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We consider the initial-Dirichlet boundary value problem for quasilinear parabolic systems in a cylindrical domain Q =Ω× (0,τ) of the form (i =1, 2)

with a diagonal (p 1 ,p 2 )-Laplacian as leading elliptic operator, and with a lower ordervectorfieldf =(f 1 ,f 2 ) that may depend also on the gradient of the solution u =(u 1 ,u 2 ). We establish an enclosure and existence result for weak solutions in terms of trapping regions which stand for rectangles formed by pairs of appropriately defined sub-supersolutions, and prove the existence of extremal solutions within trapping regions without imposing any monotonicity conditions on the lower order vector field. Finally, we provide conditions that allow us to construct trapping regions. It should be noted that the results obtained in this paper may be extended to more general quasilinear systems, where the p i -Laplacian is replaced by a general divergence form Leray-Lions operator div A i (x, t, u i , ∇u i ).

Introduction

Let Ω ⊂ R N be a bounded domain with Lipschitz boundary ∂Ω, Q =Ω× (0,τ), and Γ = ∂Ω × (0,τ), with τ>0, and let W 1,p i (Ω) and W 1,p i 0 (Ω), i = 1, 2, denote the usual Sobolev spaces with dual spaces (W 1,p i (Ω)) * and W -1,q i (Ω), respectively, where q i is the Hölder conjugate satisfying 1/p i +1/q i = 1. For the sake of simplicity we assume throughout this paper 2 ≤ p i < ∞.T h e nW 1,p i (Ω) ⊂ L 2 (Ω) ⊂ (W 1,p i (Ω)) * as well as W 1,p i 0 (Ω) ⊂ L 2 (Ω) ⊂ (W 1,p i 0 (Ω)) * forms an evolution triple with all the embeddings being dense and compact, cf. [START_REF] Zeidler | Nonlinear Functional Analysis and its Applications[END_REF].

Further we set X i = L p i (0,τ; W 1,p (Ω)),X 0i = L p i (0,τ; W 1,p 0 (Ω)), and introduce the Leray-Lions spaces W i ,a n dW 0i defined by

W i = {u ∈ X i : u ′ ∈ X * i } ,W 0i = {u ∈ X 0i : u ′ ∈ X * 0i }
where the derivative u ′ := ∂u/∂t is understood in the sense of vector-valued distributions, and X * i = L q (0,τ;(W 1,p i (Ω)) * ) is the dual space of X i , resp. X * 0i = L q i (0,τ;(W 1,p i 0 (Ω)) * ) is the dual of X 0i . The spaces W i and W 0i endowed with the graph norm of the operator ∂/∂t

u W i = u X i + u ′ X * i , u W 0i = u X 0i + u ′ X * 0i
are Banach spaces which are separable and reflexive due to the separability and reflexivity of X i and X * i ,a n dX 0i and X * 0i , respectively. It is well known that the embedding W i ֒→ C([0,τ],L 2 (Ω)) (resp. W 0i ֒→ C([0,τ],L 2 (Ω))) is continuous, and by Aubin's lemma the embedding W i ֒→֒→ L p i (Q) (resp. W 0i ֒→֒→ L p i (Q)) is compact due to the compact embedding W 1,p i (Ω) ֒→֒→ L p i (Ω).

The notation •, • stands for any of the dual pairings between X i and X * i , X 0i and X * 0i , W 1,p i (Ω) and (W 1,p i (Ω)) * ,a n dW 1,p i 0 (Ω) and W -1,q i (Ω), such as for example, if f ∈ X * i and u ∈ X i ,t h e n

f, u = τ 0 f (t),u(t) dt.
In what follows we denote by L i u := u ′ = ∂u/∂t the time derivative operator with its domain of definition, D(L i ), given by D(L i )= u ∈ X 0i : u ′ ∈ X * 0i and u(•, 0) = 0 . It is known that the linear operator L i : D(L i ) ⊂ X 0i → X * 0i is closed, densely defined and maximal monotone, e.g., cf. [START_REF] Zeidler | Nonlinear Functional Analysis and its Applications[END_REF]Chap. 32]. Finally, for any number r ∈ R we set r ± := max{±r, 0},s or = r +r -.

In this paper we consider the initial-Dirichlet boundary value problem for the following quasilinear parabolic system of the form (i =1, 2)

(1.1) u ′ i -∆ p i u i = f i (x, t, u 1 ,u 2 , ∇u 1 , ∇u 2 )i n Q, u i | Γ =0,u i (•, 0)| Ω =0
, where ∆ p i u =div(|∇u| p i -2 ∇u)isthep i -Laplacian operator, and the right-hand side vector field (f 1 ,f 2 ):Q×R×R×R N ×R N → R 2 is a Carathéodory map, i.e., (x, t) →

f i (x, t, s 1 ,s 2 ,ξ 1 ,ξ 2 ) is measurable in Q for all (s 1 ,s 2 ,ξ 1 ,ξ 2 )i nR × R × R N × R N , and (s 1 ,s 2 ,ξ 1 ,ξ 2 ) → f i (x, t, s 1 ,s 2 ,ξ 1 ,ξ 2 ) is continuous in R × R × R N × R N for a.a. (x, t) ∈ Q. Definition 1.1. A weak solution of problem (1.1) is a pair (u 1 ,u 2 ) ∈ W 01 × W 02 such that u i (•, 0) = 0 on Ω, f i (•, •,u 1 ,u 2 , ∇u 1 , ∇u 2 ) ∈ X *
0i for i =1, 2, and

u ′ 1 ,v 1 + Q |∇u 1 | p 1 -2 ∇u 1 ∇v 1 = f 1 (•, •,u 1 ,u 2 , ∇u 1 , ∇u 2 ),v 1 , u ′ 2 ,v 2 + Q |∇u 2 | p 2 -2 ∇u 2 ∇v 2 = f 2 (•, •,u 1 ,u 2 , ∇u 1 , ∇u 2 ),v 2 for all (v 1 ,v 2 ) ∈ X 01 × X 02 .
Remark 1.2. Note, here and throughout this paper we use the notation

Q • = Q • dxdt.
Further we remark that homogeneous initial-and boundary conditions in (1.1) have been assumed without loss of generality. Inhomogeneous initial-and boundary values of W i functions can be considered without any difficulties.

