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3

Abstract4

Fuzzy measures are powerful at modeling interactions between elements. Unfortunately, they use a5

number of coefficients that exponentially grows with the number of elements. Beyond the computational6

complexity, assigning a value to any coalition of a large set of elements does not make sense. k-order measures7

model interactions involving at most k elements. The number of coefficients to identify is reduced and their8

modeling capacity is preserved in real problems where the number of interacting elements is limited. In9

extreme situations of full redundancy or complementariness, it is mathematically proven that the complete10

fuzzy measure is both k-additive and k-maxitive. A learning algorithm to identify k-maxitive measures11

from labeled data is designed on the basis of HLMS (Heuristic Least Mean Squares). In a classification12

context, the study of synthetic data with partial redundancy or complementariness supports the idea that13

the difference between full and partial interaction is a matter of degree, not of kind. Dealing with two real14

world datasets, a comparison of the complete fuzzy measure and a k-maxitive one shows the number of15

interacting elements is limited and the k-maxitive measures yield the same characterization of interactions16

and a comparable classification accuracy.17

Keywords: Choquet, fuzzy measure, HLMS, Shapley, Möbius, k-order measures.18

1. Introduction19

In order to design interpretable and robust classification models, discrete fuzzy measures [23] may contribute20

to characterize set behavior in a complex data domain, i.e. data with high dimension, correlation, or noise.21

The interpretability goal points to the comprehension of the relationships between inputs (feature subsets) and22

outputs (class labels), to achieve more compact and computationally simpler models. Hence, let N = {1, · · · , n}23

be a set of elements, features in the case of classifier design. A fuzzy measure, µ, weighs all subsets A ⊂ N ,24

0 ≤ µ(A) ≤ 1, to state the coalition importance for the classification process. To go further in the expressiveness25

of set behavior, e.g. characterizing redundancy or complementariness, other fuzzy measure representations are26

considered: the Möbius representation, m of µ, to characterize the type and strength of interactions among27

the elements of N ; and the interaction index [6, 21], I, to characterize the average contribution of a coalition28

considering all subsets it is part of. Hence, µ, m, and I representations provide different viewpoints of a set29

characterization.30

Despite the descriptive power of fuzzy measures, their practical implementation is limited by the coefficient31

identification complexity: n elements require the evaluation of 2n-2 coefficients. This exponential growth is32

their Achilles’s heel, restricting their use to problems with a handy number of elements. Trying to overcome the33

identification scalability, simplified fuzzy measures have been proposed based on the inclusion of new restrictions.34

The λ-measures [24] reduce the number of coefficients to be identified to n+1, the singletons and λ, but lose35

modeling capability. To model the interaction between k elements specific fuzzy measures were proposed:36

k-additive [6] and k-maxitive [15, 16] ones.37

Beyond computational complexity, semantics also argues for simplified fuzzy measures. As the number38

of interacting elements in real decision making problems is limited, one should wonder if the complete fuzzy39

measure identification makes sense. The answer should take into account the problem data cardinality: all40

coefficients may be needed for a reduced number of elements, e.g. n=3 elements, but when this number gets41

average or high, e.g. n=30, the complete fuzzy measure becomes meaningless. Is it really useful to assign a42

specific weight to each of (n-1)-size coalitions? Modeling k-order interaction meets the needs of both complexity43

and semantic.44

The goal of this paper is to study the potential of k-order fuzzy measures and their use in a supervised learning45

process for classification. First, the case of full interaction is analyzed. In such extreme situation, the fuzzy46
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measure is both k-additive and k-maxitive. The second objective of this work is the proposal of a k-maxitive47

measure learning algorithm based on HLMS [4]. It is first used on synthetic data, to assess the k-maxitive48

measure ability for modeling partial, and more realistic, interactions, either redundancy or complementariness.49

Then, the learning algorithm is included within a pipeline that starts the learning process from raw data. This50

allows for managing real world data. Two well known datasets are used for illustrating the characterization the51

fuzzy measure is likely to provide in the process of feature selection (semantics) and for comparing complete52

and k-maxitive measures (complexity).53

The outline of the paper is as follows: Section 2 introduces basic concepts related to fuzzy measures.54

In Section 3 specific measures to model k-order interactions, presented in the literature, are analyzed. The55

relationship between the complete fuzzy measure and the k-order ones is formalized in the case of extreme56

situation of full interaction. The learning algorithm is described in Section 4. The numerical experiments57

are carried out in Section 5 with synthetic and real world datasets. Finally, Section 6 summarizes the main58

conclusions and perspectives.59

2. Preliminaries60

This section introduces basic concepts related to fuzzy measures, discrete Choquet integral and the generalized61

interaction index [6]. Let us consider a finite set N={1, . . . , n} and let P(N) denotes its power set. In this62

paper, a set is noted by a letter in uppercase and its cardinality with the same letter in lowercase, a = |A|.63

2.1. Fuzzy measures and the discrete Choquet integral64

A fuzzy measure (FM) is a set function µ : P(N)→ [0, 1] fulfilling the following two axioms [9]:65

1. Normalization: µ(∅) = 0, µ(N) = 166

2. Monotonicity: A ⊆ B ⊆ N ⇒ µ(A) ≤ µ(B)67

While the former allows for fuzzy measure comparisons, the latter ensures that adding any element to a68

given subset does not make it less informative.69

Fuzzy measures are used in the definition of the discrete Choquet integral aggregation operator. For a given70

f : N → ℜ+, its discrete Choquet integral C with respect to a fuzzy measure µ : P(N) → [0, 1] is defined as71

follows:72

Cµ

(

f
)

