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EXTREMAL SOLUTIONS FOR QUASILINEAR PARABOLIC

SYSTEMS IN TRAPPING REGIONS

SIEGFRIED CARL AND DUMITRU MOTREANU

Abstract. We consider the initial-Dirichlet boundary value problem for quasi-
linear parabolic systems in a cylindrical domain Q = Ω × (0, τ) of the form
(i = 1, 2)

∂ui

∂t
−∆piui = fi(x, t, u1, u2,∇u1,∇u2) in Q,

with a diagonal (p1, p2)-Laplacian as leading elliptic operator, and with a lower
order vector field f = (f1, f2) that may depend also on the gradient of the solution
u = (u1, u2). We establish an enclosure and existence result for weak solutions in
terms of trapping regions which stand for rectangles formed by pairs of appropri-
ately defined sub-supersolutions, and prove the existence of extremal solutions
within trapping regions without imposing any monotonicity conditions on the
lower order vector field. Finally, we provide conditions that allow us to construct
trapping regions. It should be noted that the results obtained in this paper
may be extended to more general quasilinear systems, where the pi-Laplacian is
replaced by a general divergence form Leray-Lions operator divAi(x, t, ui,∇ui).

1. Introduction

Let Ω ⊂ R
N be a bounded domain with Lipschitz boundary ∂Ω, Q = Ω ×

(0, τ), and Γ = ∂Ω × (0, τ), with τ > 0, and let W 1,pi(Ω) and W 1,pi
0 (Ω), i =

1, 2, denote the usual Sobolev spaces with dual spaces (W 1,pi(Ω))∗ and W−1,qi(Ω),
respectively, where qi is the Hölder conjugate satisfying 1/pi + 1/qi = 1. For the
sake of simplicity we assume throughout this paper 2 ≤ pi < ∞. Then W 1,pi(Ω)

⊂ L2(Ω) ⊂ (W 1,pi(Ω))∗ as well as W 1,pi
0 (Ω) ⊂ L2(Ω) ⊂ (W 1,pi

0 (Ω))∗ forms an
evolution triple with all the embeddings being dense and compact, cf. [10].

Further we set Xi = Lpi(0, τ ;W 1,p(Ω)), X0i = Lpi(0, τ ;W 1,p
0 (Ω)), and introduce

the Leray-Lions spaces Wi, and W0i defined by

Wi = {u ∈ Xi : u
′ ∈ X∗

i } , W0i = {u ∈ X0i : u
′ ∈ X∗

0i}

where the derivative u′ := ∂u/∂t is understood in the sense of vector-valued dis-
tributions, and X∗

i = Lq(0, τ ; (W 1,pi(Ω))∗) is the dual space of Xi, resp. X∗
0i =

Lqi(0, τ ; (W 1,pi
0 (Ω))∗) is the dual of X0i. The spaces Wi and W0i endowed with the

graph norm of the operator ∂/∂t

‖u‖Wi
= ‖u‖Xi

+ ‖u′‖X∗

i
, ‖u‖W0i

= ‖u‖X0i
+ ‖u′‖X∗

0i

are Banach spaces which are separable and reflexive due to the separability and
reflexivity of Xi and X∗

i , and X0i and X∗
0i, respectively. It is well known that the

embedding Wi →֒ C([0, τ ], L2(Ω)) (resp. W0i →֒ C([0, τ ], L2(Ω))) is continuous,
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and by Aubin’s lemma the embedding Wi →֒→֒ Lpi(Q) (resp. W0i →֒→֒ Lpi(Q)) is
compact due to the compact embedding W 1,pi(Ω) →֒→֒ Lpi(Ω).

The notation 〈·, ·〉 stands for any of the dual pairings between Xi and X∗
i , X0i and

X∗
0i, W

1,pi(Ω) and (W 1,pi(Ω))∗, and W 1,pi
0 (Ω) and W−1,qi(Ω), such as for example,

if f ∈ X∗
i and u ∈ Xi, then

〈f, u〉 =

∫ τ

0
〈f(t), u(t)〉 dt.

In what follows we denote by Liu := u′ = ∂u/∂t the time derivative operator with
its domain of definition, D(Li), given by

D(Li) =
{
u ∈ X0i : u

′ ∈ X∗
0i and u(·, 0) = 0

}
.

It is known that the linear operator Li : D(Li) ⊂ X0i → X∗
0i is closed, densely

defined and maximal monotone, e.g., cf. [10, Chap. 32]. Finally, for any number
r ∈ R we set r± := max{±r, 0}, so r = r+ − r−.

In this paper we consider the initial-Dirichlet boundary value problem for the
following quasilinear parabolic system of the form (i = 1, 2)

(1.1) u′i −∆piui = fi(x, t, u1, u2,∇u1,∇u2) in Q, ui|Γ = 0, ui(·, 0)|Ω = 0,

where ∆piu = div(|∇u|pi−2∇u) is the pi-Laplacian operator, and the right-hand side
vector field (f1, f2) : Q×R×R×R

N×R
N → R

2 is a Carathéodory map, i.e., (x, t) �→
fi(x, t, s1, s2, ξ1, ξ2) is measurable in Q for all (s1, s2, ξ1, ξ2) in R × R × R

N × R
N ,

and (s1, s2, ξ1, ξ2) �→ fi(x, t, s1, s2, ξ1, ξ2) is continuous in R×R×R
N ×R

N for a.a.
(x, t) ∈ Q.

Definition 1.1. A weak solution of problem (1.1) is a pair (u1, u2) ∈ W01 × W02

such that ui(·, 0) = 0 on Ω, fi(·, ·, u1, u2,∇u1,∇u2) ∈ X∗
0i for i = 1, 2, and

〈u′1, v1〉+

∫

Q

|∇u1|
p1−2∇u1∇v1 = 〈f1(·, ·, u1, u2,∇u1,∇u2), v1〉,

〈u′2, v2〉+

∫

Q

|∇u2|
p2−2∇u2∇v2 = 〈f2(·, ·, u1, u2,∇u1,∇u2), v2〉

for all (v1, v2) ∈ X01 ×X02.

Remark 1.2. Note, here and throughout this paper we use the notation
∫
Q
· =∫

Q
· dxdt. Further we remark that homogeneous initial- and boundary conditions

in (1.1) have been assumed without loss of generality. Inhomogeneous initial-and
boundary values of Wi functions can be considered without any difficulties.

