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Abstract: The development and improvement of methods to map agricultural land cover are currently
major challenges, especially for radar images. This is due to the speckle noise nature of radar,
leading to a less intensive use of radar rather than optical images. The European Space Agency
Sentinel-1 constellation, which recently became operational, is a satellite system providing global
coverage of Synthetic Aperture Radar (SAR) with a 6-days revisit period at a high spatial resolution
of about 20 m. These data are valuable, as they provide spatial information on agricultural crops.
The aim of this paper is to provide a better understanding of the capabilities of Sentinel-1 radar
images for agricultural land cover mapping through the use of deep learning techniques. The analysis
is carried out on multitemporal Sentinel-1 data over an area in Camargue, France. The data set
was processed in order to produce an intensity radar data stack from May 2017 to September
2017. We improved this radar time series dataset by exploiting temporal filtering to reduce noise,
while retaining as much as possible the fine structures present in the images. We revealed that even
with classical machine learning approaches (K nearest neighbors, random forest, and support vector
machines), good performance classification could be achieved with F-measure/Accuracy greater
than 86% and Kappa coefficient better than 0.82. We found that the results of the two deep recurrent
neural network (RNN)-based classifiers clearly outperformed the classical approaches. Finally, our
analyses of the Camargue area results show that the same performance was obtained with two
different RNN-based classifiers on the Rice class, which is the most dominant crop of this region,
with a F-measure metric of 96%. These results thus highlight that in the near future these RNN-based
techniques will play an important role in the analysis of remote sensing time series.

Keywords: SAR; Sentinel-1; agricultural land cover map; recurrent neural network; long-short
term memory; gated recurrent unit; K nearest neighbors; random forest; vector support machines;
Camargue; France

1. Introduction

Spatial information about agricultural practices plays an important role for the sustainable
development of agronomics, environment, and economics [1,2]. In fact, the importance of agricultural
practices has long been recognized by the international community (e.g., Food and Agriculture
Organization) [3]. Remote sensing satellite imagery is a valuable aid in providing and understanding
this spatial distribution of agricultural practices. Particularly, recent years have seen the arrival of many
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satellites to acquire high spatial resolution data on various spectral domains. The Sentinel-1 radar and
Sentinel-2 optical sensors from the European Space Agency (ESA) are suited for monitoring agricultural
areas. However, like all optical sensors, the use of Sentinel-2 data is limited if the cloud layer is large [4].
In contrast, Sentinel-1 is a Synthetic Aperture Radar (SAR) system that can acquire images in any type
of weather with the advantage of providing images regardless of weather conditions. SAR data are
well suited to distinguish rice from other types of vegetation cover [5]. The ESA Sentinel-1 SAR sensor
(launched in 2014) (short revisit time: 12 days, and then 6 days after the launch of the second satellite in
2016, 20 m spatial resolution and two polarizations) allows a precise temporal follow-up of agricultural
crop growth [6]. The ESA provides free data which makes it possible to envisage fine agricultural
monitoring for various applications, in particular for providing detailed spatial agricultural land
cover distribution.

In the Camargue region, farming is a major activity contributing to the productivity of the region.
Among agricultural practices, rice cultivation is the most important one. It plays a crucial role in
the development of cropping systems because the irrigation of rice allows the leaching of salt and,
consequently, the introduction of other species into the rotation of crops [7]. In this region, to preserve
the essential services for regulating agricultural systems for the environment, it is important to
understand the operation of the farms [8]. In response to this demand, the spatial extent of agricultural
land cover is essential.

In the literature of remote sensing for classification, the natural choice is based on supervised
machine learning methods [9,10], which use training sets to classify pixels of unknown identity. Various
supervised learning algorithms are available, each with its strengths and weaknesses [9,11,12]. The most
recent methodological developments are focused on active learning and semisupervised learning
approaches, which make use of unlabeled data for training [13–16]. Although the improvement in
learning accuracy is considerable when unlabeled data are used in conjunction with a small amount of
labeled data, the use of this approaches is still not common in agricultural land cover classifications.
In practice, for agricultural applications, most of works in remote sensing are based on the standard
algorithms, such as K nearest neighbor (KNN), random forest (RF), and support vector machine
(SVM) [17,18]. These approaches, however, are not designed to work with time series data and,
therefore, they ignore their temporal dependency.

