded on Lp(Sd−1, h2
κ;Y ) by Lemma 2.12. Let δ = n0 − 1 > λκ. Note that

aκ

∫
Sd−1

Mµ(f)(y)h2
κ(y)dy = projκ0 (Mµ(f)) = 0

if µ0 = 0. According to Lemma 3.5, the Cesàro means (Sδn)n>0 are R-bounded. Hence by
Proposition 3.9 in conjunction with Lemma 3.11,

‖Mµ(f)‖κ,p;Y . ‖gδ(Mµ(f))‖κ,p;Y . ‖g∗δ (f)‖κ,p;Y .M‖f‖κ,p;Y .

3.2 A multiplier theorem for the Dunkl transform
Bounded vector-valued multipliers on the sphere Sd yield bounded vector-valued spectral mul-
tipliers of the Dunkl Laplacian on Rd by a transference principle, presented in Theorem 3.12
below. In the scalar case, a transference principle from zonal multipliers on Sd to radial mul-
tipliers on Rd was oberved and proved by Bonami-Clerc in [10], and their strategy has been
recently adapted by Dai-Wang [24] to obtain bounded multipliers for the Dunkl transform on
Rd from bounded multipliers for h-harmonic expansions on the unit sphere Sd.

Let W ⊂ O(d) be a finite reflection group associated with a reduced root system R and let
κ : R → [0,+∞[ be a multiplicity function with associated weight function h2

κ. We transfer this
to Sd ⊆ Rd+1. Namely, for g ∈ W, there exists a unique orthogonal transformation on Rd+1,
denoted by g′ and determined by

g′x′ = (gx, xd+1), x′ = (x, xd+1) ∈ Rd × R.

Then W ′ = {g′ : g ∈ W} is a finite reflection group on Rd+1 associated with the reduced root
system R′ = {(α, 0) : α ∈ R}. Finally, we let

κ′ :
{
R′ → R+,

(α, 0) 7→ κ(α)

and associate with it the weight h2
κ′ .

We can now state the following transference principle for the Dunkl transform.

Theorem 3.12 Let Y be a Banach space. Let m : (0,∞) → R be a continuous and bounded
function. For ε > 0 and n > 0, let µεn = m(εn). Let further Mε = Mµε be the multiplier

Mε(f) =
∞∑
n=0

m(εn)projκ
′

n f.

Assume that for some 1 < p <∞ and any f ∈ Lp(Sd, h2
κ′ ;Y ),

sup
ε>0
‖Mεf‖Lp(Sd,h2

κ′
;Y ) 6 A‖f‖Lp(Sd,h2

κ′
;Y ).
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Then m is a radial Dunkl spectral multiplier on Lp(Rd, h2
κ;Y ), that is, for any f ∈ Lp(Rd, h2

κ;Y ),

‖Tmf‖Lp(Rd,h2
κ;Y ) 6 cd,κA‖f‖Lp(Rd,h2

κ;Y ),

where Tm is a priori defined on S(Rd)⊗ Y by

Tm(f) = F−1
κ [m(‖ξ‖)Fκ(f)(ξ)].

This theorem generalizes the scalar case proved by Dai and Wang in [24]. Therefore, if
we specialize Theorem 3.12 to Y = C and κ = 0, then we recover the standard result due to
Bonami-Clerc [10].
Proof : We follow closely the strategy of [24, Section 3]. Note that continuity of m in 0 is not
needed there.
We first assume that for some c1, c2 > 0

|m(t)| 6 c1e
−c2t, t > 0.