Let us introduce operators as follows:

L : D(L1)×D(L2) → X∗
01 ×X∗

02 : 〈Lu, v〉 := 〈L1u1, v1〉+ 〈L2u2, v2〉,(1.2)

u = (u1, u2) ∈ D(L1)×D(L2) ⊂ X01 ×X02, v = (v1, v2) ∈ X01 ×X02,

Au = (−∆p1u1,−∆p2u2) : X01 ×X02 → X∗
01 ×X∗

02, defined by(1.3)

〈Au, v〉 =
2∑

k=1

〈−∆pkuk, vk〉 =
2∑

k=1

∫

Q

|∇uk|
pk−2∇uk∇vk,
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and the Nemytskij operators Nfi generated by the right-hand side fi through

Nfi(u1, u2)(x, t) = fi(x, t, u1, u2,∇u1,∇u2),

which under certain growth conditions specified later give rise to the operator Nf :
X01 ×X02 → X∗

01 ×X∗
02 defined by

(1.4) 〈Nf (u), v〉 =
2∑

k=1

∫

Q

fk(x, t, u1, u2,∇u1,∇u2)vk.

With the operators introduced above, Definition 1.1 is equivalent to the following
operator equation: Find u = (u1, u2) ∈ D(L1)×D(L2) such that

(1.5) 〈Lu+Au, v〉 = 〈Nf (u), v〉 for all v ∈ X0 = X01 ×X02.

We next introduce our basic notion of trapping region formed by a pair of sub-
supersolution.

Definition 1.3. We say that u = (u1, u2), u = (u1, u2) ∈ W1 ×W2 form a pair of
sub-supersolution for problem (1.1) if the following holds true:

(i) ui ≤ ui a.e. in Q, ui ≤ 0 ≤ ui a.e. on Ω× 0, ui ≤ 0 ≤ ui on Γ for i = 1, 2.
(ii) f1(·, ·, u1, w2,∇u1,∇w2), f1(·, ·, u1, w2,∇u1,∇w2) ∈ X∗

01,
f2(·, ·, w1, u2,∇w1,∇u2), f2(·, ·, w1, u2,∇w1,∇u2) ∈ X∗

02.
(iii)

〈u′1, v1〉+

∫

Q

|∇u1|
p1−2∇u1∇v1 − 〈f1(·, ·, u1, w2,∇u1,∇w2), v1〉

+〈u′2, v2〉+

∫

Q

|∇u2|
p2−2∇u2∇v2 − 〈f2(·, ·, w1, u2,∇w1,∇u2), v2〉 ≤ 0,

and

〈u′1, v1〉+

∫

Q

|∇u1|
p1−2∇u1∇v1 − 〈f1(·, ·, u1, w2,∇u1,∇w2), v1〉

+〈u′2, v2〉+

∫

Q

|∇u2|
p2−2∇u2∇v2 − 〈f2(·, ·, w1, u2,∇w1,∇u2), v2〉 ≥ 0

for all (v1, v2) ∈ X01 ×X02 with vi ≥ 0, and all (w1, w2) ∈ W1 ×W2 with
ui ≤ wi ≤ ui for i = 1, 2.

Definition 1.4. If u = (u1, u2), u = (u1, u2) is a pair of sub-supersolution, then
the rectangle [u, u] = [u1, u1]× [u2, u2] is called a trapping region. Here we have
denoted [ui, ui] = {u ∈ Xi : ui ≤ u ≤ ui a.e. in Q}.

Remark 1.5. The two inequalities of Definition 1.3 are equivalent to the following
four inequalities (in their respective corresponding weak form):

u′1 −∆p1u1 − f1(x, t, u1, w2,∇u1,∇w2) ≤ 0, for all w2 ∈ [u2, u2],

u′2 −∆p2u2 − f2(x, t, w1, u2,∇w1,∇u2) ≤ 0, for all w1 ∈ [u1, u1],

u′1 −∆p1u1 − f1(x, t, u1, w2,∇u1,∇w2) ≥ 0, for all w2 ∈ [u2, u2],

u′2 −∆p2u2 − f2(x, t, w1, u2,∇w1,∇u2) ≥ 0, for all w1 ∈ [u1, u1].
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In the present paper we establish an enclosure and existence result for solutions of
the parabolic system (1.1) in terms of trapping regions which stand for rectangles
formed by pairs of sub-supersolutions. This provides not only the existence of
solutions, but also their location in trapping regions in the sense of Definition 1.3.
First, we prove an abstract result when the trapping region is prescribed by a given
pair of sub-supersolution.

Second, by applying the abstract result, we prove the existence of extremal so-
lutions within trapping regions without imposing any monotonicity conditions on
the lower order vector field. More precisely, we prove the existence of minimal and
maximal solutions within a trapping region, where the notion maximal and mini-
mal refer to the partial ordering of vector-valued functions introduced by the order
cone Lp1

+ (Q) × Lp2
+ (Q). Finally, we establish the existence of positive and negative

solutions of (1.1) under verifiable conditions on the vector field (f1, f2)..
The main difficulty in our study is represented by the fact that the right-hand side

(f1, f2) in the system depends not only on the solution (u1, u2) but on its gradient
(∇u1,∇u2), too. It is for the first time that this is considered for an evolutionary
system of quasilinear equations. It should be noted that the results obtained in this
paper may be extended to more general quasilinear systems, where the pi-Laplacian
is replaced by a general divergence form Leray-Lions operator divAi(x, t, ui,∇ui).
Only for the sake of simplifying the presentation and in order to emphasize the main
idea, we have restricted to the quasiliear parabolic system (1.1) as the model case.
The elliptic counterpart of system (1.1) was treated in [3]. However, the quasilinear
parabolic system considered here is by no means a straightforward extension of
the elliptic case, and requires new tools for its treatment. Existence and enclosure
results for parabolic systems with linear elliptic diagonal operators and right-hand
side vector fields not depending on the gradient have been obtained earlier in [5, 6, 7].
A parabolic equation whose leading differential operator is ∂tu−∆pu, so containing
the p-Laplacian and actually corresponding to the equation case of our system,
but without gradient dependence in the right-hand side, is studied in [2]. In [1],
under strong regularity assumptions on the data, existence of classical solutions of
parabolic systems have been studied with linear elliptic diagonal operators having
Hölder continuous coefficients, and right-hand side vector fields that are allowed to
depend on the gradient but are required to satisfy Hölder conditions with respect to
the space-time variables and local Lipschitz conditions with respect to the dependent
variables.

2. Existence of solutions in trapping regions

Given a pair of sub-supersolution u = (u1, u2), u = (u1, u2) ∈ W1 × W2 for
problem (1.1), the following hypothesis on the right-hand side vector field (f1, f2)
is supposed:

(H1) For i = 1, 2, the functions fi : Q×R×R×R
N ×R

N → R are Carathéodory
and satisfy the growth conditions

|f1(x, t, s1, s2, ξ1, ξ2)| ≤ k1(x, t) + c1

(
|ξ1|

p1
q1 + |ξ2|

p2
q1

)
,(2.1)

|f2(x, t, s1, s2, ξ1, ξ2)| ≤ k2(x, t) + c2

(
|ξ1|

p1
q2 + |ξ2|

p2
q2

)
,(2.2)
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for a.a. (x, t) ∈ Q, for all (s1, s2) ∈ [u(x, t), u(x, t)], and for all ξi ∈ R
N ,

with constants ci ≥ 0, and functions ki ∈ Lqi
+(Q).

