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Abstract—Transmission and compression technologies ad-
vancement over the past decade led to a shift of multimedia
content towards cloud systems. Multiple copies of the same
video are available through numerous distribution systems. Dif-
ferent compression levels, algorithms and resolutions are used
to match the requirements of particular applications. As 4k
display technologies are rapidly adopted, resolution enhancement
algorithms are of vital importance. Current solutions do not take
into account the particularities of different video encoders, while
video reconstruction methods from compressed sources do not
provide resolution enhancement. In this paper, we propose a multi
source compressed video enhancement framework where each
description can have a different compression level and resolution.
Using a variational formulation based on a modern proximal dual
splitting algorithm, we efficiently combine multiple descriptions
of the same video. Two applications are proposed: combining
two compressed Low Resolution (LR) descriptions of a video
sequence into a High Resolution (HR) description and enhancing
a compressed HR video using a LR compressed description.
Tests are performed over multiple video sequences encoded with
High Efficiency Video Coding (HEVC), at different compression
levels and resolutions obtained through multiple down-sampling
methods.

Index Terms—video reconstruction, super-resolution, HEVC

I. INTRODUCTION AND STATE OF THE ART

THe continuous evolution of transmission systems, storage
and video compression technology in the past decade pro-

vides the end user with easy access to video content. A varied
number of distribution methods exist, from the classical DVD’s
to online streaming on the world wide web. High resolution,
studio quality video sequences are usually down-sampled and
compressed in order to match the requirements of certain
applications and the limitations imposed by transmission and
storage technologies. Large video databases such as YouTube
or Netflix provide multiple resolutions and different encodings
of the same video in order to account for user bandwidths and
displays. This situation creates a lot of potential for resolution
enhancement and compression artifact reduction techniques
from single and multiple sources.

The ability to efficiently combine multiple descriptions
of the same video and exploit the information variety can
be a useful tool in several scenarios. Video transmission
systems that rely on scalable encoders, such as Scalable

High Efficiency Video Coding (SHVC)[1], generate multiple
representations of a video sequence at a different quality level
or resolution. The information variety between these represen-
tations can be used to obtain a higher quality video. Similar
scenarios can be encountered when enhancing older videos
that are only available in compressed form or when working
with MultiView plus Depth (MVD) [2] video transmission
systems where the problem of image alignment is achieved
through depth computed disparity.

Super-resolution (SR) algorithms are post-processing tech-
niques that infer a spatially High Resolution (HR) estimate
from one or more Low Resolution (LR) images. Currently,
SR is an active research field; a review of SR algorithms
is available in [3], while performance comparisons can be
found in [4], [5], [6]. In general, SR algorithms can be divided
in single-frame (SF-SR) or multi-frame (MF-SR) approaches.
The later exploits the motion between successive LR frames in
order to extract unique information from each representation.
In the case of 3D video, adjacent views can also be used
[7]. The problem formulation in most cases assumes the
availability of a high number of descriptions (5-30) which
are subjected to different pixel shift operations (rotations,
translations), blurring and sub-sampling. Some of the most
popular MF-SR algorithms rely on a Bayesian probabilistic
formulation and employ various SR priors such as smoothness
with Total Variation (TV) [8] or the Simultaneous Auto
Regressive (SAR) image model [9], l1 based priors [10] or
non-stationary image prior combinations [11]. This type of
MF-SR approaches is best suited to tackle the problem of
image acquisition, where a high number of descriptions is
available with simple motion and a similar blurring.

In the recent work of Liu and Sun [12], the Bayesian ap-
proach is extended to videos. In this scenario, the descriptions
are consecutive frames of a video sequence. As noted by the
authors, this problem is inherently more difficult as real world
videos have complex motion rather than a simple parametric
form. The paper proposes a practical SR framework where
optical flow [13], blur kernel [14] and noise levels [15] are
simultaneously estimated. Gains of up to 3 dBs are reported
over bicubic up-sampling, when super-resolving using 15 for-
ward and backward frames. The degradation was synthetically
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added as Gaussian blurring, sub-sampling and Gaussian white
noise; tests were performed on real world video sequences.
However, as reported by the authors it can take 2 hours to
super-resolve one frame. In the work of Ma et al. [16], motion
blur is taken into consideration and improvements over [12]
are reported on real world sequences in a similar set-up where
30 frames are used in the computation. Another video SR
method that incorporates blur estimation was developed by
Faramarzi et al.[17]. A sequential approach is used for motion
estimation using optical flow between current and past frames
while the frame deblurring and blur estimation is performed
using an iterative multi-scale approach with a Huber-norm
based cost function minimized using the conjugate gradient
method.

Segall et al. investigate the problem of SR on compressed
video in [18]. They show that compression artifacts complicate
the SR reconstruction and suggest that a model of compression
should be employed. In [19], a Bayesian maximum a posteriori
probability formulation is proposed that takes into account
the quantization in frequency domain. The method is shown
to provide improvements over spatial domain methods on
frequency quantized images, when exact motion information is
known. In [20], the H.264/AVC compression process is fused
with the Bayesian SR approach, and gains ranging from 0.4 to
2.7 dBs over bicubic upsampling are reported. A more recent
maximum a posteriori based SR method for compressed video
with a multichannel image prior was proposed by Belekos et
al. in [21]. Wang et al. [22] tackle the problem of compressed
video enhancement from a different perspective. The authors
propose a practical framework that enhances the quality of
video by combining different encodings of the same sequence.
In this scenario real world videos are encoded using MPEG-
2 in two configurations. The proposed algorithm is able to
combine the two decoded videos. Gains of up to 1.5 dB are
reported, however, no resolution enhancement is performed.

Another class of SR methods is based on learning tech-
niques and two of the most successful approaches are based
on either dictionary learning [23] [24] or Convolutional Neural
Networks (CNN) [25][26]. Dong et al.[27] propose an image
super resolution method by coupling the sparse representation
model (SRM) [28] with the nonlocal autoregressive model.
Each LR patch can be represented using additional information
from neighboring patches. In [29] and [30], Dai et al. extend
the SRM to video and propose a dictionary based learning
method that takes into account multiple frames. Optical flow
is used to obtain correspondences between up-sampled LR
patches in consecutive frames and the dictionary is trained
using all corresponding LR patches and the HR patch. In
the recent work of Kappeler et al. [31] video SR is achieved
by means of CNN using 3 or 5 consecutive frames to super
resolve the middle one. The authors also extend this approach
to compressed video in [32]. They perform an extensive
test of SR algorithms on a real world sequence (Myanmar
at 960 × 540 resolution). The LR descriptions are created
with ffmpeg and then compressed with MPEG’s H.264/AVC
encoder (4 different compression levels were tested). The
proposed method shows gains of up to 4 dB over bicubic
interpolation, albeit the algorithm was trained on the same

sequence and 14 hour were needed for 3 frames input training
and up to 1 minute to super resolve due to the motion com-
pensation (motion information was computed before training
with optical flow).

Nowadays, videos are mainly available in compressed form.
Furthermore, different observations of a video sequence are
usually available with a different compression level and reso-
lution. To the best of our knowledge, there are no algorithms
tackling the problem of super-resolution and compressed video
enhancement from multiple descriptions of the same video. In
this paper, we build on our previous work [33], and inspired by
the method in [22], we propose a practical framework that is
able to reconstruct and enhance a video sequence starting from
multiple sources. More precisely: 1) we extend our model to
take into account multiple videos, 2) we model the down-
sampling process to account for any polyphase filter in a
manner consistent with our choice of convex optimization
method, 3) we integrate temporal prediction in our model
4) we integrate HEVC compression model and finally 5) we
implement the framework using a modern and efficient prox-
imal dual-splitting algorithm [34] such that we can combine
observations with different compression levels, down-sampling
methods or resolutions. Furthermore, this approach provides
a great degree of flexibility. The framework can be applied
to various applications ranging from image SR to enhancing
the quality and suppressing compression artifacts of a video,
and even combining multiple video streams, as shown in our
proposed applications.

The effectiveness of the method is shown on multiple video
sequences using HEVC [35] video compression standard.
Furthermore, a generic Matlab implementation of a Video
Coder (VC) is used to perform preliminary tests on specific
scenarios. Two practical applications are proposed and eval-
uated against two of the best performing SR learning based
methods [23], [31] and bicubic up-sampling: combining two
LR HEVC compressed streams of the same video into a
HR representation and improving the quality of a HR HEVC
compressed sequence from a LR one. The proposed framework
can also be used as a refinement method on the output of other
SR techniques.

The rest of this paper is organized as follows. Section
II states the problem and presents the mathematical model.
Section III describes in detail the convex optimization method
based on the mathematical foundation of [34]. In Section IV,
we explain how the proposed framework adapts to HEVC
compressed video content. Experimental results and an ex-
tended discussion on the proposed method’s performance is
available in Section V. Finally, Section VI concludes the paper.

