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Motivated by examples coming from the theory of quantum groups, we investigate the regularity condition for twisted spectral triples. This condition is equivalent to the existence of an appropriate pseudodifferential calculus associated to the spectral triple. A natural approach to obtain such a calculus is to start with a twisted algebra of abstract differential operators. Under an appropriate algebraic condition on the twisting, we obtain a pseudodifferential calculus which admits an asymptotic expansion, similarly to the untwisted case. We discuss some examples coming from the theory of quantum groups. Finally we discuss zeta functions and the residue (twisted) traces on differential operators.

Introduction

The basic structure in Connes' noncommutative geometry [START_REF] Connes | Noncommutative geometry[END_REF] is a spectral triple, consisting of a * -algebra A represented on a Hilbert space H and equipped with an unbounded self-adjoint operator D. These must satisfy certain axioms-notably, in the standard formulation, that the commutators [D, a] be bounded for all a ∈ A.

In order to obtain the famous Local Index Formula of Connes and Moscovici [START_REF] Connes | The local index formula in noncommutative geometry[END_REF], however, further conditions must be added. Essentially, the point is to obtain some analogue of the pseudodifferential calculus, which appears in some form in any approach to the theorem. One concisely stated sufficient condition is Connes' notion of regularity: that A and [D, A] are in the domain of the derivation δ = [|D|, • ] and all its iterates δ n . In practice, though, proving regularity of a spectral triple is often tantamount to exhibiting the desired abstract pseudodifferential calculus. The precise connection between regularity and abstract pseudodifferential calculi was clarified by Higson [Hig04] and Uuye [START_REF] Uuye | Pseudo-differential operators and regularity of spectral triples[END_REF].

Once one leaves the commutative world one quickly finds that the standard definition of a spectral triple leaves out many interesting examples. One new phenomenon that occurs is "twisting", also called "type III noncommutative geometry" [START_REF] Connes | Type III and spectral triples[END_REF]. Connes and Moscovici were motivated to study this by index theory for foliations, but a similar phenomenon arises in the study of quantum homogeneous spaces-see, e.g., [START_REF] Neshveyev | A local index formula for the quantum sphere[END_REF]. The present work is primarily motivated by the latter examples.

A twisting means an algebra automorphism θ of A. We use the following notation for twisted commutators: Definition 1.1 ). A (unital) twisted spectral triple 1 is a triple (A, H, D) consisting of a unital * -algebra A with twisting θ such that A is represented as bounded operators on a Hilbert space H, together with an unbounded self-adjoint operator D with compact resolvent such that [D, a] θ is densely defined and bounded for all a ∈ A.

Defining regularity for twisted spectral triples becomes a little awkward. One should clearly replace the derivation δ = [|D|, • ] with the twisted derivation

δ θ = [|D|, • ] θ .
But, the repeated commutators δ n θ (a) are not well-defined until one extends the twisting θ to each δ n-1 θ (A) in turn; see Moscovici's discussion of this issue in [Mos10, §2.2]. We will weaken Moscovici's definition of regularity in one small but important way. Definition 1.2. A twisted spectral triple (A, H, D) with twisting θ is regular if there is a larger algebra B ⊆ L(H) containing both A and [D, A] θ and which is equipped with an extension of θ as a linear isomorphism such that B is invariant under δ θ .

The difference with [START_REF] Moscovici | Local index formula and twisted spectral triples[END_REF] is that we are only requiring θ to be a linear isomorphism, not an algebra automorphism, on B. This point is crucial for applications to quantum groups. Note, though, that θ will generally be an algebra automorphism at the level of "principal symbols"-see Remark 3.2.

As in the untwisted case, regularity is useful only insofar as it yields an abstract pseudodifferential calculus associated to the spectral triple. The point of this article is to study this relationship in the twisted case, as well as the more practical condition of having a twisted algebra of differential operators (see below). Essentially, our main result says that these conditions are all equivalent, assuming the twisting θ is diagonalizable. Some remarks on this diagonalizability assumption are in order. Diagonalizability means that the domain of θ decomposes into a direct sum of eigenspaces. This condition holds for Krähmer's Dirac operators on irreducible quantum flag varieties [START_REF] Krähmer | Dirac operators on quantum flag manifolds[END_REF], but not for Connes and Moscovici's conformally deformed spectral triples [START_REF] Connes | Type III and spectral triples[END_REF]. In fact, for the transversely conformal spectral triples studied in [START_REF] Moscovici | Local index formula and twisted spectral triples[END_REF][START_REF] Ponge | Noncommutative Geometry and Conformal Geometry. I. Local Index Formula and Conformal Invariants[END_REF], the ideas presented in this paper are not really necessary, since the main purpose of the pseudodifferential calculus is to be able to commute functions past complex 1 These are called θ-spectral triples in [START_REF] Connes | Type III and spectral triples[END_REF]. More recent articles use twisted.

powers of |D|, and the standard pseudodifferential calculus is already sufficient for that.

On the other hand, a pseudodifferential calculus for irreducible quantum flag varieties does not currently exist, except on the Podleś sphere [START_REF] Neshveyev | A local index formula for the quantum sphere[END_REF]. The goal of this paper is to provide the necessary technology. Since the techniques are not specific to quantum groups, we have decided to present the ideas here. We will also sketch how this framework applies to the Podleś sphere, but we defer the motivating examples of complex projective spaces-which require ideas specific to quantum groups-to a separate article. We are not yet sure if all of Krähmer's Dirac operators can be treated similarly.

We suspect that the diagonalizability hypothesis could be removed, but the functional analysis would become far more technical. Since we are unaware of any examples which require that level of generality, we have not pushed further in that direction.

1.1. Statement of results. Let (A, H, D) be a twisted spectral triple with twisting θ. We write ∆ = D 2 + 1. We define the smooth subspace

H ∞ = ∞ n=0 dom(∆ n ).
There is also an associated family of Sobolev spaces H ssee Section 2.

Following [START_REF] Higson | The local index formula in noncommutative geometry[END_REF], we make the following definitions. 

∆ z Ψ t ⊆ Ψ t+Re(z)/2 and Ψ t ∆ z ⊆ Ψ t+Re(z)/2 for all z ∈ C, (2) [∆ z 2 , Ψ t ] Θ z ⊆ Ψ Re(z)+t-1 for all z ∈ C, t ∈ R, (3) 
Ψ 0 acts as bounded operators on each Sobolev space H s , (4) Θ 1 (a)θ(a) ∈ Ψ -1 for all a ∈ A.