Unlike the literature cited above, in this paper we assess the use of deep neural networks to
consider the temporal correlation of the data. In fact, through recent advances in machine learning,
there has been an increased interest in time series classification using deep convolutional neural
networks (CNNs) and recurrent neuron networks (RNNs) that can take advantage of neural networks
for end-to-end classification of a time series [19–21]. Moreover, RNN approaches can be used to
work on pixel-based time series [19]. Accordingly, we focus our attention on RNN approaches
for the classification. Thanks to their property, RNNs offer models to explicitly manage temporal
dependencies among data (e.g., long short term memory (LSTM) [22] and Gated Recurrent Unit
(GRU) [23]), which makes them suitable for the mining of multitemporal SAR Sentinel-1 data.

The objective of this work is to evaluate the potential of high spatial and temporal resolution
Sentinel-1 remote sensing data to : (i) Map different agricultural land covers; and (ii) assess the new
deep learning technique by comparing it with the standard machine learning approaches. For this,
we propose to use two deep RNN approaches to explicitly consider the temporal correlation of
Sentinel-1 data, which will be applied on the region of Camargue.

This paper is organized as follows: In Section 2, the Camargue study area is introduced;
in Section 3, the processing SAR Sentinel-1 is reported; in Section 4, the classical machine learning
approaches are briefly introduced; in section 5, the two deep RNNs models are presented; in Section 6,
results are shown and a discussion is provided; and finally conclusions are drawn in Section 7.
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2. Study Area

2.1. Camargue Site

The Camargue region, located in south-eastern France, is a coastal area of the Mediterranean
Sea. It has a Mediterranean climate with mild winters, a long summer period (hot and dry), irregular
rainfall and sunshine. Its climate has peculiarities related to its geographical location south of the
Rhone corridor, between the Cevennes and the Southern Alps. The autumns are watered by brief
but important precipitations and winters sometimes are rigorous due to mistral (https://fr.wikipedia.
org/wiki/Camargue#Climat, last accessed March 2018). This zone covers the current perimeter
of the Camargue Regional Natural Park, with an area of around 110,000 ha [24]. The study site is
composed of five landscapes: Agriculture area, urban zone, water area, forests and natural environment.
The agriculture zone can be defined by using the official Graphical Parcel Register (RPG) data, provided
freely by the French government (https://www.data.gouv.fr). We used the recent version of RPG
2015 for our study in order to delimit the agricultural areas. In our study area, this corresponds to
54,082 ha (see the cyan polygon in Figure 1), in which the permanent moors, orchards, and olive trees
areas are 17,859 ha, and the remaining 36,223 ha is used for common agricultural activities. In this
36,223 ha agricultural zone, rice is the most dominant crop (with 44% and 16,000 ha in 2011 [8]) and
has an important function in the economic, ecological and social equilibrium of the region.

2.2. Ground Data

A field survey was carried out on 921 reference plots in July 2017 to collect the land cover
information. The boundary of reference plots was drawn manually, based on the high resolution
60 cm World Imagery layer of ArcGIS data online (accessed in July 2017). We chose 11 observed
surface classes: (1) Rice; (2) sunflower; (3) lawn; (4) irrigated grassland; (5) durum wheat (winter); (6) alfalfa;
(7) tomato; (8) melon; (9) clover; (10) swamps; and (11) vineyard. Figure 1 shows the position of ground
samples and the distribution of the pixel number per class and number of plots is shown on Table 1.

Figure 1. Camargue study area. Colored polygons represent 921 reference plots location. The study
area is limited by the cyan polygon.

https://fr.wikipedia.org/wiki/Camargue#Climat
https://fr.wikipedia.org/wiki/Camargue#Climat
https://www.data.gouv.fr
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Table 1. The distribution of the number of pixel and plots per class.