Corresponding to the trapping region [u, u] we consider the truncation operators
Ti : Xi → Xi (i = 1, 2) given by

(2.3) (Tiu)(x, t) =

⎧
⎨
⎩

ui(x, t) if u(x, t) < ui(x, t),
u(x, t) if ui(x, t) ≤ u(x, t) ≤ ui(x, t),
ui(x, t) if u(x, t) > ui(x, t).

The operators Ti are known to be continuous and bounded.
In addition, we consider the cut-off functions bi : Q × R → R (i = 1, 2) defined

by

(2.4) bi(x, t, s) =

⎧
⎨
⎩

−(ui(x, t)− s)pi−1 if s < ui(x, t),
0 if ui(x, t) ≤ s ≤ ui(x, t),
(s− ui(x, t))

pi−1 if s > ui(x, t).

The functions bi are Carathéodory with the growth

(2.5) |bi(x, t, s)| ≤ k̃i(x, t) + c̃i|s|
pi−1

for a.a. (x, t) ∈ Q, for all s ∈ R, with constants c̃i ≥ 0, and functions k̃i ∈ Lqi
+(Ω).

Furthermore, there are positive constants a
(i)
1 and a

(i)
2 such that

(2.6)

∫

Q

bi(x, t, u)u ≥ a
(i)
1 ‖u‖pi

Lpi (Q) − a
(i)
2 , ∀ u ∈ Lpi(Q).

By (2.5) it turns out that the associated Nemytskij operators Bi : L
pi(Q) → Lqi(Q)

defined by Bi(ui)(x, t) = bi(x, t, ui(x, t)) are well defined, continuous and bounded.
From (2.1) and (2.2 it follows that the Nemytskij operators Nfi : [u, u] →

Lqi(Q) ⊂ X∗
i (i = 1, 2) are well defined, continuous and bounded.

Let Tu := (T1u1, T2u2), then T : X1×X2 → X1×X2 is continuous and bounded,
and thus the compositions Nfi ◦ T are well defined and

(2.7) Nfi ◦ T : X1 ×X2 → X∗
i is bounded and continuous,

which implies that the operator Nf ◦ T : X1 ×X2 → X∗
1 ×X∗

2 given by

(2.8) 〈Nf ◦ T (u), v〉 =
2∑

k=1

∫

Q

fk(x, t, T1u1, T2u2,∇T1u1,∇T2u2)vk

is bounded and continuous as well. In order to handle system (1.1) (or equivalently
(1.5)), we consider next the following truncated, auxiliary problem: Find (u1, u2) ∈
D(L1)×D(L2) such that

(2.9) 〈Lu+Au+ λB(u), v〉 = 〈Nf ◦ T (u), v〉 for all v ∈ X0 = X01 ×X02,

where the operators L, A, Nf ◦ T are given by (1.2), (1.3) and (2.8), respectively,
and λ = (λ1, λ2) with λ1 > 0 and λ2 > 0 to be chosen appropriately, and λB(u) :=
(λ1B1(u1), λ2B2(u2)). Our next goal is to show the existence of solutions for the
truncated, auxiliary problem (2.9) using an abstract surjectivity result for evolution
equations, see [4, Theorem 2.152]), which adapted to the situation of problem (2.9)
reads as follows.
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Theorem 2.1. Let L : D(L) ⊂ X0 → X∗
0 be as given by (1.2) with X0 := X01 ×

X02, and let A : X0 → X∗
0 be bounded, demicontinuous, and pseudomonotone with

respect to D(L). If A is coercive, then L + A : D(L) → X∗
0 is surjective, i.e.,

(L+A)(D(L)) = X∗
0 .

Problem (2.9) can equivalently be reformulated as

(2.10) u ∈ D(L) : Lu+Au = 0, with A = A+ λB −Nf ◦ T.

Lemma 2.2. The operator A = A + λB −Nf ◦ T : X0 → X∗
0 is pseudomonotone

with respect to the domain D(L) = D(L1)×D(L2).

Proof. As for the definition of pseudomonotone with respect to the domain D(L1)×
D(L2) we refer to [4, Definition 2.151]. In order to prove this, let (un) = (u1n, u2n) ⊂
D(L) = D(L1)×D(L2) be a sequence such that uin ⇀ ui in X0i, u

′
in ⇀ u′i in X∗

0i,
for i = 1, 2, i.e., un ⇀ u = (u1, u2) in W0 = W01 ×W02 and

(2.11) lim sup
n→∞

〈A(un), un − u〉 ≤ 0.

We have to show that

(2.12) A(un) ⇀ A(u) in X∗
0 = X∗

01 ×X∗
02 and 〈A(un), un〉 → 〈A(u), u〉.

It is known that W0 = W01 ×W02 is compactly embedded in Lp1(Q)× Lp2(Q) (see
[4, Theorem 2.141]) which yields

(2.13) uin → ui in Lpi(Q) for i = 1, 2.

Since B : Lp1(Q) × Lp2(Q) → Lq1(Q) × Lq2(Q) is continuous and bounded, we get
from (2.13)

(2.14) lim
n→∞

〈B(un), un − u〉 = 0.

From un ⇀ u = (u1, u2) in W0 = W01 × W02, we infer that (un) is, in particular,
bounded in X0 = X01 ×X02, and thus Nf ◦ T (un) is bounded in Lq1(Q) × Lq1(Q)
due to (H1), which by taking into account (2.8) and (2.13) yields

(2.15) lim
n→∞

〈Nf ◦ T (un), un − u〉 = 0.

Then by (2.14) and (2.15) we infer that

(2.16) lim
n→∞

〈λB(un)−Nf ◦ T (un), un − u〉 = 0.

With (2.11) and (2.16) and A = A+ λB −Nf ◦ T we finally obtain

(2.17) lim sup
n→∞

〈Aun, un − u〉 ≤ 0,

which due to the definition of A given by (1.3) means

lim sup
n→∞

〈Aun, un − u〉

= lim sup
n→∞

[
〈−∆p1u1n, u1n − u1〉+ 〈−∆p2u2n, u2n − u2〉

]
≤ 0.(2.18)

From the weak convergence uin ⇀ ui in X0i, and −∆pi : X0i → X∗
0i being continu-

ous, bounded and strictly monotone, we get from (2.18) by using

lim
n→∞

〈−∆piui, uin − ui〉 = 0,
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the following equality

lim sup
n→∞

[
〈−∆p1u1n − (−∆p1u1), u1n − u1〉

+〈−∆p2u2n − (−∆p2u2), u2n − u2〉
]

= lim sup
n→∞

[
〈−∆p1u1n, u1n − u1〉+ 〈−∆p2u2n, u2n − u2〉

]
≤ 0.