We remark that Definition 1.3 is a simpler structure than Definition 1.4. Our main result is for a diagonalizable twisting, they are equivalent (cf. [START_REF] Higson | The local index formula in noncommutative geometry[END_REF][START_REF] Uuye | Pseudo-differential operators and regularity of spectral triples[END_REF]).

Theorem 1.5.

(1) If the twisted spectral triple (A, H, D) admits a twisted algebra of differential operators D such that the twisting θ is diagonalizable on D, then (A, H, D) is regular and admits an associated twisted algebra of ΨDOs.

(2) Conversely, if (A, H, D) is regular, then it admits an associated twisted algebra of differential operators.

1.2. Structure of the paper. We begin with the basic definitions: Section 2 recaps the abstract Sobolev theory and Section 3 discusses algebras of abstract differential and pseudodifferential operators. In Section 4 we state the main result, with the proof given in Section 5. In particular, in Section 5.3, we obtain an explicit asymptotic expansion for a product of pseudodifferential operators. This requires a class of binomial coefficients generalizing both the classical and q-binomial coefficients, which we have described in Appendix A.

To indicate how this will apply in practice, we sketch in Section 6 a framework from quantum groups which yields twisted algebras of differential operators on certain quantum homogeneous spaces. We show that Podleś sphere fulfils the proposed conditions, and so we obtain a twisted algebra of pseudodifferential operators associated to the Dabrowski-Sitarz spectral triple [START_REF] Ludwik | Dirac operator on the standard Podleś quantum sphere[END_REF]. That is, our framework encompasses the constructions in [START_REF] Neshveyev | A local index formula for the quantum sphere[END_REF]. As mentioned above, this structure also applies to quantized complex projective spaces, but that requires additional ideas from quantum group theory which we will present in a separate article.

As in the untwisted case, the abstract pseudodifferential calculus yields a residue trace under the hypothesis of simple dimension spectrum-see Section 7. This may be a twisted trace, although a priori the twisting here has no relation to the twisting of the spectral triple.

Sobolev theory

Throughout this paper, we will fix a strictly positive unbounded operator ∆ on a Hilbert space H, which we will think of as an abstract Laplace operator. We will also fix an integer r ≥ 2, which is nominally the "order" of ∆. Typically, r = 2.

Such an operator gives rise to an abstract Sobolev theory. This is well summarized in the open sections of [START_REF] Uuye | Pseudo-differential operators and regularity of spectral triples[END_REF], to which we refer for details. Let us quickly review the main points.

2.1. Sobolev spaces. Let H ∞ = H ∞ (∆) denote the common domain of all powers of ∆:

H ∞ := ∞ n=0 dom(∆ n ). The sth-Sobolev space H s = H s (∆) is the completion of H ∞ with respect to the inner product η, ξ s := ∆ s r η, ∆ s r ξ .

Operators of finite analytic order.

A linear operator on T : H ∞ → H ∞ is said to have analytic order (at most) t ∈ R if, for every s ∈ R, it extends to bounded operator T : H s → H s-t . We write Op t for the set of operators of analytic order at most t, and

Op := t∈R Op t , Op -∞ := t∈R Op t .
Then Op is an R-filtered algebra. Also Op 0 is an algebra of bounded operators on H, in which Op -t is a two-sided ideal for all t ∈ (0, ∞].

For any z ∈ C, ∆ z r ∈ Op Re(z) is an isometric isomorphism from H s to H s-Re(z) for every s ∈ R. In particular it belongs to Op Re(z) . It follows that ∆ z r Op t = Op t+Re(z) and Op t ∆ z r = Op t+Re(z) for all z ∈ C, t ∈ R.

2.3. The Op-topology. Interpolation methods show that an operator T : H ∞ → H ∞ belongs to Op t if and only if it extends continuously to a map H n → H n-t for all integers n ∈ Z. The family of operator norms ( • H n →H n+t ) n∈Z therefore makes Op t into a Fréchet space, and Op 0 into a Fréchet algebra. Note that these seminorms can also be written as

T H n →H n-t = ∆ n-t r T∆ -n r L(H) .
(2.1)

Although this is the correct topological structure to place on the algebras associated to regular twisted spectral triples, we will rarely have need for it; see Remark 3.10.

Generalized differential and pseudodifferential operators

3.1. Differential operators. Let D be an N-filtered algebra, represented as linear operators on

H ∞ . The algebraic order of X ∈ D is ord D (X) = inf{k ∈ N | X ∈ D k }.
As above, we fix an abstract Laplace operator ∆ of degree r. We will denote by ∇ the twisted commutator

∇(X) := [∆, X] θ r = ∆X -θ r (X)∆, X ∈ End(H ∞ ).
Definition 3.1. A twisted algebra of abstract differential operators (abbreviated to twisted algebra of DOs) associated to ∆ is an N-filtered algebra D of operators on H ∞ equipped with a linear filtration-preserving automorphism θ, such that:

(1) The twisted commutator

∇ = [∆, • ] θ r maps D m to D m+r-1 (2) Elliptic estimate: For any X ∈ D m , there is C > 0 such that for any v ∈ H ∞ , Xv H ≤ C ∆ m r v H .
Remark 3.2. Note that we do not require the twisting θ to be an algebra automorphism on D. Nevertheless, for any X ∈ D m , Y ∈ D n we have

(θ r (XY) -θ r (X)θ r (Y))∆ = ∇(X)Y + X∇(Y) -∇(XY) ∈ D m+n+r-1 .
This shows that, at least under some mild assumptions on ∆, (e.g., that it is a multiplier of D which is injective on the associated graded algebra), the twisting θ r does define an algebra automorphism on the associated graded algebra of D-which one might reasonably call the algebra of principal symbols.

The basic estimate is equivalent to a compatibility between the algebraic and analytic order of differential operators. This is made precise by the following Lemma, which has essentially the same proof as its untwisted analogue in [START_REF] Higson | The local index formula in noncommutative geometry[END_REF] or [START_REF] Uuye | Pseudo-differential operators and regularity of spectral triples[END_REF].