ID Vegetation Class Number of Plots Number of Pixels Surface Area (ha) Area (%)

(1) Rice 284 23,275 931 35.2
(2) Sunflower 77 5541 222 8.4
(3) Lawn 27 5018 201 7.6
(4) Irrigated grassland 53 3528 141 5.3
(5) Wheat 304 13,057 522 19.7
(6) Alfalfa 59 4580 183 6.9
(7) Tomato 15 1362 55 2.1
(8) Melon 24 1978 79 2.9
(9) Clover 26 1918 77 2.9

(10) Swamps 19 2535 101 3.8
(11) Vineyard 33 3409 136 5.2

Total 921 66,201 2648 100

3. SAR Data and Processing

3.1. SAR Data

Since wheat cultivation is the only winter crop presence after May and the major agricultural
practices in Camargue are in summer (e.g., from May to September), we focus our data analysis on
this period. The Sentinel-1A/1B SAR dataset includes 25 acquisitions in terrain observation with
progressive scan (TOPS) mode from May to September 2017 (5 months), with a revisit period of 6 days.
This is dual-polarization (VV + VH) data, resulting in 50 images. Figure 2 summarizes the temporal
profiles of the 11 agricultural classes per polarization. Each time series is made up of 25 points (one for
each acquisition). Figure 3 provides information on the temporal dynamic of these classes by giving
their average and standard deviation.

Figure 2. The temporal profiles of the eleven different classes which respect to the VH (a) and VV
(b) polarizations.
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Figure 3. The average and standard deviation of the eleven different classes for VV and VH polarizations.

3.2. Pre-Processing Data

First, a master image was chosen and all images are coregistered, taking into account TOPS mode,
to the master image [25]. Five-look (5 range looks) intensity images are generated and radiometrically
calibrated for range spreading loss, antenna gain, normalized reference area and the calibration
constant that depends on the parameters in the Sentinel-1 SAR header.

3.3. Temporal Filtering

Reliable estimates of the intensity from a distributed target require that the estimated number of
looks (ENL) is sufficiently large. Speckle filtering is often used to increase the ENL with loss of spatial
resolution [26]. In properly coregistered multitemporal datasets, it is possible to employ the technique
of temporal filtering, which, in principle, increases radiometric resolution without degrading spatial
resolution. The temporally filtered images usually show markedly diminished speckle, with little or
no reduction in spatial resolution. In this paper, we improve the time series SAR Sentinel-1 dataset by
exploiting a temporal filtering method developed by [26] to reduce noise, while retaining, as much as
possible, the fine structures present in the images.

3.4. Geocoding

After pre-processing and filtering, all the processed images are in the imaging geometries of
the master image. In order to create a unified dataset, all image data have to be orthorectified
into map coordinates. This is done by creating a simulated SAR image from a SRTM DEM 30 m,
and using the simulated SAR image to coregister the two image sets (polarizations). The pixel size
of the orthorectified image data is 20 m. After geocoding, all intensity images are transformed
to the logarithmic dB scale, normalized to values between 0–255 (8 bits) and input into classifiers.
The SAR Sentinel-1 data are processed by the TomoSAR platform, which offers SAR, interferometry
and tomography processing [27,28]. Finally, for each pixel, a 25 × 2 matrix (25 acquisitions and two
polarizations: VV + VH) is generated as input for classifiers.

4. Classical Machine Learning Approaches

Among supervised machine learning approaches, we use K nearest neighbor (KNN),
random forest (RF), and support vector machine (SVM) approaches as a baseline for comparing
the performance of Sentinel-1 image data for land cover classification with deep recurrent neural
network approaches in Section 6. The rationale for this choice is mainly because they are the most
popular in remote sensing [17,18,29] and remain competitive w.r.t. other approaches in many scenarios.
In this section, we provide a brief introduction of these methods for the sake of complete.

4.1. K Nearest Neighbors

KNN is classified as a non-parametric machine learning method, because it simply remembers all
of its training data. Despite its simplicity, KNN has been successful in a large number of classification
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problems, including remote sensing satellite images. The principle of KNN is that in the set of training
data, it finds a group of K samples that are closest to unknown samples (based on a certain distance
function, e.g., Euclidean) [30]. In KNN approach, the class of an unknown sample is determined by
applying a majority vote on the classes of its K nearest neighbors [30,31].