From this we infer by taking into account the strict monotonicity of the pi-Laplacian
that

0 ≤ lim sup
n→∞

[
〈−∆piuin − (−∆piui), uin − ui〉 ≤ 0,

and thus

(2.19) 0 = lim
n→∞

[
〈−∆piuin − (−∆piui), uin − ui〉 = lim

n→∞
〈−∆piuin, uin − ui〉.

Since the negative pi-Laplacian −∆pi : W 1,pi
0 (Ω) → (W 1,pi

0 (Ω))∗ has the (S+)-
property, it follows that its time-extension −∆pi : X0i → X∗

0i has the (S+)-property
with respect to D(Li) for i = 1, 2 (see [4, Theorem 2.153]), which along with the
weak convergence uin ⇀ ui in X0i results in

(2.20) uin → ui (strongly) in X0i, i = 1, 2.

Now it is straightforward to obtain from (2.20) that (2.12) holds true. The claim that
the operator A is pseudomonotone with respect to D(L1)×D(L2) is verified. �

Lemma 2.3. Assume that u = (u1, u2), u = (u1, u2) ∈ W1 ×W2 is a pair of sub-
supersolution for problem (1.1) such that hypothesis (H1) is satisfied. Then problem
(2.9) has a solution provided λ1 > 0 and λ2 > 0 are sufficiently large.

Proof. The operators A, B, Nf ◦T : X0 → X∗
0 are bounded and continuous, and due

to Lemma 2.2, the operatorA = A+λB−Nf◦T : X0 → X∗
0 is pseudomonotone with

respect to the domain D(L) = D(L1)×D(L2). Thus we may apply Theorem 2.1 to
ensure the existence of solutions of the truncated auxiliary problem (2.9) provided
that A is also coercive, which reads as (note: X0 = X01 ×X02, u = (u1, u2))

(2.21)
〈A(u), u〉

‖u‖X0

→ 0 as ‖u‖X0
→ ∞,

where ‖u‖X0
= ‖u1‖X01

+ ‖u2‖X02
= ‖∇u1‖Lp1 (Q) + ‖∇u2‖Lp2 (Q). Towards this we

have

(2.22) 〈Au, u〉 = ‖∇u1‖
p1
Lp1 (Q) + ‖∇u2‖

p2
Lp2 (Q).

Using (2.1), (2.2) and Young’s inequality, we find for any positive ε and with some
positive constants di (i = 1, 2) that

|〈Nfi ◦ T (u), ui〉| ≤

∫

Q

|fi(x, t, T1u1, T2u2,∇T1u1,∇T2u2)ui|

≤

∫

Q

(ki + ci(|∇T1u1|
p1−1 + |∇T2u2|

p2
q1 )|ui|

≤ (‖ki‖Lqi (Q) + di)‖u1‖Lp1 (Q)

+ε(‖∇u1‖
p1
Lp1 (Q) + ‖∇u2‖

p2
Lp2 (Q))

7



+C(ε)(‖u1‖
p1
Lp1 (Q) + ‖u2‖

p2
Lp2 (Q)),(2.23)

where C(ε) is a positive constant depending only on ε. By means of (2.6), (2.22),
and (2.23), we then arrive at

〈Au, u〉 ≥ (1− ε)(‖∇u1‖
p1
Lp1 (Q) + ‖∇u2‖

p2
Lp2 (Q))

+(λ1a
(1)
1 − C(ε)) ‖u1‖

p1
Lp1 (Q)

+(λ2a
(2)
1 − C(ε)) ‖u2‖

p2
Lp2 (Q)

−(‖k1‖Lq1 (Q) + d1)‖u1‖Lp1 (Q) − (‖k2‖Lq2 (Q) + d2)‖u2‖Lp2 (Q)

−(λ1a
(1)
2 + λ2a

(2)
2 ).(2.24)

Choosing ε < 1 and λi large enough such that λia
(i)
1 − C(ε) > 0, with i = 1, 2,,

from (2.24) we infer that property (2.21) is valid, whence A is coercive. Applying
Theorem 2.1, we obtain the existence of solutions of problem (2.9), which completes
the proof. �

Now we are in the position to prove our main existence and enclosure result.

Theorem 2.4. Assume that u = (u1, u2), u = (u1, u2) ∈ W1 × W2 is a pair of
sub-supersolution for problem (1.1) such that hypothesis (H1) is satisfied. Then
problem (1.1) has at least one solution u = (u1, u2) satisfying the location property
u ≤ u ≤ u.

Proof. By Lemma 2.3 we know that the auxiliary truncated system (2.9) possesses
a solution u = (u1, u2) ∈ D(L1)×D(L2) provided λ1 > 0 and λ2 > 0 are sufficiently
large. We develop a comparison procedure aiming to prove the enclosure u ≤ u ≤ u
for any solution u of the auxiliary problem (2.9), which completes the proof of
Theorem 2.4, since then B(u) = 0, and Tu = u, and thus u is a solution of (1.1)
within the trapping region [u, u]. Let us verify the inequality u ≤ u only, since the
inequality u ≤ u can be shown in a similar way.

Definition 1.3 with the test function (v1, v2) = ((u1−u1)
+, (u2−u2)

+) ∈ X01×X02

gives

〈u′1, (u1 − u1)
+〉

+

∫

Q

(
|∇u1|

p1−2∇u1∇(u1 − u1)
+ − f1(·, ·, u2, w2,∇u1,∇w2)(u1 − u1)

+
)

+〈u′2, (u2 − u2)
+〉

+

∫

Q

(
|∇u2|

p2−2∇u2∇(u2 − u2)
+ − f2(·, ·, w1, u2,∇w1,∇u2)(u2 − u2)

+
)

≥ 0

(2.25)

for all (w1, w2) ∈ W1 ×W2 with ui ≤ wi ≤ ui for i = 1, 2. Then (2.25) and system
(2.9) with the test functions (v1, v2) = ((u1 − u1)

+, (u2 − u2)
+) enable us to find

〈(u1 − u1)
′, (u1 − u1)

+〉+ 〈(u2 − u′2, (u2 − u2)
+〉
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+

∫

Q

(
|∇u1|

p1−2∇u1 − |∇u1|
p1−2∇u1

)
∇(u1 − u1)

+

+

∫

Q

(
|∇u2|

p2−2∇u2 − |∇u2|
p2−2∇u2

)
∇(u2 − u2)

+

+λ1

∫

Q

b1(·, ·, u1)(u1 − u1)
+ + λ2

∫

Q

b2(·, ·, u2)(u2 − u2)
+

−

∫

Q

(
Nf1 ◦ T (u)− f1(·, ·, u1, w2,∇u1,∇w2)

)
(u1 − u1)

+

−

∫

Q

(
Nf2 ◦ T (u)− f2(·, ·, w1, u2,∇w1,∇u2)

)
(u2 − u2)

+

≤ 0

(2.26)

for all (w1, w2) ∈ W1 ×W2 with ui ≤ wi ≤ ui for i = 1, 2. Therefore it is permitted
to insert w1 = T1u1 and w2 = T2u2. Then (2.26) implies

〈(u1 − u1)
′, (u1 − u1)

+〉+ 〈(u2 − u′2, (u2 − u2)
+〉

+λ1

∫

Q

b1(·, ·, u1)(u1 − u1)
+ + λ2

∫

Ω
b2(·, ·, u2)(u2 − u2)

+ ≤ 0.