Lemma 3.3. Let D be an N-filtered algebra of linear operators on H ∞ such that [∆, D m ] θ r ∈ D m+r-1 for all m ∈ N. Then the elliptic estimate is satisfied for every X ∈ D m if and only if D m ⊂ Op m for all m ∈ N.

Remark 3.4. Definition 3.1 does not force an equality of algebraic and analytic order-i.e., we may not have D m = D ∩ Op m for all m. For an obviously artificial example, take the classical Laplace operator ∆ on L 2 (M) for a smooth Riemannian manifold M, and let D = DO(M) be the algebra of differential operators but with the shifted filtration:

D m = C, m = 0 DO m-1 (M), m ≥ 1.
This satisfies the axioms of a twisted algebra of DOs with trivial twisting.

Pseudodifferential operators.

To define pseudodifferential operators, we must incorporate complex powers of the Laplacian. But we begin with the appropriate notion of twisting in this context.

Let Ψ be an R-filtered subalgebra of Op. In this context, a twisting of Ψ will be given by a complex one-parameter family of algebra automorphisms (Θ z ) z∈C which preserves the filtration. We will write Θ = Θ 1 . Remark 3.5. Unlike for the algebras of differential operators above, here we will have the liberty to demand that Θ be an automorphism of the algebra Ψ, not just of the associated graded algebra, which in any case is problematic to define for an R-filtered algebra without some additional structure.

Definition 3.6. A twisted algebra of abstract pseudodifferential operators (abbreviated to twisted algebra of ΨDOs) is a subalgebra Ψ ⊆ Op equipped with a one-parameter family of algebra automorphisms (Θ z ) z∈C such that

(1)

∆ z Ψ ⊆ Ψ and Ψ∆ z ⊆ Ψ for all z ∈ C, (2) [∆ z r , Ψ t ] Θ z ⊆ Ψ Re(z)+t-1 for all z ∈ C, t ∈ R, (3) Ψ 0 ⊆ Op 0 . Two twistings Θ • and Θ • on Ψ will be called equivalent if for all T ∈ Ψ t and all z ∈ C, Θ z (T) -Θ z (T) ∈ Ψ t-1 . We will say ∆ is Θ-central if [∆ z r , Ψ] Θ z = 0 for all z ∈ C.
Lemma 3.7. Let Ψ and Θ • be as above. There is an equivalent twisting Θ

• on

Ψ such that ∆ is Θ -central. Proof. One can take Θ z (T) = ∆ z r T∆ -z r . The identity Θ (T) -Θ(T) = [∆ 1 r , T] Θ ∆ -1 r
shows that the two twistings are equivalent.

From the invertibility of ∆ on H ∞ , Condition (1) of Definition 3.6 implies that ∆ z r Ψ t = Ψ Re(z)+t = Ψ t ∆ z r for all z ∈ C, t ∈ R, and with Condition (3) we also get Ψ z ⊆ Op Re(z) . In particular, the algebra Ψ is completely determined by its subalgebra Ψ 0 of elements of order at most zero. This motivates the next definition.

Pseudodifferential operators of order at most 0.

Definition 3.8. A twisted algebra of abstract pseudodifferential operators of order at most zero (abbreviated to twisted algebra of ΨDO 0 s) is an algebra B of bounded operators on H ∞ , equipped with a linear automorphism θ such that B is closed under the twisted derivation

δ θ := [∆ 1 r , • ] θ .
This is the structure which is closest to regularity for twisted spectral triples; see Section 4.1.

Note that, for all b ∈ B, we have

∆ 1 r b∆ -1 r = θ(b) + δ θ (b)∆ -1 r ∈ B + B∆ -1 r , (3.1) ∆ -1 r b∆ 1 r = θ -1 (b) + ∆ -1 r δ θ (θ -1 (b)) ∈ B + ∆ -1 r B, (3.2) 
Induction on n shows that ∆ n r b∆ -n r is bounded for all n ∈ Z. This proves the following fact. Lemma 3.9. If B is a twisted algebra of ΨDO 0 s then B ⊆ Op 0 . Remark 3.10. If one wanted to topologize A or B, the Op 0 -topology of Section 2.3 would be the appropriate one. Given that, we should insist that the twisting θ be Op 0 -continuous. In fact, for our main theorem, we will work in a much more algebraic context-namely, diagonalizable twistings (Definition 4.2)-which does not require Op 0 -continuity. For these reasons, we will usually sweep the topology under the rug.

Equivalence of definitions

This section is dedicated to the equivalence of the various notions above. As usual, we fix an abstract Laplace operator ∆ of order r. Definition 4.1. Let A be an algebra of operators on H ∞ with a twisting θ.

(1) A twisted algebra of DOs D is associated to A if A ⊆ D 0 and its twisting θ extends that of A.

(2) A twisted algebra of ΨDO 0 s B is associated to A if A ⊆ B and its twisting θ extends that of A.

(3) A twisted algebra of ΨDOs Ψ is associated to A if A ⊆ Ψ 0 and its twisting Θ satisfies Θ(a)θ(a) ∈ Ψ -1 for all a ∈ A.

Note that, in passing from differential to pseudodifferential operators, we will need to extend the twisting θ of D to a complex one-parameter family of automorphisms Θ of Ψ. Various conditions can be imposed to ensure this. As mentioned in the introduction, we will use the simple condition of diagonalizability. Definition 4.2. We will say a linear map θ on a vector space D is diagonalizable if D is the algebraic direct sum of the eigenspaces of θ.

Theorem 4.3. Fix an abstract Laplace operator ∆ of order r and let A be an algebra of linear operators on H ∞ equipped with an algebra automorphism θ.

(1) If A admits a compatible twisted algebra of ΨDOs, then it admits a compatible twisted algebra of ΨDO 0 s.

(2) If A admits a compatible twisted algebra of ΨDO 0 s, then it admits a compatible twisted algebra of DOs. (3) If A admits a compatible twisted algebra of DOs, such that the twisting on this algebra is diagonalizable with positive spectrum, then it admits a compatible twisted algebra of ΨDOs.

Note that the first two statements are straightforward. The most profoundand the most useful in practice-is the third part. The proof will be given shortly, in Section 5. But before passing to the proof, let us point out how this implies the main theorem, Theorem 1.5. 