,

n
∑

i=1

(

f(i) − f(i−1)

)

µ({i, . . . , n}) (1)

where f(·) is the rearrangement induced by fi, i = 1, . . . , n, sorted in ascending order, i.e., f(1) < · · · < f(n), by73

convention f(0) = 0.74

2.2. Semantic interpretation of fuzzy measure coefficients75

Three kinds of interaction between two elements were defined in [5] according to the relationship between76

coefficients of singletons and pair of elements:77

Redundancy The coefficient value associated with {i, j} is almost the same as the individual value for each78

element, i.e., µ({i, j}) < µ({i}) + µ({j}). This kind of interaction is also called negative synergy.79

Complementariness The coefficient value associated with {i, j} is large, although these elements have small80

values if they are considered separately, i.e., µ({i, j}) > µ({i}) + µ({j}). This kind of interaction is also81

called positive synergy.82

Independence The coefficient value associated with {i, j} is equal to the sum of their individual values, i.e.,83

µ({i, j}) = µ({i}) + µ({j}).84

2.3. Interaction index85

In the field of cooperative game theory, the Shapley index can be used to characterize the importance of86

individual features [22]:87
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φi =
∑

K⊆N\i

(n− k − 1)!k!

n!

(

µ(K ∪ {i})− µ(K)
)

(2)

where 0!=1 as usual. The Shapley value of µ is the vector φ = [φ1 · · ·φn] which has the property to be linear
with respect to µ, and to satisfy:

n
∑

i=1

φi = µ(N) = 1 (3)

This index has been generalized, first to characterize the importance of pairs [21] and finally for subsets A88

of arbitrary cardinality [6]:89

I(A) =
∑

K⊆N\A

(n− k − a)!k!

(n− a + 1)!

∑

B⊆A

(−1)a−bµ(K ∪B) (4)

I(A) reduces to Shapley index when A is a singleton. The Shapley index ranges in [0, 1] and the interaction90

index for pairs in [−1, 1].91

When there is a subset R ⊆ N , of r fully redundant elements, while the others only bring noise, then for
any A ⊆ R, of size a, it was mathematically proven [19] that the interaction index becomes:

I(A) =
(−1)a+1

r − a + 1
(5)

Similarly, when there is a subset C ⊆ N of c fully complementary elements, for any A ⊆ C, it is:

I(A) =
1

c− a + 1
(6)

2.4. Möbius transform92

A Möbius transform of a fuzzy measure µ is a set function m on N defined by [25]:93

m(T ) =
∑

K⊆T

(−1)t−kµ(K), ∀T ⊆ N (7)

The interaction index and the Möbius transform provide alternative representations of a fuzzy measure.94

There is a one to one correspondence between these three spaces [6].95

The fuzzy measure coefficients are computed from the Möbius representation using the the Zeta-transform:96

µ(T ) =
∑

S⊆T

m(S) ∀T ⊆ N (8)

3. Modeling k-order interaction97

In real world data the number of interacting elements is limited. This section recalls the ways of modeling such98

interactions and propose new results in the particular case of full interaction, either redundancy or complemen-99

tariness.100

3.1. k-order measures101

Grabisch [6] first introduced the k-order additivity concept for discrete spaces, then it was generalized to102

arbitrary measurable spaces by Mesiar [15].103

104

Definition 1 A fuzzy measure µ is said to be k-additive if its Möbius transform satisfies m(S) = 0 for any105

S such that s > k and there exists at least one subset S ⊂ N of exactly k elements such that m(S) 6= 0.106

107
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The particular case of 2-additive FM has been especially studied. The necessary and sufficient conditions108

for a fuzzy measure to be 2-additive are [14]:109

µi ≥ 0, ∀i ∈ N
∑

{i,j}⊆N

µi,j − (n− 2)
∑

i∈N

µi = 1 (9)

∑

i∈A\{k}

(µik − µi) ≥ (a− 2)µk, ∀A ⊆ N, a ≥ 2, ∀k ∈ A.

where µi = µ({i}) and µij = µ({i, j}).110

That means that a 2-additive fuzzy measure is entirely determined by the coefficients of singletons and pairs111

of elements.112

The Choquet integral of a 2-additive fuzzy measure can be easily computed from the Shapley indices of
singletons and the interaction indices of pairs:

Cµ(x) =

n
∑

i=1

Iixi −
∑

{i,j}⊆N

Iij |xi − xj |

The first idea to reach k-additivity is to truncate the fuzzy measure in the Möbius space, by setting to113

zero values associated with higher than k cardinality sets. Unfortunately, this truncation does not yield a114

fuzzy measure in the general case: the above mentioned constraints are usually unsatisfied, monotonicity and115

normality may be lost [3].116

In [18], these constraints are included in a fuzzy measure learning algorithm for singletons and pairs to117

deal with feature selection in a classification context. A linear programming optimization, also for a 2-additive118

measures, is proposed in [13]. Both works show the extension to higher values of k is not straightforward.119

In [14], a 2-additive Choquet integral is used for cardinal information representation by the means of cy-120

clones. According to the authors, “in practice cyclones are not easy to detect”. They then consider MOPI121

