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Abstract Long short- term memory networks (LSTM) achieves great success
in temporal dependency modelling for chain-structured data, such as texts and
speeches. An extension towards more complex data structures as encountered
in 2D graphic languages is proposed in this work. Specifically, we address the
problem of handwritten mathematical expression recognition, using a Tree-
based BLSTM architecture allowing the direct labelling of nodes (symbol)
and edges (relationship) from a graph modelling the input strokes. One major
difference with the traditional approaches is that there is no explicit segmen-
tation, recognition and layout extraction steps but a unique trainable system
that produces directly a Stroke Label Graph describing a mathematical ex-
pression. The proposed system, considering no grammar, achieves competitive
results in online math expression recognition domain.

Keywords Mathematical expression recognition · tree-based BLSTM · local
CTC · online handwriting.

1 Introduction

A visual language is defined as any form of communication that relies on two-
or three-dimensional graphics rather than simply (relatively) linear text [1].
Mathematical expressions (Figure 1), plans and musical notations are com-
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mouchere-h
Zone de texte
This is the accepted manuscript version. The final publication is available at https://doi.org/10.1007/s00521-018-3817-2



2 Ting ZHANG et al.

Fig. 1 Handwritten mathematical expression example

monly used cases of visual languages [2]. As an intuitive and easily (relatively)
comprehensible knowledge representation model, mathematical expressions
could help the dissemination of knowledge in some related domains and there-
fore are essential in scientific documents. Currently, common ways to input
mathematical expressions into electronic devices include typesetting systems
such as LATEX and mathematical editors such as the one embedded in MS-
Word. But these ways require that users could hold a large number of codes
and syntactic rules, or handle troublesome manipulations with keyboards and
mouses as interface. As another option, being able to input mathematical ex-
pressions by hand with a pen tablet, as we write them on paper, is a more
efficient and direct mean to help the writing of scientific documents.

Handwritten mathematical expression recognition is an appealing topic in
pattern recognition field since it exhibits a big research challenge and under-
pins many practical applications. Difficulties are related to the large set of
symbols (more than 100) with many overlapping classes, and because of the 2
dimensional (2-D) structures between pairs of symbols (superscript, subscript,
fraction etc.). With regard to the application, it offers an easy and direct way
to input MEs into computers, and therefore improves productivity for scientific
writers. We usually divide handwritten MEs into online and offline domains.
In the offline domain, data is available as an image, while in the online domain
it is a sequence of strokes, which are themselves sequences of points recorded
along the pen trajectory. Compared to the offline ME, time information is
available in online form. This paper will be focused on online handwritten ME
recognition.

Generally, three tasks are involved in ME recognition [3,4]: (1) symbol seg-
mentation, which consists in grouping strokes that belong to the same symbol;
(2) symbol recognition, the task of labelling the symbols to assign each of them
a symbol class; (3) structural analysis, its goal is to identify spatial relations
between symbols and with the help of a grammar to produce a mathematical
interpretation. The state of the art solutions are mainly grammar-driven so-
lutions: a set of symbol hypotheses maybe generated and a structural analysis
algorithm (grammar parsing usually) may select the best hypotheses while
building the structure. However, these classical grammar-driven solutions, re-
quire not only a large amount of manual work for defining grammars, but
also a high computational complexity for the grammar parsing process. Us-
ing a grammar is not mandatory; it can help finding a correct solution when
working in a controlled environment. But the problem of fixing a grammar is
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context dependent, and less general than enabling the system to generate in-
dependently its own language model. As an alternative approach, we propose
to explore a non grammar-driven solution for recognizing math expressions.
This is the main goal of this work, we would like to propose new architectures
for mathematical expression recognition with the idea of taking advantage of
the recent advances in recurrent neural networks.

Advanced recurrent neural network — Long Short-Term Memory (LSTM)
— achieved great success in temporal dependency modeling for chain-structured
data, such as texts and speeches [5–7]. This success is due to LSTM’s repre-
sentational power and effectiveness at capturing long-term dependency in a
sequence. Recently, research on LSTM has been pushed beyond sequential
structures. It was extended to tree structures in [8,9] and DAG (directed
acyclic graph) structures in [10]. In this work, we put efforts on a similar task,
generalizing the classical LSTM architecture to a tree network topology named
tree-based BLSTM. Thereby, the new topology could handle tree-structured
data as well as sequence-structured data.

In this work, we have been exploring online handwritten ME recognition
from a new perspective, treating it as a problem of deriving a graph from
the raw input, and then, extracting several trees which are embbeded in the
graph and recognized them with a tree-based BLSTM. As known, it is possible
to describe a ME using a Stroke Label Graph (SLG, refer to Section 2.2.2)
in which nodes represent strokes whereas labels on the edges encode either
segmentation or layout information. In [11,12], the solution of building a graph
by merging multiple 1D sequences of labels produced by a sequence labeller
was proposed and explored. We extend these preliminary works by integrating
multiple trees labelled by a tree labeller to recognize MEs.

In Section 2, the related works will be reviewed, including the state of the
art of ME recognition and representation, and an overview of LSTM. Tree-
based BLSTM, as the base of our recognition system, is described in detail
in Section 3. Afterwards, we introduce our tree-based BLSTM recognition
system in Section 4 step by step, which is the main part of our study. At last,
experiments and conclusion are covered in Sections 5 and 6 respectively.

2 Related works

2.1 Mathematical expression recognition

Research on the recognition of math notation began in the 1960s [13], and
several research publications are available in the following thirty years [14–16].
Since the 90’s, with the large developments of touch screen devices, this field
has started to be active, producing amounts of research outcomes and gaining
considerable attention from the research community. A number of surveys
[17–19,3,4] summarize the proposed techniques for math notation recognition.
This research domain has been boosted by the Competition on Recognition
of Handwritten Mathematical Expressions (CROHME) [4], which began as
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part of the International Conference on Document Analysis and Recognition
(ICDAR) in 2011. It provides a platform for researchers to test their methods
and compare them, and then facilitate the progress in this field. In this paper,
the provided data and evaluation tools from CROHME will be used and results
will be compared to participants.

As described already in Section 1, ME recognition involves three inter-
dependent tasks [3]: (1) Symbol segmentation; (2) symbol recognition; (3)
structural analysis. These three tasks can be solved sequentially or jointly.
The proposed solutions can be roughly divided into sequential solutions
and integrated solutions. In addition, with recent advances in deep learn-
ing, several end-to-end deep learning based systems were proposed for
ME recognition. In the coming paragraphs, we introduce shortly these three
types of proposed solutions for ME recognition.

Sequential solutions. In the early stages of the study, most of the pro-
posed solutions [20–30] are sequential ones which treat the recognition problem
as a two-step pipeline process; first symbol segmentation and classification, and
then structural analysis. The task of structural analysis is performed on the
basis of the symbol segmentation and classification result. Considerable works
are done dedicated to each step. For segmentation, the proposed methods in-
clude minimum spanning tree (MST) based method [24], Bayesian framework
[30], graph-based method [23,27] and so on. The symbol classifiers used consist
of Nearest Neighbor, Hidden Markov Model, Multilayer Perceptron, Support
Vector Machine, Recurrent neural networks and so on. For spatial relationship
classification, the proposed features include symbol bounding box [13], rela-
tive size and position [31], and so on. The main drawback of these sequential
methods is that the errors from symbol segmentation and classification will
be propagated to structural analysis. In other words, symbol recognition and
structural analysis are assumed as independent tasks in the sequential solu-
tions. However, this assumption conflicts with the real case in which these
three tasks are highly interdependent by nature. For instance, human beings
recognize symbols with the help of structure, and vice versa.