(2.27)

We note that

〈(ui − ui)
′, (ui − ui)

+〉 =
1

2
‖(ui − ui)

+(·, τ)‖2L2(Ω) (i = 1, 2).

In view of this and by the definition of the cut-off functions bi in (2.4), inequality
(2.27) gives rise to

λ1

∫

Q

[(u1 − u1)
+]p1 + λ2

∫

Q

[(u2 − u2)
+]p2 ≤ 0.

Thus we are led to ui ≤ ui for i = 1, 2.
Consequently, we know that the solution u = (u1, u2) of auxiliary truncated

problem (2.9) verifies u ≤ u ≤ u. This makes that Tiui = ui and Bi(ui) = 0 for
i = 1, 2 (see (2.3) and (2.4)). Clearly, (2.9) becomes (1.1), which completes the
proof. �

3. Extremal solutions in trapping regions

Given a trapping region [u, u] for problem (1.1) formed by a pair of sub-supersolution,
in this section we are going to show the existence of extremal solutions of (1.1) in
[u, u]. Denote by S the set of all solutions of (1.1) in [u, u], by extremal solu-
tions we understand maximal and minimal solutions in [u, u] or equivalently, max-
imal and minimal elements of S with respect to the underlying partial ordering in
W0 = W01 ×W02, which is defined by the positive order cone L+ given by

L+ = Lp1
+ (Q)× Lp2

+ (Q),
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where Lpi
+ (Q) is the set of all nonnegative Lpi(Q)-functions. An element u∗ ∈ S is

called a maximal element of S if w ∈ S and u∗ ≤ w implies u∗ = w. Similarly, a
minimal element u∗ of S is defined.

Theorem 3.1. Assume that u = (u1, u2), u = (u1, u2) ∈ W1 × W2 is a pair of
sub-supersolution for problem (1.1) such that hypothesis (H1) is satisfied. Then
problem (1.1) has extremal solutions within [u, u], i.e., S has maximal and minimal
elements.

Proof. By Theorem 2.4, S �= ∅. Let us focus on the assertion regarding the minimal
element of S, because the existence of a maximal element can be proved by analogous
reasoning.

Our basic tool is Zorn’s lemma. To this end we consider a chain C in S. As C
is order bounded, i.e., C is order bounded above by u and below by u, and since
Lpi
+ (Q) is a regular order cone (see [9, p.28]), we can apply [9, Proposition 1.3.2] to

ensure that there is a sequence un = (u1n, u2n) ⊂ C, with un+1 ≤ un for all n ≥ 1
such that

inf C = lim
n→∞

un.

Following similar estimates as in (2.23) and (2.24), and taking into account that
(u1n, u2n) are solutions of (1.1) belonging to the trapping region [u, u], we obtain
the estimate

1

2
(‖u1n(·, τ)‖

2
L2(Ω) + ‖u2n(·, τ)‖

2
L2(Ω))(3.1)

+(1− η)(‖∇u1n‖
p1
Lp1 (Q) + ‖∇u2n‖

p2
Lp2 (Q))

≤ (‖k1‖Lq1 (Q) + d1)‖u1n‖Lp1 (Q) + (‖k2‖Lq2 (Q) + d2)‖u2n‖Lp2 (Q)

+C(η)(‖u1n‖
p1
Lp1 (Q) + ‖u2n‖

p2
Lp2(Q))

for every η > 0, with constants C(η) > 0 and di > 0, i = 1, 2. By (3.1) it follows
that the sequence un = (u1n, u2n) is bounded in X01×X02. Directly from the system
(1.1) with the solution (u1n, u2n) we then infer that (u′n) = (u′1n, u

′
2n) is bounded in

X∗
01×X∗

02. Consequently, there is a subsequence (again denoted by (un)) such that
uin ⇀ ui in W0i as n → ∞, with ui ∈ D(Li) for i = 1, 2. Here we have used that
Li is a linear closed operator.

Notice again from equation (1.1) (resp. (1.5) with solution (un) = (u1n, u2n) and
test function un − u we have

〈Aun, un − u〉 = −〈Lun, un − u〉+ 〈Nf (un), un − u〉,

which in view of

−〈Lun, un − u〉 = −〈Lun − Lu, un − u〉 − 〈Lu, un − u〉 ≤ −〈Lu, un − u〉,

yields the estimate

(3.2) 〈Aun, un − u〉 ≤ −〈Lu, un − u〉+ 〈Nf (un), un − u〉,

As the right-hand side of (3.2) tends to zero as n → ∞ we get by passing to the
lim sup in (3.2)

lim sup
n→∞

〈Aun, un − u〉 ≤ 0,
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or equivalently

(3.3) lim sup
n→∞

[〈−∆p1u1n, u1n − u1〉+ 〈−∆p2u2n, u2n − u2〉] ≤ 0.

The weak convergence of (un) = (u1n, u2n) as seen above along with (3.3) and
the (S+)-property of −∆pi with respect to D(Li) implies the strong convergence
uin → ui in X0i for i = 1, 2. This allows us to pass to the limit in

〈Lun +Aun, v〉 = 〈Nf (un), v〉, ∀ v ∈ X0 = X01 ×X02,

which proves that inf C = limn→∞ un = u belongs to S. Therefore Zorn’s Lemma
can be applied providing a minimal element of S. The proof is thus complete. �

Remark 3.2. Assuming hypothesis (H1), the main results of Section 2 and Section
3, Theorem 2.4 and Theorem 3.1, respectively, remain true for the following more
general initial-Dirichlet boundary value problem (i = 1, 2): Find ui ∈ W0i with
ui(·, 0) = 0 such that

(3.4) u′i +Aiui = fi(x, t, u1, u2,∇u1,∇u2) + hi in Q,

where hi ∈ X∗
0i, and Ai : X01 → X∗

0i are given by

Aiui(x, t) = −
N∑

k=1

∂

∂xk
a
(i)
k (x, t,∇ui(x, t)),

with coefficients a
(i)
k : Q × R

N → R satisfying the following hypotheses of Leray-
Lions type:

(A1) a
(i)
k : Q × R

N → R are Carathéodory functions, satisfying the growth con-
dition

|a
(i)
k (x, t, ξ)| ≤ k

(i)
0 (x, t) + c0i|ξ|

pi−1, for a.e. (x, t) ∈ Q, ∀ ξ ∈ R
N ,

where k
(i)
0 ∈ Lqi

+(Q), and c0i are positive constants.