δ θ (b) = [∆ 1 r , b] Θ -κ(b)∆ 1 r ∈ Ψ 0 ,
so that Ψ 0 is invariant under δ θ . Hence Ψ 0 is a twisted algebra of ΨDO 0 s associated to A.

5.2.

From pseudodifferential operators of order at most 0 to differential operators. Let B be a twisted algebra of ΨDO 0 s. We say that B is an extension of B if B ⊆ B and there is a linear extension of θ which makes B into a twisted algebra of ΨDO 0 s. If B is associated to an algebra A then the same is true for B .

Lemma 5.1. Let B be a twisted algebra of ΨDO 0 s. Then there is an extension B of B which contains ∆ -1 r . Then

Θ := ∆ 1 r • ∆ -1 r is an automorphism of B .
Proof. We define B as the algebra generated by B and ∆ -1 r . Then B ⊆ Op 0 since ∆ -1 r ∈ Op 0 . Equations (3.1) and (3.2) show that Θ is a well-defined automorphism of B . Now we consider the difference between θ and Θ| B . For all b ∈ B we have

θ(b) -Θ(b) = (θ(b)∆ 1 r -∆ 1 r b)∆ -1 r = -δ θ (b)∆ -1 r ∈ B∆ -1 r .
We let κ : B → B ∆ -1 r be an arbitrary, not necessarily continuous, linear extension of the map θ -Θ| B : B → B∆ -1 r . Then defining

θ = Θ + κ : B → B
gives a linear extension of θ : B → B. Finally to show that B is closed under the twisted derivation

δ θ = [∆ 1 r , • ] θ we write [∆ 1 r , x] θ = [∆ 1 r , x] Θ + (Θ(x) -θ (x))∆ 1 r = -κ(x)∆ 1 r ∈ B
for x ∈ B , where we have used the fact that κ(x) ∈ B ∆ -1 r .

In view of the previous lemma, we will assume in the following that B is a twisted algebra of ΨDO 0 s associated to A such that ∆ -1 r ∈ B. 

D m = m ∑ k=0 B∆ k r .
Then there is an extension of θ : B → B to a linear automorphism of D making it into a twisted algebra of DOs associated to A. 

Θ(b∆ m r ) = δ θ (b)∆ m-1 r + θ(b)∆ m r ∈ D m .
Proceeding as in Lemma 5.1, we let κ : D → D∆ -1 r be an arbitrary linear extension of the map θ -Θ| B : B → B∆ -1 r such that κ : D m → D m ∆ -1 r for all m. Then we define the linear map

θ = Θ + κ : D → D,
which gives a filtration-preserving extension of θ. Now we look at the twisted commutator condition. First, for all X ∈ D m we have

[∆ 1 r , X] θ = [∆ 1 r , X] Θ + (Θ(X) -θ (X))∆ 1 r = -κ(X)∆ 1 r ∈ D m .
Next for all n ∈ N we have the algebraic identity

[∆ n r , X] θ n = ∆ 1 r [∆ n-1 r , X] θ n-1 + [∆ 1 r , θ n-1 (X)] θ ∆ n-1 r . Since [∆ 1 r , X] θ ∈ D m , induction in n shows that [∆ n r , X] θ n ∈ D m+n-1
for all n. We find in particular that [∆, X] θ r ∈ D m+r-1 , which concludes the proof.

From differential operators to pseudodifferential operators.

As already mentioned, the key point in passing to pseudodifferential operators is to introduce complex powers of the Laplace operator. This is achieved as follows.

Definition 5.3. Let D be a twisted algebra of DOs. A linear operator P on H ∞ is called a basic (or step 1) pseudodifferential operator of order at most t ∈ R if, for any l ∈ R there exists a decomposition of the form

P = X∆ z-m r + Q, (5.1)
where • X ∈ D m , for some m ∈ N,

• Re(z) ≤ t, and • Q ∈ Op l . Then Ψ t is defined to be the space of finite sums of basic pseudodifferential operators of order at most t.

The main technical point is to prove that Ψ is an algebra. From the definition, one sees that the key issue is to commute a complex power of ∆ past X ∈ D. For this, the main tool is the Cauchy integral formula:

∆ z = 1 2πi Γ λ z (λ -∆) -1 dλ (5.2)
where Γ is a vertical contour which separates the spectrum of ∆ from 0, and Re(z) < 0. We must therefore take a short digression through the analysis of such formulas.

5.3.1. Resolvent identities. We begin with a twisted algebra of DOs D associated to A. Since we are assuming that the twisting θ is diagonalizable, with positive spectrum, we can unambiguously define the complex powers θ z with z ∈ C. We will refer to the eigenvalues of θ r as weights.

Recall that we write ∇ = [∆, • ] θ r for the twisted commutators with ∆. We begin by deriving some identities involving the resolvent of ∆. If

µ ∈ R + , we will put R(µ) = (λ -µ∆) -1 . More generally for a multi-index µ = (µ 0 , µ 1 , • • • , µ k ) we set R(µ) = ∏ k i=0 R(µ i ). Lemma 5.4. Let X ∈ D be homogeneous of weight µ, that is θ r (X) = µX. Then R(1)X = XR(µ) + R(1)∇(X)R(µ).
Proof. This follows by multiplying the identity

∇(X) = ∆X -µX∆ = X(λ -µ∆) -(λ -∆)X.
on the left and the right by R(1) and R(µ), respectively.

For successive iterations of this formula, we will need to decompose ∇(X) and its iterates into homogeneous components. Let W ⊂ R + be the set of weights of θ r . If X ∈ D and µ ∈ W, let us write X µ for its where Γ is a vertical contour separating the spectrum of µ i ∆ from 0 for every i, and where ( z n ) µ is the generalized binomial coefficient of Section A.2.

Proposition 5.8. Let z ∈ C and Y ∈ D m . Then for any n ∈ N we have

∆ z Y = n ∑ k=0 ∑ µ∈W(k) z k µ ∇ µ (Y)∆ z-k + Q.
Here the highest order term (i.e. k = 0) is equal to θ rz (Y)∆ z , the terms ∇ µ (Y)∆ z-k have order r Re(z) + mk and the remainder Q has order r Re(z) + mn -1.

