
HAL Id: hal-01900503
https://hal.science/hal-01900503v1

Submitted on 11 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Visual Programming Tool to Design Mixed and
Virtual Reality Interactions

Guillaume Loup, Sébastien George, Iza Marfisi-Schottman, Audrey Serna

To cite this version:
Guillaume Loup, Sébastien George, Iza Marfisi-Schottman, Audrey Serna. A Visual Programming
Tool to Design Mixed and Virtual Reality Interactions. International Journal of Virtual Reality, 2018,
18 (02), pp.19-29. �hal-01900503�

https://hal.science/hal-01900503v1
https://hal.archives-ouvertes.fr

A Visual Programming Tool to Design Mixed and Virtual

Reality Interactions

Guillaume Loup1, Sébastien George1, Iza Marfisi1, Audrey Serna2

1 Université Bretagne Loire, Le Mans Université, EA 4023, LIUM, 72085 Le Mans, France

{guillaume.loup ; sebastien.george ; iza.marfisi}@univ-lemans.fr
2 Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR 5205, F-69621, France

audrey.serna@insa-lyon.fr

Abstract. Mixed and Virtual Reality (MVR) devices are now more accessible.

However, developing MVR applications is still complex for the majority of de-

velopers, because it requires specific expertise. For the past few years, several

packaged solutions offered to assist developers who are non-MVR experts.

These solutions rarely offer full freedom to create specific interactions adapted

to the context. We therefore propose a new MVR tool named MIREDGE

(MIxed and virtual REality Development tool for Game Engine). Its interface

allows visual programming of MVR interactions. This solution aims at allowing

developers to capitalize, re-use, share and associate interaction algorithms. It al-

so takes into account software and hardware compatibility in order to compose

new algorithms. The specific architecture of MIREDGE provides opportunities

for MVR and non-MVR developers to collaborate to meet a common need:

writing efficient MVR interaction algorithms. MIREDGE Editor was evaluated

by 31 MVR and non-MVR developers. Results shows that MIREDGE Editor

seems effective and efficient particularly for non-MVR developers.

Keywords: Mixed and Virtual Reality, immersive interactions, script generator,

sharing expertise, game engine, multiplatform.

1 INTRODUCTION

The general public has lately become particularly interested in Mixed and Virtual

Reality (MVR) interactions and several Head Mounted Displays1 (HMDs) are now

available and affordable. However, even though the demand for new applications and

games that can be played with these technologies is high, still very few developers

have the specific MVR skills [1].

The implementation of a realistic virtual environment remains a complex process

for developers. In recent years, the use of tools dedicated exclusively to virtual reality

is limited and developers have decided to use mainly video game development envi-

ronments [2]. These environments are reliable and easy to use, with good perfor-

1 Oculus Rift (https://www.oculus.com/rift/), HTC VIVE (https://www.vive.com/eu/) and Mi-

crosoft HoloLens (https://www.microsoft.com/fr-fr/hololens)

Guillaume Loup, Sébastien George, Iza Marfisi-Schottman, Audrey Serna, “A Visual Pro-

gramming Tool to Design Mixed and Virtual Reality Interactions”, International Journal of

Virtual Reality, IJVR, 2018, 18 (02), p. 19-29

https://www.oculus.com/rift/
https://www.vive.com/eu/

2

mances. They are inexpensive and allow users to create extensions that improve the

interface themselves. In many cases, developers also share projects with documenta-

tion and source code so that other users can create new content. These game engines

make low-cost virtual reality more accessible. Hilfert and König [3] consider that

these game engines are sufficient to allow non-developers creating immersive virtual

environments. Despite this, there are still many prerequisites to create an immersive

application with interactions adapted to specific user's needs. Even if some game en-

gines allow to develop applications without knowing a programming language, mas-

tering the logic of programming remains essential. Our approach is based on the as-

sumption that a developer, without training in MVR but assisted by a tool based on

the knowledge of MVR experts, is able to develop an immersive application adapted

to the user's needs.

Although a developer and virtual reality developer may have different skills and

various design approaches, their communities are influencing each other and they are

beginning to use common tools such as Unity3D [4]. So, it may be relevant to consid-

er that the same tool could meet the expectations of both communities. One priority of

the non-MVR developer community is to simplify the implementation of interactions.

Ideally, this simplification makes development more accessible without restricting the

range of possibilities. Concerning the community of MVR developers, their priority is

to optimize their process of writing interaction algorithms. This optimization should

make it possible to write their solution faster, while ensuring reliable and efficient

results.

This paper aims at proposing an approach and evaluating a tool - named

MIREDGE Editor - to design and code immersive interactions based on algorithms

already considered to be efficient. Furthermore, this solution becomes more attractive

if its tools are free software and its compatibility with peripherals is important.

In the next section, we will discuss the pros and cons of different existing MVR

development solutions. Section 3 describes MIREDGE principles. The evaluation of

MIREDGE Editor is detailed in section 4. Finally, the limitations of the tool and its

future evaluations are discussed in sections 5 and 6.