In [24, Lemma 3.5], it is shown that the operator Tm has the following integral representation

Tmf(x) =
∫
Rd
f(y)K(x, y)h2

κ(y)dy

for a certain K : Rd × Rd → C, the formula holding for f ∈ S(Rd) and a.e. x ∈ Rd. Then it
also holds for f ∈ S(Rd)⊗ Y. It is now sufficient to prove that

(3.10)

∣∣∣∣∣
∫
Rd

∫
Rd

〈
K∑
k=1

fk(y)yk,
L∑
l=1

gl(x)zl

〉
K(x, y)h2

κ(x)h2
κ(y)dxdy

∣∣∣∣∣ 6 cA

holds whenever f =
∑
k f

k ⊗ yk ∈ S(Rd)⊗ Y and g =
∑
l g
l ⊗ zl ∈ S(Rd)⊗ Y ∗ have compact

support and satisfy
‖f‖Lp(Rd,h2

κ;Y ) 6 1, ‖g‖Lp∗ (Rd,h2
κ;Y ∗) 6 1.

Denote the above double integral by I and let ψ : Rd → Sd be the mapping

ψ(x) =
(
ξ sin ‖x‖, cos ‖x‖

)
, for x = ‖x‖ξ ∈ Rd with ξ ∈ Sd−1.

For N > 1, let moreover

ψN :
{
Rd → NSd = {x ∈ Rd+1 : ‖x‖ = N}
x 7→ Nψ( xN ).

It is shown in [24, Remark 3.1] that given a function h : B(0, N) = {x ∈ Rd : ‖x‖ 6 N} → R,
there exists a unique function hN supported in {x ∈ NSd : arccos(N−1xd+1) 6 1} such that

hN (ψNx) = h(x), x ∈ B(0, N).

Moreover, it is also shown there that

(3.11)
∫
Sd
hN (Nx)h2

κ′(x)dx = N−2λ′κ−1
∫
B(0,N)

h(x)h2
κ(x)

(
sin(‖x‖/N)
‖x‖/N

)2λ′κ
dx
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with λ′κ = λκ + 1
2 = d

2 + γκ − 1
2 . Let now N be so large that both f and g are supported in

B(0, N). Let h(x) := ‖f(x, ·)‖Y and fN : NSd → Y be the function defined by

fN (ψN (x)) = f(x),

so that we have hN (x) = ‖fN (x, ·)‖Y . As mentioned in [24, p. 4064], it follows from (3.11) that

‖hN (N ·)‖Lp(Sd,h2
κ′

) = ‖fN (N ·)‖Lp(Sd,h2
κ′

;Y ) . N−
2λ′κ+1
p .

Similarly, with h(x) := ‖g(x, ·)‖Y ∗ , it follows that

‖gN (N ·)‖Lp∗ (Sd,h2
κ′

;Y ∗) . N−
2λ′κ+1
p∗ .

Recall in the following that Pκ′

n (x, y) is the kernel of projκ′n .We write fkN (ψN (y)) = fk(y), glN (ψN (x)) =
gl(x) and deduce that∣∣∣∣∣N2λ′κ+1

∫
Sd

∫
Sd

[ ∞∑
n=0

m(N−1n)Pκ′

n (x, y)
]
〈
∑
k

fkN (Ny)yk,
∑
l

glN (Nx)zl〉h2
κ′(x)h2

κ′(y)dxdydµ(ω′)

∣∣∣∣∣
=

∣∣∣∣∣N2λ′κ+1
∫
Sd

〈∫
Sd

[ ∞∑
n=0

m(N−1n)Pκ′

n (x, y)
]∑

k

fkN (Ny)ykh2
κ′(y)dy,

∑
l

glN (Nx)zl

〉
h2
κ′(x)dx

∣∣∣∣∣
6 N2λ′κ+1

∫
Sd

∥∥∥∥∥
∫
Sd

[ ∞∑
n=0

m(N−1n)Pκ′

n (x, y)
]
fN (Ny, ·)h2

κ′(y)dy

∥∥∥∥∥
Y

‖gN (Nx, ·)‖Y ∗h2
κ′(x)dx

= N2λ′κ+1
∫
Sd
‖M1/NfN (N ·, ·)(x)‖Y ‖gN (Nx, ·)‖Y ∗h2

κ′(x)dx

6 N2λ′κ+1‖M1/NfN (N ·, ·)(·)‖κ′,p;Y ‖gN (N ·, ·)‖κ′,p∗;Y ∗

. N2λ′κ+1AN−
2λ′κ+1
p N−

2λ′κ+1
p∗ = A.