Proof. To begin with, suppose Re(z) < 0. Applying the Cauchy Integral formula, and using Proposition 5.6 and Lemma 5.7, we get

∆ z Y = Γ λ z R(1)Y dλ = n ∑ k=0 ∑ µ∈W(k) ∇ µ (Y) Γ λ z R(µ) dλ + ∑ µ∈W(n) Γ λ z R(1)∇(∇ µ (Y))R(µ) dλ = n ∑ k=0 ∑ µ∈W(k) z k µ ∇ µ (Y)∆ z-k + ∑ µ∈W(n) Γ λ z R(1)∇(∇ µ (Y))R(µ) dλ, (5.4) 
where Γ is a vertical contour separating 0 from the spectrum of µ i ∆ for every µ i appearing (non-trivially) in the formula. By Proposition A.4 (5), the k = 0 term in the sum is equal to

∑ µ∈W µ z Y µ ∆ z = θ rz (Y)∆ z .
Now consider the remainder term. Since ∇(∇ µ (Y)) ∈ D m+(n+1)(r-1) , we have that ∇(∇ µ (Y))R(µ) belongs to Op m-n-1 . For any s ∈ R its norm as an operator from H s+m-n-1 to H s is uniformly bounded in λ, hence the integrals in the last line of (5.4) all converge uniformly in Op m-n-1 . We can produce a remainder term in Op rRe(z)+m-n-1 by considering the same expansion for N > n. For n + 1 ≤ k ≤ N and µ ∈ W(k) we have that the extra terms ∇ µ (Y)∆ z-k are in Op rRe(z)+m-k ⊂ Op rRe(z)+m-n-1 . Now the integrals in the last line of (5.4) are in Op m-N-1 , hence if we choose N such that -N ≤ rRe(z)n then they also belong to Op rRe(z)+m-n-1 . This completes the proof when Re(z) < 0. Suppose the result holds for some z ∈ C. Then for z + 1 we obtain

∆ z+1 Y = ∆ z θ r (Y)∆ + ∆ z ∇(Y) = n ∑ k=0 ∑ µ∈W(k) z k µ ∇ µ (θ r (Y))∆ z-k+1 + Q ∆ + n ∑ k=0 ∑ µ∈W(k) z k µ ∇ µ (∇(Y))∆ z-k + Q .
The term θ r (Y) has order m, hence Q has order r Re(z) + mn -1. Similarly ∇(Y) has order m + r -1, hence Q has order r Re(z + 1) + mn -2.

Then we see that

Q = Q ∆ + Q ∈ Op r Re(z+1)+m-n-1 . Next write ∆ z+1 Y = n ∑ k=0 ∑ µ∈W(k) µ 0 z k µ ∇ µ (Y)∆ z-k+1 + n+1 ∑ k=1 ∑ µ∈W(k) z k -1 μ∇ µ (Y)∆ z-(k-1) + Q,
where μ = (µ 1 , . . . , µ k ) is the k-tuple obtained by removing µ 0 . By Pascal's Identity (Proposition A.4 (2)) we obtain

∆ z+1 Y = n ∑ k=0 ∑ µ∈W(k) z + 1 k µ ∇ µ (Y)∆ z+1-k + Q.
Here we have incorporated the terms ∇ µ (Y)∆ z-n with µ ∈ W(n + 1) into Q, since they have order r Re(z + 1) + mn -1. Hence the expansion holds for z + 1. An induction finishes the proof.

Definition 5.9. Let P and P n (n ∈ N) be operators in Op. We say that P admits the asymptotic expansion P ∼ ∑ n P n if, for every l ∈ R, there is N ∈ N such that for all n ≥ N,

P - n ∑ k=0 P k ∈ Op l .
With this terminology, Proposition 5.8 can be rephrased as saying that ∆ z Y admits the asymptotic expansion

∆ z Y ∼ θ rz (Y)∆ z + ∞ ∑ k=1 ∑ µ∈W(k) z k µ ∇ µ (Y)∆ z-k .
(5.5)

Lemma 5.10. The space Ψ is an R-filtered subalgebra of Op with Ψ 0 ⊆ Op 0 .

Proof. It is immediate from the definition that Ψ t ⊆ Op t for all t ∈ R. We need to show that, given two basic pseudodifferential operators P ∈ Ψ t and P ∈ Ψ t , their product PP belongs to Ψ t+t . For any ∈ R, we can write P = X m ∆ (z-m)/r + Q and P = X m ∆ (z -m )/r + Q , with Q, Q ∈ Op , as in Definition 5.3. The product takes the form

PP = X m ∆ (z-m)/r X m ∆ (z -m )/r + Q , ( 5.6) 
Now suppose we have a bialgebra filtration on U (that is, both an algebra and coalgebra filtration). We extend it to an algebra filtration on the crossed-product A#U by putting A in degree 0.

Let C ∈ U be a central element of order r. In general, we have

∆(C) = r ∑ j=0 c j ⊗ c r-j ∈ r ∑ j=0 U j ⊗ U r-j .
(We are using boldface ∆ for the coproduct in an attempt to distinguish it from the abstract Laplace operator of the preceding sections.) Suppose that the j = 0 term takes the special form K r ⊗ C for some K ∈ U 0 , i.e. Using the assumption on the coproduct of C and its centrality in U we get

∆(C) = K r ⊗ C + r ∑ j=1 c j ⊗ c r-j . ( 6 
[C, ah] θ r = (K r a)Ch + r ∑ j=1 (c j a)c r-j h -(K r a)Ch = r ∑ j=1 (c j a)c r-j h. Since c r-j h ∈ U r-j • U m ⊆ U m+r-j we conclude that [C, ah] θ r ∈ D m+r-1 .
This proposition shows that, assuming we can prove the elliptic estimates, D will be a twisted algebra of DOs with abstract Laplace operator C. With some modification, this framework allows one to prove regularity for Krähmer's Dirac operators on the quantum projective spaces CP n q . But the proof requires specialized techniques from quantum groups which are rather different from the ideas presented here, so we will leave it for a separate paper. Instead, for the reader well-versed in quantum groups, we will provide here a very brief summary of the simplest example, namely the Podleś sphere. Compare the results of Neshveyev and Tuset [START_REF] Neshveyev | A local index formula for the quantum sphere[END_REF].