II. MODELING THE SR PROBLEM IN THE COMPRESSED
DOMAIN

A. Problem statement

We depict a model of the super resolution problem in Fig. 1.
Starting from an original video sequence, we consider different
degradation models which consist of down-sampling (L) and
compressing the source with a video coder.
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Fig. 1. A generic model for multiple video sources sub-sampling, compression
and reconstruction.

1) From pixels to transform coefficients: Since our work
features SR from multiple observations, let us consider a set of
M encoded data streams - providing views of the same scene
- stemming from different video coders. Each video coder has
its own configuration (resolution, bitrate, etc.).

We denote by x = [x1, ..., xK ],with ∀i ∈ [1,K], xi ∈ RN
the original HR sequence. In a compression scheme with no
prediction, for every m ∈ {1, . . . ,M}, the m-th coder gener-
ates a vector of coefficients zm,i ∈ RPm,i which corresponds
to a quantized version of the output of a linear transform Tm,i
applied to Lm,ixi, where Lm,i is the down-sampling operator
(see Sec.II-A3) used with the m-th encoder for frame i. More
specifically we have ∀i ∈ [1,K] :

ym,i = Tm,iLm,ixi (1)

zm,i = Qm,i(ym,i), (2)

where ym,i and Qm,i are the transform coefficients of the
down-sampled frame and the vector quantizer operator for the
m-th encoder and frame i.

The above formulation does not account for the hybrid na-
ture of video coders. Indeed, video coders do not apply directly
the transform to pixel blocks, but to a residual obtained by
differentiating the observation with a prediction. We therefore
denote by x̃m,i the predicted image of the m-th encoder for
image i. Eq. (1) can thus be rewritten as:

ym,i = Tm,i(Lm,ixi − x̃m,i). (3)

Obtaining the predicted image x̃m,i typically depends on the
video coder used, and more details about its computation will
be given later on in this section.

2) Modeling the quantization process: For the sake of
clarity, we remove indexes related to the coder and the image
being processed (m and i in the previous section). Let us
assume that Q performs a scalar quantization with nQ quan-
tization levels r1, . . . , rnQ

and decisions levels d0, . . . , dnQ

such that d0 < · · · < dnQ
as shown in Fig. 2.

d0 d1 d2 d3 dnQ−1dnQ

r1 r2 r3 rnQ

I3

Fig. 2. Quantization model: interval limits and reconstruction values.

With these notations, the relation between a quantized
coefficient z(k) and the original coefficient y(k) follow the
subsequent quantization rule:

∀j ∈ [1, nQ] z(k) = rj ⇔ y(k) ∈ Ij , (4)

where Ij is the interval defined as

Ij =

{
[dj−1, dj [ if j < nQ

[dnQ−1, dnQ
] if j = nQ.

(5)

We now denote by (j(k))1≤k≤P the quantization index se-
lected for z(k). Then, it can be deduced that y belongs to the
following closed convex set

C =
{
y = (y(k))1≤k≤P ∈ RP |

(∀k ∈ {1, . . . , P}) djk−1 ≤ y(k) ≤ dj(k)

}
, (6)

Note that the closure of Ij(k) instead of Ij(k) itself has been
considered in order to make C closed (i.e. dj(k) ∈ C). The
projection onto C can then be straightforwardly defined:

∀y = (y(k))1≤k≤P ∈ RP ,PC(y) = (p(k))1≤k≤P , (7)

where (∀k ∈ {1, . . . , P})

p(k) =





dj(k)−1 if y(k) < dj(k)−1

dj(k) if y(k) > dj(k)

y(k) otherwise.
(8)

3) Modeling the re-sampling process: In the present work,
Lm,i corresponds to a down-sampling process (with or without
prefiltering), but it could also account for a registration error,
after some suitable linearization. Thus, we model the down-
sampling process to account for the most common methods
used in video coding: a polyphase filter followed by a deci-
mation. This model accounts for the down-sampling procedure
used in the scalable video coding extensions of H.264/AVC
(SVC [36]) or HEVC (SHVC [1]) video standards. In the
following formulation we use the Fourier transform to express
the frequency response of a filter of impulse response l̃[r]:

L̃(f) =

R−1∑

r=0

l̃[r]e−i2πfr, (9)

where R is the kernel size of the filter. Note that other
transforms can be used depending on the coding method that
is modeled. For example, wavelet transforms can be used
to model JPEG 2000 compression [37]. If we consider the
polyphase components of the filter as:

ẽg[a] = l̃[aG+ g], (10)

where G is the number of phases or components, the filter can
now be expressed as a sum of phase components as:

L̃(f) =

G−1∑

g=0

A−1∑

a=0

ẽg(a)e−i2πf(aG+g), (11)
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where A is the number of taps for each phase (i.e. the kernel
size of a single phase filter). Each polyphase component (Lg)
can easily be obtained by fixing g in the above equation
and summing over a. For convenience, the above formulation
assumes that R is a multiple of G; if not, l̃[r] can be extended
by zero-padding.

In Fig. 3, we depict a simple example of downsampling and
upsampling with a factor of 1/2 and 2 respectively. Here, x
represents four adjacent pixels in an image row. U denotes
an image expansion with zeros, while D is a decimation.
More precisely, the downsampling process uses only 1 phase
(0.5), thus, the image is expanded by a factor of 2. The same
operation will also be applied on the filter in order to match the
zero values in the image. Once the filter is applied, decimation
is used to extract the pixels at positions 1.5 and 3.5. Note
that the decimation process needs to account for both the
phase decimation and the initial expansion of the image. The
LR representation is denoted by y, while the downsampling
operator L is defined as:

L(x) = DL(UL(ẽg2) ∗ UL(x)). (12)

The up-sampling process defined by H follows the same logic
and is defined as:

H(x) = DH(UH(ẽg1,g3) ∗ (UH(y))). (13)

However, in this case two phases are involved, g1 and g3. The
image is expanded with zeros by a factor of 3 and the filter
ẽg1,g2 is defined as:

ẽg1,g2 = [wg21 , w
g1
1 , w

g2
2 , w

g1
2 ..., w

g2
A , w

g1
A ]. (14)

1 2 3 40 1.5 2.5 3.5 4.5

0.75 1.25 1.75 2.250 1 1.5 2 2.5

0-extension
Phase 1 (0.25)
Phase 2 (0.5)
Phase 3 (0.75)

x

UL(x)

UL(ẽg2) ∗UL(x)

L(x) = y

UH(y)

UH(ẽg1,g3) ∗ (UH(y))

H(L(x))

Fig. 3. Down-sampling and up-sampling operators.

In this case the filter is expanded by inserting one zero
value in-between consecutive pairs wg2a , w

g1
a such that phases

1 and 3 can be computed in a single application of the
filter. The decimation process will be used to remove the
original pixels of y. We aim to perform a single matrix
multiplication in the transform domain in order to easily model
the adjoint operator and reduce computational time. Thus, the
final filter will be a 2-D version of the current one and the
adjoint operator, required for our solver, is easily expressed
as the Hermitian transpose (i.e. the complex conjugate of the
transpose). The weights are determined using any popular
interpolation method, such as: Lanczos filter [38], bicubic [39]
or filters proposed for SVC [36] or SHVC [40].

B. Modeling the SR process

1) A data-fidelity measure in the compressed domain: We
propose to evaluate the fidelity of an observation in the trans-
form domain. In absence of additional clues, reconstruction
levels represent the best quality reference (which minimizes
the error) for the solution in each transform domain. We opt
for the reasonable choice of minimizing the sum of distances
between the projections of the sub-sampled solution onto the
transform bases and the corresponding quantized transforms
observed in the compressed bitstream, according to a suitable
metric φm. Eventually, to account for the different quality of
each encoded version, we use an additional parameter αm :

JDF(x) =

K∑

i=1

M∑

m=1

αmφm (Tm,i(Lm,ix̂i − x̃m,i)− zm,i) .

(15)
where x̂i is the reconstruction of frame i.

2) Exploitation of available data: The above objective
function measures a distance to reconstruction levels in the
compressed domain. We propose to strengthen the modeling
of the SR problem using all available information in the
compressed bitstream. In particular, we know the reconstruc-
tion levels and the associated quantization intervals for each
quantized coefficient in the bitstream. Since quantization con-
straints are in the form of a closed convex set Cm,i (See Eq. 6),
the latter constraints can be directly used in the formulation of
the optimization problem. Therefore we enforce the following
admissibility condition to the solution:

Find x̂ : ∀m ∈ [1,M ],∀i ∈ [1,K], Tm,i(Lm,ix̂i− x̃i) ∈ Cm,i.
(16)

3) A Priori knowledge: Encompassing a priori information
into the reconstruction problem is a common choice in the
literature. We first enforce the solution to have pixel values
belonging to a specific range, typically known given the ap-
plication domain. This condition can be expressed as follows:

Find x̂ : ∀i ∈ [1,K], x
(i)
min ≤ x̂(i) ≤ x(i)

max. (17)

Moreover, a typically adopted choice is to enforce the smooth-
ness of the solution by limiting its discontinuities according
to a suitable metric. This is necessary in order to deal with
the noise and artifacts introduced at the compression stage.
We opt here for the classical Total Variation (TV) [41] to
measure the discontinuities of the solution. In order to avoid
over-smoothing, the TV will not be introduced in the mini-
mization criterion, but rather limited by means of an additional
constraint:

find x̂ : ∀i ∈ [1,K], TV(x̂i) ≤ ηi. (18)

Obviously, the choice of the bound ηi is critical, and its
computation will be detailed in the experiments section.