Denote the expression under the modulus in the first line of the above estimate by IN . It is
shown in [24, Inspection of the Proof of Theorem 3.1] that limN→∞ IN = cδ,κI holds in the case
Y = Y ∗ = C. Then it also holds for a general Banach space Y, if we take f ∈ S(Rd) ⊗ Y, g ∈
S(Rd)⊗Y ∗, take consequently a double sum

∑
k,l, and use Y, Y ∗-duality both in the definition

of I and IN . Then line (3.10) follows immediately, and we have proved Theorem 3.12 in the
case where |m(t)| 6 c1e

−c2t. We now prove the theorem removing this assumption on m.
Let thus m be a general multiplier function satisfying the hypotheses of Theorem 3.12. For

δ > 0, put mδ(t) = m(t)e−δt. Then, for any f ∈ S(Rd)⊗ Y, we have

Tmδ(f) = Pκ
δTm(f),

where (Pκ
t )t>0 is the Dunkl Poisson symmetric contraction semigroup on Lp(Rd, h2

κ;Y ), and
we have Pκ

δ f → f as δ → 0, because according to Proposition 2.6, (Pκ
t )t is strongly continuous

on Lp(Rd, h2
κ;Y ). On the one hand, we have by the first part of the proof

‖Tmδ‖Lp(Rd,h2
κ;Y )→Lp(Rd,h2

κ;Y ) . sup
ε>0
‖M(m(εn)e−εδn)n>0‖Lp(Sd,h2

κ′
;Y )→Lp(Sd,h2

κ′
;Y )

6 A.
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On the other hand, we write

‖Tm(f)‖Lp(Rd,h2
κ;Y ) = lim

δ→0
‖Pκ

δTm(f)‖Lp(Rd,h2
κ;Y ) = lim

δ→0
‖Tmδ(f)‖Lp(Rd,h2

κ;Y ) . A‖f‖Lp(Rd,h2
κ;Y ).

The proof of the theorem is complete.
We shall now prove several important consequences of this theorem. The first one provides

us a Hörmander type multiplier theorem for the Dunkl transform.

Theorem 3.13 Let 1 < p <∞ and Y = Y (Ω′) be a UMD Banach lattice. Let n0 be an integer
> λ′κ+ 1 = λκ+ 3

2 = d
2 +γκ+ 1

2 . Assume that the multiplier function m : (0,∞)→ R belongs to
Hn0

1 , that means, is bounded with ‖m‖∞ 6 A and satisfies the following Hörmander condition

sup
R>0

1
R

∫ 2R

R

tn0
∣∣∣ dn0

dtn0
m(t)

∣∣∣dt 6 A.

Then the spectral multiplier Tm, initially defined for f ∈ S(Rd)⊗ Y by

Tm(f) = F−1
κ

[
m
(
‖ξ‖
)
Fκf(ξ)

]
extends to a bounded operator on Lp(Rd, h2

κ;Y ) with ‖Tm‖Lp(Rd,h2
κ;Y )→Lp(Rd,h2

κ;Y ) 6 cp,n0,dA.

This theorem, which generalizes the scalar case proved by Dai-Wang [24, Theorem 4.1], only
concerns radial multipliers. For scalar valued multivariate (i.e. not necessarily radial) spectral
multipliers for Dunkl operators, but only in the particular case where the reflection group W
is (Z/2Z)d, see [69].
Proof : It is shown in [24, Proof of Theorem 4.1] that the above condition on m yields that the
sequence (µn)n>0 defined by µn = m(εn) satisfies the hypotheses (C0) and (Cn0) of Theorem
3.2 with a bound M 6 cA uniformly in ε > 0. Note that in Theorem 3.2, we take Sd in place of
Sd−1 as it is stated there verbatim. Then Theorem 3.2 yields that the hypotheses of Theorem
3.12 are satisfied and we apply it to get the desired conclusion.

