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Abstract Interreflections are observed on concave ob-
jects or when multiple objects are located closely. In
a vision system, interreflections can largely affect color
values captured by the camera. Due to this fact, mod-
eling interreflections is important for many vision ap-
plications. In this paper, we consider the problem of
treating and modeling interreflections in the domain of
computer vision. First, a survey of existing approaches
in the state of the art is given. These approaches are
detailed, discussed and compared. Most of the state of
the art models take into consideration only two bounces
of light between surface elements. We, afterwards, in-
troduce a new interreflection model based on radiomet-
ric definitions. This model is the first one that takes
into consideration an infinite number of light bounces
between surface elements while providing image RGB
values as a result. The accuracy of our model is studied
by comparing it to real camera outputs. Thanks to our
new model, the importance of using infinite bounces of
light while studying interreflection, instead of only two
bounces is demonstrated.
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1 Introduction

The scientific study of color has a long history: many
theories, recommendations and tools have been pro-
posed for its assessment, measurement, simulation or
reproduction, with permanent improvement attempts.
Most of the time, the question of color is addressed inde-
pendently of the object’s surrounding, except in image
synthesis where the whole scene is taken into account
in the representation of the object, adding more and
more realistic details, especially the specular reflection
of the scene on the object when it has a glossy surface.
Similar reflection phenomena also occur on mate, dif-
fusing surfaces, even though it is generally less striking
visually, and therefore often ignored.

When a scene containing concave surfaces is illu-
minated, light strikes successively different surface ele-
ments before reaching the sensor. This is what we call
interreflection (or mutual illumination). Appearance of
objects in a scene can be considerably altered by in-
terreflection as it affects the perceived color of their
surface elements. However, most of the existing vision
systems neglect the effect of interreflections, leading of-
ten to erroneous results. Physically speaking, photons
received from the light source by a surface element can
bounce towards a second surface element, then a third,
and so on, until they reach the detector. The power of
the rays is reduced after each bounce, and their spectral
distributions are modified according to the spectral bi-
directional reflectance distribution function of the suc-
cessive surface elements they hit.

In computer graphics, this process has been simu-
lated iteratively by using different approaches in order
to calculate the color values of each surface element
of the scene to be displayed on a screen [1–3]. On the
other hand, in computer vision, researchers are inter-
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ested in the challenging inverse problem: how to find
illuminant spectral power distribution (SPD), surface
spectral reflectance, or both from the pixels values in
an image. Moreover, many vision applications need to
retrieve color constancy of scene’s objects in order to
give satisfactory results, in this case removing the ef-
fect of interreflection is necessary.

In the end of 1980s and the early 1990s, many stud-
ies on interreflection for the sake of different computer
vision applications were published in the literature [4–
10]. These studies were generally focused on the un-
derstanding of this phenomenon and on finding models
that suit it. The main applications for this research were
in shape from shading [4,6,10] and color constancy do-
mains [7–9]. Nevertheless, the research in this area has
become less popular recently, focusing mainly on the
adaptation of early proposed models for different types
of applications and needs [11–13]. This seems to follow
a general trend in computer vision, as recent research
in this area is focusing more on pattern recognition ap-
proaches and less on physics-based approaches.

This paper consists of two major parts, the first is a
detailed survey of the main existing approaches which
aim to model interreflections in computer vision ap-
plications. The main existing approaches are compared
based on different criteria such as the number of bounces,
the number of color channels or wavebands, and the re-
quired assumptions. The second part is a new spectral
infinite-bounce model of interreflection for Lambertian
surfaces. This model is more general than the ones pro-
posed earlier in the literature. It links RGB values in
the image to a physical spectral model of interreflection
taking into consideration an infinite number of light
bounces. This can be particularly helpful for the re-
search process in the domain of computer vision. We
aim to give a fresh restart to interreflection modeling
in computer vision based on a physical study of this
phenomenon. We believe that understanding image val-
ues from an optical point of view can be very helpful,
and can be used side by side with pattern recognition
approaches.

The paper starts with a presentation of the main
used terms and notations and ends with an evaluation
of the proposed model and a discussion of its advantages
and limitations.

2 Definitions and Notations

Having a point Pi of the scene S, the surface of the
infinitesimal facet represented by this point is denoted
as dPi.

(a) (b) (c)

Fig. 1: Decomposition of the irradiance received by P1:
(a) Direct light, (b) first bounce of interreflection cor-
responding to what we call a two-bounce model, (c)
second bounce of interreflection. For the sake of clarity,
the sums over all the pixels (multiple arrows) are not
illustrated here.