2 RELATED WORK

Today, a large number of tools allow writing MVR interaction algorithms. Some of

them are independent environments, while others are dedicated to particular game

engines [5]. Moreover, some are intended for MVR developers and others for non-

MVR developers. In order to understand the variety of existing tools, we proposed to

classify them into four categories:

 Development platforms dedicated to MVR

 Game engines with MVR manufacturers' libraries

 Game engines with middleware

 Game engines with assistance tools

For each of these categories, we highlight their advantages and disadvantages regard-

ing the following criteria [6]:

3

 Usability: can non-MVR developers easily use the tool?

 Script capitalizing: is it possible to capitalize scripts written by MVR devel-

opers?

 Collaboration: does the tool allow MVR and non-MVR developers to col-

laborate in order to create scripts? [7]

 Script re-use: is it possible to re-use scripts written during previous projects?

 Devices compatibility: when will the tool be compatible with new devices?

 Cost.

2.1 Development Platforms Dedicated to Mixed and Virtual Reality

The oldest development platforms fully dedicated to MVR allow programming in-

teractions and staging 3D scenes via a single interface as illustrated in Figure 1. Such

platforms were developed 30 years ago, when virtual reality was mainly associated

with military, entertainment or education needs.

Pros. The programming interface is often designed to accommodate different lev-

els of expertise. For example, the most popular platforms, Virtools and Eon studio,

offer visual programming [8]. To give MVR developers more freedom, Virtools also

allows them to script their own programming blocks.

Cons. These platforms have a high acquisition cost and are therefore intended for a

limited number of specialized developers. Furthermore, it is often necessary to wait or

even pay for the platforms to be compatible to new software and hardware devices.

.

Figure 1. Structure of development platforms dedicated to virtual reality

2.2 Game Engines with MVR Manufacturers' libraries

Ten years ago, only a few game studios had the means to purchase game engines.

Today, the new generation of game engines, such as Unity3D and Unreal Engine, are

less expensive or even free [9]. These real-time 3D engines have begun to satisfy the

general public and have been used to create many popular games on smartphones and

4

game consoles [10]. To facilitate the work of developers, famous manufacturers such

as Oculus and HTC Vive offer libraries for these game engines.

Pros. Most of the new libraries are free and allow direct access to the MVR hard-

ware (Figure 2.). The libraries allow interacting with the most popular MVR and

common devices (e.g. HoloLens, HTC Vive, Kinect, joystick, mouse). Moreover,

manufacturers provide access to low-level information coming from the hardware

allowing developers to write custom algorithms.

Cons. The use of these libraries requires to understand specific and technical in-

structions that are not easy for non-MVR developers. For example, setting the helmets

“parallax” or understanding how to find the arm orientation among the data provided

by the Kinect (player id, articulation names, angle radiant…).

Figure 2. Structure of Game Engines with MVR Manufacturers' libraries

2.3 Game Engines with MVR Middleware

MVR middlewares ensure the transfer of data between a wide range of devices and

the final application.

Pros. The main advantage of middlewares is to unify the different exchange proto-

cols required by each device. All the MVR interactions can be implemented uniform-

ly, without direct communication with the drivers (Figure 3). The best example is

VRPN (Virtual Reality Peripheral Network) [11]. This middleware offers a simple

and efficient method of sharing device information with useful messages through a

server client architecture. Other middleware, such as CaveUDK, also offer high level

interface to facilitate the use of complex devices that are not managed by game en-

gines [12]. MiddleVR [13], associated with Unity3D, also offers an accessible config-

uration interface. This solution has already been adopted by many MVR developers.

Finally, it should be noted that, as independent applications, middleware offers a wide

range of compatible devices.

Cons. Manipulation libraries require knowledge of innovative devices that is too

complex for non-MVR developers. Furthermore, if developers wish to re-use their

5

interaction algorithms, they have to duplicate them and manually transfer them from

one project to another.

Figure 3. Structure of Game Engines with MVR Middleware

2.4 Game Engines with MVR Assistance Tools

The term “MVR assistance tool” refers to all the libraries and other tools added to

the development environment to simplify development of MVR interactions. Unlike

the manufacturers’ libraries, these tools offer a higher level of design, closer to the

interactions than to the hardware (Figure 4). The Reality-based User Interface System

(RUIS) [14] has been available for several years and has been the subject of several

publications.

Pros. RUIS is cost-free and intended for non-MVR developers. It offers a set of

components that are imported directly into the game engine such as Unity3D. These

components can easily be added to a 3D scene to configure a set of predefined MVR

interactions. It works with several types of devices: position trackers (e.g. Kinect,

Razer Hydra, PlayStation Move) and display systems (e.g. Oculus DK2).

Cons. The tools only offer a set of predefined interactions for each device and are

not intended to create new custom interactions.

6

Figure 4. Programming interactions in Game Engines with MVR Assistance Tools

Let us note that this classification encompasses the most common tools but not all

of them. For example, it does not include MASCARET, a framework design for re-

search [15]. MASCARET is original in the sense that it allows non-MVR experts to

describe MVR interactions based on Unified Modeling Language (UML). The

framework also has the specificity of perceiving the avatar of the player and all the

virtual object of a scene (e.g. table, cup, pen, paper…) as agents. The purpose of this

architecture is to trace the users’ activity and not to offer powerful interactions with

several devices.

Table 1. Analysis for each category of tools.