Remark 3.14 Let us compare Theorem 3.13 with two results on (pure Laplacian) vector-valued
Fourier multiplier theorems. Namely, in [37, Corollary 4.4], it is shown that −∆ has a Hα∞
calculus on Lp(Rd;Y ) with 1 < p < ∞ and α = b d

Fourier type Y c + 1 as soon as Y is a UMD
space (not necessarily a lattice). In fact, even more is shown, i.e. non-radial multiplier symbols
are admitted, and even operator valued ones, in which case the correct version of the multiplier
space Hα∞ involves R-boundedness.

Secondly, in [41, Theorem 3.1], it is shown that −∆ has a Hα∞ calculus on Lp(Rd;Y ) with
1 < p < ∞ and α = b d

max(t,q′)c + 1 as soon as Y is a UMD space. Here, t denotes the
Rademacher type of Y and q the Rademacher cotype of Y . Even more is shown, non-radial
multipliers are allowed and Hytönen had discovered that the partial derivations taken on the
symbol need only to be of order 0 or 1 in each fixed direction.

Let us compare these two results with our Theorem 3.13, when restricted to the trivial mul-
tiplicity function κ = 0. Note that the best Fourier type, the best Rademacher type and cotype
all equal 2, so that the derivation order in [37, 41] becomes then α = bd2c + 1. In our case,
we have the (for odd d bigger) number α = bd2 + 1

2c + 1. The failure of the boundedness of
the Bochner-Riesz multiplier mδ(x) = (1 − x)δ+ on Lp(Rd) for all p ∈ (1,∞) for the order
δ < d−1

2 and the fact that mδ ∈ Hα1 iff δ > α − 1 [20, p. 11] shows already in the scalar case
Y = C that in Theorem 3.13, in general, α cannot be chosen less than d+1

2 . Note also that
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Hα∞ ↪→ Hα1 ↪→ Hα−1−ε
∞ for ε > 0, the exponents being optimal in these two strict embeddings, so

that the multiplier classes from [37, 41] on the one hand and Theorem 3.13 on the other hand
complement each other when applicable to a common setting. Finally, let us emphasize that we
need the UMD space to be a lattice, which is not the case in [37, 41] as well as in many other
vector valued spectral multiplier results in the literature (see the introduction).

From Theorem 3.13, we can also immediately deduce the following corollary on Bochner-
Riesz means.

Corollary 3.15 Let 1 < p < ∞ and Y = Y (Ω′) be a UMD Banach lattice. Let α > bλκc+ 1.
For R > 0, let

fαR(t) =
{

(1− t/R)α 0 < t 6 R

0 t > R.

Then the Bochner-Riesz means fαR(A) associated with the Dunkl Laplacian A are uniformly
bounded in R > 0 on Lp(Rd, h2

κ;Y ).

Proof : Note that by Lemma 2.11 8. and Theorem 3.13, A has a Hn0
1 calculus on Lp(Rd, h2

κ;Y )
for n0 an integer > λκ + 1. It suffices to note that ‖fαR‖Hα+1−ε

1
<∞ for ε > 0 (see e.g. [47]) and

to apply Theorem 3.13.
Note that there is a partial converse of Corollary 3.15. More precisely, if the Bochner-Riesz

means {fαR(A) : R > 0} of a sectorial operator A with H∞ calculus are R-bounded, then A
must have a Hα+1

1 calculus (even R-bounded, i.e. {f(A) : ‖f‖Hα+1
1

6 1} is an R-bounded
subset of B(Lp(Rd, h2

κ;Y ))), according to [47].
Another application of Theorem 3.13 is the following spectral decomposition of Paley-

Littlewood type. We refer e.g. to [46] for applications of this decomposition to the description
of complex and real interpolation spaces associated with an abstract operator (the Dunkl Lapla-
cian in our case).