Integrated solutions. Considering the natural mutual relationship be-
tween the three tasks, researchers mainly focus on integrated solutions recently,
which performs the task of segmentation at the same time build the expression
structure: a set of symbol hypotheses maybe generated and a structural anal-
ysis algorithm may select the best hypotheses while building the structure.
The integrated solutions use contextual information (syntactic knowledge) to
guide segmentation or recognition, preventing from producing invalid expres-
sions like [a+ b). These approaches take into account contextual information
generally with grammar (string grammar [32–36] and graph grammar [37,38])
parsing techniques, producing expressions conforming to the rules of a man-
ually defined grammar. Either string or graph grammar parsing, both have a
high time complexity. Instead of using grammar parsing technique, the new
architectures proposed in this paper include contextual information with bidi-
rectional long short-term memory which can access the content from both the
future and the past in an unlimited range.
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End-to-end neural network based solutions. Inspired by recent ad-
vances in image caption generation, some end-to-end deep learning based sys-
tems were proposed for ME recognition [39,40]. These systems were developed
from the attention-based encoder-decoder model which is now widely used
for machine translation. They decompile an image directly into presentational
markup language such as LATEX. However, considering we are given trace in-
formation in the online case, despite the final LATEX string, it is interesting
to decide a label for each stroke. This information is not available now in
end-to-end systems.

2.2 Mathematical expression representation

Structures can be depicted at three different levels: symbolic, object and prim-
itive [41]. In the case of handwritten ME, the corresponding levels are expres-
sion, symbol and stroke.

In this section, we will first focus on symbol relation tree (SRT), one of
the representation models for math expression at the symbol level. From the
SRT, when going down to the stroke level, a stroke label graph (SLG) could
be derived, which is the current official format to represent the ground-truth
of handwritten math expressions and also for the recognition outputs in Com-
petitions CROHME.

2.2.1 Symbol level: Symbol relation (layout) tree

When only a syntactic representation of a ME is required, operator trees based
on symbol operators are adequate tools to describe the ME, but if layout is
concerned, symbol relation (or layout) trees are more appropriate. Symbol
layout tree represents the placement of symbols on baselines (writing lines),
and the spatial arrangement of the baselines [3]. In SRT, nodes represent
symbols, while labels on the edges indicate the relationships between symbols.
For example, in Figure 2a, the first symbol ’-’ on the base line is the root of
the tree; the symbol ’a’ is Above ’-’ and the symbol ’c’ is Below ’-’. In Figure
2b, the symbol ’a’ is the root; the symbol ’+’ is on the Right of ’a’.

(a) (b)

Fig. 2 The symbol relation tree (SRT) for (a) a+b
c

, (b) a+ b
c
. ’R’ refers to Right relationship

101 classes of symbols are present in CROHME data set, including digits,
alphabets, operators and so on. Six spatial relationships are defined in the



6 Ting ZHANG et al.

CROHME competition, they are: Right, Above, Below, Inside (for square
root), Superscript, Subscript.

2.2.2 Stroke level: Stroke label graph

SRT represents math expression at the symbol level. If we go down at the
stroke level, a stroke label graph (SLG) can be derived from the SRT. In SLG,
nodes represent strokes, while labels on the edges encode either segmentation
information or symbol relationships. Relationships are defined at the level of
symbols, implying that all strokes (nodes) belonging to one symbol have the
same input and output edges. Consider the simple expression 2 + 2 written
using four strokes (two strokes for ’+’) in Figure 3a. The corresponding SRT
and SLG are shown in Figure 3b and Figure 3c respectively. As Figure 3c
illustrates, nodes of SLG are labeled with the class of the corresponding symbol
to which the stroke belongs. A dashed edge refers to segmentation information;

(a) (b)

(c)

Fig. 3 (a) 2+2 written with four strokes; (b) the symbol relation tree of 2+2; (c) the SLG
of 2 + 2. The four strokes are indicated as s1, s2, s3, s4 in writing order. ’R’ is for left-right
relationship

it indicates that a pair of strokes belongs to the same symbol. In this case, the
edge label is the same as the common symbol label. On the other hand, the
non-dashed edges define spatial relationships between nodes and are labeled
with one of the six different possible relationships between symbols. As a
consequence, all strokes belonging to the same symbol are fully connected,
nodes and edges sharing the same symbol label; when two symbols are in
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relation, all strokes from the source symbol are connected to all strokes from
the target symbol by edges sharing the same relationship label.

Since CROHME 2013, SLG has been used to represent mathematical ex-
pressions [4]. As the official format to represent the ground-truth of handwrit-
ten math expressions and also for the recognition outputs, it allows detailed
error analyses on stroke, symbol and expression levels. The recognition system
that we propose works directly with the raw stroke inputs. It will produce a
SLG directly comparable to the ground truth SLG. To that end, a label will
be assigned to each stroke and to each pair of strokes involved in a symbol
relation.

2.3 Long Short-Term Memory Networks

Recurrent neural networks (RNNs). RNNs can access contextual infor-
mation and therefore are suitable for sequence labeling tasks [42]. We show an
unfolded single-directional recurrent network in Figure 4, where each node at

Fig. 4 An unfolded single-directional recurrent network

a single time-step represents a layer of network units. The network output at
step ti depends on both the current input at step ti and the hidden state of
ti−1. The same weights (w1, w2, w3) are reused at every time-step.

LSTM. Unfortunately, with standard RNN architectures, the range of
context that can be accessed is quite limited due to the vanishing gradient
problem [43]. Long short-term memory (LSTM) [44] could address this prob-
lem by introducing a memory block which has the ability to preserve the state
over long period of time. An LSTM network is similar to a standard RNN,
except that the summation units in the hidden layer are replaced by memory
blocks. Each block contains one or more self-connected memory cells and three
multiplicative units (the input, output and forget gates). The three gates col-
lect activation from inside and outside the block and control the activation
of the cell via multiplications. The input and output gates multiply the input
and output of the cell while the forget gate multiplies the cells previous state.
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The only output from the block to the rest of the network emanates from the
output gate multiplication.

BLSTM. LSTM network processes the input sequence from past to future
while Bidirectional LSTM [45], consisting of 2 separated LSTM layers, models
the sequence from two opposite directions (past to future and future to past)
in parallel. Both of 2 LSTM layers are connected to the same output layer.
With this setup, complete long-term past and future context is available at
each time step for the output layer.

Deep BLSTM. DBLSTM [46] can be created by stacking multiple BLSTM
layers on top of each other in order to get higher level representation of the in-
put data. The outputs of 2 opposite hidden layer at one level are concatenated
and used as the input to the next level.

Non-chain-structured LSTM. A limitation of the classical LSTM net-
work topology is that they only allow for sequential information propagation
since the cell contains a single recurrent connection (modulated by a sin-
gle forget gate) to its own previous value. Recently, research on LSTM has
been beyond sequential structure. The one-dimensional LSTM was extended
to n dimensions by introducing n recurrent connections (one for each of the
cell’s previous states along n dimensions) with n forget gates such that the
new model could take into account the context from n sources. It is named
Multidimensional LSTM (MDLSTM) dedicated to the graph structure of an
n-dimensional grid such as images [42]. MDLSTM model exhibits great perfor-
mances on offline handwriting recognition tasks where the input is an image
[47–51].

In [8], the basic LSTM architecture was extend to tree structures for im-
proving semantic representations. Two extensions, the Child-sum Tree-LSTM
and the N -ary Tree-LSTM, were proposed to allow for richer network topol-
ogy where each unit is able to incorporate information from multiple child
units. The Child-sum Tree-LSTM unit conditions its components on the sum
of child hidden states. It is well-suited for trees with high branching factor
or whose children are unordered. The N -ary Tree-LSTM can be used on tree
structures where the branching factor is at most N and where children are or-
dered. In parallel to the work in [8,9] explored the similar idea and proposed
S-LSTM model which provides a principled way of considering long-distance
interaction over hierarchies, e.g., language or image parse structures. Further-
more, the DAG-structured LSTM was proposed for semantic compositionality
in [10], possessing the ability to incorporate external semantics including non-
compositional or holistically learned semantics.

Similar to the above mentioned works, we will extend the chain-structured
BLSTM to tree-based BLSTM, and apply this new network model for online
math expression recognition.