 Dev. platform

dedicated to

virtual reality

Game engine with…

MVR Manufactur-

ers' libraries

MVR Middleware MVR Assistance

Tools

Usability Requires
knowledge of

MVR hardware

Requires knowledge
of MVR hardware

Requires knowledge
of MVR hardware

Easy for intended
use, difficult for

custom use

Script

capitalizing

Requires packag-

ing and placing it
in an online store

Requires packaging

and placing it in an
online store

Only the authors of

the tool can share

Only the tool

authors can share

Collabora-

tion

In many cases

with visual pro-
gramming

Difficult for non-

MVR experts to re-
use the work of

MVR experts

Difficult for non-

MVR experts to re-
use the work of

MVR experts

Possible but in a

predefined bounda-
ry

Script re-use A list of blocks is

available

Search, duplicate

and rewrite scripts

Search, duplicate

and rewrite scripts

A list of compo-

nents is available

Devices

compatibility

Requires upgrad-

ing and sometimes

paying

As fast as the manu-

facturer can

Requires upgrading Requires upgrading

Cost Usually expensive More and more are

free

Free or very expen-

sive

Usually free

Examples 3dvia studio

Eon Reality studio
Virtools

Unity3D

Unreal Engine with
SDK

VRPN

MiddleVR

RUIS

ARToolkit, FreeVR,
#FIVE

7

We note that most of the tools require knowledge of MVR hardware and are there-

fore not easy to use for non-MVR developers. Only the MVR assistance tools offer

the means to customize some basic MVR interactions. The existing tools also offer

very little means of capitalizing and re-using scripts. Only the dedicated platforms

offer the possibility of adding new blocks of scripts to a common library which facili-

tates the re-use of scripts within the community. Finally, all of the existing tools also

have one major limitation. When a new MVR device placed on the market, the devel-

opers have to wait several months, and sometimes pay, for the tool to be upgraded to

the next version or for the manufactures to release a library compatible with their

game engine. Considering the high demand for MVR applications using the latest

devices, this delay is a real concern for companies.

2.5 Hybrid solution

In order to help developers who have no training in MVR, several tools have been

designed. These tools are based on the concept of reusability and device abstraction

for MVR frameworks [16]. The interfaces of these tools propose to connect graphical

building blocks [17]. To be compatible with a large number of MVR devices, it is

recommended to use a specific development system architecture [18] with entity-

component [19].

To combine all of the above features, Figueroa et al. [20] propose the Interaction

Techniques Markup Language (InTml) to facilitate the collaboration of two communi-

ties: VR graphic designers and VR developers. VR graphic designers are trained in

User Experience and are usually not developers. InTml represents the interaction algo-

rithm as a dataflow, allowing MVR designers to understand the logic of the chosen

algorithm. This dataflow is then automatically transformed into C++ or Java scripts

and allows VR developers to exploit it in their projects. To describe VR interactions,

InTml is hardware-independent, component-based and uses formal models. New

components can be created by MVR developer. This type of solution could facilitate

fast prototyping [21].

The limit with InTml, is that its dataflow representation is intended for VR graphic

designers, who are not developers. The representation is therefore very simplified

because VR graphic designers have neither the ability nor the need to program the

interaction. This tool is therefore not suited for developers, who need to compose their

own interaction algorithm. To meet this need, new interfaces, such as Blueprints [22],

let non-VR experts program interactions with dataflow. However, these interfaces are

limited to a single development environment and to a small number of devices.

3 MIREDGE APPROACH

As we have discussed above, none of the existing tools meet the needs of the non-

MVR developers, such as usability, re-use, capitalization and cost-free. Therefore, we

propose a hybrid solution including the advantages of each kind of tool.

8

3.1 System description

Based on the concept of interaction modeling in a virtual environment [23] and on

the above-mentioned solutions, we propose MIREDGE, a MIxed and virtual REality

DEvelopment tool for Game Engines (Figure 5). The main goal of this tool is to allow

MVR and non-MVR developers to re-use interaction algorithms available in a library,

to visually program new ones, and generate the corresponding script for the chosen

game engine.

Figure 5. MIREDGE: visual programming and script generation, a hybrid solution

3.2 Capitalizing, Sharing and Evolution: a Community based Tool

A new tool providing the source code is more attractive for a developer communi-

ty. A virtual reality platform, named OSVR, demonstrated that open source could

enable collaboration between communities as diverse as academia and industry [24].

Consequently, MIREDGE is open-source to offer transparency and freedom.

One of the main limitations of the existing MVR tools, described in the first part of

this paper, is the fact that they are only compatible with a limited number of MVR

devices. As shown in Figure 6. MIREDGE offers the possibility for MVR developers

to create new components for the algorithms as soon as new devices are released with

the MIREDGE Creator tool. These new components can be rated by other developers

to offer a guarantee of reliability [25], and integrated to the other blocks in the

MIREDGE Library. Manufacturers of new technologies can also create new blocks to

facilitate the use of their devices.

9

Figure 6. Process for community development of immersive interaction in MIREDGE

3.3 Ease of use: visual programming

MIREDGE Editor allows non-MVR experts to write MVR algorithms by creating

visual flowcharts of blocks [26] (Figure 7.). Despite the simplistic aspect of these

blocks, this kind of interface is adapted to developers’ logic and allows writing a large

number of algorithms [27]. Each method is represented by a block containing a text

and an icon. There are three block categories:

 The first category of blocks (blue blocks) are specific methods for interacting with

MVR devices. These methods are used to transmit execution commands to devices

and to collect information about their properties, such as the vertical nodding Ocu-

lus detection block.