Corollary 3.16 Let 1 < p < ∞ and Y = Y (Ω′) be a UMD Banach lattice. Let (φn)n∈Z
be a dyadic partition of unity (see Definition 2.10). Further let ψn = φn for n > 1 and
ψ0 =

∑0
n=−∞ φn, so that

∑∞
n=0 ψn(t) = 1 for all t > 0. Denote A = −∆κ the Dunkl Laplacian.

Then, for any f ∈ Lp(Rd, h2
κ;Y ), we have the norm description

‖f‖κ,p;Y ∼=

∥∥∥∥∥
(∑
n∈Z

∣∣φn(A)f
∣∣2) 1

2
∥∥∥∥∥
κ,p;Y

∼=

∥∥∥∥∥
( ∞∑
n=0

∣∣ψn(A)f
∣∣2) 1

2
∥∥∥∥∥
κ,p;Y

.

Proof : Once a Hörmander calculus of A on Lp(Rd, hκ;Y ) is guaranteed by Theorem 3.13, the
corollary follows from [46, Theorem 4.1] resp. (2.1), to decompose the norm in Rademacher
sums resp. square sums.

A Hörmander calculus implies by Lemma 2.8 2. that the Dunkl Laplacian A has an H∞(Σω)
calculus for any ω ∈ (0, π2 ). We deduce the following.

Corollary 3.17 Let 1 < p < ∞ and Y = Y (Ω′) be a UMD Banach lattice. Let ψ ∈ (0, π2 ).
For f ∈ Lp(Rd, h2

κ;Y ), define the maximal functionMψ(f)(x) = supz∈Σψ ‖ exp(−zA)f(x, ·)‖Y .
Then

‖Mψ(f)‖κ,p 6 Cψ‖f‖κ,p;Y .

Moreover, exp(−zA)f(x) converges to f(x) in Y for almost every x ∈ Rd, as z tends to 0 within
the sector Σψ.
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Proof : Once an H∞(Σω) calculus is guaranteed for ω < π
2 − ψ according to the above, the

maximal function boundedness follows from [65, Theorem 2.4.1]. Then the pointwise conver-
gence follows from the proof in [65, Section 2.6 and Discussion after Corollary 1.3.4], see also
[22, Corollary 2].

Remark 3.18 Note that Theorem 3.13 in the scalar case Y = C, i.e. [24, Theorem 4.1]
autoimproves by interpolation with self-adjoint calculus. That is, since the Dunkl Laplacian
is self-adjoint, Tm will be bounded on L2(Rd, h2

κ) for any m : (0,∞) → C measurable and
bounded. Note that Hαq ↪→ L∞(0,∞) for α > 1

q , so Tm is bounded on L2(Rd, h2
κ) for m ∈ Hαq .

Then by bilinear interpolation between Hαq ×L2(Rd, h2
κ) and Hn0

1 ×Lp(Rd, h2
κ), one gets that Tm

is bounded on Lt(Rd, h2
κ) for m ∈ Hβr for 1

r > 2| 12 −
1
t | and β > 2(n0−1)| 12 −

1
t |+

1
r , 1 < t <∞.

This interpolation improvement works partially in the UMD-lattice-valued case: According
to [60], a UMD lattice Y is a complex interpolation space Y = [H,Z]θ, between a Hilbert space
H = L2(Ω) and another UMD lattice Z over Ω. But then t above is coupled to the fixed number
θ ∈ (0, 1) and one cannot shrink β below n0θ.

4 Application to maximal regularity
In this section we apply Theorem 3.13 to abstract Cauchy problems involving the Dunkl Lapla-
cian, and show existence, unicity and regularity results for the solutions.