(Monotonicity of Preferential Information) conditions, but unfortunately “the final number of necessary and122

sufficient conditions could be very large”.123

Despite its interest and stimulating studies, the practical application of k-additive measure is still limited124

by the lack of learning algorithms.125

Inspired from the k-additive measure, the k-maxitive fuzzy measure was proposed [2, 17]. It is based on an126

alternative Möbius transform called possibilistic Möbius transform. It can be seen as another framework for127

modeling k-order interaction in the coefficient space.128

129

Definition 2 The possibilistic Möbius transform of a fuzzy measure µ on N is a P(N) → [0, 1] mapping130

mp defined by:131

mp(A) =

{

µ(A) if µ(A) > max
B⊂A

µ(B)

0 otherwise
(10)

The possibilistic Zeta transform of P(N)→ [0, 1] mapping m is the P(N)→ [0, 1] mapping Zm defined by:132

Zmp
(A) = max

B⊆A
mp(B) (11)

Under some conditions [2], Zmp
= µ.133

The k-maxitive fuzzy measure is defined analogously to the k-additive one but using the possibilistic Möbius134

transform.135

136

Definition 3 A fuzzy measure µ is called k-maxitive if its possibilistic Möbius transform satisfies mp(S) = 0137

for any S such that s > k and there exists at least one subset S of N of exactly k elements such that mp(S) 6= 0.138

139
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The constraints the fuzzy measure coefficients must satisfy for being k-maxitive are easier to check than in140

the case of k-additivity.141

A fuzzy measure where the coefficients of coalitions with more than k elements are computed as the maximum142

of the ones of included subsets with size up to k, is a k-maxitive fuzzy measure. The underlying semantics is143

not to give a specific weight to subsets of size higher than k. This is a way of modeling a k-order interaction in144

the coefficient space.145

3.2. The particular case of full interaction146

In some extreme situations, the fuzzy measure is k-additive and k-maxitive.147

148

Theorem 1 A fuzzy measure that characterizes a set N of n elements among which k of them are fully149

complementary or redundant and the others only bring noise is k-additive.150

Proof The proof considers separately the cases of complementariness and redundancy.151

Complementary elements Let us consider the case of a set C ⊆ N of c fully complementary informative elements152

while the other elements only bring noise. As we know from previous results [19], µ(S) = 1 ⇐⇒ C ⊆ S and153

µ(S) = 0 otherwise.154

The Möbius values which may be different from zero are those of sets which include at least one subset with155

a non null fuzzy measure coefficient, meaning the sets S ⊇ C.156

For the set C, the transform reduces to: m(C) = (−1)0 = 1, as the fuzzy measure coefficient is zero for all157

A ⊂ C.158

∀T ⊃ C, m(T ) =
t−c
∑

i=0

(

t−c
i

)

(−1)t−c−i
159

This value is zero, thanks to the binomial formula:

m(T ) =

t−c
∑

i=0

(

t− c

i

)

(−1)t−c−i(+1)i = (−1 + 1)t−c = 0

.160

The two conditions for a measure to be k-additive are fulfilled. So, in this extreme situation of c fully161

complementary elements, the fuzzy measure is k-additive.162

Redundant elements The set of elements includes now a subset R ⊆ N of r redundant informative elements163

while the rest of the elements do not bring any useful information. We know from previous results [19] that164

µ(S) = 1 ⇐⇒ R ∩ S 6= ∅ and zero otherwise.165

Let us check the two conditions to be met for the fuzzy measure to be k-additive, with k=r. First at least166

one subset of cardinality r should have a non null Möbius value. This is true for the set R:167

m(R) =

r
∑

i=1

(

r

i

)

(−1)r−i

The sum starts now at r = 1, as for r = 0 the corresponding set is the empty set, for which fuzzy measure168

coefficient is zero. m(R) = ±1 according to r value, negative when r is even.169

The second condition states: ∀T, t > r, m(T ) = 0.170

If t > r, that means T includes at least one element which does not belong to R. Any T can be defined as171

an union: T = {L ⊆ R}∪ {M ⊆ (N \R)}, with the cardinalities: t = l + m. For such a given T , the expression172

of its Möbius transform becomes:173

m(T ) =

l
∑

p=1

[

(

l

p

) m
∑

q=0

(

m

q

)

(−1)t−p−q

]

Thanks to the binomial theorem, this value is zero for all sets T .174

This proves that, in this extreme situation of r fully redundant elements, the fuzzy measure is k-additive.175

These extreme situations, where the fuzzy measure coefficients take values in {0, 1}, show how meaningful176

the concept of k-additivity is: when the number of interacting elements is limited to k, the fuzzy measure is177

k-additive under the condition the k value is carefully chosen. Unfortunately k-additive fuzzy measures are not178

so easy to generate and only restricted attempts for k=2 have been reported.179
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k-maxitive measures are considered as a potential alternative for k-interaction modeling.180

181

Theorem 2 A fuzzy measure that characterizes a set N of n elements among which k of them are fully182

complementary or redundant and the others only bring noise is k-maxitive.183

Proof The proof is trivial. The maximum value for a coefficient, 1, is reached, in both cases of full184

redundancy and complementariness, at the k level.185

When there are k fully interacting elements, the fuzzy measure is both k-additive and k-maxitive. As the186

k-maxitivity can be managed in the coefficient space, this kind of measure is easier to design, whatever the k187

value, than the k-additive one.188

4. k-HLMS algorithm189

In order to learn k-maxitive measures from data, a new supervised algorithm based on HLMS [4, 20], called190

k-HLMS (Algorithm 1), is presented.191

The algorithm input is a training dataset D composed of m samples described by n features and a reference
target. The dataset is organized as follows:

D =

















x1
1 . . . x1

i . . . x1
n T 1

...
. . .