Let us introduce operators as follows:

L : D(L 1 ) × D(L 2 ) → X * 01 × X * 02 : Lu, v := L 1 u 1 ,v 1 + L 2 u 2 ,v 2 , (1.2) u =(u 1 ,u 2 ) ∈ D(L 1 ) × D(L 2 ) ⊂ X 01 × X 02 ,v=(v 1 ,v 2 ) ∈ X 01 × X 02 , Au =(-∆ p 1 u 1 , -∆ p 2 u 2 ):X 01 × X 02 → X * 01 × X * 02 , defined by (1.3) Au, v = 2 k=1 -∆ p k u k ,v k = 2 k=1 Q |∇u k | p k -2 ∇u k ∇v k ,
and the Nemytskij operators N f i generated by the right-hand side f i through

N f i (u 1 ,u 2 )(x, t)=f i (x, t, u 1 ,u 2 , ∇u 1 , ∇u 2 ),
which under certain growth conditions specified later give rise to the operator N f :

X 01 × X 02 → X * 01 × X * 02 defined by (1.4) N f (u),v = 2 k=1 Q f k (x, t, u 1 ,u 2 , ∇u 1 , ∇u 2 )v k .
With the operators introduced above, Definition 1.1 is equivalent to the following operator equation:

Find u =(u 1 ,u 2 ) ∈ D(L 1 ) × D(L 2 ) such that (1.5) Lu + Au, v = N f (u),v for all v ∈ X 0 = X 01 × X 02 .
We next introduce our basic notion of trapping region formed by a pair of subsupersolution.

Definition 1.3. We say that u =( u 1 ,u 2 ), u =( u 1 , u 2 ) ∈ W 1 × W 2 form a pair of sub-supersolution for problem (1.1) if the following holds true: (i) u i ≤ u i a.e. in Q, u i ≤ 0 ≤ u i a.e. on Ω × 0, u i ≤ 0 ≤ u i on Γ for i =1, 2. (ii) f 1 (•, •,u 1 ,w 2 , ∇u 1 , ∇w 2 ),f 1 (•, •, u 1 ,w 2 , ∇u 1 , ∇w 2 ) ∈ X * 01 , f 2 (•, •,w 1 ,u 2 , ∇w 1 , ∇u 2 ),f 2 (•, •,w 1 , u 2 , ∇w 1 , ∇u 2 ) ∈ X * 02 . (iii) u ′ 1 ,v 1 + Q |∇u 1 | p 1 -2 ∇u 1 ∇v 1 -f 1 (•, •,u 1 ,w 2 , ∇u 1 , ∇w 2 ),v 1 + u ′ 2 ,v 2 + Q |∇u 2 | p 2 -2 ∇u 2 ∇v 2 -f 2 (•, •,w 1 ,u 2 , ∇w 1 , ∇u 2 ),v 2 ≤0, and 
u ′ 1 ,v 1 + Q |∇u 1 | p 1 -2 ∇u 1 ∇v 1 -f 1 (•, •, u 1 ,w 2 , ∇u 1 , ∇w 2 ),v 1 + u ′ 2 ,v 2 + Q |∇u 2 | p 2 -2 ∇u 2 ∇v 2 -f 2 (•, •,w 1 , u 2 , ∇w 1 , ∇u 2 ),v 2 ≥0 for all (v 1 ,v 2 ) ∈ X 01 × X 02 with v i ≥ 0, and all (w 1 ,w 2 ) ∈ W 1 × W 2 with u i ≤ w i ≤ u i for i =1, 2. Definition 1.4. If u =( u 1 ,u 2 ), u =( u 1 , u 2 ) is a pair of sub-supersolution, then the rectangle [u, u]=[u 1 , u 1 ] × [u 2 , u 2 ] is called a trapping region. H e r ew eh a v e denoted [u i , u i ]={u ∈ X i : u i ≤ u ≤ u i a.e. in Q}.
Remark 1.5. The two inequalities of Definition 1.3 are equivalent to the following four inequalities (in their respective corresponding weak form):

u ′ 1 -∆ p 1 u 1 -f 1 (x, t, u 1 ,w 2 , ∇u 1 , ∇w 2 ) ≤ 0, for all w 2 ∈ [u 2 , u 2 ], u ′ 2 -∆ p 2 u 2 -f 2 (x, t, w 1 ,u 2 , ∇w 1 , ∇u 2 ) ≤ 0, for all w 1 ∈ [u 1 , u 1 ], u ′ 1 -∆ p 1 u 1 -f 1 (x, t, u 1 ,w 2 , ∇u 1 , ∇w 2 ) ≥ 0, for all w 2 ∈ [u 2 , u 2 ], u ′ 2 -∆ p 2 u 2 -f 2 (x, t, w 1 , u 2 , ∇w 1 , ∇u 2 ) ≥ 0, for all w 1 ∈ [u 1 , u 1 ].
In the present paper we establish an enclosure and existence result for solutions of the parabolic system (1.1) in terms of trapping regions which stand for rectangles formed by pairs of sub-supersolutions. This provides not only the existence of solutions, but also their location in trapping regions in the sense of Definition 1.3. First, we prove an abstract result when the trapping region is prescribed by a given pair of sub-supersolution.

Second, by applying the abstract result, we prove the existence of extremal solutions within trapping regions without imposing any monotonicity conditions on the lower order vector field. More precisely, we prove the existence of minimal and maximal solutions within a trapping region, where the notion maximal and minimal refer to the partial ordering of vector-valued functions introduced by the order cone

L p 1 + (Q) × L p 2 + (Q).
Finally, we establish the existence of positive and negative solutions of (1.1) under verifiable conditions on the vector field (f 1 ,f 2 )..

The main difficulty in our study is represented by the fact that the right-hand side (f 1 ,f 2 ) in the system depends not only on the solution (u 1 ,u 2 ) but on its gradient (∇u 1 , ∇u 2 ), too. It is for the first time that this is considered for an evolutionary system of quasilinear equations. It should be noted that the results obtained in this paper may be extended to more general quasilinear systems, where the p i -Laplacian is replaced by a general divergence form Leray-Lions operator div A i (x, t, u i , ∇u i ). Only for the sake of simplifying the presentation and in order to emphasize the main idea, we have restricted to the quasiliear parabolic system (1.1) as the model case. The elliptic counterpart of system (1.1) was treated in [START_REF] C A R La N Dd .M O T R E A N U | Extremal solutions for nonvariational quasilinear elliptic systems via expanding trapping regions[END_REF]. However, the quasilinear parabolic system considered here is by no means a straightforward extension of the elliptic case, and requires new tools for its treatment. Existence and enclosure results for parabolic systems with linear elliptic diagonal operators and right-hand side vector fields not depending on the gradient have been obtained earlier in [START_REF] Carl | Trapping regions for discontinuously coupled systems of evolution variational inequalities and application[END_REF][START_REF] Carl | Monotone enclosure for elliptic and parabolic systems with nonmonotone nonlinearities[END_REF][START_REF] Carl | A monotone iterative scheme for nonlinear reaction-diffusion systems having nonmonotone reaction terms[END_REF]. A parabolic equation whose leading differential operator is ∂ t u -∆ p u, so containing the p-Laplacian and actually corresponding to the equation case of our system, but without gradient dependence in the right-hand side, is studied in [START_REF] Bougherara | Existence of mild solutions for a singular parabolic equation and stabilization[END_REF]. In [START_REF] Amann | Invariant sets and existence theorems for semilinear parabolic and elliptic systems[END_REF], under strong regularity assumptions on the data, existence of classical solutions of parabolic systems have been studied with linear elliptic diagonal operators having Hölder continuous coefficients, and right-hand side vector fields that are allowed to depend on the gradient but are required to satisfy Hölder conditions with respect to the space-time variables and local Lipschitz conditions with respect to the dependent variables.