Connectionist temporal classification (CTC). With memory capa-
bility, RNNs are suitable for the sequence labelling tasks where the context
is quite important. However, to apply this recurrent network for sequence la-
belling, there is a troublesome problem to be solved, being that at least a
loss function should be defined for the training process. When using the typ-



An Tree-BLSTM based Recognition System for Online Handwritten ME 9

ical frame wise training method, the ground truth label of each time step is
required to calculate the loss function, which implies that the training data
should be segmented beforehand. The network is trained to make correct la-
bel prediction at each point. However, either the pre-segmentation or making
label prediction at each point, both are large burdens to users or networks.

The technique of CTC was proposed to release these two burdens. It is
specifically designed for sequence labeling problems where the alignment be-
tween the inputs and the target labels is unknown. By introducing an ad-
ditional ’blank’ class, CTC allows the network to make label predictions at
some points instead of each point in the input sequence, so long as the overall
sequence of character labels is correct. As described, CTC outputs directly se-
quences of labels, providing no information regarding the alignment between
the inputs and the target labels.

Our proposal, building the SLG from the input handwritten ME, requires a
label decision for each stroke and each stroke pair used in a symbol relation. To
achieve this, we extend CTC to local CTC to relatively constrain the outputs
and at the same time benefit from introducing an additional ’blank’ class.

3 The proposed Tree-based BLSTM

This section will be focused on Tree-based BLSTM. Different with the tree
structures depicted in [8,9], we devote it to the kind of structures presented
in Figure 5 where most nodes have only one next node. In fact, this kind
of structure could be regarded as several chains with shared or overlapped
segments. Traditional BLSTM process a sequence both from left to right and
from right to left in order to access information coming from two directions.
In our case, the tree will be processed from root to leaves and from leaves to
root in order to visit all the surround context.

Mul-next

root

leaf

leaf

leaf

leaf

Fig. 5 A tree based structure for chains (from root to leaves)

From root to leaves. There are 2 special nodes (red) having more than
one next node in Figure 5. We name them Mul-next node. The hidden states
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of Mul-next node will be propagated to its next nodes equally. The forward
propagation of a Mul-next node is the same as for a chain LSTM node; with
regard to the error propagation, the errors coming from all the next nodes will
be summed up and propagated to Mul-next node.

From leaves to root. Suppose all the arrows in Figure 5 are reversed,
we have the new structure which is actually beyond a tree in Figure 6. The
2 red nodes are still special cases because they have more than one previous
nodes. We call them Mul-previous nodes. The information from all the previous
nodes will be summed up and propagated to the Mul-previous node; the error
propagation is processed like for a typical LSTM node.

Mul-previous

root

leaf

leaf

leaf

leaf

Fig. 6 A tree based structure for chains (from leaves to root)

We give the specific formulas below regarding to the forward propagation
of Mul-previous node and the error back-propagation of Mul-next node. The
same notations as in [42] are used here. The network input to unit i at node
n is denoted ani and the activation of unit i at node n is bni . wij is the weight
of the connection from unit i to unit j. Considering a network with I input
units, K output units and H hidden units, let the subscripts ς, φ, ω refer
to the input, forget and output gate. The subscript c refers to one of the C
cells. Thus, the peep-hole weights from cell c to the input, forget, output gates
can be denoted as wcς , wcφ, wcω. snc is the state of cell c at node n. f is the
activation function of the gates, and g and h are respectively the cell input
and output activation functions. L is the loss function used for training.

We only give the equations for a single memory block. For multiple blocks
the calculations are simply repeated for each block. Let Pr(n) denote the set of
previous nodes of node n and Ne(n) denote the set of next nodes. We highlight
the different parts with box compared to the classical LSTM formulas.
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The forward propagation of Mul-previous node

Input gate
The input gate collects the activations from the current input xni , the hidden
unit activation bph of Pr(n) and the cell state spc of Pr(n). f denote the gate
activation function, usually the logistic sigmoid, so that the gate activations
are between 0 (gate closed) and 1 (gate open).

anς =
I∑
i=1

wiςx
n
i +

H∑
h=1

whς

|Pr(n)|∑
p=1

bph +
C∑
c=1

wcς

|Pr(n)|∑
p=1

spc (1)

bnς = f(anς ) (2)

Forget gate
The forget gate works in the say way as the input gate.

anφ =

I∑
i=1

wiφx
n
i +

H∑
h=1

whφ

|Pr(n)|∑
p=1

bph +

C∑
c=1

wcφ

|Pr(n)|∑
p=1

spc (3)

bnφ = f(anφ) (4)

Cell
The input to the cell includes the current input xni , the hidden unit activation
of Pr(n). g is the cell input activation function. The input gate controls the
input of the cell via multiplication. Similarly, the forget gate decides on to
which extent the cell could access the cell state spc of Pr(n).

anc =

I∑
i=1

wicx
n
i +

H∑
h=1

whc

|Pr(n)|∑
p=1

bph (5)

snc = bnφ

|Pr(n)|∑
p=1

spc + bnς g(a
n
c ) (6)

Output gate
The output gate receives the activations from the current input xni , the hidden
unit activation of Pr(n) and the current cell state snc .

anω =

I∑
i=1

wiωx
n
i +

H∑
h=1

whω

|Pr(n)|∑
p=1

bph +

C∑
c=1

wcωs
n
c (7)

bnω = f(anω) (8)

Cell Output
The output gate controls the output of the cell via multiplication.

bnc = bnωh(snc ) (9)
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The error back-propagation of Mul-next node

Definitions
εnc =

∂L

∂bnc
εns =

∂L

∂snc
δni =

∂L

∂ani
(10)

Cell output

εnc =

K∑
k=1

wckδ
n
k +

G∑
g=1

wcg

|Ne(n)|∑
e

δeg (11)

εnc refers to the partial derivative of the loss function L with respect to the
output of cell c at node n.
Output gate

δnw = f ′(anw)

C∑
c=1

h(snc )εnc (12)

δnw denotes the partial derivative of the loss function L with respect to the
input of output gate at node n.
State

εns = bnwh
′(snc )εnc +

|Ne(n)|∑
e=1

beφ

|Ne(n)|∑
e=1

εes

+wcς

|Ne(n)|∑
e=1

δeς + wcφ

|Ne(n)|∑
e=1

δeφ + wcωδ
n
ω

(13)

εns represents the partial derivative of the loss function L with respect to the
cell state at node n.
Cell

δnc = bnς g
′(anc )εns (14)

δnc is the partial derivative of the loss function L with respect to the cell input
at node n.
Forget gate

δnφ = f ′(anφ)
C∑
c=1

|Pr(n)|∑
p=1

spcε
n
s (15)

δnφ denotes the partial derivative of the loss function L with respect to the
input of forget gate at node n.
Input gate

δnς = f ′(anς )

C∑
c=1

g(anc )εns (16)

δnς refers to the partial derivative of the loss function L with respect to the
input of input gate at node n.

4 The Tree-BLSTM based Recognition System

In this section, we elaborate orderly each stage involved in the proposed sys-
tem. The input data is available as a sequence of strokes S from which we
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would like to obtain the correct SLG graph describing unambiguously the
ME. Let S = (s0, ..., sn−1), where we assume si has been written before sj
for i < j. Algorithm 1 presents the framework of the recognition system in an
algorithm procedure format for clarity.

Algorithm 1 Framework of the proposed system.
Input:

A sequence of strokes S = (s0, ..., sn−1)
Output:

SLG describing unambiguously the ME
1: Derive from S an intermediate graph G;
2: Derive trees from G;
3: Label trees with tree-based BLSTM;
4: Merge labelled trees to build a SLG;

4.1 Derivation of an intermediate graph G

In a first step, we will derive from S an intermediate graph G where each node
represents a stroke and edges are added according to several defined criteria.
We provide several definitions related to the graph building first.

Definition 1 A stroke si is considered visible from stroke sj if the straight
line between their closest points does not intersect any other stroke sk of the
ink.

For example, s1 and s3 can see each other because the straight line between
their closest points does not intersect any other stroke of the ink, here s2 or
s4 as shown in Figure 7. This definition is the same as the one used in [52].