4.2. Random Forest

The Random Forest algorithm has demonstrated its ability to yield high quality mappings for a
different varieties of crop type systems with a much faster computation when compared to other state
of the art classifiers [32–34]. The classifier relies on aggregating the results of an ensemble of simpler
decision tree classifiers. In other words, it is a meta-estimator that fits a number of decision tree classifiers
on various subsamples of the dataset, and uses averaging to improve the predictive accuracy and control
over-fitting [35]. To reduce the computational complexity of the algorithm and the correlation between
subsamples, tree construction can be stopped when a maximum depth is reached or when the number of
samples on the node is less than a minimum sample threshold.

4.3. Support Vector Machine

The Support Vector Machine algorithm has been proved to be superior to most other image
classification algorithms in terms of classification accuracy [36]. SVM is basically a binary classifier
that delineates two classes by fitting an optimal separating hyperplane to the training data in the
multidimensional feature space to maximize the margin between them [37]. SVM uses a kernel
function to project the data from input space into feature space. Several kernels can be used: Linear,
radial basis function (RBF), and polynomial or sinusoidal kernels. Linear and RBF kernels are the most
commonly used. While linear kernels are computationally more efficient, nonlinear kernels, such as
RBF kernels, tend to outperform linear kernels. For RBF kernels, two parameters should be specified:
(i) The complexity parameter C which controls the trade-off between the maximization of the margin
between the training data vectors and the training error decision limit; and (ii) the gamma parameter
that is the width of the kernel function. Increasing C values usually require increasing computational
time and high C values also increase risks of over-fitting.

5. Recurrent Neural Network

Recurrent neural networks are well-designed machine learning techniques that stand out for their
quality in different fields of activity, such as signal processing, natural language processing and speech
recognition [38,39]. Contrary to convolutional neural networks, RNNs clearly manage the temporal
data dependencies, since the output of the neuron in time t − 1 is used with the next input, to feed the
neuron itself at time t. A diagram of a typical neural RNN is detailed in Figure 4. Among different
RNN models, we have Long-Short Term Memory (LSTM) [22] and Gated Recurrent Unit (GRU) [23],
which are the two most well known RNN units. The main difference between them is related to the
number of parameters to learn. Considering the same size of the hidden state, the LSTM model has
more parameters than the GRU unit.

In the following, we will briefly analyze the two RNN units (LSTM and GRU). For each of
them, we aim to provide and discuss the equations that describe its internal behavior. The � symbol
represents an element-wise multiplication, while σ and tanh are Sigmoid and Hyperbolic Tangent
function, respectively. The input of a RNN unit is a sequence of variables (x1, ..., xt), where each
element xt is a vector and t refers to the corresponding timestamp.
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Figure 4. RNN Unit (on the left) and unfolded structure (on the right).

5.1. Long-Short Term Memory (LSTM)

The existing RNN models fail to learn long-term dependencies because of the problem of
vanishing and exploding gradients. To overcome this challenge, the LSTM model is used [22].
The Equations (1)–(6) formally describes the LSTM neuron. The LSTM set consists of two cell states:
The Ct memory and the ht hidden state. Three different gates intervene in the control of the flow of
information: The input (it), the forget ( ft) and the output (ot). All three gates mix the current entry, xt,
with the hidden state, ht−1, from the previous timestamp. Also, the gates have two major functions:
(i) They regulate the quantity of information to forget/remember during the process; (ii) they deal
with the problem of gradient disappearance/bursting. We can see that the gates are implemented by a
sigmoid. This function gives values between 0 and 1. The LSTM unit also uses a temporary cell state,
yt, that resizes the current input. This current cell is applied by a hyperbolic tangent function that
gives values between −1 and 1. The sigmoid and the hyperbolic tangent work per element. it sets
the amount of information to keep (it � yt), while ft indicates how much memory should be kept in
the current step ( ft � ct−1). The input of an RNN is a sequence of variables (x1, ..., xn), where xt is a
generic element that represents a feature vector and t refers to the corresponding timestamp.