...

xj
1 . . . xj

i . . . xj
n T j

...
. . .

...
xm

1 . . . xm
i . . . xm

n T m

















In this matrix, a column represents a feature, and a row a sample, xj = xj
1, . . . , xj

n. Each element xj
i192

represents the satisfaction degree of the feature i for sample j. T j is the output value (target) to infer from the193

satisfaction degrees. In this way, the partial information provided by each feature is integrated to get a global194

result. The data, both the description and the target, must be commensurable, i.e. ranging in the same scale195

and having the same meaning. In the case of classification, the data can be degrees of evidence for the sample196

to belong to a given class.197

The aggregation operator used to integrate the information provided by each feature is the Choquet integral.198

It enables the consideration of underlying interactions among features. The goal of the algorithm is to learn199

the fuzzy measure coefficients that best reproduce the target from the description.200

In k-HLMS, only the coefficients for coalitions that includes at most k elements are learned. For all sets201

A ⊂ N , k < a < n, the coefficients are computed as:202

µ(A) = max
L∈P(A)

l=k

µ(L) (12)

Finally, to satisfy the normalization axiom, µ(N) is set to 1.203

A given sample always uses the same coefficients to compute the Choquet integral, one for each subset size204

between 1 and n-1. The coefficients which are used by only a few samples are identified as untouched coefficients205

and are not used during the training process (Line 3). The threshold is set to max(3, m/100). It ensures that206

the coefficient values are supported by a significant number of samples.207

Initially, all the fuzzy measure coefficients to be learned are initialized to the equilibrium state, |i|/n for a208

i-size coalition (Line 4-6), and stored in the uk vector.209

At each iteration, samples are randomly sorted to prevent any bias related to presentation order (Line 8).210

To compute the Choquet integral (Line 11), only the coefficients required by the current sample are defined211

according to Eq. (12). This is done by the UncutFm function (Lines 10 and 19). Thus, there is no need to212

store the whole coefficient set.213

The coefficients associated with sets of cardinality up to k involved in the corresponding integral are updated214

(Line 13) according to the learning rate, α > 0, and the difference, for the current sample, between the Choquet215

integral and the target. In this formula, ul stands for the coefficient of the l-size set triggered by the current216

sample.217

Monotonicity check, is done with neighbors up to level k (Line 14).218

The stop criterion can be based upon the root mean square of errors (E) convergence (Lines 17-22), or,219

plainly, on a predefined number of iterations. In the latter, there is no need to compute E.220
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Algorithm 1 k-HLMS

1: Input: Training data D, m samples, (xj , T j), j = {1, . . . , m}, of N = {1, . . . , n} features
Max order: 1 < k < n

2: Output: Fuzzy measure coefficients up to level k, uk

3: Z ← Identify_Untouched(D) {Untouched coefficients identification}
4: for i ∈ P(N) \ Z and |i| ≤ k do

5: u{i} ← |i|/n {Initialization of usable coefficients up to k}
6: end for

7: repeat

8: examples ← random(1 : m) {Sensitivity to data presentation order}
9: for j ∈ examples do

10: u← UncutFm(uk, xj) {Complete coefficients using Eq.(12)}
11: ej ← Cu(xj)− T j {Individual error calculation}
12: for l ∈ (1 : k) do

13: ul ← ul − α× ej

emax
× (xj

(n−l+1) − xj

(n−l)) {Coefficient update up to level k}

14: CheckMonoUptoK(ul, k) {Monotonicity check, up to level k, with neighbors }
15: end for

16: end for

17: E ← 0 {Global error calculation}
18: for j ∈ examples do

19: u← UncutFm(uk, xj)
20: E ← E + (Cu(xj)− T j)2

21: end for

22: E ←
√

1
m

E

23: until Stop_Criterion is met
24: return(uk)

5. Numerical experiments221

In this section, modeling ability of k-maxitive measure is evaluated considering two data scenarios: i) synthetic222

data, with partially redundant and complementary set of features, and ii) real benchmark datasets. In both223

cases, the k-maxitive behavior is compared to the complete fuzzy measure whose coefficients are identified224

through (n-1)-HLMS algorithm (since µ(N)=1). The k-HLMS algorithm parameters are set as follows:225

learning rate α=0.05 and stop after 3000 iterations.226

5.1. k-maxitive behavior with synthetic data227

In order to study the k-maxitive modeling ability, synthetic data with partially redundant or complementary set228

of features are analyzed. Datasets have 7 features {1, 2, . . . , 7} and 440 samples, target value T={Class0, Class1},229

row values represent confidence degrees that the associated sample belongs to Class1. Values of k in the range230

[2, 6] were tested, where k=6 corresponds to the complete fuzzy measure.231

1

T

Partially redundant Partially complementary

200 unif
0

200 unif

200 unif

1

0

{4} T

[0.7 , 1]

[0 , 0.2]

[0 , 1]