Existence of solutions in trapping regions

Given a pair of sub-supersolution

u =( u 1 ,u 2 ), u =( u 1 , u 2 ) ∈ W 1 × W 2 for problem (1.1
), the following hypothesis on the right-hand side vector field (f 1 ,f 2 ) is supposed:

(H1) For i =1, 2, the functions

f i : Q × R × R × R N × R N → R are Carathéodory
and satisfy the growth conditions

|f 1 (x, t, s 1 ,s 2 ,ξ 1 ,ξ 2 )|≤k 1 (x, t)+c 1 |ξ 1 | p 1 q 1 + |ξ 2 | p 2 q 1 , (2.1) |f 2 (x, t, s 1 ,s 2 ,ξ 1 ,ξ 2 )|≤k 2 (x, t)+c 2 |ξ 1 | p 1 q 2 + |ξ 2 | p 2 q 2 , (2.2) for a.a. (x, t) ∈ Q, for all (s 1 ,s 2 ) ∈ [u(x, t), u(x, t)],
and for all ξ i ∈ R N , with constants c i ≥ 0, and functions k i ∈ L q i + (Q). Corresponding to the trapping region [u, u] we consider the truncation operators

T i : X i → X i (i =1, 2) given by (2.3) (T i u)(x, t)= ⎧ ⎨ ⎩ u i (x, t)i fu(x, t) <u i (x, t), u(x, t)i f u i (x, t) ≤ u(x, t) ≤ u i (x, t), u i (x, t)i fu(x, t) > u i (x, t).
The operators T i are known to be continuous and bounded.

In addition, we consider the cut-off functions b i :

Q × R → R (i =1 , 2) defined by (2.4) b i (x, t, s)= ⎧ ⎨ ⎩ -(u i (x, t) -s) p i -1 if s<u i (x, t), 0i f u i (x, t) ≤ s ≤ u i (x, t), (s -u i (x, t)) p i -1 if s>u i (x, t).
The functions b i are Carathéodory with the growth

(2.5) |b i (x, t, s)|≤ ki (x, t)+c i |s| p i -1
for a.a. (x, t) ∈ Q, for all s ∈ R, with constants ci ≥ 0, and functions ki ∈ L q i + (Ω). Furthermore, there are positive constants a

(i) 1 and a (i) 2 such that (2.6) Q b i (x, t, u)u ≥ a (i) 1 u p i L p i (Q) -a (i) 2 , ∀ u ∈ L p i (Q).
By (2.5) it turns out that the associated Nemytskij operators B i :

L p i (Q) → L q i (Q) defined by B i (u i )(x, t)=b i (x, t, u i (x, t
)) are well defined, continuous and bounded. From (2.1) and (2.2 it follows that the Nemytskij operators

N f i :[ u, u] → L q i (Q) ⊂ X * i (i =1, 2
) are well defined, continuous and bounded. Let

Tu := (T 1 u 1 ,T 2 u 2 ), then T : X 1 × X 2 → X 1 × X 2 is
continuous and bounded, and thus the compositions N f i • T are well defined and (2.7)

N f i • T : X 1 × X 2 → X * i is bounded and continuous, which implies that the operator N f • T : X 1 × X 2 → X * 1 × X * 2 given by (2.8) N f • T (u),v = 2 k=1 Q f k (x, t, T 1 u 1 ,T 2 u 2 , ∇T 1 u 1 , ∇T 2 u 2 )v k
is bounded and continuous as well. In order to handle system (1.1) (or equivalently (1.5)), we consider next the following truncated, auxiliary problem:

Find (u 1 ,u 2 ) ∈ D(L 1 ) × D(L 2 ) such that (2.9) Lu + Au + λB(u),v = N f • T (u),v for all v ∈ X 0 = X 01 × X 02 ,
where the operators L, A, N f • T are given by (1.2), (1.3) and (2.8), respectively, and λ =(λ 1 ,λ 2 )w i t hλ 1 > 0a n dλ 2 > 0 to be chosen appropriately, and λB(u):= (λ 1 B 1 (u 1 ),λ 2 B 2 (u 2 )). Our next goal is to show the existence of solutions for the truncated, auxiliary problem (2.9) using an abstract surjectivity result for evolution equations, see [4, Theorem 2.152]), which adapted to the situation of problem (2.9) r e a d sa sf o l l o w s .

Theorem 2.1. Let L : D(L) ⊂ X 0 → X * 0 be as given by (1.2) with X 0 := X 01 × X 02 ,a n dl e tA : X 0 → X * 0 be bounded, demicontinuous, and pseudomonotone with respect to D(L).I f A is coercive, then L + A : D(L) → X * 0 is surjective, i.e., (L + A)(D(L)) = X * 0 . Problem (2.9) can equivalently be reformulated as

(2.10) u ∈ D(L):Lu + Au =0, with A = A + λB -N f • T. Lemma 2.2. The operator A = A + λB -N f • T : X 0 → X * 0 is pseudomonotone with respect to the domain D(L)=D(L 1 ) × D(L 2 ).
Proof. As for the definition of pseudomonotone with respect to the domain D(L 1 )× D(L 2 ) we refer to [START_REF] Carl | Nonsmooth Variational Problems and Their Inequalities. Comparison Principles and Applications[END_REF]Definition 2.151]. In order to prove this, let

(u n )=(u 1n ,u 2n ) ⊂ D(L)=D(L 1 ) × D(L 2 ) be a sequence such that u in ⇀u i in X 0i , u ′ in ⇀u ′ i in X * 0i , for i =1, 2, i.e., u n ⇀u=(u 1 ,u 2 )i nW 0 = W 01 × W 02 and (2.11) lim sup n→∞ A(u n ),u n -u ≤0.
We have to show that (2.12) 

A(u n ) ⇀ A(u)i nX * 0 = X * 01 × X * 02 and A(u n ),u n → A(u),u . It is known that W 0 = W 01 × W 02 is compactly embedded in L p 1 (Q) × L p 2 (Q) (see [4, Theorem 2.141]) which yields (2.13) u in → u i in L p i (Q)f o ri =1, 2. Since B : L p 1 (Q) × L p 2 (Q) → L q 1 (Q) × L q 2 (Q) is
B(u n ),u n -u =0.
From u n ⇀u=( u 1 ,u 2 )i nW 0 = W 01 × W 02 , we infer that (u n ) is, in particular, bounded in X 0 = X 01 × X 02 , and thus 

N f • T (u n ) is bounded in L q 1 (Q) × L q 1 (Q) due to (H1),
N f • T (u n ),u n -u =0.
Then by (2.14) and (2.15) we infer that