Finally, ot has an impact on the new hidden state, ht, which determines how much information
from the current memory will be on the output step. The different matrices, W∗∗, and bias coefficients,
b∗, are the parameters used during model formation. The memory, Ct, and the hidden state, ht, are both
transmitted at the next step.

it = σ(Wixxt + Wihht−1 + bi) (1)

ft = σ(W f xxt + W f hht−1 + b f ) (2)

yt = tanh(Wyxxt + Wyhht−1 + by) (3)

ct = it � yt + ft � ct−1 (4)

ot = σ(Woxxt + Wohht−1 + bo) (5)

ht = ot � tanh(ct) (6)

5.2. Gated Recurrent Unit (GRU)

To facilitate the computation and implementation of the LSTM model, the authors [23] develop
a new RNN unit. The neuron GRU is illustrated in Equations (7)–(9). This new unit operates as the
LSTM model by performing the gates and cell states but, conversely to the LSTM pattern, the GRU
unit has two gates: Update (zt) and reset (rt), and also we have a cell state, the hidden state, (ht).
In addition, the two gates merge the current input (xt) with information from previous timestamps
(ht−1). The update gate efficiently regulates the compromise between the amount of information from
the previously hidden state (which will be included in the current hidden state) and the amount of
information of the current timestamp that is to be kept. This acts in the same way as the unit memory
cell LSTM that supports the RNN to remember information in the future.
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Furthermore, the reset gate analyzes the amount of information from previous timestamps
that could be embedded in the current information. Since each hidden unit has reset and updates
gates, they register dependencies at different levels. Units that are more likely to capture short-term
dependencies may have a frequently-enabled reset gate [23].

zt = σ(Wzxxt + Wzhht−1 + bz) (7)

rt = σ(Wrxxt + Wrhht−1 + br) (8)

ht = zt � ht−1 + (1 − zt)� tanh(Whxxt + Whr(rt � ht−1) + bh) (9)

5.3. RNN-Based Time Series Classification

To complete the classification task, at each RNN unit we make a deep architecture, putting
together five units. The use of several units, similar to what is frequently done for CNN models in
several convolutional layers [40], will extract high-level non-linear time dependencies that are in the
remote sensing time series. This is done for both LSTM and GRU.

The RNN model follows a new sequence at the input, but it makes no prediction by itself. For this
purpose, A SoftMax [41] layer is stacked on the last recurrent unit to predict the final multi-class.
The SoftMax layer has the same number of neurons as classes to predict. For layer normalization
reasons, the SoftMax priority is given instead of the Sigmoid function, because the value of the SoftMax
layer can be considered as a probability distribution on classes that total up to 1, whereas in the case
of the sigmoid, the neurons give values between 0 and 1. Each sample belongs absolutely to a single
class, which leads us to the choice of SoftMax. This schema is instantiated for both LSTM and GRU
units, thus coming up with two different classifiers: An LSTM-based and a GRU-based classification
scheme. Figure 5 shows a schematic view of the LSTM-based architecture for each pixel in our paper
(e.g., 25 points input VV/VH, 5 LSTM units, 512 hidden dimensions and 11 classes output).

Figure 5. The schematic view of the RNN LSTM-based architecture. By replacing LSTM to GRU unit,
we get the RNN GRU-based architecture.

6. Experimental Results

6.1. Experimental Settings

We compared RNN-based classification approaches (LSTM and GRU) with standard machine
learning approaches.

For the RF model, we set the number of trees at 400 and a maximum tree depth of 25. For the
KNN model, we set the number of nearest neighbors at 10. For the RF model, the number of randomly
selected features at each node is kept at its default value for a classification problem (i.e., the square
root of the total number of variables [42]). For the SVM model, we use the RBF kernel with a default
gamma (i.e., 1/number of samples [43]) and a parameter of complexity equal to 105. For RF and KNN,
we use the python implementation provided by the Scikit-learn library [42], while for SVM we use the
LibSVM implementation [43].