In radiometry, the radiance, L, is the density of ra-
diant power, F , per unit of geometrical extent, G [14]:

L = d2F/d2G, (1)

where d2G is the elemental geometrical extent 1 be-
tween two elemental areas dPi and dPj , around two
points (distant enough from each other) Pi and Pj , re-
spectively, and is defined as in [15]:

d2G =
dPicosθidPjcosθj

∆2
, (2)

where∆ is the euclidean distance between the centroids
of the two surfaces, θi and θj are the angles between
PiPj and the normals of the facets represented by Pi
and Pj respectively (Figure 2).

θi θj
Pi Δ Pj

Fig. 2: Geometrical extent between two elemental areas.

The irradiance, E, is the density of radiant power
per unit area, A:

E = dF/dA. (3)

Based on these definitions, the irradiance can be
written in terms of radiance as follows:

dE = LdG/dA. (4)

The irradiance received at a point Pi is denoted as
E(Pi), and the radiance from Pi to a second point Pj is

1 Also called étendue
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denoted as L(Pi, Pj). For lambertian surfaces, the radi-
ance is independent of the propagation direction, then
the radiance of Pi is denoted as L(Pi), and, according
to Lambert’s law, it can be defined as:

L(Pi) = E(Pi)ri/π, (5)

where ri is the reflectance of the point Pi.
Along this paper, direct irradiance received from the

light source, and radiance after the first bounce of direct
light are denoted as E0 and L1 respectively. The nota-
tions L and E refer to, respectively, the vectors of ra-
diance and irradiance on various surface elements: L =

[L(P1) L(P2) ...]T and E = [E(P1) E(P2) ...]T .
Actually, the terms L(Pi), E(Pi) and ri are all wave-

length dependent, but when used in this paper they are
taken for only a single wavelength. However, when talk-
ing about spectral functions, the terms R(λ), L(λ) and
E(λ) are used for spectral reflectance, spectral radiance,
and spectral irradiance respectively.

By defining the response function, Ck for each cam-
era sensor k, the k-th sensor response, when observing
a lambertian surface of spectral reflectance R(λ) and
lighted by an illuminant E(λ), can be written as:

ρk =
1

π

∫
λ

E(λ)R(λ)Ck(λ)dλ. (6)

3 State of the Art

Many methods have been proposed in the literature in
order to model interreflections in computer vision appli-
cations. Some approaches focus on removing the effect
of interreflections [6,10–13,16], whereas others use it as
extra information that may help in solving other prob-
lems such as light SPD estimation or surface spectral
reflectance estimation [9]. Moreover, the proposed sys-
tems differ in many ways regarding the number of color
channels or wavelengths, the number of light bounces
they handle, and the number and the type of assump-
tions they pose:

Number of wavelengths or color channels. While some
methods take into consideration only a single wave-
length either by using a narrow-band light or by han-
dling monochromatic surfaces [6,11,12], others propose
a more general approach by working in RGB color space
[10, 16]. Moreover, there exist some methods that han-
dle the set of visible wavelengths leading to a spectral
approach [9].

Number of bounces. There exist two-bounce approaches
claiming that taking into consideration only one bounce
of interreflection is enough in most cases [9,10,12]. How-
ever, some of these methods propose an extension to
handle more light bounces [12]. Other methods treat
directly an infinite number of bounces [6, 11,16].

Assumptions. Handling interreflections is often an is-
sue. Thus, assumptions or preprocessing can be required
to make this task treatable. Some assumptions are upon
the spectral reflectances of the surfaces, for example the
use of uniformly colored surfaces [9, 10, 12, 17]. Others
are light-related regarding the number of light sources,
and their spectral power distributions [9,12,16]. More-
over, some approaches depend on other methods such as
the dependence on a shape from shading method [6,16].
Others need some preprocessing steps such as light field
calculation [11] or some calibration steps to estimate
parameters needed for the system [12].

In the following sections, we give a detailed pre-
sentation of the main approaches reported above. We
organized them according to the used methodology to
treat interreflection. A comparative table can be found
in Table 1.

3.1 Spectral Analysis of Interreflections for Color
Constancy

Funt, Drew and Ho [7–9] proposed to use interreflec-
tions as additional information to find illumination spec-
tral power distribution and surface spectral reflectance
from RGB data. Considering that some parts of the sur-
face are not affected by interreflections, they combine
equations with and without interreflections to solve them
for the unknown parameters. Their work is based on
modeling the spectral reflectance and the spectral power
distribution of lights by finite dimensional linear models
using a set of basis functions. Then, they solve a set of
equations with equal number of unknown parameters.
They demonstrate that it is possible to use three basis
functions for surfaces and illumination with no need for
more than three sensor classes.