(2.16) lim n→∞ λB(u n ) -N f • T (u n ),u n -u =0.
With (2.11) and (2.16) and

A = A + λB -N f • T we finally obtain (2.17) lim sup n→∞ Au n ,u n -u ≤0,
which due to the definition of A given by (1.3) means lim sup

n→∞ Au n ,u n -u = lim sup n→∞ -∆ p 1 u 1n ,u 1n -u 1 + -∆ p 2 u 2n ,u 2n -u 2 ≤ 0. (2.18)
From the weak convergence u in ⇀u i in X 0i ,a n d-∆ p i : X 0i → X * 0i being continuous, bounded and strictly monotone, we get from (2.18) by using

lim n→∞ -∆ p i u i ,u in -u i =0, the following equality lim sup n→∞ -∆ p 1 u 1n -(-∆ p 1 u 1 ),u 1n -u 1 + -∆ p 2 u 2n -(-∆ p 2 u 2 ),u 2n -u 2 = lim sup n→∞ -∆ p 1 u 1n ,u 1n -u 1 + -∆ p 2 u 2n ,u 2n -u 2 ≤ 0.
From this we infer by taking into account the strict monotonicity of the p i -Laplacian that 0 ≤ lim sup

n→∞ -∆ p i u in -(-∆ p i u i ),u in -u i ≤0,
and thus

(2.19) 0 = lim n→∞ -∆ p i u in -(-∆ p i u i ),u in -u i = lim n→∞ -∆ p i u in ,u in -u i .
Since the negative p i -Laplacian -∆ p i : W 1,p i 0 (Ω) → (W 1,p i 0 (Ω)) * has the (S + )property, it follows that its time-extension -∆ p i : X 0i → X * 0i has the (S + )-property with respect to D(L i )f o ri =1 , 2 (see [4, Theorem 2.153]), which along with the weak convergence u in ⇀u i in X 0i results in (2.20)

u in → u i (strongly) in X 0i , i =1, 2.
Now it is straightforward to obtain from (2.20) that (2.12) holds true. The claim that the operator A is pseudomonotone with respect to

D(L 1 ) × D(L 2 ) is verified. Lemma 2.3. Assume that u =( u 1 ,u 2 ), u =( u 1 , u 2 ) ∈ W 1 × W 2 is
a pair of subsupersolution for problem (1.1) such that hypothesis (H1) is satisfied. Then problem (2.9) has a solution provided λ 1 > 0 and λ 2 > 0 are sufficiently large.

Proof. The operators A, B, N f •T : X 0 → X * 0 are bounded and continuous, and due to Lemma 2.2, the operator A = A+λB-N f •T : X 0 → X * 0 is pseudomonotone with respect to the domain D(L)=D(L 1 ) × D(L 2 ). Thus we may apply Theorem 2.1 to ensure the existence of solutions of the truncated auxiliary problem (2.9) provided that A is also coercive, which reads as (note:

X 0 = X 01 × X 02 , u =(u 1 ,u 2 )) (2.21) A(u),u u X 0 → 0a s u X 0 →∞, where u X 0 = u 1 X 01 + u 2 X 02 = ∇u 1 L p 1 (Q) + ∇u 2 L p 2 (Q) .T o w a r d st h i sw e have (2.22) Au, u = ∇u 1 p 1 L p 1 (Q) + ∇u 2 p 2
L p 2 (Q) . Using (2.1), (2.2) and Young's inequality, we find for any positive ε and with some positive constants d i (i =1, 2) that (2.23) where C(ε) is a positive constant depending only on ε. By means of (2.6), (2.22), and (2.23), we then arrive at

| N f i • T (u),u i | ≤ Q |f i (x, t, T 1 u 1 ,T 2 u 2 , ∇T 1 u 1 , ∇T 2 u 2 )u i | ≤ Q (k i + c i (|∇T 1 u 1 | p 1 -1 + |∇T 2 u 2 | p 2 q 1 )|u i | ≤ ( k i L q i (Q) + d i ) u 1 L p 1 (Q) +ε( ∇u 1 p 1 L p 1 (Q) + ∇u 2 p 2 L p 2 (Q) ) +C(ε)( u 1 p 1 L p 1 (Q) + u 2 p 2 L p 2 (Q) ),
Au, u ≥(1 -ε)( ∇u 1 p 1 L p 1 (Q) + ∇u 2 p 2 L p 2 (Q) ) +(λ 1 a (1) 1 -C(ε)) u 1 p 1 L p 1 (Q) +(λ 2 a (2) 1 -C(ε)) u 2 p 2 L p 2 (Q) -( k 1 L q 1 (Q) + d 1 ) u 1 L p 1 (Q) -( k 2 L q 2 (Q) + d 2 ) u 2 L p 2 (Q) -(λ 1 a (1) 2 + λ 2 a (2)
2 ). (2.24) Choosing ε<1a n dλ i large enough such that λ i a

(i) 1 -C(ε) > 0, with i =1 , 2,, from (2 
.24) we infer that property (2.21) is valid, whence A is coercive. Applying Theorem 2.1, we obtain the existence of solutions of problem (2.9), which completes the proof. Now we are in the position to prove our main existence and enclosure result.

Theorem 2.4. Assume that u =( u 1 ,u 2 ), u =( u 1 , u 2 ) ∈ W 1 × W 2 is
a pair of sub-supersolution for problem (1.1) such that hypothesis (H1) is satisfied. Then problem (1.1) has at least one solution u =(u 1 ,u 2 ) satisfying the location property u ≤ u ≤ u.

Proof. By Lemma 2.3 we know that the auxiliary truncated system (2.9) possesses a solution u =(u 1 ,u 2 ) ∈ D(L 1 ) × D(L 2 ) provided λ 1 > 0andλ 2 > 0 are sufficiently large. We develop a comparison procedure aiming to prove the enclosure u ≤ u ≤ u for any solution u of the auxiliary problem (2.9), which completes the proof of Theorem 2.4, since then B(u) = 0, and Tu = u, and thus u is a solution of (1.1) within the trapping region [u, u]. Let us verify the inequality u ≤ u only, since the inequality u ≤ u can be shown in a similar way. Definition 1.3 with the test function

(v 1 ,v 2 )=((u 1 -u 1 ) + , (u 2 -u 2 ) + ) ∈ X 01 ×X 02 gives u ′ 1 , (u 1 -u 1 ) + + Q |∇u 1 | p 1 -2 ∇u 1 ∇(u 1 -u 1 ) + -f 1 (•, •, u 2 ,w 2 , ∇u 1 , ∇w 2 )(u 1 -u 1 ) + + u ′ 2 , (u 2 -u 2 ) + + Q |∇u 2 | p 2 -2 ∇u 2 ∇(u 2 -u 2 ) + -f 2 (•, •,w 1 , u 2 , ∇w 1 , ∇u 2 )(u 2 -u 2 ) + ≥ 0 (2.25)
for all (w 1 ,w 2 ) ∈ W 1 × W 2 with u i ≤ w i ≤ u i for i =1, 2. Then (2.25) and system (2.9) with the test functions (v 1 ,v 2 )=((u 1u 1 ) + , (u 2u 2 ) + ) enable us to find