For the super-resolution case, the sole TV constraint may
be insufficient. In particular, we compute data fidelity w.r.t.
the reconstruction levels only using the LR (and transformed)
versions of the solution. As a matter of fact, among all the
possible solutions providing the desired minimum distance,
there is still no guarantee that unlikely ones will not be picked.
Among them, some may be particularly noisy, in which case
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even the activation of the TV constraint can only lead to poor
results.

To cope with this problem, we propose to balance the min-
imization criterion with an additional super-resolution prior.
To this aim, let us consider a set of up-sampling operators
Hm,i, which can be chosen as to optimally adapt/compensate
the corresponding sub-sampling operators Lm,i. The super-
resolution prior is here defined as the distance of the solution
x̂ from its subsequently sub-sampled and up-sampled version,
according to a suitable metric ψm per description, namely:

JSR(x) =

K∑

i=1

M∑

m=1

ψm

(
(Id −Hm,iLm,i)x̂i

)
, (19)

where Id is the identity matrix. In this way, a preference is
expressed in favor of solutions which “look like” the results
of proper up-sampling processes, which can be, in our case,
adapted to the down-sampling counterparts that generated the
observations. Thus, the choice of H for this constraint is
critical as it assumes that H is the good solution to reverse L.
For example in the case of bicubic down-sampling, H can be
easily defined as the bicubic up-sampling process as described
in Section II-A3. In fact, this constraint can be interpreted as
a correction of the solution w.r.t. the artifacts introduced by
a subsequent application of matched up-sampling and down-
sampling operators.

The proposed framework can also be used to refine the
solution of another super resolution algorithm by changing
the initialization. When the initialization is obtained us-
ing a combination of the linearly up-sampled observations
(Hm,i(obsm,i)), the constraint will help in balancing the
solution. However, when a more complex method is used to
provide a better initialization, this constraint might not take
advantage of the additional information. For instance, example
based super resolution methods introduce new information not
contained in the observation due to their learning process.
In this case, the above constraint will not take advantage of
this, as it assumes that H is the “proper” way to reverse
L and the new information is regarded as a distortion and
corrected. Therefore, when using an initialization based on a
complex super resolution algorithm rather than a filter based
up-sampling this constraint should be disabled.

4) Wrapping up the SR model: Based on the convex
constraints and the objective functions detailed previously, let
us now formally define the considered optimization problem.
To this aim, we denote by ιC the characteristic function of a
closed convex set C, defined by:

ιC(y) =

{
0 if y ∈ C
+∞ otherwise.

(20)

We propose then to minimize the following criterion, with a
parameter β ∈ [0; +∞[ allowing to balance the cost functions:

Find x̂ ∈ argmin
x∈RK×N

(
JDF(x) + βJSR(x)+

K∑

i=1

M∑

m=1

(
ιCm,i

(Tm,i(Lm,ixi − x̃m,i))
)

+

K∑

i=1

M∑

m=1

( S∑

s=1

ιDs(m,i)(Fs(xi))
))

. (21)

where ιDs is the characteristic function of the convex set
Ds for frame i of the m-th description. Note that Fs is
used to introduce the range and smoothness constraints from
Eq. (17) and Eq. (18) into the problem formulation. The
range constraint is directly applied to the image, thus the
characteristic function of D1, ιD1(m,i) is applied to F1(xi),
where F1 is the identity function and D1(m, i) = {x ∈
RN : x(k) ∈ [xm,imin , x

m,i
max]∀k ∈ [1, N ]}. For the isotropic TV-

based smoothness constraint, the image gradient needs to be
computed (with ∇hor,∇ver being the horizontal and vertical
gradient operators respectively): F2 = (∇hor,∇ver) and
D2(m, i) = {x ∈ RN :

∑N
k=1

√
∇2
horx

(k) +∇2
verx

(k) ≤ ηi}.
Essentially, this constraints assure that pixel values remain
within a predefined range (e.g. [0..255]) and image TV is
maintained below a certain threshold η during the variational
process.

Furthermore, if frames are compressed without the use of
predictive coding, as is the case of intra frames in older
coders that do not employ intra-prediction, the data fidelity
criterion and the quantization interval based constraint can
be easily adapted by replacing Lm,ixi − x̃m,i with Lm,ixi.
Also, note that, x̃m,i is given as a constant for each xi.
We could allow the prediction to vary with respect to its
reference: x̃m,i = Mm,iLm,i−1x̂i−1 where Mm,i denotes a
motion compensation operation. In the case of intra frames that
use intra-prediction, we would need to define a new operator
that models the intra-prediction process in the specific video
coder. However, using such a formulation will introduce non
linear operators which complicate the optimization problem.
Furthermore, the coefficients of the residual are computed with
respect to a certain prediction at the decoder side. Using a
different prediction, albeit a better one, might lead to overall
worse results when summing with the residual. Therefore,
we recommend using a fixed prediction. This is achieved by
computing it from the compressed observations before solving
the problem. As such, the optimization process can be applied
for each frame (xi) independently and the summation over i
can be removed from the model.

III. A CONVEX OPTIMIZATION SOLVER

In this section, we tackle the problem of solving Eq. (21). As
discussed in Sec. II-B4, each frame can be optimized indepen-
dently. As such, for the sake of simplicity we remove the frame
index coefficient i in the following description. Considering
our problem is based on linear operators, our choice of solver
falls on the primal-dual algorithm proposed by Combettes et
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al. in [34], known as Monotone Lipschitz Forward-Backward-
Forward (M-LFBF) algorithm. This algorithm, unlike other
similar methods, assures a lower computational complexity
for problems involving linear operators as it does not require
any matrix inversion [34]. Furthermore, the block iterative
structure of the algorithm allows for efficient parallel imple-
mentations on multi-core architectures.

In the following section, we will further detail some prop-
erties of the proximity operators which are used in this work,
followed by a description and discussion of the proposed
algorithm.

A. Proximity operators

We begin by defining the proximity operator [42] in a
real Hilbert space H with norm ‖ · ‖ for a function ϕ ∈
Γ0(H). Here, Γ0(H) denotes the class of proper lower semi-
continuous convex functions from H to ]−∞,+∞]. This gives
the following definition:

proxϕ : H → H : u 7→ argmin
v∈H

1

2
‖v − u‖2 + ϕ(v). (22)

A useful property which allows us to deal with the recon-
structed coefficients in the transform domain (zm) states the
following: If ψ = ϕ(· − v), where v ∈ H, then

(∀u ∈ H) proxψ u = v + proxϕ(u− v). (23)

Based on this, we can compute the proximity for the data
fidelity term JDF(x). Let us consider Φm

M
= φm(· −

zm). As such, the data fidelity term can be expressed as
Φ((Tm(Lmx̂− x̃m))) and by applying Eq. (23), we obtain
the following expression for the proximity operator:

proxΦ u = zm + proxφ(u− zm)

with u 7→ Tm(Lmx̂− x̃m) (24)

Another property of interest is the relation between the projec-
tion (P) and proximity operators for characteristics functions
of closed convex sets. If ψ = ι and C is a closed convex set
on H, then:

(∀u ∈ H) proxψ u = proxιC u = PC(u). (25)

B. Algorithm

Using the properties above, the algorithm in [34] can be
adapted for solving the problem of Eq. (21). As discussed in
Sec. II-A, we need to account for frames which use predictive
coding (intra or inter prediction) and also frames for which
only transform coding is employed. As the prediction is a
constant during the iterative process, we only need to compute
it once. Furthermore, if the initialization differs from Hm(obs)
(for example a state-of-the-art SR method is used) the super-
resolution prior given by Eq. (19) will be disabled.

The algorithm relies on successive computation of the
criterion, constraints and their adjoints, and the projection
or proximity operators associated to each. For an in-depth
understanding, the reader is encouraged to refer to [34].

C. Discussion

As the transform and resampling operations are linear, their
adjoint operators are easily computed as discussed in II-A3.

The explicit expression for computing the projection onto
Cm set is given in Eq. (7) and (8). In a similar fashion,
the projection on the range constraint set D1 is achieved by
setting all out-of-range pixels to the closest bound of interval
[xmin, xmax]. For the smoothness constraint, the projection is
not available in closed form, but several approaches exist in
the literature to compute it [43], [44]. The iterative technique
described in [44] and [45] is employed in our algorithm. The
computation of proximity operators is based on the explicit
expressions available for a large number of convex functions
[46], [47].