Considering diffuse irradiance E(λ), and two lam-
bertian surfaces whose spectral reflectances are R(1)(λ)

andR(2)(λ) respectively, radiances, L(1)(λ) and L(2)(λ),
reflected from surface 1 and 2, without taking into con-
sideration interreflections, can be written as:

L(1)(λ) =
1

π
E(λ)R(1)(λ),

L(2)(λ) =
1

π
E(λ)R(2)(λ). (7)
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Table 1: A comparison table of state of the art approaches

Approach Spectral/No.
color channels

No.
Bounces

No. illuminants No. spectral
reflectances

Known
Geometry

Dependency on

Nayar et al.. [6] 1 ∞ 1 Multi No Shape from shading
Funt et al. [9] Spectral 2 2 1 2 No -
Nayar and Gong [16] 3 ∞ 1 Multi No Shape from Shading
Funt and Drew [10] 3 2 1 2 No -
Seitz et al. [11] 1 ∞ 1 Multi No ISF matrix
Liao et al. [12] 1 2+ 2+ 1 No 2 Calibration steps
Our model Spectral ∞ 1 Multi Yes -

By modeling the illumination using u basis functions
denoted as Ei, the spectral power distribution can be
written as:

E(λ) =

u∑
i=1

εiEi(λ). (8)

Similarly, the two surfaces’ spectral reflectances are
modeled with v basis functions denoted as Rj :

R(1)(λ) =

v∑
j=1

σ
(1)
j Rj(λ),

R(2)(λ) =

v∑
j=1

σ
(2)
j Rj(λ). (9)

Using these equations, we can rewrite (7) as:

L(1)(λ) =
1

π

u∑
i=1

v∑
j=1

εiσ
(1)
j Ei(λ)Rj(λ),

L(2)(λ) =
1

π

u∑
i=1

v∑
j=1

εiσ
(2)
j Ei(λ)Rj(λ). (10)

Notice that, in these equations, the unknown pa-
rameters are εi, σ

(1)
j and σ

(2)
j , so we have 2v + u un-

known parameters.

In order to have more equations, the authors pro-
pose to take into consideration regions affected by in-
terreflections. In computer graphics, diffuse interreflec-
tions are modeled using configuration factors which give
the fraction of light from a surface that reaches the
other surfaces. Let us consider α12 the fraction of light
signal reflected from a surface 1 to a surface 2, and α21

the fraction of light signal reflected from surface 2 to
surface 1. Let Ljm be radiance reflected in every direc-
tion by one of the two surfaces (j = 1 or 2) in the
mutual reflection area, thus it can be written as:

L(1)
m (λ) = L(1)(λ) + α21L

(2)
m (λ)R(1)(λ),

L(2)
m (λ) = L(2)(λ) + α12L

(1)
m (λ)R(2)(λ). (11)

By developing these equations, we obtain:

L(1)
m (λ) =

L(1)(λ) + α21L
(2)(λ)R(1)(λ)

1− α12α21R(1)(λ)R(2)(λ)
,

L(2)
m (λ) =

L(2)(λ) + α12L
(1)(λ)R(2)(λ)

1− α12α21R(1)(λ)R(2)(λ)
. (12)

In order to make these equations easier to solve nu-
merically, the authors assume that the dominator is
equal to one. They suggest that this can be done with-
out significant loss in accuracy in most cases. That’s
because both α and R(λ) are inferior to one. Thus, the
equations can be rewritten as:

L(1)
m (λ) = L(1)(λ) + α21L

(2)(λ)R(1)(λ),

L(2)
m (λ) = L(2)(λ) + α12L

(1)(λ)R(2)(λ). (13)

However, for highly reflective materials (high values
of R(λ)), and for geometric configurations with high
values of α, this approximative model is far from being
accurate.

Moreover, with this latter assumption, only one bounce
of interreflection is considered, further bounces being
ignored; therefore, the previous equations represent a
two-bounce model.

From the previous equations, knowing that:

L(1)(λ)R(2)(λ) = L(2)(λ)R(1)(λ), (14)

the ratio between α12 and α21 can be written as:

α21

α12
=
L
(1)
m (λ)− L(1)(λ)

L
(2)
m (λ)− L(2)(λ)

. (15)

2 Each spectral function is modeled with three basis functions.
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This ratio can be known as all the radiances are
considered to be measurable, thus, only one unknown
parameter is added with two additional equations (13).