Definition 4.1 Let B be an ω-sectorial operator for some ω ∈ (0, π), acting on some Banach
space, and let θ ∈ [ω, π). We say that B is R-θ-sectorial if {λ(λ − B)−1 : λ ∈ C\Σθ} is R-
bounded. In this case, we denote by ωR(B) the infimum over all θ such that B is R-θ-sectorial.

According to Lemma 2.8 2. and Lemma 2.11 8., Theorem 3.13 implies that the Dunkl
Laplacian A has an H∞(Σθ) calculus for any θ ∈ (0, π). Thus, also any fractional power Aβ
has an H∞(Σθ) calculus for any θ ∈ (0, π), for any β > 0. We then deduce Corollary 4.2 below
on maximal regularity. To this end, we let B be an ω-sectorial operator for some ω ∈ (0, π),
acting on Lp(Rd, h2

κ;Y ). We further impose that resolvents of B commute with resolvents of A.
For example B = IdLp ⊗B0, where B0 is an ω-sectorial operator acting on Y. In that case, B is
(R-)ω-sectorial on Lp(Rd, h2

κ;Y ) if and only if B0 is (R-)ω-sectorial for a given angle ω ∈ (0, π).
Moreover, it is easily checked that D(B) = Lp(Rd, h2

κ;D(B0)), and the graph norm of D(B) is
the norm of Lp(Rd, h2

κ;D(B0)), D(B0) itself being equipped with the graph norm.

Corollary 4.2 Let A be the Dunkl Laplacian on Lp(Rd, h2
κ;Y ) associated with some reflec-

tion group W and weight hκ, and B an ω-sectorial operator for some ω ∈ (0, π), acting on
Lp(Rd, h2

κ;Y ) such that resolvents of A and B commute.

1. Assume that for some ω ∈ (0, π), B is R-ω-sectorial. Then, for any β > 0, Aβ+B is closed
on D(Aβ) ∩D(B). Moreover, ‖Aβf‖+ ‖Bf‖ 6 C‖Aβf +Bf‖, for f ∈ D(Aβ) ∩D(B).

2. Assume that for some ω ∈ (0, π), B is R-ω-sectorial. If Y has property (α) (see e.g. [50,
4.9]), then Aβ +B is again R-ω-sectorial and ωR(Aβ +B) 6 ω(B).

3. Assume that Y has property (α). If moreover, ωR(B) < π
2 , then the abstract Cauchy

problem

(4.1)
{

d
dtu(t) +Aβu(t) +Bu(t) = f(t)
u(0) = 0
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has maximal regularity. This means, for any given T ∈ (0,∞], q ∈ (1,∞) and f ∈
Lq([0, T ), Lp(Rd, h2

κ;Y )), the solution u of (4.1) exists, is almost everywhere differentiable,
has values in D(Aβ) ∩D(B), and there exists C <∞ such that∥∥∥ d

dt
u
∥∥∥
Lq([0,T ),Lp(Rd,h2

κ;Y ))
+ ‖Aβu(t)‖Lq([0,T ),Lp(Rd,h2

κ;Y )) + ‖Bu(t)‖Lq([0,T ),Lp(Rd,h2
κ;Y ))

6 C‖f‖Lq([0,T ),Lp(Rd,h2
κ;Y )).

Proof : 1. We can apply [43, Theorem 6.3] since Aβ has an H∞(Σθ) calculus such that
θ + ω < π.

2. We note that if Y has property (α), then also Lp(Ω;Y ) has. In our situation, (Ω, µ) =
(Rd, h2

κ(x)dx). Now apply the second part of [43, Theorem 6.3].
3. This follows from part 2. together with [67, Theorem 4.2].
In the above Corollary 4.2, the domain of Aβ is given by general theory of (analytic) semi-

groups. We give in the next lemma some supplementary information on the domain.