Furthermore, in order to assure the convergence of the
algorithm to an optimal solution according to [34], the iteration
step size of the optimization algorithm denoted by γ in [34],
Theorem 4.2, belongs to the interval [ε, (1− ε)/ξ] and in our
case we have:

ε ∈]0, 1/(ξ + 1)[ and

ξ =

√√√√
M∑

m=1

(
2‖Tm(Lm − M̃m)‖2 + ‖ Id −HmLm‖2

)
+

+

S∑

s=1

‖Fs‖2. (26)

Note that if predictive coding is not used, ‖Tm(Lm− M̃m)‖2
becomes ‖Tm(Lm)‖2. The norm of the operators can be
computed using the iterative algorithm in [48, Algorithm 4].

IV. HEVC INTEGRATION

We propose in this paper to apply the proposed SR model
to videos compressed with the High Efficiency Video Coding
(HEVC) [35]. It is to be highlighted that HEVC always
computes a prediction for a coding unit (CU) (more specifi-
cally, for each prediction unit PU in a CU), either by Intra
or Inter prediction, before encoding the CU residual (Eq.
3). In particular, the predicted frame x̃m,i can be built by
concatenation of all the predicted units, without explicitly
knowing the prediction mode used for each unit.

HEVC computes residual signals at the CU level, but these
residuals are transformed at the Transform Unit (TU) level.
TUs are square pixel units that can be recursively subdivided,
so different transform sizes are specified in HEVC (4x4,
8x8, 16x16, 32x32). Due to complexity considerations, HEVC
relies on finite approximations of well-known transforms: the
Discrete Cosine Transform (DCT) and its inverse (IDCT).
Moreover, a Discrete Sine Transform (DST) is specifically
used for 4x4 Intra units. The transform matrices are fully
standardized and can be found in [49].

Given an input residual frame (obtained by subtracting the
predicted frame from the source signal), the HEVC transform
Tm,i requires the extraction of the following two elements
from HEVC bitstreams : the frame type (to distinguish be-
tween DST and DCT for 4x4 units) and the TU partitioning.
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HEVC quantization is performed at a TU level on the trans-
formed residual. HEVC implements a scalar quantizer similar
to the one presented in Section II-A2. The applicable quantizer
is indicated by a Quantization Parameter (QP) ranging from 0
to 51 which serves as an integer index to derive the applicable
step size ∆q . HEVC follows a logarithmic structure : the
step size doubles when the QP increases by 6. The first six
step sizes (for QP ranging from 0 to 5) are presented below,
alongside with the formula allowing to infer the step-size at
higher QPs

∆q,0..5 = {2−4/6, 2−3/6, 2−2/6, 2−1/6, 1, 21/6} (27)

∆q(QP ) = ∆q,QP mod 6 · 2bQP/6c. (28)

Given an input frame of transformed coefficients, in addition to
the information extracted in previous section (TU Partitioning,
frame type), the HEVC quantizer Qm,i only requires the
extraction of the QP map (containing the QP of each TU)
to compute the step-size for each unit.

A. Implementation issues

1) Extracting the required HEVC information: Applying
the SR model to HEVC encoded video streams relies on
information we can extract during the decoding process (TU
partitioning, QP map, etc.). An OpenHEVC decoder [50]
has been patched to output the required elements for the
SR approach. In particular, the modified decoder generates
the following informative streams: the reconstructed frames,
the encoded coefficients (denoted as zm,i in Section II) the
predicted frames, the TU partitioning and TU types and the
QP map.

2) Encoding configurations: HEVC compliant video
streams are generated using the reference software HM 15.0
[51]. The encoding uses the default Random Access con-
figuration, with some slight modifications. First, CU-based
multi-QP optimization is enabled by setting the parameter
MaxDeltaQP at 2. Second, since our SR model has not
considered HEVC in-loop filters yet, both the deblocking and
sample adaptive offset filters are turned off.

3) A closer look on the HEVC residual skip coding tools: In
a generic compression framework as the one denoted by VC in
this work (Sec. V-A1), residual information is systematically
transformed and quantized. However, HEVC may entirely skip
the residual for a block, i.e. when the prediction is good
enough given the target quality. This choice is made during
Rate-Distortion Optimization (RDO) at the encoder side, and
is indicated explicitly in the bitstream. Indeed, HEVC standard
defines in the transform tree syntax, for each TU, a flag cbf
luma which indicates if residual luminance information is
present for the current TU (similar codewords cbf cr and cbf
cb are used for chrominance residuals). Besides, the absence
of residual is automatically inferred for 64x64 TUs in Inter
frames. These 2 scenarios where TUs have no residual are
not naturally modeled by our framework. First, the data-
fidelity cost function (Eq. (15)) relies on quantized coefficients
observed in the bitstream, which are missing in this case.
Considering the absence of reliable information, skipped TUs
are not taken into account in the data-fidelity computation.

Besides, the solution validity (Eq. (16)) relies on quantization
intervals which cannot be extracted from the bitstream when
the QP of a TU is not defined. This constraint may help to
model the uncertainty of skipped TU residuals. Therefore, we
relied on empirical testing (see Section V-A2) to define the best
selected QP for a skipped TU, by evaluating our SR model
on one Inter frame of two HEVC encoded low-resolution ob-
servations generated with two different degradation operators:
bicubic with anti-aliasing (BicAA) and without (BicNAA).

V. EXPERIMENTAL RESULTS

In this section, we report the main results of this work.
We begin by discussing the experimental setup and defining
the test bench architecture and algorithm parameters which
are used throughout the main experiments. A series of small
tests are performed in order to show the proposed method’s
behavior and motivate the framework set-up for the two
proposed applications. A discussion of the results concludes
this section.

A. Experimental setup and preliminary tests

1) Quick presentation of the experimental setup: In Fig.
4, we depict our test bench architecture. Two observations
are generated by applying two different degradation operators
denoted by L1 and L2 followed by a compression step with a
video coder.

In this work, we mainly use the HEVC video coder, with
the configuration described in Sec. IV-A2. Additionally, some
preliminary tests are also performed using a Matlab imple-
mentation of a generic hybrid video coder that matches the
scheme in Fig. 1.

The choice of initialization may influence the end result
as the algorithm may converge towards a different local
minimum. Furthermore, as discussed in Sec. III, if the up-
sampled observation introduces new information, the SR prior
Id − HmLm will be disabled. Each up-sampling method
generates m + 1 (m=2 in our tests) natural initialization
candidates: ↑U (Obs1), ↑U (Obs2), W.Avg.αm

(↑U ),

↑U (Obs1), ..., ↑U (ObsM ),

W.Avg.αm
(↑U ) =

M∑

m=1

αm ↑U (Obsm) (29)

where U denotes the up-sampling method (Hm, SOA). Of
course, any number of observations can be used if required by
a certain scenario and other SOA methods can be combined.
However, different test architectures are left as a future study
direction. A comparison of different initializations is discussed
in Sec. V-A5.

2) Skipped blocks QP selection: As discussed in
SectionIV-A3 we performed empirical tests to select a
QP for skipped blocks. We tested three different QPs to apply
to skipped units: the QP range boundaries: 1 and 51, and the
maximum available QP during the frame encoding, which
depends on the MaxDeltaQP parameter in HEVC. The
results are gathered in Tab. I. When using QP 1, only very
small modifications of the quantized coefficients are tolerated
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Fig. 4. A schematic view of the experimental setup. Two re-sampling operators are applied on an input sequence. Each observation is compressed and
decompressed, and useful information is extracted. Decoded observations are up-sampled to their original resolution using either the reverse of the degradation
operator or a State Of the Art (SOA) SR method. Then, the proposed framework is initialized with one high-resolution estimate and the information extracted
during the decoding.

QP of skipped units
1 Max. * 51

Sequence Enc. QP PSNR SSIM PSNR SSIM PSNR SSIM

Akiyo
20 36.61 0.9598 35.60 0.9612 35.29 0.9600
30 32.45 0.9176 34.17 0.9416 34.16 0.9415
40 27.95 0.8449 30.35 0.8802 30.35 0.8802

Foreman
20 33.69 0.9179 34.24 0.9287 32.90 0.9281
30 29.75 0.8530 31.25 0.8873 31.05 0.8875
40 26.11 0.7721 27.96 0.8190 27.96 0.8190

Bus
20 28.24 0.8608 28.24 0.8510 27.82 0.8221
30 25.25 0.7403 26.12 0.7637 26.24 0.7703
40 22.02 0.5498 23.36 0.5818 23.40 0.5857

TABLE I
USING DIFFERENT QP SETTINGS FOR SKIPPED UNITS. (*: MAX. MODE

USES THE FRAME MAXIMUM AVAILABLE QP)

(smallest possible quantization interval). Interestingly, this
choice is not always the worst at low QPs for static sequences
(i.e. Akiyo), but huge quality drops are observed at higher
QPs. On the opposite, using QP 51 is almost equivalent to
removing the constraint for skipped units: it implies a low
confidence on pixel values, and the very wide quantization
intervals enable unit variations while preserving their validity.
This option has been found slightly inferior (in terms of
average quality and stability over sequences/QPs) than the
solution based on the maximum encoding QP; we thus
applied this latter solution in the remaining of this paper.
Such a result is eventually quite intuitive: if the encoder
RDO decides to skip a TU, it is most probably because no
information is to be coded at the encoding QP, which is thus
a natural candidate for modeling the degree of confidence we
can have in the unit pixel values.