Example 6.4. We follow the conventions of [START_REF] Neshveyev | A local index formula for the quantum sphere[END_REF] (with only slight modifications to the notation). In particular, the generators E, F, K of U q (k) := U q (su 2 ), satisfy

KEK -1 = qE, KFK -1 = q -1 F, [E, F] = K 2 -K -2 q -q -1 , ∆E = K ⊗ E + E ⊗ K -1 , ∆F = K ⊗ F + F ⊗ K -1 , ∆K = K ⊗ K. E * = F, F * = E, K * = K.
Let U q (t) denote the abelian subalgebra of U q (k) generated by K. We write O(K q ) for the algebra of polynomial functions on the compact quantum group K q = SU q (2). It is a left U q (k)-module algebra with

X a := (X, a (2) )a (1) , X ∈ U q (k), a ∈ O(K q ).
The Podleś sphere is the quantum homogeneous space S 2 q = CP 1

q = K q /T. For each k ∈ 1 2 Z we define 2 O(E k ) := {ξ ∈ O(K q ) | K ξ = q k ξ},
which is declared to be the section space of the spin k bundle over S 2 q . In particular O(S 2 q ) := O(E 0 ). The spinor bundle S is defined by O(S)

:= O(E 1 2 ) ⊕ O(E -1 2
). It is equipped with a Dirac operator:

/ D := 0 E F 0 .
Dabrowski-Sitarz [START_REF] Ludwik | Dirac operator on the standard Podleś quantum sphere[END_REF] proved that (O(S 2 q ), L 2 (S), / D) is a spectral triple (not twisted), where L 2 (S) refers to the L 2 -completion of O(S) with respect to the Haar state of SU q (2). On the other hand, it is not regular as an untwisted spectral triple. But it is regular as a twisted spectral triple, even though the pertinent twisting is trivial on A = O(S 2 q ). To prove this, we introduce a twisted algebra of differential operators.

As described above, the algebra DO(K q ) := O(K q )#U q (k) plays the role of the polynomial differential operators on K q . The algebra of differential operators D := DO(S 2 q ; S) on S is the subalgebra of 2 × 2-matrices X = (X ij ) over DO(K q ) satisfying

K 0 0 K X 11 X 12 X 21 X 22 K -1 0 0 K -1 = X 11 qX 12 q -1 X 21 X 22 .
We can filter U q (k) by declaring the generators E, F to be order 1, while K, K -1 are order 0. This extends to a filtration of DO(K q ) where the functions O(K q ) have order 0, and thus to a filtration on D.

The Casimir element for U q (k) is solution is to introduce a modular operator ρ (closed, unbounded, with core H ∞ ) into the definition of the zeta function:

C = EF + q -1 2 K -q 1 2 K -1 q -q -1 2 = FE + q 1 2 K -q -1 2 K -1 q -q -1
ζ X (z) := Tr(ρX∆ -z r ).

(7.1) This phenomenon is observed, for instance, on the Podleś sphere, where the introduction of an appropriate ρ = 1 gives simple poles for the zeta function, while the case ρ = 1 gives double poles, see [KW13, Lemma 1]. We will require that the twisted algebra of DOs D be stable under conjugation by ρ, and denote the resulting algebra automorphism by σ: σ(X) := ρXρ -1 .

In this case, as we shall now show, the residue trace will be a twisted trace: τ(XY) = τ(Yσ(X)), where σ(X) = ρXρ -1 .

Note, though, that the twisting σ here is not necessarily related to the twisting θ used above. For instance, the following proposition holds for the standard residue trace (with ρ = 1) of a twisted algebra D (with θ = id), provided that the standard zeta function does indeed extend meromorphically with only simple poles.

Proposition 7.1. Let D be a twisted algebra of DOs, with diagonalizable twisting θ. Suppose that for all X ∈ D we have:

• ρX∆ -z r is trace-class for all z ∈ C with sufficiently large real part, • ζ X (z) extends to a meromorphic function on C with only simple poles. Then the functional Φ : D → C defined by Φ(X) = Res z=0 ζ X (z) is a σ-twisted trace, that is Φ(XY) = Φ(Yσ(X)) for all X, Y ∈ D.

Proof. Using σ(X) = ρXρ -1 and the trace property we write ζ XY (z) = Tr(ρXY∆ -z r ) = Tr(ρY∆ -z r σ(X)).

We can apply the expansion of Proposition 5.8 to ∆ -z r σ(X). Let us denote by m the order of σ(X) ∈ D. where Q ∈ Op m-n-1 . Now we take the residue at z = 0 of the function ζ XY (z). The second line vanishes, since by assumption the zeta function has only simple poles and the coefficients ( -z/r k ) µ vanish at z = 0 for all k > 0 (see Proposition A.4). Similarly the third line can be made to vanish by taking n large enough, since Tr(ρYQ) becomes holomorphic at 0 in this case. Therefore we are left with Φ(XY) = Res z=0 Tr(ρYθ -z (σ(X))∆ -z r ).

  [a, b] θ := abθ(b)a.

4. 1 .

 1 Application to twisted spectral triples. Let (A, H, D) be a twisted spectral triple (see Definition 1.1) with twisting θ. We consider the abstract Laplace operator ∆ := D 2 + 1 with order r = 2. It is immediate from the definitions that (A, H, D) is regular if and only if it admits a twisted algebra of ΨDO 0 s which is associated to A and also contains [D, A] θ in order 0. Therefore, Theorem 1.5 follows from Theorem 4.3. 5. Proof of Theorem 4.3 5.1. From pseudodifferential operators to pseudodifferential operators of order at most 0. Let Ψ be a twisted algebra of ΨDOs associated to A.Denote by θ the twisting of A and by Θ the twisting of Ψ. Consider the linear map κ := θ -Θ| A : A → Ψ -1 . If we make an arbitrary linear extension of this to a map κ : Ψ 0 → Ψ -1 , then defining θ := Θ + κ : Ψ 0 → Ψ 0 gives an extension of θ : A → A. Moreover, for any b ∈ Ψ 0 we have

Proposition 5. 2 .

 2 Let D = m∈N D m where

Proof.