(A2) For a.e. (x, t) ∈ Q and for all ξ, ξ′ ∈ R
N with ξ �= ξ′ the following mono-

tonicity condition is satisfied

N∑

k=1

(
a
(i)
k (x, t, ξ)− a

(i)
k (x, t, ξ′)

)
(ξk − ξ′k) > 0.

(A2) There are positive constants μi and functions ki1 ∈ L1(Q) such that

N∑

k=1

a
(i)
k (x, t, ξ)ξk ≥ μi|ξ|

pi + ki1(x, t), for a.e. (x, t) ∈ Q, ∀ ξ ∈ R
N .

The proofs of the main results, Theorem 2.4 and Theorem 3.1, with the more
general leading quasilinear elliptic operator A = (A1, A2) given above, can be done
in a straightforward manner.
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4. Constuction of trapping regions

The aim of this section is to provide a construction of specific trapping regions
that will allow us to show the existence of at least one positive solution of the
following initial-Dirichlet boundary value problem (i = 1, 2) with nonnegative initial
values ψi ∈ L∞

+ (Ω), (i = 1, 2): Find ui ∈ W0i with ui(·, 0) = ψi such that

(4.1) u′i −∆piui = fi(x, t, u1, u2,∇u1,∇u2) in Q,

where we assume hypothesis (H1) to hold true. To make sure that problem (4.1)
with inhomogeneous initial values and homogeneous Dirichlet-boundary conditions
can be handled by the results obtained in the preceding sections, we are going to
transform (4.1) into a problem of the type discussed in Remark 3.2. To this end let
wi ∈ W0i denote the solutions of the following problem: Find wi ∈ W0i such that
wi(·, 0) = ψi and

(4.2) w′
i −∆piwi = 0 in Q.

The existence of a unique solution wi of (4.2) (even for more general initial values
ψi ∈ L2(Ω)) follows by standard existence results, see e.g. [10, Theorem 30.A]. Now
we introduce the new function ûi = ui − wi. Then problem (4.1) is transformed
into the following equivalent problem for ûi with homogeneous initial and boundary
values: Find ûi ∈ W0i with ûi(·, 0) = 0 such that

(4.3) û′i−∆pi(ûi+wi) = fi(x, t, û1+w1, û2+w2,∇(û1+w1),∇(û2+w2))−w′
i in Q.

Setting

Aiûi = −∆pi(ûi + wi),

f̂i(x, t, û1, û2,∇û1,∇û2)

= fi(x, t, û1 + w1, û2 + w2,∇(û1 + w1),∇(û2 + w2)),

hi = −w′
i,

then (4.3) results in: Find ûi ∈ W0i with ûi(·, 0) = 0

(4.4) û′i +Aiûi = f̂i(x, t, û1, û2,∇û1,∇û2) + hi in Q.

which can easily be verified to be of the structure of the homogeneous initial-
Dirichlet boundary value problem (3.4) discussed in Remark 3.2. It should be noted
that hypotheses (H1) for the right-hand sides fi hold true for the right-hand sides

f̂i of (4.4) as well. Moreover, a pair (u, u) of sub-supersolution for the problem (4.1)
with the inhomogeneous initial values ψi yields a corresponding transformed pair
of sub-supersolutions (û, û) of (4.4), where û = u − w and û = u − w. Therefore,
according to Remark 3.2 we may apply our main results to the problem (4.1). In
a similar way one can deal with inhomogeneous boundary values (in the sense of
traces) as well.
Our goal is to formulate conditions on the right-hand side vector field that will
allow us to construct trapping regions which imply the existence of nonnegative
solutions of (4.1). Assuming homogeneous boundary conditions, we consider two
cases: Homogeneous initial data and inhomogeneous initial data.

Case I: Homogeneous Initial Values
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To this end, we recall the eigenvalue problem for −∆p on W 1,p
0 (Ω) with 1 < p < ∞

which reads as follows

(4.5)

{
−∆pu = λ|u|p−2u in Ω
u = 0 on ∂Ω.

It has a first eigenvalue λ1,p > 0, which is characterized by

λ1,p = inf

[
‖∇u‖p

Lp(Ω)

‖u‖p
Lp(Ω)

: u ∈ W 1,p
0 (Ω), u �= 0

]
.

Denote by û1,p the corresponding Lp-normalized positive eigenfunction, i.e. û1,p
solves (4.5) with λ = λ1,p, û1,p > 0 in Ω, and ‖û1,p‖Lp(Ω) = 1. In addition to
hypothesis (H1) let us suppose the following hypotheses:

(H2-0) There exist continuously differentiable functions θi : [0, τ ] → R, i = 1, 2,
such that δi := mint∈[0,τ ] θi(t) > 0, and for a.a. (x, t) ∈ Q

f1(x, t, θ1(t), s2, 0, ξ2) ≤ θ′1(t), ∀ s2 ∈ [0, θ2(t)], ξ2 ∈ R
N ,

f2(x, t, s1, θ2(t), ξ1, 0) ≤ θ′2(t), ∀ s1 ∈ [0, θ1(t)], ξ1 ∈ R
N ,

(H3-0) There exist positive constants δ, η1, η2 such that for a.a. (x, t) ∈ Q

f1(x, t, s1, s2, ξ1, ξ2) ≥ η1, ∀ s1 ∈ [0, δ], |ξ1| ≤ δ, s2 ∈ [0, θ2(t)], ξ2 ∈ R
N ,

f2(x, t, s1, s2, ξ1, ξ2) ≥ η2, ∀ s1 ∈ [0, θ1(t)], ξ1 ∈ R
N , s2 ∈ [0, δ], |ξ2| ≤ δ.

Theorem 4.1. Assume hypothesis (H1), (H2-0), and (H3-0), where the growth
conditions (2.1), (2.1) of (H1) are supposed to hold for all (s1, s2) within [0, θ1(t)]×
[0, θ2(t)]. Then for ε > 0 sufficiently small, system (1.1) (resp. (4.1)), admits
trapping regions of the form:

[ε tû1,p1 , θ1(t)]× [ε tû1,p2 , θ2(t)],

which give rise to the existence of a positive solution (u1, u2) ∈ [ε tû1,p1 , θ1(t)] ×
[ε tû1,p2 , θ2(t)].

Proof. From (H2-0) we immediately get for a.a. (x, t) ∈ Q

(4.6)

⎧
⎪⎪⎨
⎪⎪⎩

θ′1(t)−∆p1(θ1(t))− f1(x, t, θ1(t), s2, 0, ξ2) ≥ 0,
∀ s2 ∈ [0, θ2(t)], ξ2 ∈ R

N ,
θ′2(t)−∆p2(θ2(t))− f2(x, t, s1, θ2(t), ξ1, 0) ≥ 0,
∀ s1 ∈ [0, θ1(t)], ξ1 ∈ R

N .