For RNN-based classifiers, we define the number of hidden dimensions equal to 512 (General
speaking, the choice of the number of hidden dimensions depends on the volume of the training dataset
available. If the dataset is small, we have to use a simple model in order to estimate fewer weight
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parameters and vice versa. For example, in the work [20], the number of units is set to 64 and 512 for
Thau and Reunion test sites, respectively. We experimentally found that our best performance was
achieved by setting 512, after trying with 64, 128, 254, 512 and 1024 ). An initial learning rate of 5 ×10−4,
rho of 0.9 and a decline of 5 × 10−5 was employed. We implement the model via the Keras python
library with Theano as the back end [44]. To train the model, we used the Rmsprop strategy, which is
a variant of stochastic gradient descent [45]. The loss function being optimized is categorical cross
entropy, which is the standard loss function used in all multiclass classification jobs [46]. The model is
trained for 250 epochs, with a batch size set at 64. For the different methods, we apply cross-validation
5 times on the dataset, with a split procedure in two steps: (1) At the polygon-level to separate train
and test instances and (2) at the pixel-level to extract each instance [47,48]. In other words, we impose
that pixels of the same object belong exclusively to the training or to the test set. In this way, the initial
set of data (66,201 pixels) is reduced to 57,585 pixels, since our polygons are not the same size. In detail,
the set of data (57,585 pixels) is randomly divided into 5 partitions (folds) of equal size. Then, four
folds are used to train the models (about 46,068 pixels), and the fifth fold (about 11,517 pixels) is
used for the test phase. The operation is repeated five times, so that each fold is like a possible test
set. Finally, the score measurements are calculated by concatenating the predicted labels per fold
with respect to the real classes. Experiments were performed on a workstation Intel(R) Xeon(R) CPU
E5-2667 v4@3.20Ghz with 256 GB of RAM and GPU TITAN X. The training step takes, on average,
166 min to learn each RNN model on the training set and less than 3 min to classify the pixel time
series in the test set.

In order to assess classification performances, we use not only the global accuracy and kappa
measures, but also average and per-class F-measures.

6.2. Results

The multitemporal Sentinel-1 data, processed as in Section 3, are used as an input for classification
using classical approaches (KNN, RF, and SVM) in Section 4 and two RNN-based models (LSTM
and GRU) in Section 5. The summary of the results of different classification approaches is reported
in Table 2. This is the performance from cross-validation 5 times on Sentinel SAR-1 time series data,
showing the average and standard deviation values of the F-measure, Accuracy, and Kappa assessment
metrics from 5 repetitions. For this multi-temporal SAR Sentinel-1, all classifier performance metrics
are very high, showing the quality of the dataset for agricultural classification tasks.

Table 2. The average and standard deviation from cross-validation 5 times on the time series SAR
Sentinel-1 data.

Classifier F-Measure Accuracy Kappa

KNN 86.1 ± 0.6% 85.6 ± 0.6% 0.823 ± 0.009
RF 87.1 ± 0.9% 86.9 ± 1.2% 0.833 ± 0.015

SVM 87.3 ± 1.5% 87.1 ± 1.6% 0.837 ± 0.019
LSTM 89.2 ± 1.7% 89.1 ± 1.6% 0.862 ± 0.020
GRU 89.8 ± 1.6% 89.6 ± 1.6% 0.869 ± 0.019

Second, to illustrate more precise comprehension of the behavior of the different classifiers,
we report a per-class F-measure comparison in Figure 6. In this figure, the eleven classes are evaluated
according to the different methods (KNN, RF, SVM, LSTM and GRU) used in the classification.
In addition, confusion matrices are also reported in Figure 7. In both figures, results show a better
performance using RNN-based classification approaches over classical machine learning methods
(KNN, RF and SVM). Between the two RNN models, the GRU-based method obtains slightly better
results than the LSTM. This is as expected, due to the fact that the GRU unit is considered as an
improvement of the LSTM unit [23].
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Figure 6. Per Class F-Measure of the different approaches.