[0 , 1]

[0.7 , 1]

[0 , 1]

200 unif

0
40 unif

440 unif

0/1
40 unif
[0.7 , 1]

440 unif

[0 , 1]

C
om

plem
entary

R
ed

un
da

nt

{1} {2} {3} {4} {6}{5} {7} {1} {2} {3} {5} {6} {7}

Fig. 1: Synthetic data design
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Partially redundant set of features. The partial redundancy among {1, 2, 3} features is achieved by 400 samples232

fully redundant, i.e., {1, 2, 3} bringing the same information, and 40 samples bringing noise, as shown in Fig. 1.233

For features 1 to 3 random values were generated from uniform distributions in non-overlapping intervals to get234

full redundancy: 200 samples for Class1 in [0.7, 1]; 200 samples for Class0 in [0, 0.2]. The 40 noisy samples were235

generated in [0, 1] with classes chosen at random. Features 4 to 7 bring noise, i.e., 440 samples with uniformly236

distributed values in [0, 1].237

The most relevant feature belongs to {1, 2, 3} for most samples. Thus, coefficient values associated with238

singletons get high values as well as the ones associated with subsets of {1, 2, 3} due to fuzzy measures239

monotonicity[19]. Consequently, we expect good results even with k=2 simplification, meaning the I values240

should be significant for all subsets L ⊆ {1, 2, 3} and zero for the rest of coefficients. In addition, I signs should241

alternate according to Eq.(5).242

Table 1 displays the interaction index values for sets L ⊆ {1, 2, 3}, computed using Eq.(4). Only significant243

values, |I|>0.1, are shown. In order to compensate the lack of contribution of high order sets in the Choquet244

integral (Line 11 of k-HLMS) coefficients up to k may be overestimated. This is likely to affect the interaction245

index calculation.246

Coalition {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3} RMSEI

k=2 0.390 0.282 0.292 -0.499 -0.314 -0.196 0.426 0.13
k=3 0.428 0.260 0.281 -0.376 -0.302 -0.285 0.417 0.13
k=4 0.410 0.265 0.297 -0.410 -0.288 -0.275 0.371 0.12
k=5 0.412 0.256 0.320 -0.411 -0.216 -0.238 0.400 0.11
k=6 0.393 0.286 0.313 -0.317 -0.213 -0.213 0.685 0

Table 1: I of coalitions L ⊆ {1, 2, 3} for partially redundant dataset.

Table 1 shows that all k approximations model the partial redundancy among the three features: significant247

values are obtained for subsets in {1, 2, 3} and their signs are negative for even cardinality sets and positive for248

odd ones. Finally, the last column (RMSEI) is the root mean squared error between each approximation (k-row)249

and the complete fuzzy measure (last row). As expected, higher values of k approximates better the complete250

fuzzy measure. In addition, Table 2 shows the Möbius values. For any k, the only significant coefficients are251

the ones associated with subsets in {1, 2, 3} confirming the three order interaction.252

Coalition {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3} RMSEm

k=2 0.850 0.613 0.591 -0.596 -0.441 -0.245 0.228 0.21
k=3 0.822 0.649 0.619 -0.634 -0.443 -0.435 0.422 0.11
k=4 0.815 0.651 0.627 -0.651 -0.445 -0.464 0.467 0.09
k=5 0.783 0.640 0.607 -0.611 -0.395 -0.438 0.513 0.09
k=6 0.761 0.663 0.642 -0.648 -0.542 -0.552 0.667 0

Table 2: Möbius coefficients (m) of coalitions L ⊆ {1, 2, 3} for partially redundant dataset.

We conclude that for partially redundant sets of features, k-maxitive measures provide a good approximation253

to the complete fuzzy measure for any k.254

Partially complementary set of features. The partial complementariness among {1, 2, 3} is achieved by 400255

samples for which the features are fully complementary, and 40 noisy samples. For features 1 to 3 random values256

were generated from uniform distributions in overlapping intervals to get full complementariness: 200 samples257

for Class1 in [0.7, 1]; 200 samples for Class0 in [0, 1]. The partialness is given by 40 samples in the range used258

for Class1, [0.7, 1], with a Class0 label. In this way, features 1 to 3 bring simultaneous wrong support to the259

classification process. Features 4 to 7 bring noise, i.e., 440 samples with uniformly distributed values in [0, 1].260

For a set C of complementary features, only fuzzy measure coefficients of coalitions that include C are261

non-null (see [19]). When c = 3, 2-maxitive simplification should be wrong since coefficients of order higher262

than 2 should be set from uninformative values, according to Eq.(12). The interaction index values should be263

significant and positive for all subsets L ⊆ {1, 2, 3} when k ≥ 3, and zero for remaining coalitions.264

The results summarized in Table 3 show that the I values are consistent with the expected behavior: for265

k ≥ 3, I of L ⊆ {1, 2, 3} are positive, then k-maxitive measure is able to model the partial complementariness266
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Coalition {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3} RMSEI

k=2 0.429 0.095 0.292 0.193 0.585 -0.093 -0.224 0.49
k=3 0.330 0.325 0.330 0.485 0.496 0.484 0.965 0.03
k=4 0.328 0.328 0.329 0.483 0.490 0.485 0.946 0.02
k=5 0.325 0.319 0.322 0.473 0.479 0.473 0.925 0.01
k=6 0.314 0.313 0.314 0.456 0.462 0.458 0.894 0