Choose δ ∈ (0,min{δ1, δ2}), and take ε > 0 sufficiently small such that

ε tû1,pi(x) ≤ δ, and ε t|∇û1,pi(x)| ≤ δ,

for all x ∈ Ω, t ∈ [0, τ ], i = 1, 2. For a possibly smaller δ we can make use of
hypothesis (H3-0) obtaining the following inequalities for a.a. (x, t) ∈ Q

(4.7)

⎧
⎪⎪⎨
⎪⎪⎩

f1(x, t, ε tû1,p1(x), s2, ε t∇û1,p1(x), ξ2) ≥ η1,
∀ s2 ∈ [0, θ2(t)], ξ2 ∈ R

N ,
f2(x, t, s1, ε tû1,p2(x), ξ1, ε t∇û1,p2(x)) ≥ η2,
∀ s1 ∈ [0, θ1(t)], ξ1 ∈ R

N .
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Choosing ε > 0 even smaller (if necessary), enables us to suppose that

ε û1,pi(x) + λ1,pi

(
ε tû1,pi(x)

)pi−1
≤ ηi,

which in view of (4.7) yields

(4.8)

⎧
⎪⎪⎨
⎪⎪⎩

(ε tû1,p1)
′ −∆p1(ε tû1,p1)− f1(x, t, ε tû1,p1(x), s2, ε t∇û1,p1(x), ξ2) ≤ 0,

∀ s2 ∈ [0, θ2(t)], ξ2 ∈ R
N ,

(ε tû1,p2)
′ −∆p2(ε tû1,p2)− f2(x, t, s1, ε tû1,p2(x), ξ1, ε t∇û1,p2(x)) ≤ 0,

∀ s1 ∈ [0, θ1(t)], ξ1 ∈ R
N .

From (4.6) and (4.8) it follows that

u = (u1, u2) := (ε tû1,p1 , ε tû1,p2), and u = (u1, u2) = (θ1, θ2)

constitute a pair of sub-supersolution for (1.1) (resp. (4.1), which completes the
proof. �

An explicit example for the right-hand side vector field (f1, f2) that satisfies
hypotheses (H1), (H2-0), (H3-0) is as follows.

Example 4.2. Let (f1, f2) be given by

f1(x, t, s1, s2, ξ1, ξ2) = γ1 sin(|s1|
p1−2s1) + t arctan(s1) |ξ1|

1

r |ξ2|
1

r + α1,

f2(x, t, s1, s2, ξ1, ξ2) = γ2 sin(|s2|
p2−2s2) + t arctan(s2) |ξ1|

1

r |ξ2|
1

r + α2,

for all (x, t, s1, s2, ξ1, ξ2) ∈ Q × R × R × R
N × R

N with positive constants γi, αi, r
satisfying αi > γi (i = 1, 2), and

2

r
≤ min{p1 − 1, p2 − 1,

p2(p1 − 1)

p1
,
p1(p2 − 1)

p2
}.

For δi, βi > 0 with βi ≥ γi + αi, i = 1, 2, we define

θi(t) = βi t+ δi, t ∈ [0, τ ].

Let us check that hypotheses (H1), (H2-0), (H3-0) are fulfilled. Regarding (H1) we
have

|f1(x, t, s1, s2, ξ1, ξ2)| ≤ γ1 +
τπ

4

(
|ξ1|

2

r + |ξ2|
2

r

)
+ α1 ≤ a1

(
1 + |ξ1|

p1
q1 + |ξ2|

p2
q1

)

with some positive constant a1, and for a.a. (x, t) ∈ Q, for all (s1, s2) ∈ [0, θ1(t)]×
[0, θ2(t)], and for all (ξ1, ξ2) ∈ R

N × R
N . Similarly, for f2.

Regarding (H2-0) we have

f1(x, t, θ1(t), s2, 0, ξ2) ≤ γ1 + α1 ≤ β1 = θ′1(t),

for a.a. (x, t) ∈ Q, for all s2 ∈ R, and for all ξ2 ∈ R
N , and similarly for f2.

Finally, checking (H3-0), we have

f1(x, t, s1, s2, ξ1, ξ2) ≥ α1,

for a.a. (x, t) ∈ Q, for all s1 ∈ [0, δ], for all s2 ∈ R, and for all (ξ1, ξ2) ∈ R
N × R

N .
A similar estimate holds true for f2.
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Case II: Inhomogeneous Initial Values

Here we consider nonnegative, nonzero initial values ψ. Using the same notation
regarding the first eigenvalue and eigenfunction of the pi-Laplacian, we now assume
the following conditions on the initial values ψi and on the right-hand side vector
field (f1, f2) of problem (4.1):

(Hψi
) ψi ∈ L∞

+ (Ω) and there are ̺i > 0 such that ̺iû1,pi(x) ≤ ψi(x) for a.e. x ∈ Ω.
(H2) There exist continuously differentiable functions θi : [0, τ ] → R, i = 1, 2,

with θi(t) > 0, such that δi := mint∈[0,τ ] θi(t) ≥ ‖ψi‖∞, and for a.a. (x, t) ∈
Q

f1(x, t, θ1(t), s2, 0, ξ2) ≤ θ′1(t) for all s2 ∈ [0, θ2(t)], all ξ2 ∈ R
N ,

f2(x, t, s1, θ2(t), ξ1, 0) ≤ θ′2(t) for all s1 ∈ [0, θ1(t)], all ξ1 ∈ R
N ,

(H3) There are constants β1 > λ1,p1 and β2 > λ1,p2 such that

lim inf
s1→0+,ξ1→0

f1(x, t, s1, s2, ξ1, ξ2)

sp1−1
1

≥ β1

uniformly for a.a. (x, t) ∈ Q, all 0 ≤ s2 ≤ θ2(t), all ξ2 ∈ R
N ;

lim inf
s2→0+,ξ2→0

f2(x, t, s1, s2, ξ1, ξ2)

sp2−1
2

≥ β2

uniformly for a.a. (x, t) ∈ Q, all 0 ≤ s1 ≤ θ1(t), all ξ1 ∈ R
N ;

Theorem 4.3. Assume hypotheses (Hψi
), (H1)–(H3), where the growth conditions

(2.1), (2.2) of (H1) are supposed to hold true for all s = (s1, s2) within the time-
dependent rectangle [0, θ1(t)] × [0, θ2(t)] for t ∈ [0, τ ]. Then, for ε > 0 sufficiently
small, system (4.1) admits a trapping region of the form [εû1,p1 , θ1(t)]×[εû1,p2 , θ2(t)],
which gives rise to the existence of a positive solution (u1, u2) ∈ [εû1,p1 , θ1(t)] ×
[εû1,p2 , θ2(t)].