Figure 7. Confusion matrices on the SAR Sentinel-1 time series data of the different approaches:
(a) KNN, (b) RF; (c) SVM; (d) LSTM and (e) GRU. The name of the labels: (1) rice; (2) sunflower; (3) lawn;
(4) irrigated grassland; (5) durum wheat (winter); (6) alfalfa; (7) tomato; (8) melon; (9) clover; (10) swamps;
and (11) vineyard.
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Finally, by applying the best RNN-based GRU classifier for the whole area study, we established
the agricultural land cover map for Camargue in 2017 (see Figure 8). Figure 9 is a zoomed version
of the white-border box in the Figure 8, to facilitate visualization of classification results for the
RNN-based GRU and the SVM approach w.r.t the reference plots. The classification results for both
approaches were matched with the reference plots, and were slightly smoother in the RNN-based GRU
result. Among different agricultural classes, rice is the dominant practice (with 29.3% and 10,627 ha,
see Table 3) by its extent and presence in almost all areas of the region.

Figure 8. The agricultural land cover map in Camargue using the RNN-based GRU multitemporal
SAR Sentinel-1.

Figure 9. A zoom version of the white-border box in the Figure 8 is provided to facilitate visualization of
classification results. (a) reference plots; (b) the classical SVM result and (c) the RNN-based GRU result.
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Table 3. The distribution of the agricultural land cover class in 2017.

ID Class Area (ha) Percent

(1) Rice 10,627 29.3
(2) Sunflower 1676 4.6
(3) Lawn 3357 9.4
(4) Irrigated grassland 4148 11.5
(5) Wheat 7439 20.5
(6) Alfalfa 2593 7.2
(7) Tomato 592 1.6
(8) Melon 622 1.7
(9) Clover 884 2.4

(10) Swamps 2591 7.2
(11) Vineyard 1694 4.6

Total 36,223 100

6.3. Discussion

In this work we show that the multitemporal Sentinel-1 data can be used to classify different
agriculture classes in Camargue, France. We obtained good results, using both classical approaches
and the advance deep RNN techniques. The metric of validation indicates good performance, in which
F-measure/Accuracy was greater than 86% and Kappa coefficient was better than 0.82. Together,
these results confirm the suitability of Sentinel-1 time series data for agriculture land cover applications.

First, we show that even with the classical approaches, good classification performance could
be achieved with radar time series data. This was expected to be challenging, because radar images
are characterized by considerable speckle noise, which does not exist in optical images. We note that
the same performance can not be straightforwardly transferred to the case of having few radar data.
Good performance can be achieved by the fact that Sentinel-1 SAR with 6 days revisit time allows
not only a precise temporal follow-up of the agriculture crop growth, but also mostly noise-free data,
thanks to the multitemporal speckle filtering. It is worth pointing out that, nowadays, the Sentinel-1
constellation is the only satellite system providing dense time series with global coverage. It is therefore
a good candidate for operational agriculture land cover mapping.

We can observe that RNN-based classification approaches have better performance over classical
machine learning methods (KNN, RF and SVM). Between the two deep RNN models, the GRU-based
method has slightly better results than the LSTM one. To give a more precise comprehension of the
behavior of the different methods, from Figure 6, we can see that the performance gain offered by the
RNN-based methods involve all the eleven classes, resulting in equally good result on all the them.
Conversely, KNN, RF and SVM show different behaviors for different classes. Both classifiers obtain
the best performances on the Rice class (1) and the lowest performances on the Irrigated grassland
class (4). This behavior can be explained by considering the temporal profiles of both VV and VH
presented in Figure 2. The Rice class (depicted with pink lines in Figure 2) has a clear and distinct
profile, with a strong dynamic (with large standard deviation value, see Figure 3), facilitating its
detection. The Irrigated grassland class (depicted with green diamond lines in Figure 2) has a weak
temporal behavior, with a small standard deviation value (see Figure 3), and intersects the temporal
profiles of all the other classes multiple times. This is probably the reason why the standard approaches
are not able to correctly detect this class, since they ignore the temporal correlation of the data. On the
other hand, the RNN-based approaches discriminate well among all the classes, since they can extract
and summarize the important signal portions that help the discriminative task among the different
agriculture classes.