Table 3: I of coalitions L ⊆ {1, 2, 3} for partially complementary dataset.

getting better with increasing k. See RMSEI column. For k=2, the corresponding values are inconsistent. The267

negative value for {2, 3} could be interpreted as redundancy between both features, but in this case the {1, 2, 3}268

index value would have been positive. Consequently, the approximation for k < c does not work.269

The Möbius transform of the fuzzy measure was also calculated (Table 4). Values for k ≥ 3 should be270

significant only for coalition {1, 2, 3} stating that the three elements are complementary. However, for k=2271

significant values are observed for other subsets included in {1, 2, 3} due to the inconsistencies in 2-maxitive272

values.273

Coalition {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3} RMSEm

k=2 0.007 0.003 0.004 0.291 0.676 0.095 -0.294 0.51
k=3 0.008 0.005 0.002 0.001 0.000 0.002 0.959 0.04
k=4 0.001 0.002 0.003 0.008 0.001 0.001 0.867 0.01
k=5 0.004 0.000 0.003 0.002 0.001 0.002 0.855 0.00
k=6 0.006 0.001 0.001 0.001 0.002 0.002 0.839 0

Table 4: Möbius of coalitions L ⊆ {1, 2, 3} for partially complementary dataset.

274

The analysis of both experiments suggests that if the maximum cardinality of simultaneously interacting275

features is known, or could be in some way estimated, the use of k-maxitive measure preserves the characteri-276

zation ability of complete fuzzy measures while reducing the complexity. It was shown in section 3 that for full277

interaction, k-maxitive are identical to the complete fuzzy measure, providing a perfect characterization. This278

study shows that the difference between partial and full interaction is a matter of degree, not of kind.279

5.2. Application to benchmark data280

Classification, meaning assigning a class label to a sample on the basis of its description, is one the most popular281

task in information processing. When the number of features gets average or high, classifier design is achieved282

by means of learning algorithms. Many of them are available for supervised learning. They generally include283

a feature selection step which is usually based on individual evaluations [10] assuming a rarely met condition284

of feature independence [7, 12]. Taking interaction into account may improve the final accuracy. This can be285

done either in the feature selection step [4, 5, 18] or in classifier combination [11, 1].286

The framework for classifier design, presented in [19], and illustrated in Fig. 2, can be used with k-maxitive287

measures. It designs and uses a fuzzy measure for each of the possible classes.288

The process starts with the raw data. The first component aims to convert feature values into commensurable289

confidence degrees. For each sample the relevance of an individual feature value for the identification of a given290

class is taken from the probability density distribution of feature values within the class. The higher the291

transformed feature value, the higher the evidence provided by the feature that the sample belongs to the given292

class. The Gaussian densities are designed in the training stage and used in the testing one.293

Then, for each class, the k-maxitive measure is used to integrate the evidence provided by each feature for294

the considered class. The training step consists in learning the fuzzy measure coefficients using the k-HLMS295

algorithm. The resulting fuzzy measures are used in the testing phase to classify new observations.296

The class label is the one for which the global evidence, computed using the Choquet integral with respect297

to the fuzzy measure, is the highest.298

The real world data used in this section are from the UCI repository1. They have been chosen because their299

1https://archive.ics.uci.edu/ml/datasets.html
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Fig. 2: Classification framework based on [19]. It presents two stages: Training and Testing. Rectangles
represent components, arrows show data flow direction. The letter meaning is the following: n is the number
of features; p is the number of classes and t is the number of selected features; m is the number of samples for
the training stage; r is the number of samples for the testing stage

number of features is high enough to illustrate that the number of interacting elements is limited, and also small300

enough to allow the complete fuzzy measure evaluation. Their main characteristics are summarized in Table 5.301

Datasets #Features #Samples #Classes
Breast Cancer 9 683 2
Wine 13 178 3

Table 5: Benchmark data characteristics

The comparison between the k-maxitive and the complete fuzzy measure considers four aspects:302

- #Coeff: Number of identified coefficients calculated as

k
∑

j=1

(

n

j

)

− Untouched(up to k);303

-
∑

Coeff: Sum over all classes of the coefficients up to level k;304

- RMSEI : Root mean squared error for I values between the k-maxitive and the complete fuzzy measure305

up to level k;306

- Error: Classification error rate.307

To analyze the interaction index representation, results were filtered using an absolute value threshold of308

a/n for a-order sets. In the Möbius space, bounds are not always symmetric [8]. The positive and negative309

ranges are thus considered separately. Each of them is divided into four equal intervals, corresponding to the310

four linguistic interaction levels: null, poor, medium or high. Only the last three are taken into account. For311

instance, for 3 features the range is [−2, 1] and only values lower than −0.5 or higher than 0.25 are considered312

as relevant.313

5.2.1. Breast Cancer314

For 9 features, a whole fuzzy measure definition requires 29=512 coefficients. The #Coeff row, in Table 6, shows315

that most of them are not used by the dataset and are labeled as untouched coefficients (Line 3, Algorithm 1).316