3) Parameter selection: The application of the proposed
framework relies on the definition of some parameters and
metrics. First, as presented in Sec.s II-B1 and II-B3, the
data-fidelity cost function JDF and SR prior JSR depend
on the suitable metrics φm and ψm. As we use the Peak
Signal to Noise Ratio (PSNR) to evaluate the results quality,
consequently, we rely on the l2 norm for φm and ψm.

The parameter αm accounts for the unequal quality of the
observations. This parameter may not be easily estimated,
since the quality of the observations is not measurable w.r.t.
the unavailable original sequence at the decoder side. In the
remaining of this work (unless when explicitly indicated), we

simply set all αm to 1/M which implies equal importance of
each observation.

The constraint imposed on the TV norm of the result (Sec.
II-B3, Eq. (18)) has to be defined. In order to obtain an
adequate smoothness level, we impose a content dependent
boundary on the TV. Namely, we measure for a video frame
i the TV of the high-resolution initialization denoted by x0

i .
The TV boundary used for the final result is derived according
to:

find x̂ : TV(x̂i) ≤ η where η = η0 · TV(x0
i ), (30)

where η0 is used to weight the smoothness of the result. As
such, a value close to 1 will lead to a similar smoothness
level as the observation whereas smaller η0 values increase the
result smoothness. The η0 parameter (unless when explicitly
indicated) is empirically determined and set to 0.95 in the
remaining of this work.

Finally, the β parameter is used to weight the super resolu-
tion prior JSR (Eq. 19). Different values could be assigned for
individual observations which should reflect the performance
of subsequent application of down-sampling and up-sampling
(HmLm) w.r.t. the level of compression. However, in order to
preserve the generality of the method we set this parameter
to a value of 0.15 in all tests, which provided overall good
results on all tested scenarios.

4) Choice of Lm: In order to select the down-sampling
operators used in our main experiments, we perform a pre-
liminary test with different choices for the L and H operators
(see Sec. II-A3). Our goal is to study the impact of the down-
sampling operator L on the performance of our algorithm,
the H based up-sampling, A+ [23] and Vnet [32]. We thus
limit the test to a certain set of conditions that emphasize the
impact of L. Mainly, by using a near lossless compression and
relaxing the TV constraint. We select the Foreman sequence
in a full intra mode coding configuration as it provides a mid-
level TV w.r.t. the test dataset. The choice of video coder for
this test falls on the generic VC compression model (see Sec.
V-A1 and Fig. 1). To minimize the impact of compression
on the performance of the filters we use a QP of 1. In this
scenario, we use only 1 description generated with various
L models. We test 2 popular interpolation functions: Bicubic
(Bic) and Lanczos3 (Lanc3). The Bicubic and Lanczos3



IEEE TRANSACTIONS ON IMAGE PROCESSING 9

↓↑ method ↑H ↑A+ ↑V net ↑Prop. (↑H) ↑Prop. (↑A+)
↓L (Bic4) 34.80 35.36 34.75 34.88 36.95
↓L (Bic8) 34.22 37.92 37.73 37.18 37.96
↓L (Bic12) 32.32 33.84 33.72 36.86 36.88
↓L (Lanc36) 34.51 33.42 32.86 34.53 35.47
↓L (Lanc310) 35.13 37.27 37.06 36.01 38.01
↓L (Lanc314) 32.91 33.84 33.76 36.23 35.61

TABLE II
COMPARING THE PSNR (DB) OF UP-SAMPLING METHODS ↑H , ↑A+ ,
↑V net , ↑Prop (↑H), ↑Prop (↑A+) W.R.T DIFFERENT DOWN-SAMPLING

FILTERS. (GENERIC VC)

functions are defined on the intervals [−2, 2] and [−3, 3]. Thus,
the phase used in a down-sampling of scale 1/2, with each
filter, has 4 and 6 taps, respectively. Furthermore, we also
combine the filter with an anti-aliasing effect by stretching
the functions, resulting in a larger number of taps for each
phase. The results are reported in Tab. II, where ↑H , ↑A+,
↑V net, ↑Prop (↑H), ↑Prop (↑A+) denote the up-sampling using
the matching filter from L, the dictionary based SOA method
[23], the CNN based SOA method [31] and our result when
the method is initiated with either ↑H or ↑A+, respectively.
Bic interpolation filters use 4, 8 and 12 taps while Lanc3 has
6, 10 and 14 taps. From the start we can notice that the A+
method provides a significant improvement over filter based
up-sampling using the same interpolation function as L. An
interesting observation is that the A+ and Vnet methods exhibit
a non-uniform performance behavior w.r.t. the number of taps.
Best A+ and Vnet performance is achieved for ↓ Bic8 and
↓ Lanc310. Overall, the proposed method obtain comparable
quality with SOA methods for Bic4&8, lower quality for
Lanc310, and outperforms them on the other filters. Using A+
as initialization further improves the result. Thus, for fairness
of comparison, in our main tests we decide to select the best
performing case for A+ and Vnet, Bic8 and Bic4 as L1 and
L2 operators. We will refer to these choices as BicAA and
BicNAA.

5) Initialization of the proposed method: As discussed in
our previous work [33], the initialization can have significant
impact on the final result quality. We conduct a preliminary test
on Foreman sequence to discuss this phenomenon (CIF, SRx2,
10 HEVC Intra frames, QP 25). Two observation are generated
using BicAA and BicNAA (see Sec. V-A4) degradation oper-
ators. After compression and decompression, 6 HR estimates
are generated : three from the reverse polyphase filters -and
their average- and three other generated using the A+ SR
method. In Tab. III, we detail the quality of the high-resolution
estimates we can derive from the observations, and gather the
results obtained by our framework using each estimate as the
initialization.

Tab. III highlights typical behavior of the proposed frame-
work: amongst all available high-resolution estimates, the best
option is to select the one with highest quality. This namely
justifies the use of single-image SR to generate the high-
resolution estimate. In this particular example where both
observations are encoded with similar compression settings,
decoded frames are of comparable quality and to use their
average exhibits the best results (with either polyphase up-
sampling or A+ SR). In general, observations may be of very

↑Met. ↑f (Obs1) ↑f (Obs2) Avg(↑f )
↑H 31.11 31.55 31.56

↑Prop. (↑H) 33.27 33.21 33.36
↑A+ 32.01 31.72 32.51

↑Prop. (↑A+) 33.64 33.58 33.97

TABLE III
PSNR (DB) COMPARISONS WHEN USING DIFFERENT INITIALIZATIONS

FOR THE PROPOSED METHOD (HEVC). ↑f DENOTES THE UP-SAMPLING
WITH METHOD f . THE COLUMNS CORRESPOND TO THE UP-SAMPLED

OBSERVATIONS AND THEIR AVERAGE.

different quality, in which case a weighted average may be
a better option. Yet, in real-world scenarios at a decoder
side, one cannot compute the quality w.r.t. the unavailable
original sequence. Thus, choosing the optimal initialization is
in general a more difficult problem.

B. Main experiments.
1) SR from two low-resolution observations: In a first

scenario, we consider the issue of SR from two low-resolution
observations. Here, we assume two compressed video streams
and attempt to combine them in order to obtain the best
possible quality. The experimental setup follows Fig. 4, and the
two observations are generated by down-sampling (by a factor
of 2 in each dimension) a given input sequence using BicAA
and BicNAA. HEVC is used to compress each LR observation.
Two coding configurations are specifically analyzed, denoted
by II and IP. II mode corresponds to a full Intra configuration:
each frame of the sequence is treated as an independent Intra
frame, without motion estimation and compensation tools. On
the opposite, IP configuration exploits P frames to improve the
coding efficiency, and in this case, a GOP size of 8 is picked.
Evaluations are carried out on 6 CIF sequences, mainly: Akyio,
Foreman, Bus, Mobile, Football and Flower, denoted by Ak,
Fm, Bu, Mo, Fb, and Fl respectively. In this scenario, low-
resolution observations are of comparable quality, thus using
the average between the observations is a coherent choice. In
Tab. IV, we detail results obtained for each sequence at dif-
ferent QP values expressed in terms of PSNR and SSIM [52].
QP1 corresponds to a near lossless compression which is quite
relevant as most SR methods are tested on uncompressed
frames. Before computing the results, we cropped the borders
as Vnet method cannot properly reconstruct these areas. For
each QP, three values are presented: the one denoted by Ref
represents the average between up-sampled decoded observa-
tions using polyphase filters. Similarly, the column denoted
by A+ measures the quality obtained when averaging the
up-sampled decoded observations using the single image SR
work from Timofte et al. [23]. The column denoted by Vnet
represents the quality of the BicAA description up-sampled
with Vnet. Note, that in this case we do not use an average
as Vnet provides poor results for BicNAA description and the
average has a lower quality. Finally, Prop. column stands for
the proposed algorithm initialized with the A+ result (i.e. the
average between decoded observations up-sampled with A+
SR).