 The second category (yellow blocks) are logical elements. These allow developers

to add conditions as well as repetitions, such as IF or WHILE blocks. This category

is essential to allow the creation of custom algorithms while remaining simple for

non-MVR developers.

 The third category (green blocks) allows developers to refer to variables, classes

and methods that already exist in the scripts of the project.

 The developers can connect these blocks with two types of links. The first type of

links (pink arrows) defines the order in which the block will be executed. The second

type of link (yellow arrows) allows to transmit variables from the output of one block

to the input of another block.

10

Figure 7. Example of connected blocks in the MIREDGE interface

For example, in Figure 8, the algorithm defines that, when fingers are detected by

the LeapMotion device, the Answer method of QuizzManager script within the game

engine project will be called. To manage the LeapMotion device, a blue block had to

be placed in the initialization sequence. To manage the detection, a blue block is

placed in the continuous sequence. This block has two output parameters, one boolean

determining if the detection is correct, another indicating the number of fingers de-

tected. Thus the link with the yellow condition block allows to filter according to the

quality of the detection status. Finally, the green block represents a specific method

from one of the existing scripts of the game engine project.

Figure 8. Example of an algorithm in MIREDGE

3.4 A generic script translator

Once the developers have designed their MVR interactions with blocks in

MIREDGE Editor, they are translated into source code [28]. For example, if the de-

velopers are using Unity3D, MIREDGE converts the dataflow to Javascript and C#

code. The generated scripts are automatically sent to the project chosen by the devel-

oper and linked with others resources. The developer can then modify these scripts in

11

their development environment. This feature also has a pedagogical value. Indeed, it

gives the non-MVR experts the possibility to read the generated code thanks to the

comments.

MVR is an area in which devices, languages and game engines appear every year.

It therefore offers a solution that can adapt to this constant renewal of technology. In

order to transform the graphical entities into lines of code for different game engines,

we consider the algorithms produced under MIREDGE as models. Moreover, all these

models are derived from the meta-model presented in Figure 9. The main rule is that

each graphic block is mapped to different sets of code lines. These lines allow users to

declare or use libraries, methods or variables. They can be attached to one or more

devices. There may be variations of the same block in different languages and for

different engines.

Figure 9. Overview of MIREDGE Immersive Interaction Meta-model

4 EVALUATION OF MIREDGE EDITOR: AN

EXPLORATORY STUDY

4.1 Objective

The study described here aims at evaluating the effectiveness and efficiency of

MIREDGE Editor (i.e. the part of MIREDGE the most used by the two communities),

both for MVR and non-MVR expert developers. We wanted to verify that non-MVR

experts would be able to use MIREDGE Editor easily and develop the required inter-

actions in the allotted time. We also wanted to ensure that MVR experts would not be

inconvenienced by MIREDGE Editor and would be inclined to contribute to the

community-based features that we wish to promote.

12

4.2 Participants

We asked a panel of developers to add several MVR interactions in an existing

project with MIREDGE Editor. The first group of fifteen participants (aged from 21

to 27, mean=22, SD=1.5), qualified as the non-MVR expert group, trained to develop

serious games but without MVR interactions. The second group consisted of sixteen

other participants (aged from 21 to 27, mean=24, SD=1.8) trained to develop MVR

applications, qualified as the MVR expert group. The participants came from two

backgrounds: the 15 non-MVR participants were in bachelor of serious games, and

the 16 MVR participants were in master of virtual reality. In each background, stu-

dents were selected by the pedagogical supervisor based on their programming grades

(i.e. students with the highest grades participated in the study).

Participants of both groups were evenly distributed in the two following experi-

mental conditions:

 With MIREDGE Editor: the developers used MIREDGE Editor to implement the

required interactions and export them to Unity3D (eight non-MVR experts and

eight MVR experts)

 Without MIREDGE Editor: the developers used the Unity3D game engine and

existing libraries to implement the required interactions (seven non-MVR experts

and eight MVR experts). We choose this game engine because it is currently the

most used in the game industry and it is the tool that the MVR experts where

trained on.

4.3 Equipment and measures

Each participant had a PC with Unity v5 and access to Internet. Two MVR devices

were available: the head mounted display Oculus Rift DK2, and the Leap Motion con-

troller. This combination offers very specific interactions [3]. The device drivers were

already installed, and the SDK included in the Unity project.

We measured efficiency and effectiveness using indicators from digital tracks. Af-

ter completing the task, participants had to list positive feedback and negative feed-

back (i.e. areas for improvement) regarding MIREDGE Editor.

4.4 Tasks

Figure 10. Capture of the interface related to task 1

13

The participants had one hour to implement three MVR interactions for an existing

project. We explicitly asked them to implement each interaction one after the other

because the tasks were increasingly difficult. The existing project consists of a scene

where the player is surrounded by four avatars. Each avatar has a series of questions

to ask the player (Figure 10). We asked the developers to implement three MVR in-

teractions for the player to interact with these avatars:

 The first interaction to implement is answering yes or no by shaking the

head. This interaction uses the gyroscope of the head mounted display and

parameters such as the duration and magnitude of the movements.