Fig. 7 Illustration of visibility between a pair of strokes. s1 and s3 are visible to each other

Definition 2 For each stroke si, we define 5 regions (R1, R2, R3, R4, R5 shown
in Figure 8) based on it. The center of the bounding box of stroke si is taken
as the reference point (0, 0).

The purpose of defining these 5 regions is to look for the potential Right,
Inside, Above, Below, Supscript and Subscript relationships between strokes.
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R1

R2

R3

R4

R5

(0,0)

Fig. 8 Five regions for a stroke si. Point (0, 0) is the center of bounding box of si. The
angle range of R1 region is [−π

8
, π
8

]; R2 : (π
8
, 3∗π

8
]; R3 : ( 3∗π

8
, 7∗π

8
]; R4 : [− 7∗π

8
,− 3∗π

8
);

R5 : [− 3∗π
8
,−π

8
)

If the center of bounding box of sj is located in one of the five regions of stroke
si, for example R1 region, we say sj is in the R1 direction of si. A wider
searching range is defined for both R3 and R4 regions. That is because in
some expressions like a+b+c

d+e+f , a larger searching range means more possibilities
to catch the Above relationship from ’−’ to ’a’ and the Below relationship
from ’−’ to ’d’.

Definition 3 Let G be a directed graph in which each node corresponds to a
stroke and edges are added according to the following criteria in succession.

We defined for each stroke si (i from 0 to n− 2):

• the set of strokes Sint(i) = {sint1, sint2, ...}, each element is from {si+1, ..., sn−1},
and intersects si

For stroke si (i from 0 to n− 1):

• the set Svis(i) of the visible leftmost (considering the center of bounding
box only) strokes in five directions respectively.

Edges from si to the Sint(i)
⋃
Svis(i)will be added to G. Then, we check

if the edge from si to si+1 ( i from 0 to n − 2) exists in G. If not, this edge
is added to G to ensure that the path covering the sequence of strokes in the
time order is included in G. Each edge is tagged depending on the specific
criterion we used to find it before. Consequently, we have at most 7 types
of edges (Intersection,R1, R2, R3, R4, R5 and Time) in the graph. For those
edges from si to the Sint(i) ∩ Svis(i), the type Intersection is assigned.

Figure 9 illustrates the process of deriving graph from raw input step by
step using the example of f

a = b
f . First according to the 10 strokes in the raw

input (Figure 9a), we create 10 nodes, one for each stroke; for each stroke,
look for its intersecting strokes and add the corresponding edges labeled with
Intersection between nodes (Figure 9b); proceeding to next step, for each
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Fig. 9 (a) f
a

= b
f

is written with 10 strokes; (b) add Intersection edges; (c) add

R1, R2, R3, R4, R5 edges; (d) add T ime edges. I : Intersection, T : T ime
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stroke, look for its the visible rightmost strokes in five directions respectively
and add the corresponding edges labeled as one of R1, R2, R3, R4, R5 between
nodes if the edges do not exist in the graph (Figure 9c); finally, check if the
edge from si to si+1 ( i from 0 to n− 2) exists in G and if not, add this edge
to G labeled as Time to ensure that the path covering the sequence of strokes
in the time order is included in G (Figure 9d).

4.2 Derivation of trees from G

As described before in Section 4.1, we derive a graph from the raw input
considering the temporal and spatial information. Then we will try to label
nodes and edges of G correctly in order to build a SLG finally. The solution
proposed in this work is to derive multiple trees from G, then recognize the
trees using the tree-based BLSTM model.

There exists different strategies to derive trees from G. In any of the cases,
a start node should be selected first. We take the leftmost (considering the
leftmost point in a stroke) stroke as the starter. From the starting node, we
traverse the graph with the Depth-First Search algorithm. Each node should
be visited only once. When there are more than one edge outputting from one
node, the visiting order will follow the sequence of (Intersection,R1, R3, R4, R2, R5, T ime).
With this strategy, a tree is derived to which we give the name Tree-Left-R1.
It is dedicated to catch R1 relationship. Figure 10 illustrates the derived Tree-
Left-R1 for the ME f

a = b
f written with 10 strokes. The Intersection edge
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R4

R3 R3
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T

Fig. 10 The derived graph of the handwritten ME f
a

= b
f

shown in Figure 9a. Tree-Left-R1

is highlighted with red color. s2 is the root of it. I : Intersection, T : T ime

is on the top of list, and it is because we assume that a pair of intersecting
strokes belong to a single symbol. In Figure 10, Tree-Left-R1 is depicted in
red with the root in s2. Note that in this case, all the nodes are accessible
from the start node s2. However, as G is a directed graph, some nodes are
not reachable from one starter in some cases. Therefore, we consider deriving
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trees from different starters. Besides the leftmost stroke, it is interesting to
derive trees from the first input stroke s0 since sometimes users start writing
an expression from its root. Note that in some cases, the leftmost stroke and
stroke s0 could be the same one. We replace the left-most stroke with stroke
s0 and keep the same strategy to derive the tree. The new tree is named as
Tree-0-R1.

Finally, if s0 is taken as the starting point and time order is considered
first, a special tree is obtained which we call Tree-Time. Tree-Time is proposed
with the aim of having a good cover of segmentation edges since users usually
write a multi-stroke symbol continuously. As a matter of fact, it is a chain
structure. Tree-Time is defined by s0 → s1 → s2 → s3 . . . → s9 for the
expression in Figure 10. Table 1 offers a clear summary of the 3 derived trees
from the graph. The experiment results presented in Section 5.2.2 prove the
effectiveness of the method for deriving trees.

Table 1 The different types of derived trees

Type Root Traverse algorithm Visiting order
Tree-Left-R1 the leftmost stroke Depth-First Search (Intersection,R1, R3, R4, R2, R5, T ime)
Tree-0-R1 s0 Depth-First Search (Intersection,R1, R3, R4, R2, R5, T ime)
Tree-Time s0 Depth-First Search only the time order

4.3 Feed the inputs of the Tree-based BLSTM

In section 4.2, we derived trees from the intermediate graph. Nodes of the tree
represent visible strokes and edges denote the relationships between pairs of
strokes. We would like to label each node and edge correctly with the Tree-
based BLSTM model, aiming to build a complete SLG finally. To realize this,
the first step is to feed the derived tree into the Tree-based BLSTM model.

The solution is to go from the previous trees defined at the stroke level
down to a tree at the point level, points being the raw information that are
recorded along the pen trajectory in the on-line signal. To be independent
from the different writing speeds, an additional re-sampling process should be
carried out with a fixed spatial step. In the considered trees, nodes, which
represent strokes, are re-sampled with a fixed spatial step, and the same holds
for edges by considering the straight lines in the air between the last point
and the first point of a pair of strokes that are connected in the tree. This
is illustrated in Figure 11, where the re-sampled points are displayed inside
the nodes (on-paper points for node) and above the edges (in-air points for
edge). Since this tree will be processed by the BLSTM network, we need for
the training stage to assign it a corresponding ground-truth. We derive it
from the SLG by using the corresponding symbol label of the strokes (nodes)
for the on-paper points and the corresponding symbol or relationship label
for the in-air points (edges) when this edge exists in the SLG. When an
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Fig. 11 A re-sampled tree. The small arrows between points provide the directions of
information flows. With regard to the sequence of points inside one node or edge, most of
small arrows are omitted

edge of the tree does not exist in the SLG, the label NoRelation noted ’ ’
will be used. In this way, an edge in the graph which was originally denoted
with a I, Ri (i = 1...5) or T relation will be assigned with one of the 7 la-
bels: (Right,Above,Below, Inside, Superscript, Subscript, ) or a symbol la-
bel when the two strokes are belonging to the same symbol. Totally, for the
ground truth, we have 108 classes(101 symbol classes + 6 relationships +
NoRelation).

The number of re-sampling points depends on the scale of the strokes with
regard to the full expression scale. For each node or edge, we re-sample with
10 × l/d points. Here, l refers to the length of a visible stroke or a straight
line connecting 2 strokes and d refers to the average diagonal of the bounding
boxes of all the strokes in an expression. Subsequently, for every point p(x, y)
we compute 5 features [sinθ, cosθ, sinφ, cosφ, PenUD]. The full description of
the features can be found in [12].