Based on Figure 7, which shows the confusion matrices for each method, we can see that a high
misclassification rate is recorded between the Irrigated grassland (4) and Swamps (10) classes. This is
true for all the different classifiers. However, for the RNN-based approaches, this misclassification
error is not as high. Conversely, in the case of KNN, RF and SVM, this misclassification behavior
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is significant. In fact, the standard machine learning approaches are under strain, and they are
responsible for a considerable misclassification rate. In addition, the standard machine learning
approaches are not always good at dealing with imbalanced classification problems [49,50]. Thanks to
the joint optimization of nonlinear input transformations along with classification, deep learning
approaches provide here a valuable strategy to discriminate among the different agriculture classes.
In addition, as expected, the ability of RNNs to deal with the temporal correlations characterizing the
SAR Sentinel-1 data result in a gain in performance on all classes, with particular emphasis on those
classes that exhibit similar temporal behaviors for longer periods. Together, these results confirm that
the RNN models (both LSTM-based and GRU-based) are well suited to detect and exploit temporal
dependencies, as opposed to common classification approaches that do not explicitly leverage temporal
correlations. Our finding is consistent with previous reports, in which Deep Learning outperformed
the classical machine learning approaches [19–21].

In this paper, we selected KNN, RF and SVM due to their most popular supervised classification
algorithms in the remote sensing community. Although they were introduced way back in the early
2000s, they still remain competitive w.r.t. other approaches in many scenarios, and they represent the
algorithms to which any new method needs to be compared to. Considering the setting of remote
sensing time series analysis (both optical and SAR), to date, no other classifier reaches the same
generality and classification performance of these approaches, and this is why we decided to compare
our RNNs proposals to them. Unfortunately, to the best of our knowledge, we are not aware of
any other (more recent) classification methods that are commonly employed to perform supervised
classification on time series SAR data. To summarize our position, this comparison has allows us to
appreciate more keenly how important it is to have techniques that can be employed to intelligently
exploit temporal dependency among data w.r.t. standard machine learning approaches employed
in the remote sensing field. Due to the promising results we have obtained with RNNs, we think
that, in the near future, these techniques will play an important role in the analysis of remote sensing
time series.

For agricultural land cover in Camargue 2017, we can observe that the region areas are occupied
mostly by rice (29.3% and 10,627 ha) and wheat (20.5% and 7439 ha) distributions. We note that the
performance of both RNN-based LSTM and GRU classifiers is best on the Rice class, with the same
F-measure metric of 96%. As a consequence, an RNN-based classifier is a valuable tool to discriminate
the rice from other agriculture classes. In Camargue, there is a great variability in the types of rice
farms [8], and the rice areas vary according to the year. The rice areas cultivated have significantly
decreased from 16,000 ha in 2011 (e.g., in [8]) to 10,627 ha (our estimation) in 2017. The decreased
phenomena of the rice extent could lead to a negative effect to the sustainable development of
Camargue. Future works on this region could be focused on considering the assimilation of new source
remote sensing data, such as Sentinel-1 radar, in crop models to estimate rice production, to follow
farming practices, and to be able to propose strategies for sustainable agricultural development.

7. Conclusions

In this paper, we studied the potential of high spatial and temporal resolution Sentinel-1 remote
sensing data for different agriculture land cover mapping applications and assessed the new deep
learning techniques. We proposed to use two deep RNN approaches to explicitly consider the temporal
correlation of Sentinel-1 data, which were applied on the Camargue region.

We demonstrated that even with the classical approaches (KNN, RF and SVM), good
classification performance could be achieved with Sentinel-1 SAR image time series. We experimentally
demonstrated that the use of recurrent neural networks to deal with SAR Sentinel-1 time series data
yields a consistent improvement in agricultural classes as compared with classical machine learning
approaches. The experiments highlight the appropriateness of a specific class of deep learning models
(RNNs) which explicitly consider the temporal correlation of the data in order to discriminate among
agricultural classes of land cover, typically characterized by similar but complex temporal behaviors.
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We observed for the Rice class the same high performance of both RNN-based LSTM and GRU
classifiers, with a F-measure of 96%. We found that in the Camargue region, rice land cover is still
dominant, but decreasing significantly. Future work could be focused on estimating rice production
yields in order to propose strategies for sustainable agriculture development.

Finally, although the number of exploitable optical images are limited due to cloud cover, the use of
multi-source data including optical and SAR radar data will be an important subject of future research.
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