 The second interaction to implement allows the players to choose one propo-

sition out of four by holding up the corresponding number of fingers. This

interaction uses the Leap Motion controller and parameters related to the du-

ration and the inclination of the fingers.

 The last interaction to implement allows the players to change interlocutor

by simply facing another avatar and pointing it with their finger. This inter-

action uses a combination of data coming from the HMD and the Leap Mo-

tion.

Developers without MIREDGE Editor had a library containing methods for detect-

ing head and finger movements. Their final production was a script directly written in

C # in MonoDevelop editor. Likewise, developers using MIDEGE Editor had access

to blocks corresponding to each of the methods of this library. In the MIREDGE Edi-

tor workspace, they had to connect the available blocks to define sequences. Finally,

they had to launch the script generation procedure that directly sent the result to Uni-

ty. All the participants could test their script as soon as they wanted in order to make

the necessary modifications.

4.5 Data analysis

This exploratory study included only 31 participants, and involved appropriate sta-

tistics. For categorical variables (e.g. effectiveness measured by success-

ful/unsuccessful task completion [29]), we used Cramer’s V2 to estimate the magni-

tude of the association between two categorical variables [30]). For numerical varia-

bles (e.g. efficiency measured by duration), we used descriptive statistics (i.e. mean,

SD, min, max).

4.6 Results

Before the experimentation, an inspection of the tool was carried out by an ergo-

nomic expert. It consisted in "reviewing MIREDGE Editor’s interface to verify that it

meets a set of ergonomic criteria" [31][32]. The recommendations helped us improve

MIREDGE Editor before the main experimentation. To comply with this protocol and

adapt to the availability of users and equipment, it was necessary to conduct all the

experiments during only one week. Despite these constraints, no problems have been

14

encountered and all the data generated by the participants could be taken into account

in this results of effectiveness and efficiency.

Effectiveness

Our main indicator for measuring effectiveness is the percentage of successfully

accomplished tasks (i.e. implementation of three MVR interactions). Table 2 shows

the number of users who were able to complete zero, one, two or all three of the tasks

for each group. We observe that none of the tasks were either too easy or too difficult

because they were all be completed by at least one person and never by everyone for

each experimental group (MVR experts/non-experts combined with/without

MIREDGE Editor).

Table 2. Number of users who completed tasks

Group 0 Task 1 Task 2 Tasks 3 Tasks Total num. of

participants

MVR experts

without MIREDGE

1 1 3 3 8

MVR expert

with MIREDGE

4 2 1 1 8

non-MVR experts

without MIREDGE

2 4 1 0 7

non-MVR experts

with MIREDGE

2 2 4 0 8

Total number 9 9 9 4 31

In order to determine if the use of MIREDGE Editor significantly helped the de-

velopers to accomplish their tasks, we used the Cramer’s V2 rate2. The calculations

give a score of 0.14, which shows an intermediate association between the experi-

mental group and the number of tasks performed by participants. In addition, we cal-

culated the Relative Deviation3 (RD), that measures the association between modali-

ties of two variables (e.g. MVR experts without MIREDGE Editor for 1 performed

task) [21]. As depicted in Figure 11, it reveals positive attractions between:

2 Cramer’s V2 estimates the magnitude of the association between two categorical variables

[30]. It is calculated by dividing phi2 by phi2 max. Phi2 is the average deviation in the table,

while Phi2 max is the smallest dimension in the table minus 1. Cramer’s V2 lies between 0

and 1. The association is conventionally considered as strong when V2 > 0.16, as weak

when V2 < 0.04, and as intermediate between the two scores [33].
3 Relative Deviation (RD) is calculated on the basis of a comparison between observed and

expected frequencies (i.e. those that would have been obtained if there was no association

between the two variables), according to the following formula: RD = (observed data - theo-

retical data) / theoretical data. There is attraction when RD is positive, and repulsion when it

is negative. By convention, we retain only RD with absolute terms > 0.25.

15

 MVR experts without MIREDGE Editor and 2 or 3 finished tasks (resp.

RD=0.29 and RD=0.91)

 MVR experts with MIREDGE Editor and 0 finished task (RD=0.72)

 non-MVR without MIREDGE Editor and 1 finished task (RD=0.97)

 non-MVR experts with MIREDGE Editor and 2 finished tasks (RD=0.72)

MVR experts without MIREDGE 0 task

MVR experts with MIREDGE 1 task

non-MVR experts without MIREDGE 2 tasks

non-MVR experts with MIREDGE 3 tasks

Figure 11. Main attractions based on RD values between the experimental groups and the

number of tasks performed by participants

First of all, this data shows that non-MVR experts managed to accomplish one task

without MIREDGE Editor whereas they accomplished two with the tool. This show

that MIREDGE Editor somewhat helped them. In addition, two tasks seem like a good

score, considering that MVR experts managed to accomplish 2 to 3 task in the same

given time with their usual tools (Unity3D).