4.4 Training process

Figure 12 illustrates a tree-based BLSTM network with one hidden level. To
provide a clear view, we only draw the full network on a short sequence (red)
instead of a whole tree. Globally, the data structure we are dealing with is
a tree; locally, it consists of several short sequences. For example, the tree
presented in Figure 12 has 6 short sequences one of which is highlighted with
red color. The system processes each node or edge (which is a short sequence
in fact) separately but following the order with which the correct propagation
of activation or errors could be ensured.

The training process of a short sequence (the red one in Figure 12 for ex-
ample) is similar to the classical BLSTM model except that some information
from adjacent short sequences should be taken into account. In the classical
BLSTM case, the incoming activation or error of a short sequence is initialized
as 0.
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Fig. 12 A tree-based BLSTM network with one hidden level. We only draw the full con-
nection on one short sequence (red) for a clear view

Forward pass. Here, when proceeding with the forward pass from the in-
put layer to the output layer, for the hidden layer (from root to leaves), we need
to consider the coming information from the root direction and for the hidden
layer (from leaves to root), we need to consider the coming information from
the leaves direction. Obviously, no matter which kind of order for processing
sequence we are following, it is not possible to have the information from both
directions in one run. Thus another stage which we call pre-computation is
required. The pre-computation stage has two runs: (1) From the input layer
to the hidden layer (from root to leaves), we process the short sequence con-
sisting of the root point first and then the next sequences. In this run, each
sequence in the tree stores the activation from the root direction. (2) From
the input layer to the hidden layer (from leaves to root), we process the short
sequences consisting of the leaf point first and then the next sequences. In this
run, each sequence in the tree sums and stores the activation from the leaf
direction. After pre-computation stage, the information from both directions
are available to each sequence thus the forward pass from input to output is
straightforward.
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Error propagation. The backward pass of tree-based BLSTM network
has 2 parallel propagation paths: (1) one is from the output layer to hidden
layer (from root to leaves), then to the input layer; (2) the other one is from the
output layer to hidden layer (from leaves to root), then to the input layer. As
these 2 propagation are independent, no pre-computation stage is needed here.
For propagation (1), we process the short sequences consisting of the leaf point
first and then the next sequences. For propagation (2), we process the short
sequence consisting of the root point first and then the next sequences. Note
that when there are several hidden levels in the network, a pre-computation
stage is required also for error propagation.

Loss function. It is known that BLSTM and CTC stage have better
performance when a ”blank” label is introduced during the training process
[53], so that decision can be made only at some point in the input sequence.
One of the characteristics of CTC is that it does not provide the alignment
between the input and output, just the overall sequence of labels. As we need
to assign each stroke a label to build a SLG, a relatively precise alignment
between the input and output is preferred. Thus, a local CTC algorithm is
used in this work aiming to limit the label into the corresponding stroke.

Inside each short sequence, or we can say each node or edge, a local CTC
loss function is easy to be computed from the output probabilities related to
this short sequence. The total CTC loss function of a tree is defined as the
sum of all local CTC loss functions regarding to all the short sequences in this
tree.

Since each short sequence has one label, the possible labels of the points
in one short sequence are shown in Figure 13. For example, suppose character

Fig. 13 The possible labels of points in one short sequence

c is written with one stroke and 3 points are re-sampled from the stroke. The
possible labels of these points can be ccc, cc−, c − −, − − c, −cc and −c−
(’−’ denotes ’blank’). More generally, the number of possible label sequences is
n∗(n+1)/2 (n is the number of points), which is actually 6 with the proposed
example.

Given the tree input represented as X consisting of N short sequences, each
short sequence could be denoted as Xi, i = 1, ..., N with the ground truth label
li and the length Ti. l

′
i represents the label sequence with blanks added to the

beginning and the end of li, i.e. l′i = (blank, li, blank) of length 3. The forward
variable αi(t, u) denotes the summed probability of all length t paths that are
mapped by F onto the length u/2 prefix of li, where u is from 1 to 3 and t is
from 1 to Ti. The mapping function F is defined as first removing the repeated
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labels and then the blanks (–) from the paths. For example considering an short
sequence of length 6, two possible paths could be −− aaa−,−−−aa−. The
mapping function works like: F (−− aaa−) = F (−−−aa−) = a.

Similarly, the backward variable βi(t, u) denotes the summed probabilities
of all paths starting at t + 1 that complete li when appended to any path
contributing to αi(t, u). Figure 14 demonstrates the CTC forward-backward
algorithm limited in one stroke.

Fig. 14 CTC forward-backward algorithm in one stroke Xi. Black circle represents label
liand white circle represents blank. Arrows signify allowed transitions. Forward variables are
updated in the direction of the arrows, and backward variables are updated in the reverse
direction

With the CTC forward-backward algorithm (referring to [42] for details),
we can compute the αi(t, u) and βi(t, u) for each point t and each allowed
positions u at point t. The local CTC loss function L(Xi, li) is defined as the
negative log probability of correctly labeling the short sequence Xi:

L(Xi, li) = − ln p(li|Xi) (17)

According to the Equation (7.26) in [42], we can rewrite L(Xi, li) as:

L(Xi, li) = − ln

3∑
u=1

αi(t, u)βi(t, u) (18)

Then the errors will be back propagated to the output layer, then the hidden
layer, finally to the entire network. The weights in the network will be updated
after each entire tree structure is processed.

The CTC loss function of a entire tree structure is defined as the sum of
the errors with regards to all the short sequences in this tree:

L(X, l) =

N∑
i=1

L(Xi, li) (19)

This formula is used for evaluating the performance of the network, and there-
fore could be as the metric to decide the training process stops or not.
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4.5 Recognition process

As mentioned, the system treats each node or edge as a short sequence. A
simple decoding method is adopted here. We choose for each node or edge the
label which has the highest cumulative probability over the short sequence.
Suppose that yji is the probability of outputting the i label at the j point.

The probability of outputting the i label can be computed as Pi =
∑s
j=1 y

j
i ,

where s is the number of points in a short sequence. The label with the highest
probability is assigned to this short sequence.

4.6 Post process

Several trees regarding to one expression will be merged to build a SLG af-
ter labeling. Besides the merging strategy, in this section we consider several
structural constraints when building the SLG. Generally, 5 steps are included
in post process:
(1) Merge trees. Each node or edge belongs at least to one tree, but possibly
to several trees. Hence, several recognition results can be available for a single
node or edge. We take an intuitive and simple way to deal with the problem
of multiple results, choosing the one with the highest probability.
(2) Symbol segmentation. We look for the symbols using connected com-
ponent analysis: a connected component where nodes and edges have the same
label is a symbol.
(3) Relationships. We solve two possible kinds of conflicts in this step. (a)
Perhaps between two symbols, there exists edges in both directions. Then, in
each direction, we choose the label having the maximum probability. If the la-
bels in two direction are both one of (Right,Above,Below, Inside, Superscript, Subscript)
as illustrated in Figure 15a, we also choose the one having the larger proba-
bility. (b) Another type of conflict could be the case illustrated in Figure 15b
where one symbol has two (or more) input relationships (one of 6 relation-
ships). As introduced in Section 2.2.1, there is at most one input relationship
for each node (symbol) in SRT. Therefore, when one symbol has two (or more)
input relationships, we choose for it the one having the maximum probability.

(a) (b)

Fig. 15 Possible relationship conflicts existing in merging results
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(4) Make connected SRT. As SRT is a connected tree (this is a structural
constraint, not a language specific constraint), there should be one root node
and one or multiple leaf nodes. Each node has only one input edge, except the
root node. After performing the first three steps, we still have the possibility
to output a SRT containing several root nodes, in other words, being a forest
instead of a tree. To address this type of error, we take a hard decision but
quite simple: for each root r (except the one inputted earliest), add a Right
edge to r from the leaf being the one nearest to r considering input time. We
choose Right since it appears most in math expressions based on the statistics.
(5) Add edges. According to the rule that all strokes in a symbol have the
same input and output edges and that double-direction edges represent the
segments, some missing edges can be completed automatically.