Proof. Assumption (H2) ensures that for a.a. (x, t) ∈ Q one has
(4.9){

θ′1(t)−∆p1(θ1(t))− f1(x, t, θ1(t), s2, 0, ξ2) ≥ 0, s2 ∈ [0, θ2(t)], ξ2 ∈ R
N ,

θ′2(t)−∆p2(θ2(t))− f2(x, t, s1, θ2(t), ξ1, 0) ≥ 0, s1 ∈ [0, θ1(t)], ξ1 ∈ R
N .

Assumption (H3) entails that there exists δ > 0 such that for a.a. (x, t) ∈ Q it holds
(4.10){

f1(x, t, s1, s2, ξ1, ξ2) > λ1,p1s
p1−1
1 , s1, |ξ1| ∈ (0, δ), s2 ∈ [0, θ2(t)], ξ2 ∈ R

N ,

f2(x, t, s1, s2, ξ1, ξ2) > λ1,p2s
p2−1
2 , s1 ∈ [0, θ1(t)], s2, |ξ2| ∈ (0, δ), ξ1 ∈ R

N .

Since the continuous functions θ1(t), θ2(t) on [0, τ ] are positive, we can choose

δ ∈ (0,min{δ1, δ2}).

Now we take ε > 0 sufficiently small such that ε < ̺i and

0 < εû1,pi(x) ≤ δ, ε|∇û1,pi(x)| ≤ δ for all x ∈ Ω, i = 1, 2.
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Due to (4.10), for a.a. (x, t) ∈ Q, for all s2 ∈ [0, θ2(t)], ξ2 ∈ R
N , s1 ∈ [0, θ1(t)], and

ξ1 ∈ R
N we get the inequalities

(4.11)

{
(εû1,p1)

′ −∆p1(εû1,p1)− f1(x, t, εû1,p1 , s2, ε∇û1,p1 , ξ2) ≤ 0,
(εû1,p2)

′ −∆p2(εû1,p2)− f2(x, t, s1, εû1,p2 , ξ1, ε∇û1,p2) ≤ 0.

Notice that (4.9) and (4.11) are fulfilled with w1 ∈ [εû1,p1 , θ1] and ∇w1 in place
of s1 and ξ1, respectively, as well as with w2 ∈ [εû1,p2 , θ2] and ∇w2 in place of
s2 and ξ2, respectively. It follows that u = (u1, u2) := (εû1,p1 , εû1,p2) and u =
(u1, u2) := (θ1, θ2) constitute a pair of sub-supersolution for problem (4.1) in the
sense of Definition 1.3. Therefore, Theorem 2.4 along with Remark 3.2 can be
applied, which guarantees the existence of a (weak) positive solution u = (u1, u2)
of problem (4.1) within the trapping region [u, u], so there hold

εû1,p1 ≤ u1 ≤ θ1, εû1,p2 ≤ u2 ≤ θ2.

This completes the proof. �

As an immediate consequence of Theorem 3.1 and applying a regularity result
given by [8, Theorem 1, Theorem 2] we get the following corollary.

Corollary 4.4. Assume the hypotheses of Theorem 4.3. Then problem (4.1) has
positive extremal solutions in the trapping region [εû1,p1 , θ1]× [εû1,p2 , θ2]. Moreover,

ui ∈ C1,γ(Ω× (0, τ ]), where γ ∈ (0, 1).

Remark 4.5. Hypothesis (Hψi
) on the initial data ψi can be satisfied by a large

class of functions from L2
+(Ω) such as follows: If ψi(x) ≥ σi > 0 then the condition

̺iû1,pi(x) ≤ ψi(x) for a.e. x ∈ Ω is obviously satisfied by choosing ̺i > 0 small

enough, since 0 ≤ û1,pi ∈ C1
0 (Ω)+, where

C1
0 (Ω)+ =

{
u ∈ C1

0 (Ω) : u(x) ≥ 0 for all x ∈ Ω
}
.

Moreover, û1,pi even belongs to the interior int(C1
0 (Ω)+) of C

1
0 (Ω)+ which is known

to be nonempty and characterized as follows

int(C1
0 (Ω)+) = {u ∈ C1

0 (Ω)+ : u(x) > 0 for all x ∈ Ω and
∂u

∂ν
< 0 on ∂Ω}.

Therefore, any nonnegative initial value ψi ∈ int(C1
0 (Ω)+) satisfies condition (Hψi

).
A simple explicit example for the right-hand side vector field (f1, f2) that satisfies

hypotheses (H1), (H2), (H3) is as follows.

Example 4.6. Let Ω, τ , p1, p2 be as in the statement of problem (1.1). Fix
constants β1 > λ1,p1 , β2 > λ1,p2 , δ1 > 0, δ2 > 0, and r > 0 with δi ≥ ‖ψi‖∞, and

2

r
≤ min

{
p1 − 1, p2 − 1,

p2(p1 − 1)

p1
,
p1(p2 − 1)

p2

}
.

We define (f1, f2) : Q× R× R× R
N × R

N → R
2 by

f1(x, t, s1, s2, ξ1, ξ2) = β1 sin(|s1|
p1−2s1) + t arctan(s1)|ξ1|

1

r |ξ2|
1

r ,

f2(x, t, s1, s2, ξ1, ξ2) = β2 sin(|s2|
p2−2s2) + t arctan(s2)|ξ1|

1

r |ξ2|
1

r

for all (x, t, s1, s2, ξ1, ξ2) ∈ Q× R× R× R
N × R

N .
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We show that hypotheses (H1), H(2), (H3) of Theorem 4.3 are verified. Indeed,
there holds

|fi(x, t, s1, s2, ξ1, ξ2)| ≤ βi +
τπ

4

(
|ξ1|

2

r + |ξ2|
2

r

)
≤ ai

(
1 + |ξi|

pi−1 + |ξj |
pj

qi

)

with a constant ai > 0, for i = 1, 2, j = 1, 2, i �= j, so condition (H1) is satisfied.
Set θi(t) = βit + δi and for all t ∈ [0, τ ], i = 1, 2. It is straightforward to check

that condition (H2) is fulfilled. For instance, one has

f1(x, t, θ1(t), s2, 0, ξ2)| = β1 sin((β1t+ δ1)
p1−1) ≤ β1 = θ′1(t).

A direct verification shows that condition (H3) is satisfied too. For instance, it
is seen that

lim inf
s1→0+,ξ1→0

f1(x, t, s1, s2, ξ1, ξ2)

sp1−1
1

≥ lim
s1→0+

β1 sin(s
p1−1
1 )

sp1−1
1

= β1

uniformly for a.a. (x, t) ∈ Q, all s2 ∈ R, all ξ2 ∈ R
N .
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[9] S. Heikkilä and V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous Non-

linear Differential Equations, Marcel Dekker, Inc., New York, 1994.
[10] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vols. II A/B, Springer, Berlin,

1990.

S. Carl

Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany
E-mail address: siegfried.carl@mathematik.uni-halle.de

D. Motreanu
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