The data also shows that MVR experts had difficulty completing the first task with

MIREDGE Editor. This could be explained by the difference between their practice of

this tool and their automatisms acquired on the tool usually used. Changing habits

over such a short duration is very difficult. Also, we would like to emphasize the fact

that we strictly followed the experimentation protocol and therefore did not intervene

during the experimentation, even when the developers seemed to be struggling with

the tool. Helping them would certainly have increased their rate of success but we

wanted to reproduce real conditions.

Efficiency

Completing a task successfully is interesting but, completing it quickly is just as

important. We therefore measured the time necessary to develop each MVR interac-

tion. The start time corresponds to the entry of the first instruction or the placement of

the first block. The end time corresponds to the last action necessary for the algorithm

to be functional for this task. Tables 3 and 4 show the data to compare tasks 1 and 2.

The data in the tables correspond to the completion time of these tasks in minutes and

seconds.

Table 3. Duration in seconds to perform task 1

Group Mean Min Max Standard deviation

MVR experts

without MIREDGE

22min 7s 12min 24s 33min 07s 09min 12s

MVR experts

with MIREDGE

30min 18s 17min 39s 42min 56s 17min 53s

16

non-MVR experts

without MIREDGE

36min 35s 28min 32s 43min 49s 07min 40s

non-MVR experts

with MIREDGE

25min 10s 20min 03s 33min 13s 05min 51s

We observe that the MVR experts complete the first task faster without MIREDGE

Editor, whereas the non-MVR experts complete it faster with MIREDGE Editor. In

short, the non-MVR experts are more efficient with the tool, whereas the MVR devel-

opers are more efficient without the tool.

Table 4. Duration in seconds to perform task 2

Group Mean Min Max Standard deviation

MVR experts

without MIREDGE

10min 35s 04min 45s 23min 51s 06min 59s

MVR experts

with MIREDGE

04min 44s 02min 26s 07min 47s 02min 45s

non-MVR experts

without MIREDGE

06min 16s 06min 16s 06min 16s 4

non-MVR experts

with MIREDGE

03min 06s 01min 55s 04min 26s 01min 13s

For the second task, non-MVR experts are still more efficient with MIREDGE Edi-

tor. More interesting: MVR experts, who have gotten used to MIREDGE Editor’s

interface, are also more efficient with MIREDGE Editor, than those using Unity.

Feedback

For users, MIREDGE Editor should have a functionality to identify algorithmic er-

rors. Indeed, a block can be created without any connection to other blocks. Although

this will not cause errors in the generated script, it may cause confusion. A connection

checker could be to better assist the user. Concerning the positive points, the flow-

based programming representation was appreciated by the MVR experts. Here are

some of the comments we collected during the experimentation: “the block program-

ming is simpler to visualize than code”, “I linked the simplicity of the terms in the

tool and the explanation of the input and output variables”. Non-MVR experts, on the

other hand, emphasized the simplicity of the interface: “the interface was easy to

understand and the blocks easy to manipulate”, “the tool is easy to use”, “the tools

facilitate the creation of interactions”.

5 DISCUSSION

In order for the results to be relevant for a time limited to an hour, we had to pro-

vide all participants with equivalent resources and an identical goal. Indeed, in the

experimentation without MIREDGE Editor, the developers were provided directly

with the libraries containing high-level functions adapted to the context. However, in

4 It is impossible to calculate the deviation because there is only one value for this group.

17

reality, developers have to conduct considerable research to find these functions in

previous projects, forums or documentation. Concerning experiments with MIREDGE

Editor, we asked developers to program the entire algorithm. Normally, MIREDGE

Editor also allows sharing and thus re-use of existing algorithms. We can therefore

assume that the task could have been carried out far more efficiently with access to an

algorithm database.

Since the MIREDGE Editor training sessions were short and only theoretical, we

can assume that longer term experiments could demonstrate greater efficiency and

effectiveness of this tool. That is why improving the form and content of application

training remains one of our main objectives.

Thus, the concept of reengineering is a process used by developers. As InTml [20],

if a developer modifies a script generated by MIREDGE Editor, this will not affect its

graphical representation of the algorithm. Consequently, each time a script is generat-

ed, the changes made in the text editor will be overwritten. Assuming that these modi-

fications are usually simple customizations, we suppose that MIREDGE Editor can

avoid being confronted with this situation.

About debugging, this is necessary whenever errors can be made. Using visual

programming, thanks to the logic of the meta-model and various restrictions rules of

the interface, the goal is to prevent errors. These limits are partially linked to the fact

that MIREDGE is an independent application. Therefore, considering MIREDGE as a

development environment plugin is an option that needs to be studied. In addition, the

current block library only contains a limited number of blocks. When the MVR ex-

perts will add blocks it will be necessary to implement filters to help developers

quickly find the right. These filters could be based on the type of action, such as mov-

ing a 3D object, selecting an area or changing the view. We can also take into account

the hardware and software that the developers want to use such as the game engine,

the input device (e.g. mouse, Kinect, Leap Motion) and the output device (e.g. TV

screen, augmented reality glasses, the head mounted display).

Finally, even if the experiment was carried out on a very limited number of interac-

tions, the meta-model must theoretically allow a wide range of interactions to be cod-

ed. It would thus be interesting to study a larger variety of interaction algorithms such

as selection, navigation and manipulation [34] [35]. Another question worth asking is

whether visual programming will always be as efficient for more advanced interac-

tions [36] or for specific devices such as Brain Computer Interfaces [37].