Lemma 4.3 Let A be a Dunkl Laplacian on Lp(Rd, h2
κ;Y ) as in Corollary 4.2. Then D =

S(Rd)⊗ Y is a core of Aβ for any β > 0.

Proof : Assume first that β = n belongs to N. According to [27, Theorem 1.9], since D is
dense in Lp(Rd, hκ;Y ), it suffices to show that D is invariant under the action of exp(−tAn).
We clearly have for f =

∑K
k=1 fk ⊗ yk ∈ D,

exp(−tAn)f =
K∑
k=1
F−1
κ [exp(−t‖ξ‖2n)Fκ(fk)]⊗ yk,

and exp(−t‖ξ‖2n) belongs to S(Rd) for any t > 0. Thus, also exp(−t‖ξ‖2n)Fκ(fk) ∈ S(Rd)
according to Lemma 2.11 2., and, again by Lemma 2.11 2., exp(−tAn)f ∈ D.

Now consider the general case β > 0. Choose n ∈ N with β < n. Then D ⊂ D(An) ⊂ D(Aβ),
where the first embedding is dense by the above and the second embedding holds according to
[50, Theorem 15.15]. It is also dense. Indeed, let f ∈ D(Aβ). Then f = (1 + A)−βh for
some h ∈ X := Lp(Rd, h2

κ;Y ). By density of D(An−β) in X, we can choose a sequence (gn)n
in D(An−β) such that gn → h in X. Then fn = (1 + A)−βgn belongs to D(An). Moreover,
‖Aβf − Aβfn‖X = ‖Aβ(1 + A)−βh − Aβ(1 + A)−βgn‖X 6 ‖Aβ(1 + A)−β‖ ‖h − gn‖X → 0.
Similarly, ‖f − fn‖X → 0. We have shown the density D(An) ⊂ D(Aβ) and thus, D ⊂ D(Aβ)
is dense.

As an illustration, we apply Corollary 4.2 to two partial differential equations involving the
Dunkl Laplacian, one involving a first order time derivative, and one stationary. For simplicity,
we restrict to the one dimensional case d = 1 (that is W = Z2) and β = 1 for the Dunkl
Laplacian. In this case, A takes the form

(4.2) Au = −
(
d

ds
+ κ

Id− σ
s

)2
u, u ∈ Lp(R, |s|2κds),

where κ > 0 is the only value (still denoted by κ) taken by the multiplicity function (since
there is only one class of conjugation), σ(u)(x) = u(−x), and (Rd, h2

κ(s)ds) = (R, |s|2κds). Let
us introduce B being the operator AB from [50, p. 156]. That is, we take Y = Lq(Rn+1

+ ), 1 <
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q <∞, where Rn+1
+ = R× [0,∞). Further, we define the homogeneous second order differential

operator acting on Rn+1
+ ,

A =
∑
|α|=2

aαD
α,

and the homogeneous first order boundary operator

B =
∑
|β|=1

bβD
β ,

where aα, bβ ∈ C and for α = (α1, . . . , αn+1) ∈ Nn+1
0 , we let

Dα = (−i)α1+...+αn+1
∂α1

∂xα1
1
. . .

∂αn+1

∂x
αn+1
n+1

.

Let ω0 ∈ [0, π) and assume that

A(ξ) :=
∑
|α|=2

aα(−i)α1+...+αn+1ξα1
1 · . . . · ξ

αn+1
n+1 ∈ Σω0 (ξ ∈ Rn+1),

and A(ξ) > 1
M ‖ξ‖

2 for some M > 0. For the operator B, we assume the Lopatinskij-Shapiro
condition [50, (7.4)]. That is, we set b0 = b(0,0,...,0,1), ak(ξ′) =

∑
|β|=k a(β,2−k)(ξ′)β for k = 0, 1, 2

and ξ′ ∈ Rn. We assume b0 6= 0 for simplicity, and that the characteristic polynomial

a0µ
2 + a1(ξ′)µ+ a2(ξ′) + λ = 0

has two distinct roots µ± with =µ+ > 0 > =µ−, for any ξ′ ∈ Rn and λ ∈ Σω0 . We eventually
define the operator B by

D(B) =
{
u ∈W 2

p (Rn+1
+ ) : B(u) = 0 on ∂Rn+1

+
}
,

Bu = Au.