The complete fuzzy measure, 8-HLMS, needs only 77 coefficients to be learned with 683 samples. This is likely317

to make their estimation more robust.318

The four rows
∑

Coeff show that k-maxitive coefficients up to k are overestimated with respect to the319

complete fuzzy measure, k=8. The difference gets higher when k decreases. This is expected since the restrictions320

imposed by k-maxitive measure affect a bigger number of coefficients for smaller k values. As the interaction321

indices are computed from coefficients, their approximation becomes better with increasing k values. This is322

clearly stated by the RMSEI row. This trend of I with respect to k-maxitive approximation can be observed323
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in Fig. 3. The plots show the {2, 7}-maxitive approximation (dashed line) against the complete fuzzy measure324

(solid line). The coalitions, in lexical order for increasing cardinality, are in the abscissa, and the corresponding325

interaction indices in the ordinate. The figure shows the general shape of the complete fuzzy measure is preserved326

when {2, 7}-maxitive measure is used.327

The last row of the table shows that the use of {2, 3, 5, 7}-maxitive measures slightly impact the classification328

accuracy, which is around 98.5%. The difference between 2.91% and 2.18% in the test set represents only one329

sample misclassification.330

k=2 k=3 k=5 k=7 k=8
#Coeff 21 31 46 66 77
∑

Coeff 3.2 1.6
∑

Coeff 8.7 6.8
∑

Coeff 23.8 21.9
∑

Coeff 57.2 57.1
RMSEI 0.16 0.10 0.09 0.08 0
Error 2.91% 2.91% 2.18% 2.18% 2.18%

Table 6: k-maxitive analysis for Breast Cancer dataset. Complete fuzzy measure is for k=8.
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Fig. 3: Interaction index comparison for Breast Cancer. The {2, 7}-maxitive measure is used (dashed lines)
against the complete fuzzy measure, k=8 (solid lines). The abscissa represents the coefficients ordered according
to their cardinality and feature number, e.g., {1}, {2}, {3}, . . . , {9}, {1, 2}, {1, 3}, . . .

To characterize the interactions, Möbius and Interaction indices values are analyzed. The results for the331

complete fuzzy measure are given in Table 7. I results for features 2, 3, 6 and 7 suggest they are relevant to332

classification. Moreover, Möbius values of features 2 and 6 indicates that they are partially complementary333

for Class1 and the corresponding I values show that this coalition is relevant. Möbius values of feature set334

{1, 2, 3} and {2, 3, 7} show they interact; however, their corresponding I value indicates that their contribution335

is not significant. The overall analysis suggest that 3-maxitive measure may be a good approximation to the336

complete fuzzy measure for both classes. Approximation values using k=3 are shown in Table 8. These results337

highlight that the 3-maxitive measure yields the same conclusions about feature interactions than the complete338

fuzzy measure. As shown in Table 6, k=3 also provide a comparable classification accuracy. Consequently, the339

3-maxitive measure is a good approximation of the complete fuzzy measure for Breast Cancer data.340
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Class1 Class2
Coalition I Möbius I Möbius
{2} 0.252 0.138
{3} 0.152 0.288
{6} 0.139 0.181
{7} 0.117 0.112
{2,3} 0.290 0.220
{2,6} 0.220 0.374
{3,6} 0.543
{1,2,3} 0.633 0.732
{2,3,7} 0.787 0.736

Table 7: I and Möbius relevant values for Breast
Cancer with k=8.

Class1 Class2
Coalition I Möbius I Möbius
{2} 0.441 0.127
{3} 0.152 0.324
{6} 0.143 0.181
{7} 0.137 0.120
{2,3} 0.353 0.233
{2,6} 0.432 0.621
{3,6} 0.453
{1,2,3} 0.986 0.830
{2,3,7} 0.991 0.921

Table 8: I and Möbius relevant values for Breast
Cancer with k=3.

5.2.2. Wine341

The results for Wine dataset are shown in Table 9. The number of coefficients for a whole fuzzy measure for 13342

features is 213=8192. With only 178 samples for their identification, what kind of support would have had the343

obtained results? The actual number of identified coefficients is 145 for the complete fuzzy measure and drops344

to 30 when k=2. Next rows show the same behavior described for Breast cancer dataset regarding coefficient345

overestimation and I values with respect to k, i.e., coefficients up to k are overestimated and I approximation346

improves as k increases. In Fig. 4 Class1 values of I are shown. There is only one relevant peak corresponding347

to the value of feature 13 while the general shape is preserved for {2, 9}-maxitive measure approximation.348

The classification error is around 7%. The error rate oscillates between 5.73% and 8.53%: this variation349

represents only one sample in the test set.350

k=2 k=3 k=5 k=7 k=9 k=12
#Coeff 30 43 63 81 103 145
∑

Coeff 16.2 14.0
∑

Coeff 28.2 25.3
∑

Coeff 44.3 41.6
∑

Coeff 53.4 53.4
∑

Coeff 70.5 70.2
RMSEI 0.08 0.07 0.07 0.07 0.05 0
Error 5.73% 8.53% 5.73% 8.53% 5.73% 5,73%

Table 9: k-maxitive analysis for Wine dataset. Complete fuzzy measure is for k=12.