4.7 Time complexity

In this section, we analyse the time complexity of our Tree-BLSTM based
recognition system and compare it with other grammar-driven solutions. As
explained before, the proposed system consists of several sequential steps for
each of which we will list the time complexity individually. First of all, the time
complexity of the algorithm for building an intermediate graph is O(n2). Then
to derive trees, the Depth-First Search algorithm requires O(n+e) time where
e = 7n as there are at most 7n edges in the intermediate graph. For activating
the BLSTM, it requires O(n) for nodes and O(n) for edges (we are in a tree).
The same time complexity holds for the recognition process. Finally, different
operations in post process take linear time also. Therefore, the time complexity
of our system is O(n2) in fact. Now, we consider the grammar-driven solutions.
The time complexity of grammar parsing algorithm is O(n3|p|) at least where
|p| denotes the number of production rules. For example, it is O(n3log(n)|p|)
for the system proposed in [35]. Thus, we have a lower time complexity, O(n2)
VS O(n3|p|) (at least).

5 Experiments

Data sets The complete data set from CROHME 2014 is used, 8834 expres-
sions for training and 983 expressions for test. We extract randomly 10% of
the 8834 expressions of the training set as a validation set. To get more re-
cent comparison with the state of the art, we have also use the last CROHME
2016 data set to evaluate the best configuration. The training data set remains
the same as CROHME 2014. However, 1147 new expressions are included in
CROHME 2016 test data set.

Setup We developed the tree-based BLSTM recognition system with the
RNNLIB library1. Several types of configurations are included in this paper:

1 Graves A. RNNLIB: A recurrent neural network library for sequence learning problems.
http://sourceforge.net/projects/rnnl/.
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Network (i), (ii), (iii), (iv). The first one consists of one bidirectional hidden
level (two opposite LSTM layers of 100 cells). This configuration has obtained
good results in both handwritten text recognition [5] and handwritten math
symbol classification [6,54]. Network (ii) is a deep structure with two bidirec-
tional hidden levels, each containing two opposite LSTM layers of 100 cells.
Network (iii) and Network (iv) have 3 bidirectional hidden levels and 4 respec-
tively. The setup about the input layer and output layer remains the same.
The size of the input layer is 5 (5 features); the size of the output layer is 109
(101 symbol classes + 6 relationships + NoRelation + blank).

With the Label Graph Evaluation library (LgEval) [55], the recognition
results can be evaluated on symbol level and on expression level. We intro-
duce several evaluation criteria: symbol segmentation (Segments), refers to a
symbol that is correctly segmented whatever the label is; symbol segmentation
and recognition (Seg+Class), refers to a symbol that is segmented and classi-
fied correctly; spatial relationship classification (Tree Rels.), a correct spatial
relationship between two symbols requires that both symbols are correctly
segmented and with the correct relationship label.

5.1 Experiment 1

Due to the deep structure, DBLSTM could generate higher level representation
of the input data. In this experiment, we would like to see the effects of the
depth of the network on the recognition results. And then according to the
results, we choose the proper network configurations for the task. For each
expression, the chain structure Tree-Time is derived to train the classifier.

The evaluation results on symbol level and global expression level are pre-
sented in Tables 2 and 3 respectively. From the tables, we can conclude that

Table 2 The symbol level evaluation results on CROHME 2014 test set with Tree-Time
only

System Segments (%) Seg + Class (%) Tree Rels. (%)
Rec. Prec. Rec. Prec. Rec. Prec.

i, Tree-Time 92.93 84.82 84.12 76.78 60.70 76.19
ii, Tree-Time 95.10 90.47 87.53 83.27 65.06 83.18
iii, Tree-Time 95.43 91.13 88.26 84.28 65.45 83.57
iv, Tree-Time 95.57 91.21 87.81 83.80 65.98 82.85

Table 3 The expression level evaluation results on CROHME 2014 test set with Tree-Time
only

System correct (%) ≤ 1 error ≤ 2 errors ≤ 3 errors
i, Tree-Time 12.41 20.24 26.14 30.93
ii, Tree-Time 16.09 25.46 32.28 37.27
iii, Tree-Time 16.80 25.56 32.89 38.09
iv, Tree-Time 16.19 25.97 33.20 38.09
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as the network turns to be deeper, the recognition rate first increases and then
stays at a relatively stable level. There is a large increase from Network (i)
to Network (ii), a slight increase from Network (ii) to Network (iii) and no
improvement from Network (iii) to Network (iv). These results show that 3
bidirectional hidden levels in the network is a proper option for the task in
this work. Network with depth larger than 3 bring no improvement but higher
computational complexity. Thus, for the coming experiments we will not take
into account Network (iv) any more.

5.2 Experiment 2

In this section, we carry out experiments merging several trees to improve
the coverage of the graph. As a first try, we derive only 3 trees, Tree-Time,
Tree-Left-R1 and Tree-0-R1 for each expression to train the classifiers sepa-
rately. With regards to each tree, we consider 3 network configurations, being
Network (i), Network (ii), Network (iii). Thus, we have 9 classifiers totally in
this section. After training, we use these 9 classifiers to label the relevant trees
and finally merge them to build a valid SLG. We merge the 3 trees labeled
by the corresponding 3 classifiers which have the same network configuration
to obtain the systems (i, Merge3), (ii, Merge3), (iii, Merge3). Then we merge
the 3 trees labelled by all these 9 classifiers to obtain the system Merge 9.

5.2.1 Intermediate graph evaluation

In Section 4.1, we described the method for deriving an intermediate graph
from a sequence of strokes. This method should be evaluated to show its effec-
tiveness. In [56], Hu evaluates the graph representation model by comparing
the edges of the graph with ground truth edges at the stroke level where the
recall and precision rates are considered both. We would like to take a similar
but more intuitive method, detecting the missing and unnecessary relation-
ships in the graph, which is at the symbol level. In order to evaluate if the
selected trees will allow to recognize the symbol, we skip the recognition step
in the process and label nodes and edges using the ground truth. The obtained
graphs are then evaluated, with the standard with CROHME tool LgEval [55].
The symbols correctly recognised are those which could be recognized in the
case of a perfect classification of each node and edge. Unrecognised symbol are
due to missing edges. Obviously, a complete graph always leads to a perfect
recognition.

Table 4 present the evaluation results of the intermediate graph on CROHME
2014 test set at the symbol level. As shown, the recall rate and the precision
rate of segmentation task are almost 100%, telling that the intermediate graph
catches almost all the segmentation edges in the ground truth SLG. With re-
gard to relationship recognition task, the graph catches 93.99% spatial rela-
tionships in expressions, missing around 6%. Furthermore, as shown by the
precision rate of the tree relations, there are in the graph more than half of
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the spatial relationships which are unnecessary. These unnecessary edges are
expected to be labelled as NoRelation by the classifiers later.

Table 4 Intermediate graph evaluation results at the symbol level on CROHME 2014 test
set (provided the ground truth labels of nodes and edges)

Model Segments (%) Seg + Class (%) Tree Rels. (%)
Rec. Prec. Rec. Prec. Rec. Prec.

Graph G 99.97 99.93 99.96 99.92 93.99 43.51

5.2.2 Derived trees evaluation

As mentioned in the beginning of Section 5.2, we derive 3 trees, Tree-Time,
Tree-Left-R1 and Tree-0-R1 for each expression to train the classifiers sepa-
rately. Each kind of tree derived from the intermediate graph and the com-
bination of these 3 trees should also be evaluated by the same way as the
intermediate graph evaluation to check the coverage of them to capture the
SLG.