Tab. IV highlights the efficiency of the proposed framework
in the tested scenario. First, we show a significant improve-
ment over the reference obtained by averaging the bi-cubic up-
samplings. Namely, the PSNR gain can be superior to 5dBs for
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QP1 QP15 QP25 QP35 Average
Seq Mode Ref A+ Vnet Prop. Ref A+ Vnet Prop. Ref A+ Vnet Prop. Ref A+ Vnet Prop. Ref A+ Vnet Prop.

Ak II 34.8 37.6 38.4 41.0 34.6 37.4 38.0 39.3 34.1 36.4 36.2 36.9 31.8 32.7 31.7 32.3 33.8 36.1 36.1 37.4
IP 34.8 37.6 38.4 40.6 34.6 37.3 37.7 37.8 34.2 36.3 35.9 36.5 32.2 33.0 31.8 33.0 33.9 36.0 36.0 37.0

Fm II 32.2 37.4 37.8 39.2 32.1 37.2 37.2 38.0 31.6 35.7 34.9 35.9 29.5 31.6 30.6 31.3 31.3 35.4 35.1 36.1
IP 32.1 37.4 37.7 39.3 32.0 37.0 36.6 37.6 31.3 34.7 33.6 34.8 28.8 30.3 29.4 30.3 31.0 34.8 34.3 35.5

Bu II 26.8 27.5 29.1 31.4 26.8 27.5 29.0 30.1 26.6 27.3 28.4 28.4 25.2 25.7 25.3 25.7 26.4 27.0 28.0 28.9
IP 26.8 27.5 29.1 30.7 26.8 27.5 28.9 29.5 26.4 27.1 27.4 27.6 24.1 24.3 23.6 24.3 26.0 26.6 27.3 28.0

Mo II 22.7 23.7 25.5 27.6 22.7 23.7 25.5 26.6 22.6 23.6 25.1 25.1 22.0 22.9 22.8 23.1 22.5 23.5 24.7 25.6
IP 22.7 23.7 25.5 26.9 22.7 23.7 25.4 26.0 22.5 23.6 24.4 24.4 21.1 21.7 21.3 21.8 22.2 23.2 24.1 24.8

Fb II 28.0 30.8 31.4 33.9 28.0 30.8 31.2 32.6 27.7 30.3 30.2 31.1 26.0 27.4 26.4 27.3 27.4 29.8 29.8 31.2
IP 28.0 30.8 31.4 33.3 28.0 30.7 31.0 32.0 27.5 29.7 28.9 30.0 24.5 24.7 23.9 24.7 27.0 29.0 28.8 30.0

Fl II 23.0 23.4 24.3 26.5 23.0 23.4 24.3 26.0 22.9 23.3 24.1 24.8 22.5 22.9 22.9 23.3 22.8 23.2 23.9 25.1
IP 23.0 23.4 24.3 26.3 23.0 23.4 24.3 25.7 22.8 23.3 23.7 24.0 21.9 22.2 22.1 22.3 22.7 23.1 23.6 24.6

Avg 27.9 30.1 31.1 33.1 27.8 29.9 30.8 31.7 27.5 29.3 29.4 29.9 25.8 26.6 26.0 26.6 27.3 29.0 29.3 30.3

Ak II .964 .977 .977 .983 .959 .972 .968 .975 .947 .958 .949 .955 .907 .910 .899 .895 .944 .954 .948 .952
IP .964 .977 .977 .979 .959 .971 .970 .973 .948 .958 .951 .960 .914 .916 .895 .918 .946 .956 .948 .957

Fm II .940 .958 .960 .969 .936 .953 .940 .955 .909 .923 .894 .922 .851 .860 .819 .852 .909 .923 .903 .924
IP .940 .957 .961 .968 .932 .948 .951 .950 .900 .909 .911 .911 .833 .838 .843 .838 .901 .913 .916 .917

Bu II .852 .893 .914 .939 .850 .890 .901 .915 .827 .869 .835 .875 .700 .743 .658 .731 .807 .849 .827 .865
IP .852 .893 .915 .931 .847 .888 .910 .907 .809 .851 .872 .853 .665 .697 .708 .695 .793 .832 .851 .846

Mo II .787 .858 .883 .924 .786 .856 .875 .897 .776 .844 .822 .859 .714 .774 .663 .761 .766 .833 .811 .860
IP .787 .858 .883 .908 .784 .854 .880 .883 .765 .831 .861 .838 .660 .697 .734 .704 .749 .810 .840 .833

Fb II .877 .922 .918 .948 .875 .920 .907 .930 .849 .896 .829 .893 .703 .737 .604 .721 .826 .869 .815 .873
IP .877 .922 .919 .944 .872 .917 .914 .922 .836 .870 .866 .868 .651 .648 .693 .643 .809 .840 .848 .844

Fl II .829 .868 .882 .925 .828 .866 .876 .908 .819 .857 .846 .879 .778 .815 .775 .812 .814 .852 .845 .881
IP .829 .868 .882 .917 .826 .865 .879 .900 .813 .851 .865 .859 .756 .789 .797 .790 .806 .843 .856 .867

Avg .875 .913 .923 .945 .871 .908 .914 .926 .850 .885 .875 .889 .761 .785 .757 .780 .839 .873 .867 .885

TABLE IV
PSNR (DB) COMPARISON OF THE REFERENCE METHOD, A+ [23], VSRNET (VNET) AND PROPOSED FRAMEWORK, WHEN TWO LOW RESOLUTION

OBSERVATIONS ENCODED WITH HEVC ARE AVAILABLE.

Original
Frame 37

Obs 1, QP 20
27.57 (dB), 0.8702

Obs 2, QP 20
27.55 (dB), 0.8788

Ref
29.50 (dB), 0.9079

A+
30.86 (dB), 0.9281

Prop.
33.99 (dB), 0.9427

Original
Frame 23

Obs 1, QP 15
22.09 (dB), 0.8032

Obs 2, QP 15
22.10 (dB), 0.8378

Ref
23.13 (dB), 0.8341

A+
24.04 (dB), 0.8908

Prop.
29.50 (dB), 0.9599

Fig. 5. Details of the up-sampled images and corresponding results of the super-resolution tested methods. PSNR and SSIM values are computed on the
compared image patch.

low QP encoding, and up to 0.8dB gain is achieved at QP35 in
average. PSNR gains superior to 2 and 3dBs can be observed
at low QPs, when compared to Vnet and A+, respectively.
However, note that at high QPs the methods tend to exhibit
similar performance, as the high compression level combined
with the down-sampling operation lead to a highly unreliable
description for inferring additional information.

Significant gains are obtained over the SOA SR methods,
and best results are obtained at low QPs. The impact of the
QP on the method efficiency is related to the extensive use
of transformed coefficients -observed in the bitstream- and

their respective quantization intervals. The reliability of these
anchors highly depends on the encoding QP, which justifies the
higher performance of the approach for high quality encodings.

Visual results are available in Fig. 5. Image details from
Foreman and Mobile sequences are depicted for each obser-
vation and tested method. PSNR and SSIM results are also
reported for each image. It is easily noticeable that the pro-
posed method provides the best visual results. Considering the
multiple sources of artifacts (down-sampling and compression)
and that PSNR and SSIM results are not always consistent,
the evaluation could be further extend in the future. It could
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be interesting to perform a subjective study and also use
non-reference quality evaluation techniques such as the one
proposed by Zhang et al. in [53].

The learning based methods have no prior knowledge of the
compression and degradation models. As such, for fairness
of comparison we perform an additional experiment. The
best performing reference method is Vnet. We consider a
best case scenario in which we have access to the degraded
and original video sequences and the network can be fine
tunned on this particular dataset. It should be noted, that for a
general-purpose training, large video databases should be used
without overlapping between training and test data. However,
in this experiment we aim to maximize the performance of the
network on our test sequences.