6 CONCLUSION

Today, developers who are experts in MVR and those who are not experts in MVR

often work with the same programming tools but using different methods. Yet, these

communities could greatly benefit from each other in order to rapidly produce power-

ful MVR applications. Indeed, MVR experts have the knowledge to create specific

MVR algorithms for new devices and non-MVR experts can produce large quantities

of applications that re-use and combine these algorithms. Our approach therefore

18

consists in proposing MIREDGE that responds to this goal by allowing these two

communities to collaborate.

MIREDGE has two main advantages. First of all, it allows non-MVR experts to

create MVR interactions, without any specific MVR knowledge, by combining blocks

with graphical programming. These blocks contain scripts written by MVR experts

and allow to interact with MVR devices. MIREDGE offers a library of blocks that can

be enriched by experts when new devices appear. The second advantage of

MIREDGE is the fact that it is interoperable with any game engine. Indeed, the tool is

based on a meta-model that allows to convert the programming blocks into fully ed-

itable script for any game engine.

To validate the contributions of this tool, experiments have showed a gain in effi-

ciency and effectiveness especially for non-MVR developers. New experiments will

be conducted on a larger scale to confirm compatibility with maximum interactions,

game engines and devices. Also, a study will be done to evaluate all the conditions

required so that MVR experts are ready to share their knowledge and so that non-

MVR experts are ready to integrate new MVR devices with an assistant such as

MIREDGE.

ACKNOWLEDGMENTS

This work was funded by the French Research Agency (ANR-13-APPR-0001,

JEN.lab project). The authors want to thank all the participants for their key contribu-

tions.

REFERENCES

1. Häfner, P., Häfner, V., Ovtcharova, J.: Teaching Methodology for Virtual Reality

Practical Course in Engineering Education. Procedia Comput. Sci. 25, 251–260

(2013).

2. Trenholme, D., Smith, S.P.: Computer game engines for developing first-person

virtual environments. Virtual Real. 12, 181–187 (2008).

3. Hilfert, T., König, M.: Low-cost virtual reality environment for engineering and

construction. Vis. Eng. 4, 2 (2016).

4. Zyda, M.: From visual simulation to virtual reality to games. Computer. 38, 25–

32 (2005).

5. Kreylos, O.: Environment-Independent VR Development. In: Advances in Visual

Computing. pp. 901–912. Springer, Berlin, Heidelberg (2008).

6. Ritter, K.A., Borst, C.W., Chambers, T.L.: Overview and Assessment of Unity

Toolkits for Rapid Development of an Educational VR Application. Int. J. Innov.

Educ. Res. 3, (2015).

7. Sowe, S.K., Stamelos, I., Angelis, L.: Understanding knowledge sharing activi-

ties in free/open source software projects: An empirical study. J. Syst. Softw. 81,

431–446 (2008).

19

8. Yingyan, T., Jun-sheng, Z., Zhijun, G.: Design and Implementation of Interactive

3D Scenes Based on Virtools. In: 2009 International Forum on Computer Sci-

ence-Technology and Applications. pp. 87–89 (2009).

9. Eberly, D.H.: 3D game engine design: a practical approach to real-time computer

graphics. CRC Press (2006).

10. Juul, J.: A Casual Revolution: Reinventing Video Games and Their Players. MIT

Press (2010).

11. Stelzer, R., Steindecker, E., Arndt, S., Steger, W.: Expanding VRPN to Tasks in

Virtual Engineering. In: ASME 2014 International Design Engineering Technical

Conferences and Computers and Information in Engineering Conference. p.

V01BT02A026–V01BT02A026. American Society of Mechanical Engineers

(2014).

12. Lugrin, J.-L., Charles, F., Cavazza, M., Le Renard, M., Freeman, J., Lessiter, J.:

CaveUDK: a VR game engine middleware. In: Proceedings of the 18th ACM

symposium on Virtual reality software and technology. pp. 137–144. ACM

(2012).

13. Koenig, S., Ardanza, A., Cortes, C., De Mauro, A., Lange, B.: Introduction to

Low-Cost Motion-Tracking for Virtual Rehabilitation. In: Pons, J.L. and Torri-

celli, D. (eds.) Emerging Therapies in Neurorehabilitation. pp. 287–303. Springer

Berlin Heidelberg, Berlin, Heidelberg (2014).

14. Takala, T.M.: RUIS: A Toolkit for Developing Virtual Reality Applications with

Spatial Interaction. In: Proceedings of the 2Nd ACM Symposium on Spatial User

Interaction. pp. 94–103. ACM, New York, NY, USA (2014).

15. Chevaillier, P., Trinh, T.-H., Barange, M., De Loor, P., Devillers, F., Soler, J.,

Querrec, R.: Semantic modeling of Virtual Environments using MASCARET.

Presented at the March (2012).

16. Steed, A.: Some useful abstractions for re-usable virtual environment platforms.

Softw. Eng. Archit. Realt. Interact. Syst.-SEARIS. (2008).

17. Tramberend, H.: Avocado: a distributed virtual reality framework. Presented at

the Proceedings IEEE Virtual Reality March (1999).

18. Blach, R., Landauer, J., Rösch, A., Simon, A.: A highly flexible virtual reality

system. Future Gener. Comput. Syst. 14, 167–178 (1998).