As shown in Table 5, we provide the evaluation results of the derived trees
(individuals and combination) on CROHME 2014 test set at the symbol level.
Tree-Time catch 75.54% ground truth spatial relationships and 23.16% ( false
positive/targets) unnecessary ones. The evaluation results of Tree-Left-R1 is
very close to Tree-0-R1 since the first input stoke is the leftmost stroke for
many cases. They capture around 68% ground truth spatial relationships and
around 70% unnecessary ones. When we combine these 3 trees, a better ground
truth relationships coverage, 92.17%, is achieved with the unnecessary ones
of 60.50%. Compared to the intermediate graph, the combination of these
3 derived trees catches slightly less ground truth relationships but greatly
less unnecessary relationships which verify the effectiveness of the method for
deriving trees.

Table 5 The derived trees evaluation results at the symbol level on CROHME 2014 test
set (provided the ground truth labels of nodes and edges)

Model Segments (%) Seg + Class (%) Tree Rels. (%)
Rec. Prec. Rec. Prec. Rec. Prec.

Tree-Time 99.73 99.45 99.72 99.44 75.54 76.54
Tree-Left-R1 94.07 87.85 94.06 87.85 68.86 49.91
Tree-0-R1 94.51 88.16 94.50 88.15 67.98 49.03
Merge3 99.84 98.74 99.83 98.73 92.17 60.37

5.2.3 Classifiers evaluation

In this section we now label the nodes and edges of derived trees with the
BLSTM classifier. The evaluation results on symbol level and global expression
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Table 6 The symbol level evaluation results on CROHME 2014 test set with 3 trees,
including the experiment results in this work and CROHME 2014 participant results

System Segments (%) Seg + Class (%) Tree Rels. (%)
Rec. Prec. Rec. Prec. Rec. Prec.

i, Tree-Time 92.93 84.82 84.12 76.78 60.70 76.19
i, Tree-Left-R1 84.82 72.49 72.80 62.21 44.34 57.78

i, Tree-0-R1 85.31 72.88 74.17 63.37 42.92 60.08
i, Merge3 93.53 87.20 86.10 80.28 71.16 66.13

ii, Tree-Time 95.10 90.47 87.53 83.27 65.06 83.18
ii, Tree-Left-R1 86.71 75.64 76.85 67.03 48.14 61.91

ii, Tree-0-R1 87.52 76.66 77.00 67.45 48.14 63.04
ii, Merge3 95.01 90.05 88.38 83.76 76.20 72.28

iii, Tree-Time 95.43 91.13 88.26 84.28 65.45 83.57
iii, Tree-Left-R1 88.03 78.13 78.56 69.72 50.31 65.87

iii, Tree-0-R1 87.41 77.02 77.63 68.40 48.23 64.28
iii, Merge3 95.25 90.70 88.90 84.65 77.33 73.72

Merge 9 95.52 91.31 89.55 85.60 78.08 74.64

CROHME 2014 participant results
MyScript 98.42 98.13 93.91 93.63 94.26 94.01
València 93.31 90.72 86.59 84.18 84.23 81.96
Nantes 89.43 86.13 76.53 73.71 71.77 71.65

RIT-CIS 88.23 84.20 78.45 74.87 61.38 72.70
RIT-DRPL 85.52 86.09 76.64 77.15 70.78 71.51

Tokyo 83.05 85.36 69.72 71.66 66.83 74.81
São Paulo 76.63 80.28 66.97 70.16 60.31 63.74

Table 7 The expression level evaluation results on CROHME 2014 test set with 3 trees,
including the experiment results in this work and CROHME 2014 participant results

System correct (%) ≤ 1 error ≤ 2 errors ≤ 3 errors
i, Tree-Time 12.41 20.24 26.14 30.93

i, Tree-Left-R1 5.9 10.58 15.99 19.94
i, Tree-0-R1 5.39 10.47 16.28 20.14
i, Merge3 19.94 27.57 33.88 39.37

ii, Tree-Time 16.09 25.46 32.28 37.27
ii, Tree-Left-R1 6.82 13.33 20.14 23.19

ii, Tree-0-R1 6.41 13.02 18.41 23.40
ii, Merge3 25.94 36.72 42.32 46.59

iii, Tree-Time 16.80 25.56 32.89 38.09
iii, Tree-Left-R1 8.55 15.26 20.96 24.52

iii, Tree-0-R1 7.93 13.63 19.63 25.43
iii, Merge3 29.30 39.06 43.64 48.02

Merge 9 29.91 39.94 44.96 50.15

CROHME 2014 participant results
MyScript 62.68 72.31 75.15 76.88
València 37.22 44.22 47.26 50.20
Nantes 26.06 33.87 38.54 39.96
Tokyo 25.66 33.16 35.90 37.32

RIT-DRPL 18.97 28.19 32.35 33.37
RIT-CIS 18.97 26.37 30.83 32.96

São Paulo 15.01 22.31 26.57 27.69

level are presented in Tables 6 and 7 respectively. We give both the individ-
ual tree recognition results and the merging results in each table. Tree-Time
covers all the strokes of the input expression but can miss some relational
edges between strokes; Tree-Left-R1 and Tree-0-R1 could catch some addi-
tional edges which are not covered by Tree-Time. The experiment results also
verified this tendency. Compared to (iii, Tree-Time), the symbol segmentation
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and classification results of (iii, Merge3) stay at almost the same level while the
recall rate of relationship classification is greatly improved (about 12%). The
different recognition results of network (ii) are systematically increased when
compared to (i) as the deep structure could get higher level representations of
the input data. The performance of network (iii) is moderately improved when
compared to (ii), just as same as the case in Experiment 1. When we consider
merging all these 9 classifiers, we also get a slight improvement as shown by
Merge 9.

We compare the results of Merge 9 to the systems in CROHME 2014. With
regard to the symbol classification and recognition rates, our system performs
better than the second-ranked system in CROHME 2014. For relationship
classification rate, our system reaches the level between the second-ranked and
the third-ranked systems in CROHME 2014. The global expression recognition
rate is 29.91%, ranking third in all the participated systems. When we compute
the recognition rate with ≤ 3 errors, our result is 50.15%, very close to the
second-ranked system (50.20%).

The top ranked system MyScript is built on the principle that segmenta-
tion, recognition and interpretation have to be handled concurrently and at
the same level in order to result in the best candidate. They use a much larger
training data set which is not available to the public. System València parses
expressions using two-dimensional stochastic context-free grammars. It is an
advanced model evolution of the system presented in [34]. System Nantes si-
multaneously optimizes expression segmentation, symbol recognition, and 2-D
structure recognition under the restriction of an expression grammar [33]. The
approach transforms the recognition problem into a search for the best possible
interpretation of a sequence of input strokes. Furthermore, all the top 4 sys-
tems in the CROHME 2014 competition are grammar driven solutions which
need a large amount of manual work and a high computational complexity.
There is no grammar considered in our system.

We also evaluate the system of Merge 9 on CROHME 2016 test data set
(Tables 8 and 9 ). As can be seen in Table 8, compared to other participated

Table 8 The symbol level evaluation results on CROHME 2016 test set with the system
of Merge 9, along with CROHME 2016 participant results

System Segments (%) Seg + Class (%) Tree Rels. (%)
Rec. Prec. Rec. Prec. Rec. Prec.

Merge 9 95.64 91.44 89.84 85.90 77.23 74.08
CROHME 2016 participant results

MyScript 98.89 98.95 95.47 95.53 95.11 95.11
Wiris 96.49 97.09 90.75 91.31 90.17 90.79
Tokyo 91.62 93.25 86.05 87.58 82.11 83.64

São Paulo 92.91 95.01 86.31 88.26 81.48 84.16
Nantes 94.45 89.29 87.19 82.42 73.20 68.72

systems in CROHME 2016, our system is still competitive on symbol segmen-
tation and classification task. For relationship recognition task, there is room
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Table 9 The expression level evaluation results on CROHME 2016 test set with the system
of Merge 9, along with CROHME 2016 participant results

System correct (%) ≤ 1 error ≤ 2 errors
Merge 9 27.03 35.48 42.46

CROHME 2016 participant results
MyScript 67.65 75.59 79.86

Wiris 49.61 60.42 64.69
Tokyo 43.94 50.91 53.70

São Paulo 33.39 43.50 49.17
Nantes 13.34 21.02 28.33

for improvement. The results at expression level are presented in Table 9. The
global expression recognition rate is 27.03%.