  It follows from Lemma 3.9 that D m ⊆ Op m for all m ∈ N. Therefore, by Lemma 3.3, it suffices to show that [∆, D m ] θ ⊆ D m+r-1 , where θ is an appropriate linear extension of θ to D. Consider the automorphism Θ : D → D defined by Θ(X) = ∆ 1 r X∆ -1 r . It is well defined since B is stable under conjugation by ∆ 1 r . Moreover it preserves the filtration of D. Indeed for b∆ m r ∈ D m we have

. 1 )

 1 Define a linear map θ : A#U → A#U by putting θ(ah) = (K a)h, (6.2) and extending linearly. Proposition 6.3. Let D = A#U and C ∈ U be as above. Then [C, D m ] θ r ⊆ D m+r-1 for all m ∈ N.

Proof.

  It suffices to check this on elements of the form ah with a ∈ A and h ∈ U m . We compute [C, ah] θ r = Cahθ r (ah)C = r ∑ j=0 (c j a)c r-j h -(K r a)hC.

2

  We are using half-integer spins, where[START_REF] Neshveyev | A local index formula for the quantum sphere[END_REF] uses integer spins.

  Then we getζ XY (z) = Tr(ρYθ -z (σ(X))∆ -Tr(ρY∇ µ (σ(X))∆ -z r -k ) + Tr(ρYQ),
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component of weight µ. Under our hypothesis of diagonalizability, we have X = ∑ µ X µ and the sum always contains only finitely many nonzero terms.

Definition 5.5. Let us write W(k) = W k+1 for the set of (k + 1)-tuples of weights. For µ = (µ 0 , . . . , µ k ) ∈ W(k), we define ∇ µ (X) iteratively by setting ∇ µ (X) = X µ 0 when k = 0 and ∇ µ (P) = (∇(∇ µ (P))) µ k , when µ = (µ 0 , µ 1 , • • • , µ k-1 ).

Proposition 5.6. Let X ∈ D. For any n ∈ N we have the expansion

(5.3)

Proof. For n = 0 the identity is

which holds by the previous lemma. We proceed by induction, assuming Equation (5.3) holds for some n.

where we have defined µ = (µ 0 , µ 1 , • • • , µ n , µ n+1 ) ∈ W(n + 1). The term ∇ µ (X) has weight µ n+1 . Then we can use the lemma to rewrite R(1)∇ µ (X) = ∇ µ (X)R(µ n+1 ) + R(1)∇(∇ µ (X))R(µ n+1 ).

Applying this to the last term of Equation (5.3), we get

, we obtain the result.

5.3.2.

Commutators with complex powers of the Laplacian. The next step is to use the resolvent expansion of Equation (5.3) and the Cauchy Integral Formula to obtain an expansion of ∆ z X with complex powers of ∆ on the right.

The resulting formulas involve certain generalized binomial coefficients ( z n ) µ , of which both the standard and q-binomial coefficients are special cases. We will leave these constants as a black box for the moment. The details are given in Appendix A.2, where we also prove the following quantum analogue of Cauchy's Integral Formula.

Lemma 5.7. Let µ = (µ 0 , . . . , µ n ) ∈ W(n). For any z ∈ C with Re(z) < 0 we have

(5.7)

The three summands of the remainder term (5.7) belong to Op t+ , Op t + and Op 2 , respectively, so by choosing sufficiently large and negative, we can ensure that the analytic order of Q is as large and negative as we want.

Having done this, the first term in (5.6) admits an asymptotic expansion by Equation (5.5):

where X m ∇ µ (X m ) ∈ D m+m +k(r-1) . It is therefore a pseudodifferential operator of order at most t + t . This completes the proof.

Finally, we need to equip Ψ with a twisting-i.e., a one-parameter family of automorphisms (Θ z ) z∈C -making it into a twisted algebra of ΨDOs.

Proposition 5.11. The one-parameter family of automorphisms Θ z := ∆ z r • ∆ -z r preserves the algebra Ψ, and make it into a twisted algebra of ΨDOs associated to A.

Proof. The asymptotic expansion (5.5) shows that Ψ is preserved by Θ z for every z ∈ C. It also shows that ∆ z r Ψ t ⊆ Ψ Re(z)+t , and clearly

By Proposition 5.8, ∆ 1 r aθ(a)∆ 1 r ∈ Ψ 0 , so Θ(a)θ(a) ∈ Ψ -1 . This completes the proof.

An example from quantum groups

Let U be a unital Hopf algebra and A a left U -module algebra with action denoted by . We can then form the cross-product algebra A#U , which is the algebra generated by A and U with relations ha = (h (1) a)h (2) for a ∈ A and h ∈ U . Example 6.1. Let G be a compact Lie group. Let U = U (g) be the universal enveloping algebra of its Lie algebra and let A = C ∞ (G). Then A#U is the algebra of differential operators on G. Example 6.2. Let K be a compact semisimple Lie group, and let g = k C be the complexified Lie algebra. Put U = U q (g) and let A = O(K q ). Then A#U is an analogue of the algebra of polynomial differential operators on the quantum group K q .

This second example is inspirational, but is somewhat too complicated for the simple framework we will describe here. Still, our framework does apply to certain quantum homogeneous spaces, as we will indicate shortly.

which is an order two element, equal to EF (or FE) modulo lower order. Moreover, since

we see that ∆C ≡ K 2 ⊗ C modulo elements of order at most 1 in the second leg. In other words, C satisfies Equation (6.1). If we let C act diagonally on sections of the spinor bundle O(S), then Proposition 6.3 shows that [C, D m ] θ 2 ⊂ D m+1 where θ is the twisting given by

which we extend entry-wise to 2 × 2-matrices. The Dirac operator / D satisfies / D 2 = C as operators on L 2 (S).

while K acts on O(E k ) as the constant q k . The elliptic estimates for D follow by induction on the order. We obtain the following result.

Proposition 6.5. The Dabrowski-Sitarz spectral triple (O(S 2 q ), L 2 (S), / D) is a regular twisted spectral triple, and so admits an associated twisted algebra of abstract pseudodifferential operators.

We point out again, that the twisting is trivial on the algebra A = O(S 2 q ), but nontrivial on the associated differential and pseudodifferential operators.

Note also that, on a differential operator aX ∈ O(K q )#U q (k), θ is only twisting the coefficient function a, not the constant coefficient differential operator X. We are in the situation where the twisting θ is not an algebra automorphism of D, but only an algebra automorphism at the level of principal symbols.