(u 1 -u 1 ) ′ , (u 1 -u 1 ) + + (u 2 -u ′ 2 , (u 2 -u 2 ) + + Q |∇u 1 | p 1 -2 ∇u 1 -|∇u 1 | p 1 -2 ∇u 1 ∇(u 1 -u 1 ) + + Q |∇u 2 | p 2 -2 ∇u 2 -|∇u 2 | p 2 -2 ∇u 2 ∇(u 2 -u 2 ) + +λ 1 Q b 1 (•, •,u 1 )(u 1 -u 1 ) + + λ 2 Q b 2 (•, •,u 2 )(u 2 -u 2 ) + - Q N f 1 • T (u) -f 1 (•, •, u 1 ,w 2 , ∇u 1 , ∇w 2 ) (u 1 -u 1 ) + - Q N f 2 • T (u) -f 2 (•, •,w 1 , u 2 , ∇w 1 , ∇u 2 ) (u 2 -u 2 ) + ≤ 0 (2.26) for all (w 1 ,w 2 ) ∈ W 1 × W 2 with u i ≤ w i ≤ u i for i =1, 2. Therefore it is permitted to w 1 = T 1 u 1 and w 2 = T 2 u 2 . Then (2.26) implies (u 1 -u 1 ) ′ , (u 1 -u 1 ) + + (u 2 -u ′ 2 , (u 2 -u 2 ) + +λ 1 Q b 1 (•, •,u 1 )(u 1 -u 1 ) + + λ 2 Ω b 2 (•, •,u 2 )(u 2 -u 2 ) + ≤ 0.
(2.27)

We note that

(u i -u i ) ′ , (u i -u i ) + = 1 2 (u i -u i ) + (•,τ) 2 L 2 (Ω) (i =1, 2).
In view of this and by the definition of the cut-off functions b i in (2.4), inequality (2.27) gives rise to

λ 1 Q [(u 1 -u 1 ) + ] p 1 + λ 2 Q [(u 2 -u 2 ) + ] p 2 ≤ 0.
Thus we are led to u i ≤ u i for i =1, 2. Consequently, we know that the solution u =( u 1 ,u 2 ) of auxiliary truncated problem (2.9) verifies u ≤ u ≤ u. This makes that T i u i = u i and B i (u i )=0f o r i =1 , 2 (see (2.3) and (2.4)). Clearly, (2.9) becomes (1.1), which completes the proof.

Extremal solutions in trapping regions

Given a trapping region [u, u] for problem (1.1) formed by a pair of sub-supersolution, in this section we are going to show the existence of extremal solutions of (1.1) in [u, u]. Denote by S the set of all solutions of (1.1) in [u, u], by extremal solutions we understand maximal and minimal solutions in [u, u] or equivalently, maximal and minimal elements of S with respect to the underlying partial ordering in W 0 = W 01 × W 02 , which is defined by the positive order cone L + given by

L + = L p 1 + (Q) × L p 2 + (Q),
where L p i + (Q) is the set of all nonnegative L p i (Q)-functions. An element u * ∈S is called a maximal element of S if w ∈S and u * ≤ w implies u * = w. Similarly, a minimal element u * of S is defined.

Theorem 3.1. Assume that u =( u 1 ,u 2 ), u =( u 1 , u 2 ) ∈ W 1 × W 2 is
a pair of sub-supersolution for problem (1.1) such that hypothesis (H1) is satisfied. Then problem (1.1) has extremal solutions within [u, u], i.e., S has maximal and minimal elements.

Proof. By Theorem 2.4, S = ∅. Let us focus on the assertion regarding the minimal element of S, because the existence of a maximal element can be proved by analogous reasoning.

Our basic tool is Zorn's lemma. To this end we consider a chain C in S.A sC is order bounded, i.e., C is order bounded above by u and below by u, and since 

L p i + (Q) is
(•,τ) 2 L 2 (Ω) + u 2n (•,τ) 2 L 2 (Ω) ) (3.1) +(1 -η)( ∇u 1n p 1 L p 1 (Q) + ∇u 2n p 2 L p 2 (Q) ) ≤ ( k 1 L q 1 (Q) + d 1 ) u 1n L p 1 (Q) +( k 2 L q 2 (Q) + d 2 ) u 2n L p 2 (Q) +C(η)( u 1n p 1 L p 1 (Q) + u 2n p 2 L p 2 (Q) )
for every η>0, with constants C(η) > 0a n dd i > 0, i =1 , 2. By (3.1) it follows that the sequence u n =(u 1n ,u 2n ) is bounded in X 01 ×X 02 . Directly from the system (1.1) with the solution (u 1n ,u 2n ) we then infer that (u

′ n )=(u ′ 1n ,u ′ 2n ) is bounded in X * 01 × X * 02 .
Consequently, there is a subsequence (again denoted by (u n )) such that

u in ⇀u i in W 0i as n →∞ ,w i t hu i ∈ D(L i )f o ri =1 , 2.
Here we have used that L i is a linear closed operator.

Notice again from equation (1.1) (resp. (1.5) with solution

(u n )=(u 1n ,u 2n )a n d test function u n -u we have Au n ,u n -u = -Lu n ,u n -u + N f (u n ),u n -u , which in view of -Lu n ,u n -u = -Lu n -Lu, u n -u -Lu, u n -u ≤-Lu, u n -u , yields the estimate (3.2) Au n ,u n -u ≤-Lu, u n -u + N f (u n ),u n -u ,
As the right-hand side of (3.2) tends to zero as n →∞we get by passing to the l i ms u pi n( 3 . 2 ) lim sup

n→∞ Au n ,u n -u ≤0,
or equivalently

(3.3) lim sup n→∞ [ -∆ p 1 u 1n ,u 1n -u 1 + -∆ p 2 u 2n ,u 2n -u 2 ] ≤ 0.
The weak convergence of (u n )=( u 1n ,u 2n ) as seen above along with (3.3) and the (S + )-property of -∆ p i with respect to D(L i ) implies the strong convergence u in → u i in X 0i for i =1, 2. This allows us to pass to the limit in

Lu n + Au n ,v = N f (u n ),v , ∀ v ∈ X 0 = X 01 × X 02 ,
which proves that inf C = lim n→∞ u n = u belongs to S. Therefore Zorn's Lemma can be applied providing a minimal element of S. The proof is thus complete.