5.3 Error analysis

In this section, we make a deep error analysis of the recognition result of (Merge
9) to better understand the system and to explore the directions for improving
recognition rate in future. The Label Graph Evaluation library (LgEval) [55]
evaluates the recognition system by comparing the output SLG of each expres-
sion with its ground truth SLG. Thus, node label confusion matrix and edge
label confusion matrix are available. Based on the two confusion matrices, we
analyze the errors specifically below.

Node label. In table 10, we list the types of SLG node label error which
have a high frequency on CROHME 2014 test set recognized by (Merge 9)
system. The first column gives the outputted node labels by the classifier; the
second column provide the ground truth node labels, along with the number
of nodes with each label; the last column records the corresponding number
of occurrences, also the percentages. As can be seen from the table, the most
frequent error (x → X, 46) belongs to the type of the lowercase-uppercase
errors. Moreover, (p→ P , 24), (c→ C, 16), (X → x, 16) and (y → Y , 14) also
belong to the same type of lowercase-uppercase errors. Another type of error
which happens quite often in our experiment is the similar-look error, such as
(x → ×, 26), (× → x, 10), (z → 2, 10), (q → 9, 10) and so on. With more
training samples, we can expect a better discrimination of these similar classes.
Another improvement would be to integrate explicitly a language model to
promote frequent symbols.

Edge label. Table 11 provides the edge (SLG) label errors of CROHME
2014 test set using (Merge 9). As can be seen, a large amount of errors come
from the last row which represents the missing edges. 1858 edges with la-
bel Right are missed in our system, along with 929 segmentation edges. In
addition, we can see the errors of high frequency in the sixth row which rep-
resents that five relationship (exclude Right) edges or segmentation edges
or NoRelation ( ) edges are mis-classified as Right edges. Among them, 1600
NoRelation ( ) edges are recognized as Right. The post process step of Make
connected SRT is one of the reasons since we take a hard decision (add Right
edges) in this step. Another possible reason is that, as Right relationship is
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Table 10 Illustration of node (SLG) label errors of (Merge 9) on CROHME 2014 test set.
We only list the cases that occur at least 10 times

output label ground truth label no. of occurrences
(no. of nodes with this label) (percentage)

x X (60) 46 (76.7%=46/60)
x × (145) 26 (17.93%)
p P (30) 24 (80%)
, 1 (794) 19 (2.39%)
c C (31) 16 (51.61%)
y Y (26) 14 (53.85%)
+ t (162) 14 (8.64%)
. . . . (123) 13 (10.57%)
X x (890) 16 (1.80%)
a x (890) 14 (1.57%)
1 | (62) 11 (17.74%)
- 1(794) 10 (1.26%)
× x (890) 10 (1.12%)
z 2 (713) 10 (1.40%)
q 9 (98) 10 (10.20%)

the most frequent relation in math expressions, the classifiers may answer too
often this frequent class.

We explore deeper the problem of the missing edges which appear in the last
row of Table 11. In fact, there exist three sources which result in the missing

Table 11 Illustration of edge (SLG) label errors of (Merge 9) on CROHME 2014 test set.
The first column represents the output labels; the first row offers the ground truth labels,
as well as the the number of edges with each label; other cells in this table provide the
corresponding no. of occurrences. ’*’ represents segmentation edges, grouping two nodes
into a symbol. The label of segmentation edge is a symbol(For convenient representation,
we do not give the specific symbol types, but an overall label ’*’.)

* (9044) Above (592) Below (627) Inside (377) Right (13698) Sub (1115) Sup (923) (261528)
* 208 0 0 17 1 1 29

Above 8 1 21 10
Below 2 1 1 114 7
Inside 5 1 1 9
Right 344 65 22 40 152 112 1600
Sub 4 6 3 44 1 7
Sup 1 3 35 3 31

929 300 80 109 1858 189 235

edges: (1) the edges are missed at the graph representation stage. We evaluated
the graph model in Section 5.2.1 where around 6% relationships were missed.
One of the future works could be searching for a better graph representation
model to catch the 6% missing relationships. (2) Some edges in the derived
graph are recognized by the system as NoRelation ( ), which actually have a
ground truth label of one of 6 relationship or symbol (segmentation edge). (3)
Even if we derive multiple trees from the graph G, they do not well cover the
graph completely. Thus, a better strategy for deriving trees from the graph
will be explored in future works.
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We illustrate one test sample ( 9
9+
√

9
) from CROHME 2014 test set rec-

ognized by system (Merge9). We provide the handwritten input, along with
the built SLG for this test sample (Figure 16). For this expression, the struc-
ture of it was correctly recognized, only one error being the first symbol ’9’
of the denominator was recognized as ’→’. This error belongs to the type of
the similar-look error we have explained in error analysis section. Enlarging
the training data set could be a solution to solve it. Also, it could be eased by
introducing a language model since 9

→+
√

9
is not a valid expression from this

point of view.

6 Conclusion

In this work, we developed a tree-BLSTM based recognition system for online
handwritten mathematical expression. To be able to process 2-D languages, we
extend the chain-structured BLSTM to tree-based BLSTM which could model
the dependencies in a tree structure, and extend CTC to local CTC to rela-
tively constrain the outputs and at the same time benefit from introducing an
additional ’blank’ class. One major difference with the traditional approaches
is that there is no explicit segmentation, recognition and layout extraction
steps but a unique trainable system that produces directly a SLG describing a
mathematical expression. The proposed system, without using any grammar,
achieves competitive results in online math expression recognition domain.

Based on the current method and error analysis, we summarize several
possible directions for future work. Some work should be done with regards
to improve the existing method, like improving the graph model, proposing a
better strategy for deriving trees and developing a stronger post process stage.
Some efforts could be put into introducing language model into the graph. For
example, as known an n-gram model is widely used in 1-D language processing
like text and speech, how to take into account the statistical properties of n-
grams in math expression recognition task is an interesting direction to explore
in future. Another interesting work could be to extend BLSTM model to a
DAG structure which will better cover the derived graph and therefore be able
to handle more contextual information compared to the tree structure BLSTM.
The current recognition system achieves competitive results without using any
grammar knowledge. In future, we could apply graph grammar to improve the
current recognition rate. In this paper, we extend the chain-structured BLSTM
to a tree topology to let it model the dependency directly in a tree structure.
Furthermore, we extend the CTC training technique to local CTC to constrain
the output position relatively at the same time improve the system training
efficiency compared to frame-wise training. These proposed algorithms are
generic ones and could be apply in other research fields such as diagram or
flowchart recognition.
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(a)

(b)

(c)

Fig. 16 (a) 9
9+
√
9

written with 7 strokes; (b)the SLG after merging several trees and

performing other post processing steps; (c)the SLG with NoRelation edges removed. There
is a node label error: the stroke 2 with the ground truth label ’9’ was wrongly classified as
’→’
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34. Álvaro Muñoz F, Sánchez JA, Bened́ı JM (2014) Recognition of on-line handwritten
mathematical expressions using 2d stochastic context-free grammars and hidden markov
models. Pattern Recognition Letters,35(1): 58–67

35. Álvaro Muñoz F, Sánchez JA, Bened́ı JM (2016) An integrated grammar-based approach
for mathematical expression recognition. Pattern Recognition, 51: 135–147

36. MacLean S, Labahn G (2013) A new approach for recognizing handwritten mathematics
using relational grammars and fuzzy sets. International Journal on Document Analysis and
Recognition (IJDAR), 16(2): 139–163

37. Celik M, Yanikoglu B (2011) Probabilistic mathematical formula recognition using a 2d
context-free graph grammar. International Conference on Document Analysis and Recog-
nition (ICDAR), 161–166

38. Julca-Aguilar F (2016) Recognition of Online Handwritten Mathematical Expressions
using Contextual Information. PhD thesis, Université de Nantes, Université Bretagne
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