The I and Möbius values for the complete fuzzy measure (Table 10) show that for Class1 there is no351

interaction among features: only feature 13 is relevant. Class2 is more interesting to analyze: features 1, 7 and352

10 are relevant according to their interaction index. Negative values for coalitions {1, 10} and {7, 10} indicate353

redundancy while the positive value for coalition {1, 7} indicates complementariness. This suggests that there354

are two complementary features, 1 and 7, and a third one redundant with both of them, 10. The interaction355

between these three features can also be analyzed in the Möbius space values associated with coalition {1, 7, 10}.356

Möbius coefficient associated with {1, 7} suggests that the complementary interaction is more relevant than the357

redundancy. These interaction indices can be compared to the corresponding extreme situation of a fully358

complementary pair of features and a third one fully redundant with the pair. The fuzzy measure coefficients359

are reported in the first row of Table 11 and the interaction indices in the second row. They show that the360

difference between the experimental and the extreme cases is a matter of degree. For Class3, an analogous361

analysis could be made for features 7, 11 and 12: features 11 and 12 are complementary and feature 7 is362

redundant with them. These results state that for Class2 and Class3 the fuzzy measure might be 3-additive.363

Table 12 shows that the same analysis can be carried out from 3-maxitive Möbius coefficients and interaction364

indices. The 3-maxitive approximation also yields comparable results in classification as displayed in Table 9:365

it is a good approximation of the complete fuzzy measure.366
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Fig. 4: Interaction index comparison for Wine (Class 1). The {2, 9}-maxitive measure is used (dashed lines)
against the complete fuzzy measure, k=12 (solid lines). The abscissa represents the coefficients ordered according
to their cardinality and feature number, E.g., {1}, {2}, {3}, . . . , {13}, {1, 2}, {1, 3}, . . ..

Class1 Class2 Class3
Coalition I Möbius I Möbius I Möbius
{1} 0.17
{7} 0.14 0.10 0.63 0.95
{10} 0.52 0.74
{11} 0.14
{12} 0.17
{13} 0.80 0.98 0.21
{1,7} 0.34 0.77
{1,10} -0.16
{1,13} -0.17
{7,10} -0.37
{7,11} -0.34
{7,12} -0.45
{11,12} 0.36 0.84
{1,7,10} -0.60 -0.77
{1,10,13}
{1,7,11,12} -0.77 -0.88

Table 10: I and Möbius relevant values for Wine with k=12.

{1} {2} {3} {4} {1,2} {1,3} {1,4} {2,3} {2,4} {3,4} {1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2,3,4}
FM 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1
I 0.17 0.17 0.66 0 0.5 -0.5 0 -0.5 0 0 -1 0 0 0 1

Table 11: Coefficients and I values for 2 fully complementary features ({1} and {2}), a third one fully redundant
with them ({3}), and some noise ({4}).

6. Conclusions367

This paper aimed to study the ability of k-order fuzzy measure to characterize and model k-order interactions in368

a classification context. k-order measures are likely to meet the needs of semantics, as the number of interacting369

elements in real world data is limited, and complexity, the number of coefficients to identify is drastically370
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Class1 Class2 Class3
Coalition I Möbius I Möbius I Möbius
{1} 0.15
{7} 0.18 0.10 0.41 0.81
{10} 0.54 0.94
{11} 0.28
{12} 0.22
{13} 0.77 0.99 0.35
{1,7} 0.45 0.79
{1,10} -0.14
{1,13} -0.18
{7,10} -0.29
{7,11} -0.25
{7,12} -0.20
{11,12} 0.34 0.90
{1,7,10} -0.53 -0.83
{1,10,13}
{1,7,11,12 } -0.61 -0.61

Table 12: I and Möbius relevant values for Wine with k=3.

reduced.371

In extreme situations, where elements are fully redundant or complementary, the fuzzy measure coefficients372

take binary values. In this case, and when the k value is set to the number of interacting elements, it is373

mathematically proven that the complete fuzzy measure is both k-additive and k-maxitive.374

To assess the behavior and characterization ability of k-maxitive fuzzy measures in more realistic situations,375

an algorithm, based on HLMS, is proposed to identify the measure from labeled training data. The coefficients376

of up to k-size coalitions are identified using the gradient descent approach while the others are set to the377

maximum value of all included subsets. That means the minimum allowed value that guarantees monotonicity.378

This way, no groundless information is added.379

The algorithm is used with synthetic datasets for which the number of interacting elements is known and the380

level of interaction is controlled. This study shows that partial redundancy or complementariness is properly381

characterized by k-maxitive measures. Both the interaction indices and Möbius coefficients exhibit the expected382

behavior. This supports the idea that the difference between full and partial interaction is a matter of degree,383

not of kind.384

To deal with real world data, the learning algorithm is included within a pipeline that starts the process385

from raw data and converts each feature value into a class support degree. Then, the fuzzy measure can be386

identified and used to achieve the classification task.387

The complete fuzzy measure is compared to a k-maxitive one according to several aspects. It is first388

highlighted that coefficients up to k-size coalitions are overestimated as expected. This bias does not impact389

the characterization power of the k-maxitive measure as shown by a comparison of the interaction indices and390

the Möbius coefficients. Thanks to these indices, a semantic analysis about feature interaction is carried out for391

the two considered datasets. In both cases the number of interacting elements is three. Finally, the classification392

accuracy of the complete and the 3-maxitive fuzzy measures prove to be comparable.393

The number of coefficients to identify is significantly reduced for a k-maxitive measure, making larger394

datasets tractable and estimation more robust. To work properly, the k-maxitive measure learning algorithm395

has to be run with an adequate value of k: it must be higher or equal to the number of interacting elements,396

especially when they are complementary. An interesting and open perspective is the automatic estimation of k.397
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