In order to account for the different compression models
and filters we fine tune the network over 3 QP intervals,
mainly 1 − 15 − 20, 20 − 25 − 30 and 30 − 35 − 40.
Following a similar procedure to [31], we extract 30000
36 × 36 × 5 data cubes (co-located patches in 5 consecutive
frames after motion compensating the first 2 and last 2 frames)
obtained at random positions in frames of 5 of the tested
video sequences, compressed and down-sampled with the two
degradation models. Note, that Flower sequence was not used
for training. The fine tuning was performed starting from the
original filter weights of the network and using a reduced
learning rate. The rest of the parameters are the same as in
[31]. In this scenario the network will gain knowledge of both
the down-sampling models and the video compression, while
using multiple networks to assure the best results for each
compression interval. Furthermore, using the same training and
test data, provides a higher performance for the network. We
refer to this approach as V+, obviously the results for each
QP are obtained using the appropriate weights.

The results are shown in Table V. The first two columns for
each QP show the PSNR and SSIM results for the up-sampled
BicAA observation and the average of the two observation.
As the BicNAA observation still has a lower performance
we do not show these results. The sequences highlighted in
green were also used in the training, while the red highlighted
sequence was not used in the training database. We can notice
that there is an improvement with respect to Table IV where
the results for Vnet BicAA are reported. However, unlike the
first experiment, the average of the two observations (V+ avg)
now performs significantly better for higher QPs, managing
to outperform our model on the sequences that were used in
training. Unfortunately, some losses can be observed at lower
QPs w.r.t. V+ O1.

Another interesting thing to note in this case are the results
obtained on Flower sequence which was not used in the
training data. Losses can be observed for low QPs w.r.t. the
results in Table IV, while higher QPs are slightly improved.
In average the proposed approach still manages to outperform
this best case scenario even when using the same training and
test data. At the cost of loosing generality given a known
dataset, degradation model and compression level a network
can learn to reconstruct high frequency components for that
specific content, which cannot be reproduced by model based
approaches. However, this is not always applicable for data

that was not used in the training set, as can be observed by
the performance gains of the network on Flower sequence.

2) SR from one low-resolution observation and one high-
resolution observation: In a second scenario, we consider
the case where one observation is available at LR and the
other one is available at the original HR. Our framework is
capable of combining these observations naturally, since each
observation is modeled with its own degradation model. In
general, HR coded streams exhibit higher quality than up-
sampled low-resolution streams, encoded with similar param-
eters. This behavior leads to a large ∆PSNR between HR
and LR descriptions. Intuitively, if the ∆PSNR is very large
there is not a lot of information that can be extracted from
a LR observation which is not already contained in the HR
description. Therefore, we begin this scenario with a small
test performed on a few frames of Bus sequence, with generic
HEVC in full Intra mode. Our goal is to analyze the algorithms
behavior w.r.t. the ∆PSNR of the two observations, denoted
by ∆Obs in Tab. VI. ↑H Obs 1, ↑A+ Obs 1 and Prop denote
the up-sampled observation with H and A+ methods and the
result obtained by our proposed method. ∆ is the improvement
obtained with Prop over Obs 2. First column shows the QPs
used in coding Obs 1 and Obs 2, respectively. In this test
the initialization of M-LFBF solver was Obs 2. We can easily
notice that higher gains are achieved when the descriptions are
more similar in terms of quality. An interesting observation can
be made for QPs 1&20 and 15&20. Even though the quality of
Obs 1 only increases by 0.02dB and Obs 2 remains unchanged
we can see a large difference in ∆ (from 0.69dB to 1.47dB).
This behavior can be explained by the algorithm dependency
on the information variety between descriptions, rather than
their individual quality. Tests performed on other sequences
reveals a similar behavior, however, for the sake of brevity
we do not repeat this test for each encoder, configuration and
sequence. As such, we decide to perform a complete set of
tests using a QP combination that provides similar quality
observations: QPs 1 and 40, 15 and 40 and 15 and 35 for
the LR and HR observations.

As we did in our previous experiment (Sec. V-B1), we
report both PSNR and SSIM scores. The LR observation
is obtained with BicAA down-sampling. As the quality of
the observations is closer than in our preliminary tests, we
initialize the algorithm using the average. Ref, A+ and Vnet
in this case denote the average between Obs 2 and Obs 1 up-
sampled with H , A+ and Vnet, respectively. The results are
reported in Tab. VII. Our algorithm outperforms the reference
and A+ methods on all sequences, and Vnet in most cases. On
average over all sequences and all QPs combinations, gains of
2.1dB, 0.9dB and 0.3dB are obtained over Ref, A+ and Vnet,
respectively.

C. Convergence speed

In Fig. 6, we show the PSNR of the estimated HR image
and the distance to the convex set C at each iteration of
the solver. The distance to the convex set C in this case is
computed as the absolute error between the transform of the
down-sampled estimate and its projection on the convex set
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QP1 QP15 QP25 QP35 Average
Seq Mode V+ O1 V+ avg Prop. V+ O1 V+ avg Prop. V+ O1 V+ avg Prop. V+ O1 V+ avg Prop. Vnet+ Vnet+ Prop.

Ak II 38.6 38.3 41.0 38.2 38.0 39.3 36.5 37.1 36.9 31.9 33.0 32.3 36.3 36.6 37.4
IP 38.5 38.3 40.6 38.0 37.9 37.8 36.3 36.9 36.5 32.1 33.3 33.0 36.2 36.6 37.0

Fm II 37.6 37.7 39.2 37.2 37.5 38.0 35.2 36.1 35.9 30.8 31.8 31.3 35.2 35.8 36.1
IP 37.6 37.7 39.3 36.7 37.3 37.6 34.0 35.0 34.8 29.5 30.4 30.3 34.4 35.1 35.5

Bu II 28.8 29.2 31.4 28.8 29.1 30.1 28.2 28.8 28.4 25.4 26.4 25.7 27.8 28.4 28.9
IP 28.8 29.2 30.7 28.7 29.1 29.5 27.3 28.3 27.6 23.8 24.7 24.3 27.2 27.8 28.0

Mo II 25.6 26.0 27.6 25.6 26.0 26.6 25.3 25.8 25.1 23.0 24.2 23.1 24.9 25.5 25.6
IP 25.6 26.0 26.9 25.5 25.9 26.0 24.5 25.5 24.4 21.5 22.3 21.8 24.3 24.9 24.8

Fb II 30.9 31.3 33.9 30.8 31.3 32.6 29.9 30.8 31.1 26.5 27.7 27.3 29.5 30.3 31.2
IP 30.9 31.3 33.3 30.7 31.2 32.0 28.9 30.1 30.0 24.0 24.9 24.7 28.6 29.4 30.0

Fl II 24.0 23.9 26.5 24.0 23.9 26.0 23.9 23.8 24.8 22.8 23.3 23.3 23.7 23.7 25.1
IP 24.0 23.9 26.3 24.0 23.9 25.7 23.5 23.7 24.0 22.1 22.5 22.3 23.4 23.5 24.6

Avg 30.9 31.1 33.1 30.7 30.9 31.7 29.5 30.1 29.9 26.1 27.0 26.6 29.3 29.8 30.3

Ak II .978 .978 .983 .971 .973 .975 .954 .961 .955 .902 .916 .895 .951 .957 .952
IP .977 .977 .979 .970 .972 .973 .953 .960 .960 .906 .920 .918 .952 .957 .957

Fm II .954 .957 .969 .947 .953 .955 .912 .924 .922 .844 .861 .852 .914 .924 .924
IP .954 .957 .968 .938 .948 .950 .897 .911 .911 .820 .839 .838 .902 .914 .917

Bu II .901 .913 .939 .896 .911 .915 .862 .889 .875 .705 .749 .731 .841 .865 .865
IP .900 .913 .931 .889 .908 .907 .829 .865 .853 .659 .704 .695 .819 .847 .846

Mo II .886 .901 .924 .883 .899 .897 .866 .888 .859 .743 .808 .761 .844 .874 .860
IP .886 .901 .908 .880 .898 .883 .832 .873 .838 .678 .730 .704 .819 .850 .833

Fb II .909 .919 .948 .905 .917 .930 .861 .894 .893 .694 .734 .721 .842 .866 .873
IP .909 .919 .944 .899 .914 .922 .830 .870 .868 .610 .652 .643 .812 .839 .844

Fl II .864 .870 .925 .862 .868 .908 .849 .860 .879 .785 .814 .812 .840 .853 .881
IP .864 .870 .917 .859 .867 .900 .833 .853 .859 .765 .788 .790 .830 .844 .867

Average .915 .923 .945 .908 .919 .926 .873 .896 .889 .759 .793 .780 .864 .883 .885

TABLE V
PSNR (DB) COMPARISON OF THE REFERENCE METHOD VSRNET FINE TUNNED ON THE TEST SEQUENCES FOR MULTIPLE QP INTERVALS FOR THE

BICAA OBSERVATION (V+ O1), THE AVERAGE (V+AVG) AND PROPOSED FRAMEWORK, WHEN TWO LOW RESOLUTION OBSERVATIONS ENCODED WITH
HEVC ARE AVAILABLE.