Remark 3.2. Assuming hypothesis (H1), the main results of Section 2 and Section 3, Theorem 2.4 and Theorem 3.1, respectively, remain true for the following more general initial-Dirichlet boundary value problem (i =1 , 2): Find

u i ∈ W 0i with u i (•, 0) = 0 such that (3.4) u ′ i + A i u i = f i (x, t, u 1 ,u 2 , ∇u 1 , ∇u 2 )+h i in Q,
where h i ∈ X * 0i ,a n dA i : X 01 → X * 0i are given by

A i u i (x, t)=- N k=1 ∂ ∂x k a (i) k (x, t, ∇u i (x, t)), with coefficients a (i) 
k : Q × R N → R satisfying the following hypotheses of Leray-Lions type:

(A1) a (i) k : Q × R N → R are Carathéodory functions, satisfying the growth con- dition |a (i) k (x, t, ξ)|≤k (i) 0 (x, t)+c 0i |ξ| p i -1 , for a.e. (x, t) ∈ Q, ∀ ξ ∈ R N ,
where k

(i) 0 ∈ L q i + (Q)
, and c 0i are positive constants. (A2) For a.e. (x, t) ∈ Q and for all ξ, ξ ′ ∈ R N with ξ = ξ ′ the following monotonicity condition is satisfied

N k=1 a (i) k (x, t, ξ) -a (i) k (x, t, ξ ′ ) (ξ k -ξ ′ k ) > 0.
(A2) There are positive constants μ i and functions

k i1 ∈ L 1 (Q) such that N k=1 a (i) k (x, t, ξ)ξ k ≥ μ i |ξ| p i + k i1 (x, t), for a.e. (x, t) ∈ Q, ∀ ξ ∈ R N .
The proofs of the main results, Theorem 2.4 and Theorem 3.1, with the more general leading quasilinear elliptic operator A =(A 1 ,A 2 ) given above, can be done in a straightforward manner.

Constuction of trapping regions

The aim of this section is to provide a construction of specific trapping regions that will allow us to show the existence of at least one positive solution of the following initial-Dirichlet boundary value problem (i =1, 2) with nonnegative initial values

ψ i ∈ L ∞ + (Ω), (i =1, 2): Find u i ∈ W 0i with u i (•, 0) = ψ i such that (4.1) u ′ i -∆ p i u i = f i (x, t, u 1 ,u 2 , ∇u 1 , ∇u 2 )i n Q
, where we assume hypothesis (H1) to hold true. To make sure that problem (4.1) with inhomogeneous initial values and homogeneous Dirichlet-boundary conditions can be handled by the results obtained in the preceding sections, we are going to transform (4.1) into a problem of the type discussed in Remark 3.2. To this end let w i ∈ W 0i denote the solutions of the following problem: Find

w i ∈ W 0i such that w i (•, 0) = ψ i and (4.2) w ′ i -∆ p i w i =0 inQ.
The existence of a unique solution w i of (4.2) (even for more general initial values ψ i ∈ L 2 (Ω)) follows by standard existence results, see e.g. [START_REF] Zeidler | Nonlinear Functional Analysis and its Applications[END_REF]Theorem 30.A]. Now we introduce the new function ûi = u iw i . Then problem (4.1) is transformed into the following equivalent problem for ûi with homogeneous initial and boundary values: Find ûi ∈ W 0i with ûi (•, 0) = 0 such that

(4.3) û′ i -∆ p i (û i +w i )=f i (x, t, û1 +w 1 , û2 +w 2 , ∇(û 1 +w 1 ), ∇(û 2 +w 2 ))-w ′ i in Q. Setting A i ûi = -∆ p i (û i + w i ), fi (x, t, û1 , û2 , ∇û 1 , ∇û 2 ) = f i (x, t, û1 + w 1 , û2 + w 2 , ∇(û 1 + w 1 ), ∇(û 2 + w 2 )), h i = -w ′ i , then (4.
3) results in: Find ûi ∈ W 0i with ûi (•, 0) = 0 (4.4) û′ i + A i ûi = fi (x, t, û1 , û2 , ∇û 1 , ∇û 2 )+h i in Q. which can easily be verified to be of the structure of the homogeneous initial-Dirichlet boundary value problem (3.4) discussed in Remark 3.2. It should be noted that hypotheses (H1) for the right-hand sides f i hold true for the right-hand sides fi of (4.4) as well. Moreover, a pair (u, u) of sub-supersolution for the problem (4.1) with the inhomogeneous initial values ψ i yields a corresponding transformed pair of sub-supersolutions (û, û) of (4.4), where û = uw and û = uw. Therefore, according to Remark 3.2 we may apply our main results to the problem (4.1). In a similar way one can deal with inhomogeneous boundary values (in the sense of traces) as well. Our goal is to formulate conditions on the right-hand side vector field that will allow us to construct trapping regions which imply the existence of nonnegative solutions of (4.1). Assuming homogeneous boundary conditions, we consider two cases: Homogeneous initial data and inhomogeneous initial data.

Case I: Homogeneous Initial Values

To this end, we recall the eigenvalue problem for -∆ p on W 1,p 0 (Ω) with 1 <p<∞ which reads as follows (4.5)

-∆ p u = λ|u| p-2 u in Ω u =0 on∂Ω.
It has a first eigenvalue λ 1,p > 0, which is characterized by

λ 1,p =inf ∇u p L p (Ω) u p L p (Ω)
: u ∈ W 1,p 0 (Ω),u =0 .

Denote by u 1,p the corresponding L p -normalized positive eigenfunction, i.e. u 1,p solves (4.5) with λ = λ 1,p , u 1,p > 0i nΩ ,a n d u 1,p L p (Ω) = 1. In addition to hypothesis (H1) let us suppose the following hypotheses: (H2-0) There exist continuously differentiable functions θ i :[ 0 ,τ] → R, i =1 , 2, such that δ i := min t∈[0,τ ] θ i (t) > 0, and for a.a. (x, t) ∈ Q

f 1 (x, t, θ 1 (t),s 2 , 0,ξ 2 ) ≤ θ ′ 1 (t), ∀ s 2 ∈ [0,θ 2 (t)],ξ 2 ∈ R N , f 2 (x, t, s 1 ,θ 2 (t),ξ 1 , 0) ≤ θ ′ 2 (t), ∀ s 1 ∈ [0,θ 1 (t)],ξ 1 ∈ R N , (H3-0) There exist positive constants δ, η 1 ,η 2 such that for a.a. (x, t) ∈ Q f 1 (x, t, s 1 ,s 2 ,ξ 1 ,ξ 2 ) ≥ η 1 , ∀ s 1 ∈ [0,δ], |ξ 1 |≤δ, s 2 ∈ [0,θ 2 (t)],ξ 2 ∈ R N , f 2 (x, t, s 1 ,s 2 ,ξ 1 ,ξ 2 ) ≥ η 2 , ∀ s 1 ∈ [0,θ 1 (t)],ξ 1 ∈ R N ,s 2 ∈ [0,δ], |ξ 2 |≤δ.
Theorem 4.1. Assume hypothesis (H1), (H2-0), and (H3-0), where the growth conditions (2.1), (2.1) of (H1) are supposed to hold for all (s 1 ,s 2 ) within [0,θ 1 (t)] × [0,θ 2 (t)]. Then for ε>0 sufficiently small, system (1.1) (resp. (4.1)), admits trapping regions of the form:

[εt u 1,p 1 ,θ 1 (t)] × [εt u 1,p 2 ,θ 2 (t)],
which give rise to the existence of a positive solution

(u 1 ,u 2 ) ∈ [εt u 1,p 1 ,θ 1 (t)] × [εt u 1,p 2 ,θ 2 (t)].
Proof. From (H2-0) we immediately get for a.a. (x, t) ∈ Q

(4.6) ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ θ ′ 1 (t) -∆ p 1 (θ 1 (t)) -f 1 (x, t, θ 1 (t),s 2 , 0,ξ 2 ) ≥ 0, ∀ s 2 ∈ [0,θ 2 (t)],ξ 2 ∈ R N , θ ′ 2 (t) -∆ p 2 (θ 2 (t)) -f 2 (x, t, s 1 ,θ 2 (t),ξ 1 , 0) ≥ 0, ∀ s 1 ∈ [0,θ 1 (t)],ξ 1 ∈ R N .
Choose δ ∈ (0, min{δ 1 ,δ 2 }), and take ε>0 sufficiently small such that εt u 1,p i (x) ≤ δ, and εt|∇ u 1,p i (x)|≤δ, for all x ∈ Ω,t∈ [0,τ],i=1 , 2. For a possibly smaller δ we can make use of hypothesis (H3-0) obtaining the following inequalities for a.a. (x, t) ∈ Q (4.7)

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ f 1 (x, t, ε t u 1,p 1 (x),s 2 ,εt∇ u 1,p 1 (x),ξ 2 ) ≥ η 1 , ∀ s 2 ∈ [0,θ 2 (t)],ξ 2 ∈ R N , f 2 (x, t, s 1 ,εt u 1,p 2 (x),ξ 1 ,εt∇ u 1,p 2 (x)) ≥ η 2 , ∀ s 1 ∈ [0,θ 1 (t)],ξ 1 ∈ R N .
Choosing ε>0 even smaller (if necessary), enables us to suppose that ε u 1,p i (x)+λ 1,p i εt u 1,p i (x)

p i -1 ≤ η i ,
which in view of (4.7) yields (4.8)

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ (εt u 1,p 1 ) ′ -∆ p 1 (εt u 1,p 1 ) -f 1 (x, t, ε t u 1,p 1 (x),s 2 ,εt∇ u 1,p 1 (x),ξ 2 ) ≤ 0, ∀ s 2 ∈ [0,θ 2 (t)],ξ 2 ∈ R N , (εt u 1,p 2 ) ′ -∆ p 2 (εt u 1,p 2 ) -f 2 (x, t, s 1 ,εt u 1,p 2 (x),ξ 1 ,εt∇ u 1,p 2 (x)) ≤ 0, ∀ s 1 ∈ [0,θ 1 (t)],ξ 1 ∈ R N .
From (4.6) and (4.8) it follows that

u =(u 1 ,u 2 ):=(εt u 1,p 1 ,εt u 1,p 2 ), and u =(u 1 , u 2 )=(θ 1 ,θ 2 )
constitute a pair of sub-supersolution for (1.1) (resp. (4.1), which completes the proof.

An explicit example for the right-hand side vector field (f 1 ,f 2 )t h a ts a t i s fi e s hypotheses (H1), (H2-0), (H3-0) is as follows.

Example 4.2. Let (f 1 ,f 2 )b eg i v e nb y f 1 (x, t, s 1 ,s 2 ,ξ 1 ,ξ 2 )=γ 1 sin(|s 1 | p 1 -2 s 1 )+t arctan(s 1 ) |ξ 1 | 1 r |ξ 2 | 1 r + α 1 , f 2 (x, t, s 1 ,s 2 ,ξ 1 ,ξ 2 )=γ 2 sin(|s 2 | p 2 -2 s 2 )+t arctan(s 2 ) |ξ 1 | 1 r |ξ 2 | 1 r + α 2 , for all (x, t, s 1 ,s 2 ,ξ 1 ,ξ 2 ) ∈ Q × R × R × R N × R N with positive constants γ i ,α i ,r satisfying α i >γ i (i =1, 2), and 2 r ≤ min{p 1 -1,p 2 -1, p 2 (p 1 -1) p 1 , p 1 (p 2 -1) p 2 }. For δ i ,β i > 0w i t hβ i ≥ γ i + α i , i =1, 2, we define θ i (t)=β i t + δ i ,t ∈ [0,τ].
Let us check that hypotheses (H1), (H2-0), (H3-0) are fulfilled. Regarding (H1) we have

|f 1 (x, t, s 1 ,s 2 ,ξ 1 ,ξ 2 )|≤γ 1 + τπ 4 |ξ 1 | 2 r + |ξ 2 | 2 r + α 1 ≤ a 1 1+|ξ 1 | p 1 q 1 + |ξ 2 | p 2 q 1
with some positive constant a 1 , and for a.a. (x, t) ∈ Q, for all (s 1 ,s 2 ) ∈ [0,θ 1 (t)] × [0,θ 2 (t)], and for all (ξ 1 ,ξ 2 ) ∈ R N × R N . Similarly, for f 2 .

Regarding (H2-0) we have f 1 (x, t, θ 1 (t),s 2 , 0,ξ 2 ) ≤ γ 1 + α 1 ≤ β 1 = θ ′ 1 (t), for a.a. (x, t) ∈ Q, for all s 2 ∈ R, and for all ξ 2 ∈ R N , and similarly for f 2 .

Finally, checking (H3-0), we have

f 1 (x, t, s 1 ,s 2 ,ξ 1 ,ξ 2 ) ≥ α 1 ,
for a.a. (x, t) ∈ Q, for all s 1 ∈ [0,δ], for all s 2 ∈ R, and for all (ξ 1 ,ξ 2 ) ∈ R N × R N . A similar estimate holds true for f 2 .