Zeta functions

We will conclude with some comments on the residues of zeta functions in our context, since this is one of the first major consequences of the abstract pseudodifferential calculus.

Classically, one considers zeta functions of the form ζ X (z) = Tr(X∆ -z r ), where X ∈ D is an abstract differential operator and Tr is the operator trace, which is well-defined for Re(z) sufficiently large. Typically, the functions ζ X extend to meromorphic functions of z. But recall that for certain results one needs the additional condition that all poles of ζ X be simplethis is the simple dimension spectrum condition (see [START_REF] Connes | The local index formula in noncommutative geometry[END_REF][START_REF] Higson | The local index formula in noncommutative geometry[END_REF]). For instance, this condition is needed to prove that the residue trace τ(X) := Res z=0 ζ X (z) is a trace.

The spectral triples associated to quantum homogeneous spaces, however, do not generally have simple dimension spectrum. One potential The twist θ -z in this expression can be removed, as we now argue. Suppose to begin with that X is homogeneous of weight λ, that is θ -z (X) = λ -z X. The factor λ -z can be pulled out of the trace and evaluating it at z = 0 gives 1. For general X, it suffices to decompose σ(X) into homogeneous components.

Therefore, we get

). This concludes the proof.

Remark 7.2. In the case of the Podleś sphere, the appropriate modular operator is the unbounded operator ρ defined on O(S) by ρ(a) = K -2 a K -2 . The resulting automorphism σ = ρ • ρ -1 , upon restriction to O(S 2 q ), is the modular automorphism of the Haar weight, which appears frequently in the noncommutative geometry of the Podleś sphere-see [START_REF] Schmüdgen | Dirac operator and a twisted cyclic cocycle on the standard Podleś quantum sphere[END_REF] for an early example. It is the value at t = i of the modular automorphism group

q ), echoing features of conformally deformed spectral triples (see, e.g. [START_REF] Connes | Modular curvature for noncommutative twotori[END_REF][START_REF] Fathizadeh | Scalar curvature for the noncommutative two torus[END_REF]).

On the other hand, σ is not the same as the twisting θ that is needed in Example 6.4 (and previously in [START_REF] Neshveyev | A local index formula for the quantum sphere[END_REF]) to construct the pseudodifferential calculus. In particular, θ is trivial on O(S 2 q ), while σ is not.

Appendix A. Appendix: Quantum analogues of the Cauchy Differentiation Formula A.1. A generalized Cauchy Differentiation Formula. Recall that the classical Cauchy Differentiation Formula is

n! .

To state the generalized formula, we need to introduce differential-difference operators of the following type.

Definition A.1. Let µ = (µ 0 , . . . , µ n ) ∈ C n+1 . We write mult(µ i ) for the multiplicity of µ i in µ, i.e., mult

some appropriate open subset), we write p f ,µ (s) for the polynomial of degree n which agrees with f (s) at each s = µ i to order mult(µ i ). The µ-derivative of a holomorphic function f at t ∈ C is then defined as

where we note that the nth derivative p (n) f ,tµ (s) is polynomial of order 0. For instance, the ordinary nth derivative is equal to ∂ µ when µ = (1, . . . , 1) ∈ C n+1 . On the other hand, if all the µ i are distinct we obtain a higher order difference operator. For instance,

when a = b. In particular ∂ (1,q) is the q-derivative D q when q = 1 (see [KS97, §2.2.1]). Proposition A.2. Let f be a holomorphic function on a simply connected domain U ⊆ C, and let Γ be a simple contour in U. Let t ∈ C and let µ ∈ C n such that µ i t lies in the interior of Γ for each i. Then

Proof. It suffices to prove this formula on the dense open subset of µ for which all coefficients µ i are distinct, since both sides of the formula are holomorphic functions of µ ∈ C n+1 so long as µ i t lies inside Γ for all i.

Lemma A.3. If a 0 , . . . , a n are distinct complex numbers then

as rational functions.

Proof. Consider the following polynomial in λ:

It satisfies g(a k ) = 1 for all k = 0, . . . , n. Since g has order n, it follows that g = 1. Multiplying g by ∏ n i=0 (λa i ) -1 gives the result.

Applying this lemma, the left-hand side of Equation (A.1) becomes

For the right-hand side, we recall that

where p f ,tµ is the unique polynomial of degree n which agrees with f at each µ i t. Specifically,

Considering the coefficient of s n in this polynomial gives

Comparing (A.2) and (A.3) proves the proposition.
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A.2. µ-binomial coefficients. We will apply the above formula to the functions f (t) = t z where z ∈ C (with branch cut for t on the negative real axis).

Let µ ∈ R n+1 + be an n-tuple of strictly positive reals. Then the µ-derivative of t z is well-defined for all t ∈ C \ (-∞, 0], and from Equation (A.3) we deduce that it is a constant multiple of t z-n . The constant will be called the µ-binomial coefficient and denoted ( z n ) µ , i.e.,

The next proposition summarizes some of the basic properties of the µ-binomial coefficients.

The following analogue of Pascal's identity holds:

is the standard binomial coefficient.

(4) If µ = (1, q, . . . , q n ) for q = 1, then ( z n )

is the Gaussian binomial coefficient.

(5) If n = 0, so that µ = (µ) for some µ ∈ R + , then ( z 0 ) µ = µ z . (6) If n > 0, then ( 0 n ) µ = 0. Proof. Claim (1) follows from the holomorphicity of z → t z . For (2), we use Equation (A.3) to obtain an explicit formula for the µ-binomial coefficients when all µ i are distinct:

In this case,

The general case follows by continuity in µ. Claim (3) is standard since ∂ (1,...,1) = d n dt n . Claim (4) follows by comparing Pascal's Identity for the qbinomial coefficients (see, e.g., [KS97, §2.1.2])-we skip the details since in any case we don't need this. The final two claims are easy calculations.

The following is an immediate consequence of the generalized Cauchy Differentiation Formula (Proposition A.2).

Corollary A.5. Let µ = (µ 0 , . . . , µ n ) ∈ R n+1

+ . If t ∈ R + , then for any z with Re(z) < 0 and any vertical contour Γ separating t from 0, we get

Lemma 5.7 now follows from Corollary A.5 by the holomorphic functional calculus.