Now we obtain the following existence, unicity and regularity results on partial differential
equations involving A 1

2 from (4.2) and the differential operator B.

Proposition 4.4 Let 1 < p, q, r < ∞ and 0 < T 6 ∞. Let A acting on Lp(R, |s|2κds) and B
acting on Lq(Rn+1

+ ) be as above.
1. Assume that ω0 <

π
2 . Then the Cauchy problem

d
dtu(t, s, x)−

(
d
ds + κ Id−σ

s

)2
u(t, s, x) +

∑
|α|=2 aαD

αu(t, s, x) = f(t, s, x)
(
t > 0, s ∈ R, x ∈ Rn+1

+
)

u(0, s, x) = 0 (s ∈ R, x ∈ Rn+1
+ )∑

|β|=1 bβD
βu(t, s, x) = 0

(
t > 0, s ∈ R, x ∈ ∂Rn+1

+
)

for given f ∈ Lr((0, T );Lp(R, |s|2κds;Lq(Rn+1
+ ))) has a unique solution

u ∈ Lrloc((0, T );Lp(R, |s|2κds;Lq(Rn+1
+ )))

which is almost everywhere differentiable in t, and there exists a constant C < ∞ such
that ∥∥∥ d

dt
u
∥∥∥+

∥∥∥( d

ds
+ κ

Id− σ
s

)2
u
∥∥∥+

∥∥∥∑
|α|=2

aαD
αu
∥∥∥

6 C‖f‖,

where the four norms here are all in Lr((0, T );Lp(R, |s|2κds;Lq(Rn+1
+ ))).
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2. Assume that ω0 < π, and that B is invertible, e.g. to given B as above change a0 to a0 + ε
for some ε > 0. Then the problem{

−
(
d
ds + κ Id−σ

s

)2
u(s, x) +

∑
|α|=2 aαD

αu(s, x) = f(s, x) (s ∈ R, x ∈ Rn+1
+ )∑

|β|=1 bβD
βu(s, x) = 0 (s ∈ R, x ∈ ∂Rn+1

+ )

for given f ∈ Lp(R, |s|2κds;Lq(Rn+1
+ )) has a unique solution u ∈ Lp(R, |s|2κds;Lq(Rn+1

+ ))
and there exists a constant C <∞ such that

‖u‖+
∥∥∥( d

ds
+ κ

Id− σ
s

)2
u
∥∥∥+
∥∥∥∑
|α|=2

aαD
αu
∥∥∥6 C‖f‖,

where the four norms here are all in Lp(R, |s|2κds;Lq(Rn+1
+ )).

Proof : In [50, 7.9 Corollary], it is shown that B is R-sectorial and that ωR(B) 6 ω0.
1. This follows then directly from Corollary 4.2 part 3. Note hereby that Lq(Rn+1

+ ) indeed
has property (α) [50, p. 128].

2. This follows from Corollary 4.2 part 1. Note that since B is assumed to be invertible,
A

1
2 +B is also invertible according to [43, Theorem 6.3], and we get that ‖u‖ = ‖(A 1

2 +B)−1f‖ 6
C‖f‖.

Remark 4.5 Proposition 4.4 holds as it stands for other powers β > 0 than 1 and dimensions
d ∈ N. In part 1. of Proposition 4.4, for the chosen exponent β = 1, (but not for β > 1), we do
not need the Hörmander calculus of A but merely the R-sectoriality of it for some angle < π

2 ,
which follows from Proposition 2.6.
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