Case II: Inhomogeneous Initial Values

Here we consider nonnegative, nonzero initial values ψ. Using the same notation regarding the first eigenvalue and eigenfunction of the p i -Laplacian, we now assume the following conditions on the initial values ψ i and on the right-hand side vector field (f 1 ,f 2 ) of problem (4.1):

(H ψ i ) ψ i ∈ L ∞ + (Ω) and there are ̺ i > 0 such that ̺ i u 1,p i (x) ≤ ψ i (x) for a.e. x ∈ Ω. (H2) There exist continuously differentiable functions θ i :[ 0 ,τ] → R, i =1 , 2, with θ i (t) > 0, such that δ i := min t∈[0,τ ] θ i (t) ≥ ψ i ∞ , and for a.a. (x, t) ∈ Q f 1 (x, t, θ 1 (t),s 2 , 0,ξ 2 ) ≤ θ ′ 1 (t) for all s 2 ∈ [0,θ 2 (t)], all ξ 2 ∈ R N , f 2 (x, t, s 1 ,θ 2 (t),ξ 1 , 0) ≤ θ ′ 2 (t) for all s 1 ∈ [0,θ 1 (t)], all ξ 1 ∈ R N , (H3) There are constants β 1 >λ 1,p 1 and β 2 >λ 1,p 2 such that lim inf s 1 →0 + ,ξ 1 →0 f 1 (x, t, s 1 ,s 2 ,ξ 1 ,ξ 2 )

s p 1 -1 1 ≥ β 1
uniformly for a.a. (x, t) ∈ Q,a l l0≤ s 2 ≤ θ 2 (t), all ξ 2 ∈ R N ; lim inf

s 2 →0 + ,ξ 2 →0 f 2 (x, t, s 1 ,s 2 ,ξ 1 ,ξ 2 ) s p 2 -1 2 ≥ β 2
uniformly for a.a. (x, t) ∈ Q,a l l0≤ s 1 ≤ θ 1 (t), all ξ 1 ∈ R N ; Theorem 4.3. Assume hypotheses (H ψ i ), (H1)-(H3), where the growth conditions (2.1), (2.2) of (H1) are supposed to hold true for all s =( s 1 ,s 2 ) within the timedependent rectangle [0,θ 1 (t)] × [0,θ 2 (t)] for t ∈ [0,τ].T h e n ,f o rε>0 sufficiently small, system (4.1) admits a trapping region of the form [ε u 1,p 1 ,θ 1 (t)]×[ε u 1,p 2 ,θ 2 (t)], which gives rise to the existence of a positive solution (u 1 ,u 2 ) ∈ [ε u 1,p 1 ,θ 1 (t)] × [ε u 1,p 2 ,θ 2 (t)].

Proof. Assumption (H2) ensures that for a.a. (x, t) ∈ Q one has (4.9)

θ ′ 1 (t) -∆ p 1 (θ 1 (t))f 1 (x, t, θ 1 (t),s 2 , 0,ξ 2 ) ≥ 0,s 2 ∈ [0,θ 2 (t)],ξ 2 ∈ R N , θ ′ 2 (t) -∆ p 2 (θ 2 (t))f 2 (x, t, s 1 ,θ 2 (t),ξ 1 , 0) ≥ 0,s 1 ∈ [0,θ 1 (t)],ξ 1 ∈ R N . Assumption (H3) entails that there exists δ>0 such that for a.a. (x, t) ∈ Q it holds (4.10) f 1 (x, t, s 1 ,s 2 ,ξ 1 ,ξ 2 ) >λ 1,p 1 s p 1 -1

1

,s 1 , |ξ 1 |∈(0,δ),s 2 ∈ [0,θ 2 (t)],ξ 2 ∈ R N , f 2 (x, t, s 1 ,s 2 ,ξ 1 ,ξ 2 ) >λ 1,p 2 s p 2 -1 2 ,s 1 ∈ [0,θ 1 (t)],s 2 , |ξ 2 |∈(0,δ),ξ 1 ∈ R N .

Since the continuous functions θ 1 (t), θ 2 (t)o n[ 0 ,τ] are positive, we can choose δ ∈ (0, min{δ 1 ,δ 2 }). Now we take ε>0 sufficiently small such that ε<̺ i and 0 <ε u 1,p i (x) ≤ δ, ε|∇ u 1,p i (x)|≤δ for all x ∈ Ω,i=1, 2.

  a regular order cone (see[9, p.28]), we can apply [9, Proposition 1.3.2] to ensure that there is a sequence u n =( u 1n ,u 2n ) ⊂C,w i t hu n+1 ≤ u n for all n ≥ 1 such that inf C = lim

		obtain
	the estimate	
	1 2	( u 1n

n→∞ u n .

Following similar estimates as in (2.23) and (2.24), and taking into account that (u 1n ,u 2n ) are solutions of (1.1) belonging to the trapping region [u, u], we

Due to (4.10), for a.a. (x, t) ∈ Q, for all s 2 ∈ [0,θ 2 (t)], ξ 2 ∈ R N , s 1 ∈ [0,θ 1 (t)], and ξ 1 ∈ R N we get the inequalities (4.11) (ε u 1,p 1 ) ′ -∆ p 1 (ε u 1,p 1 )f 1 (x, t, ε u 1,p 1 ,s 2 ,ε∇ u 1,p 1 ,ξ 2 ) ≤ 0, (ε

Notice that (4.9) and (4.11) are fulfilled with w 1 ∈ [ε u 1,p 1 ,θ 1 ]a n d∇w 1 in place of s 1 and ξ 1 , respectively, as well as with w 2 ∈ [ε u 1,p 2 ,θ 2 ]a n d∇w 2 in place of s 2 and ξ 2 , respectively. It follows that u =( u 1 ,u 2 ): =( ε u 1,p 1 ,ε u 1,p 2 )a n du = (u 1 , u 2 ): =( θ 1 ,θ 2 ) constitute a pair of sub-supersolution for problem (4.1) in the sense of Definition 1.3. Therefore, Theorem 2.4 along with Remark 3.2 can be applied, which guarantees the existence of a (weak) positive solution u =( u 1 ,u 2 ) of problem (4.1) within the trapping region [u, u], so there hold

This completes the proof.

As an immediate consequence of Theorem 3.1 and applying a regularity result given by [8, Theorem 1, Theorem 2] we get the following corollary. 

),w h e r eγ ∈ (0, 1). Remark 4.5. Hypothesis (H ψ i ) on the initial data ψ i c a nb es a t i s fi e db yal a r g e class of functions from L 2 + (Ω) such as follows: If ψ i (x) ≥ σ i > 0 then the condition ̺ i u 1,p i (x) ≤ ψ i (x) for a.e. x ∈ Ω is obviously satisfied by choosing ̺ i > 0s m a l l enough, since 0 ≤ u 1,p i ∈ C 1 0 (Ω) + ,w h e r e C 1 0 (Ω) + = u ∈ C 1 0 (Ω) : u(x) ≥ 0 for all x ∈ Ω . Moreover, u 1,p i even belongs to the interior int(C 1 0 (Ω) + )o fC 1 0 (Ω) + which is known to be nonempty and characterized as follows

Therefore, any nonnegative initial value ψ i ∈ int(C 1 0 (Ω) + ) satisfies condition (H ψ i ). A simple explicit example for the right-hand side vector field (f 1 ,f 2 ) that satisfies hypotheses (H1), (H2), (H3) is as follows.

Example 4.6. Let Ω, τ , p 1 , p 2 be as in the statement of problem (1.1). Fix constants