QPs ↑H Obs1 ↑A+ Obs1 Obs2 ∆Obs Prop. ∆
15 20 26.41 28.56 43.76 17.35 44.45 0.69
1 20 26.43 28.63 43.76 17.32 45.23 1.47
1 25 26.43 28.64 39.33 12.9 41.45 2.12
1 30 26.43 28.63 35.15 8.72 37.63 2.48

TABLE VI
PSNR (DB) COMPARISON OF DIFFERENT QP COMBINATIONS FOR A
LOW-RESOLUTION AND A HIGH-RESOLUTION DESCRIPTION ON BUS

SEQUENCE WITH GENERIC VC USING II CONFIGURATION.
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Fig. 6. PSNR and distance to the convex set C for each iteration. The distance
represents the absolute error between the estimated image and its projection
onto C.

C. The test is performed on Akiyo sequence, frame 10, from
two descriptions using BicAA and BicNAA down-samplings
encoded with QP 20. For the sake of brevity, we do not show
other examples, as the behavior is similar across different
sequences and compression levels. The stop criterion used in
our experiments is:

Stop if: mean (|xi − xi−1|) ≤ 10−4 (31)

where || denotes the absolute value and mean is the average
value of the image pixels. In this case, 97 iterations were
performed before the algorithm was stopped, of course, the
number of iterations can be increased by modifying the
threshold. However, we found that in most tests, 80% of the

maximum gain was obtained in the first 30 to 40 iterations.
Note that the PSNR is still increasing when the distance to set
C is 0, as the cost function uses multiple constraints.

The average time per iteration with a Matlab sequential
implementation, for two LR descriptions, on a workstation
with core I7-6700 processor is 0.4 seconds. Thus, one frame
can be super-resolved in 20 to 40 seconds with 50 to 100
iterations. In our experiments we used a limit of 50 iterations.
A+ method has a runtime of approximately 1 second. In the
case of Vnet, super resolving 1 frame required about 6-7
seconds with the optical flow computation accounting for most
of the runtime and the forward pass of the network taking
less than 0.3 seconds. However, it should be noted that both
A+ and Vnet require an additional training step. Furthermore,
Vnet uses an optimized GPU implementation as the network
is modeled in the Caffe framework [54]. Looking at algorithm
complexity, the proposed approach uses linear operators which
are applied through convolutions and matrix multiplication
operations, thus, an optimized implementation can bring a
significant reduction in computational time. Depending on the
usage scenario, the algorithm can be limited to a relatively
small number of iterations (10-20) with a reduced gain and
a lower computational time. Furthermore, this type of convex
optimization solvers can be easily parallelized for a multi-core
implementation[55].

VI. CONCLUSIONS AND FUTURE WORK

This work presents a model-based SR approach specifically
designed for compressed video streams, and focuses on sce-
narios where multiple observations are available. The proposed
model makes an explicit use of the available compressed



IEEE TRANSACTIONS ON IMAGE PROCESSING 13

QPs 1 & 40 QPs 15 & 40 QPs 15 & 35 Average
Sequence Mode Ref A+ Vnet Prop. Ref A+ Vnet Prop. Ref A+ Vnet Prop. Ref A+ Vnet Prop.

Akiyo II 34.9 36.7 37.0 37.8 34.8 36.5 36.8 37.2 34.6 38.6 38.5 39.3 34.8 37.2 37.4 38.1
IP 35.3 37.1 37.3 38.3 35.2 36.8 37.0 37.4 34.5 38.6 38.4 38.5 35.0 37.5 37.5 38.1

Foreman II 32.6 33.8 35.3 36.0 32.6 33.6 35.1 35.4 32.1 35.0 36.3 36.6 32.4 34.1 35.6 36.0
IP 32.3 33.2 34.6 35.2 32.2 33.0 34.2 34.2 32.0 34.3 35.1 35.0 32.1 33.5 34.6 34.8

Bus II 28.1 29.4 29.8 30.3 28.1 29.3 29.7 30.2 26.5 31.1 31.6 32.1 27.6 29.9 30.3 30.9
IP 27.4 28.6 29.0 29.4 27.4 28.5 28.9 29.1 26.4 30.1 30.3 30.3 27.1 29.1 29.4 29.6

Mobile II 25.2 26.5 27.3 27.3 25.2 26.5 27.2 27.3 22.6 28.3 29.1 29.5 24.4 27.1 27.9 28.1
IP 25.1 26.4 27.1 27.0 25.1 26.3 27.0 27.0 22.6 27.6 28.3 28.3 24.3 26.8 27.5 27.4

Football II 28.9 30.6 31.1 31.7 28.9 30.5 31.1 31.5 28.7 32.7 32.8 33.5 28.8 31.3 31.7 32.2
IP 27.8 29.2 29.3 29.5 27.8 29.1 29.2 29.2 28.6 31.0 30.7 30.8 28.1 29.8 29.7 29.8

Flower II 25.9 26.5 27.0 27.2 25.9 26.5 27.0 27.2 23.0 28.2 28.7 29.4 24.9 27.1 27.6 27.9
IP 25.3 25.9 26.4 26.5 25.3 25.9 26.4 26.5 23.0 27.1 27.4 27.7 24.5 26.3 26.7 26.9

Average 29.1 30.3 30.9 31.4 29.0 30.2 30.8 31.0 27.9 31.9 32.3 32.6 28.7 30.8 31.3 31.7

Akiyo II .952 .965 .964 .973 .948 .960 .959 .964 .956 .969 .965 .971 .952 .965 .963 .969
IP .954 .966 .966 .974 .951 .961 .961 .964 .955 .970 .966 .965 .954 .966 .964 .968

Foreman II .913 .931 .934 .951 .909 .925 .928 .934 .930 .936 .929 .939 .917 .931 .930 .941
IP .907 .925 .928 .938 .901 .914 .917 .912 .923 .926 .918 .920 .910 .922 .921 .923

Bus II .828 .868 .887 .903 .826 .865 .884 .888 .844 .912 .916 .917 .832 .882 .896 .903
IP .820 .861 .879 .891 .816 .854 .872 .870 .838 .901 .899 .893 .825 .872 .883 .885

Mobile II .849 .890 .901 .907 .848 .888 .899 .901 .772 .928 .933 .932 .823 .902 .911 .913
IP .857 .895 .903 .905 .855 .891 .900 .897 .770 .921 .924 .918 .827 .902 .909 .907

Football II .830 .874 .883 .912 .828 .871 .880 .895 .880 .912 .907 .916 .846 .886 .890 .908
IP .808 .855 .857 .879 .804 .849 .850 .854 .876 .890 .877 .879 .829 .864 .862 .871

Flower II .885 .906 .915 .917 .884 .903 .913 .910 .823 .934 .939 .936 .864 .914 .923 .921
IP .878 .899 .910 .909 .876 .895 .907 .901 .821 .922 .925 .918 .858 .906 .914 .909

Average .873 .903 .911 .921 .870 .898 .906 .908 .866 .927 .925 .925 .870 .909 .914 .918

TABLE VII
PSNR (DB) COMPARISON OF THE REFERENCE METHOD, A+, VNET AND PROPOSED FRAMEWORK, WHEN ONE LOW RESOLUTION AND ONE HIGH

RESOLUTION OBSERVATIONS ENCODED WITH HEVC ARE AVAILABLE.

syntax (encoded coefficients, unit sizes, etc.) and builds a
heterogeneous cost function combining data-fidelity objectives
and a priori constraints. The resulting minimization problem,
efficiently solved via convex optimization, embeds the SR
result into a domain that closely fits the given compressed
observations. Experimental results demonstrate that in most
cases combining the complementary information available in
the different observations allows very efficient SR, signifi-
cantly outperforming the capabilities of image [23] or single
video stream [31]. Indeed, quality improvements superior to
2dB w.r.t. one of the best performing learning-based single
image SR method can be observed for high-quality encodings,
which has a noticeable impact on the visual quality of the
reconstructed video sequence. The flexibility of the proposed
framework is also to be highlighted. First, an arbitrary number
of observations can be considered. Second, each observation
is modeled with its own degradation model, allowing to
combine observations at different resolutions and smoothness
characteristics. Such an explicit modeling enables to avoid
a typical pitfall of learning-based approaches whose perfor-
mance may dramatically vary depending on the re-sampling
used to generate the observation. Third, the approach can be
applied to different video coders, which is illustrated in the
present work using both a generic coding model VC and
the HEVC standard. Extending the framework application to
other compression schemes (AVC, JPEG, JPEG2000, VC9,
etc.) is straightforward. Another interesting future research
direction is to combine AVC and HEVC video streams. Yet,
short-term research focuses on investigating more thoroughly
the complexity and real-time capabilities of the proposed
framework, requiring the implementation and optimization of
the convex solver on parallel processing platforms.
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