19. Fischbach, M., Wiebusch, D., Latoschik, M.E.: Semantic Entity-Component

State Management Techniques to Enhance Software Quality for Multimodal VR-

Systems. IEEE Trans. Vis. Comput. Graph. 23, 1342–1351 (2017).

20. Figueroa, P., Bischof, W.F., Boulanger, P., Hoover, H.J., Taylor, R.: Intml: A

dataflow oriented development system for virtual reality applications. Presence

Teleoperators Virtual Environ. 17, 492–511 (2008).

21. Knott, T., Weyers, B., Hentschel, B., Kuhlen, T.: Data-flow oriented software

framework for the development of haptic-enabled physics simulations. In: Soft-

ware Engineering and Architectures for Realtime Interactive Systems (SEARIS),

2014 IEEE 7th Workshop on. pp. 65–72. IEEE (2014).

22. Sewell, B.: Blueprints Visual Scripting for Unreal Engine. Packt Publishing Ltd

(2015).

20

23. Pellens, B., De Troyer, O., Kleinermann, F., Bille, W.: Conceptual modelling of

behaviour in a virtual environment. Int. J. Prod. Dev. 4, 626–645 (2007).

24. Boger, Y.S., Pavlik, R.A., Taylor, R.M.: OSVR: An open-source virtual reality

platform for both industry and academia. In: 2015 IEEE Virtual Reality (VR).

pp. 383–384 (2015).

25. Plonka, L., Sharp, H., van der Linden, J., Dittrich, Y.: Knowledge transfer in pair

programming: An in-depth analysis. Int. J. Hum.-Comput. Stud. 73, 66–78

(2015).

26. Myers, B.A.: Taxonomies of visual programming and program visualization. J.

Vis. Lang. Comput. 1, 97–123 (1990).

27. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E.,

Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., Kafai, Y.:

Scratch: Programming for All. Commun ACM. 52, 60–67 (2009).

28. Biernacki, D., Colaço, J.-L., Hamon, G., Pouzet, M.: Clock-directed modular

code generation for synchronous data-flow languages. In: ACM Sigplan Notices.

pp. 121–130. ACM (2008).

29. Loup-Escande, E., Jamet, E., Ragot, M., Erhel, S., Michinov, N.: Effects of Ste-

reoscopic Display on Learning and User Experience in an Educational Virtual

Environment. Int. J. Human–Computer Interact. 33, 115–122 (2017).

30. Cramér, H.: Mathematical Methods of Statistics (PMS-9). Princeton University

Press (2016).

31. Nogier, J.-F.: Ergonomie du logiciel et design web - 4e éd.: Le manuel des inter-

faces utilisateur. Dunod (2008).

32. Baccino, T., Bellino, C., Colombi, T.: Mesure de l’utilisabilité des Interfaces.

Hermès Sci. - Lavoisier. 1–250 (2005).

33. Wolf, M., Corroyer, D.: L’Analyse Statistique des Données en Psychologie (Sta-

tistical data analysis in psychology - translated by authors). Armand Colin, Paris

(2004).

34. Weidig, C., Mestre, D.R., Israel, J.H., Noel, F., Perrot, V., Aurich, J.C.: Classifi-

cation of VR interaction techniques, based on user intention. Eurographics Digit.

Libr. (2014).

35. Jr, J.J.L., Kruijff, E., McMahan, R.P., Bowman, D., Poupyrev, I.P.: 3D User

Interfaces: Theory and Practice. Addison-Wesley Professional (2017).

36. Wonner, J., Grosjean, J., Capobianco, A., Bechmann, D.: Bubble Bee, an Alter-

native to Arrow for Pointing out Directions. In: Proceedings of the 19th ACM

Symposium on Virtual Reality Software and Technology. pp. 97–100. ACM,

New York, NY, USA (2013).

37. Mercier-Ganady, J., Loup-Escande, É., George, L., Busson, C., Marchal, M.,

Lécuyer, A.: Can We Use a Brain-computer Interface and Manipulate a Mouse at

the Same Time? In: Proceedings of the 19th ACM Symposium on Virtual Reality

Software and Technology. pp. 69–72. ACM, New York, NY, USA (2013).

21

SHORT BIO

Guillaume Loup obtained his PhD in Computer Sciences from

Le Mans University. He is interested in the implementation of 2D/3D interactions in

real-time, multiplatform implementation and the integration of devices for interacting

with virtual environments. His area of expertise is the design of virtual reality-based

games.

Sébastien George is a Full Professor in Computer Science from

Le Mans University. His research deals with the field of Technology Enhanced Learn-

ing. He is interested in interactions and communications with context as a central

issue: learning context, context of learners or tutors, context for knowledge and skills

building.

Iza Marfisi is an Associate Professor in Computer Science from Le

Mans University. Her research interests are in the domain of Technology Enhanced

Learning and include the exploration of innovative educational techniques such as

Serious Games for education.

Audrey Serna is an Associate Professor in Computer Science at

INSA Lyon. Her research area lies at the confluence of computer science (HCI and

22

Usability/Ergonomics) and cognitive science (Cognitive Modeling/User Modeling), to

design interactive systems adapted and adaptable to users’ characteristics.