In order to solve the set of equations (10) and (13),
let us first consider the sensor sensitivity function Ck(λ)
for k = 1...p where p is the number of sensors. Then, by
integrating according to the wavelength over the visible
spectrum of light, we can define the following precalcu-
lated tensor:

gijk =
1

π

∫
λ

Ei(λ)Rj(λ)Ck(λ)dλ. (16)

By rewriting equations (10) and (13) in terms of
camera response, we can write the k-th sensor response,
ρk, as follows:

ρ
(1)
k =

u∑
i=1

v∑
j=1

εiσ
(1)
j gijk, (17)

ρ
(2)
k =

u∑
i=1

v∑
j=1

εiσ
(2)
j gijk, (18)

for the response of the camera to the radiance reflected
after one light bounce on surfaces 1 and 2, and:

ρ
m(2)
k = ρ

(2)
k + α12

u∑
i=1

v∑
j=1

v∑
j′=1

εiσ
(1)
j σ

(2)
j′ hijj′k, (19)

for the camera response in the mutual reflection area
taking into consideration only one bounce of interreflec-
tion, where:

hijj′k =
1

π

∫
λ

Ei(λ)Rj(λ)Rj′(λ)Ck(λ)dλ. (20)

Now, the set of equations (17), (18) and (19) for the
unknown parameters: εi, σ

(1)
j , σ(2)

j and α needs to be
solved. Representing light spectral power distribution
and spectral reflectances using three basis functions for
each, will lead to 10 unknowns. However, having three
sensors, and three equations, we have only 9 equations.
Then, in order to be able to solve this problem and use
only three sensors, the authors impose that ε1 = 1, thus
neglecting the brightness of the surfaces.

As we have seen above, the idea behind this work is to
use interreflections in order to obtain the spectral power
distribution of illuminant and the spectral reflectance
of surfaces. This is possible by supposing that there is
at least one point on each surface without the effect
of interreflections. In addition, the authors studied the
convergence and uniqueness of their solution, and they
provided a discussion on how the parameter α varies
with the angle between the two surfaces and the rela-
tive position.
This approach gives an approximation of the spectral
reflectance of surfaces and the spectral power distri-
bution of light based only on one RGB image. More-
over, no calibration or pre-processing is needed. How-
ever, only ambient light is considered (isotropic diffuse
illumination). This assumption is made in order to con-
sider the irradiance at each point of both surfaces to be
the same. In addition, the method considers only two
convex lambertian surfaces with uniform spectral re-
flectances. The existence of at least one point on each
surface with no mutual illumination is needed. The au-
thors also suppose that taking into consideration only
two light bounces is sufficient, which is not the case for
all scenes.

Later, this work has been extended to a variational
approach in order to relax some constraints, especially
those related to diffuse illuminant and to the number
of surfaces. However, the complexity of the algorithm
has considerably increased and the model still handles
only one bounce of interreflection [18].

3.2 Color space analysis of interreflections

In a more recent work [10], Funt and Drew focused their
attention on an analysis in RGB color space to separate
the color with no interreflection from the color after one
bounce of interreflection. The configuration is similar to
the previous work: two homogeneous color flat surfaces.
The light is assumed to be constant regarding its spec-
tral power distribution but its irradiance can vary with
position.

The main idea behind this work is that a plane in
RGB space can be formed from two colors: the color
after one bounce of light, i.e. without taking into con-
sideration interreflection, called one-bounce color, and
the color after two bounces of light, called two-bounce
color. Then, the intersection between the two planes
corresponding to the two surfaces gives the two-bounce
RGB color.

In a two-bounce model, the radiance received by an
area on the first surface corresponding to a pixel x in
the image can be written as:
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L(1)(x, λ) ' α(1)(x)E(λ)R(1)(λ)

+β(12)(x)E(λ)R(1)(λ)R(2)(λ),
(21)

where α(1)(x) represents the variation of irradiance at
point x, and β(12)(x) represents the relative contribu-
tion of interreflection to the radiance.

A similar equation can be written for the second
surface.

By multiplying equation (21) with sensor spectral
response and then by integrating over the visible spec-
trum, the previous equation can be written in terms of
camera response as:

ρ
(1)
k (x) ' α(1)

1 (x)ρ
(1)
k,1(x) + β

(12)
1 (x)ρk,2(x),

ρ
(2)
k (x) ' α(2)

1 (x)ρ
(2)
k,1(x) + β

(12)
1 (x)ρk,2(x), (22)

where ρk,1 represents response of the sensor k after one
bounce of light, and can be written as:

ρ
(1)
k,1(x) =

1

π

∫
λ

E(λ)R(1)(λ)Ck(λ)dλ,

ρ
(2)
k,1(x) =

1

π

∫
λ

E(λ)R(2)(λ)Ck(λ)dλ, (23)

and ρk,2 represents the sensor k response for the color
issued from taking into consideration two bounces of
light, and can be written as:

ρk,2(x) =
1

π

∫
λ

E(λ)R(1)(λ)R(2)(λ)Ck(λ)dλ. (24)

From equation (22), we can see that all image val-
ues corresponding to one surface can be written as a
linear combination of one-bounce and two-bounce col-
ors, thus they lie in a plane defined by these two colors.
The plane of each surface is found by singular value de-
composition of all color values of this surface. The two
vectors defining the plane are the first two eigenvectors.

The two-bounce color corresponds to the intersec-
tion between the two planes (corresponding to first and
second surfaces). This intersection can be found by al-
gebra. However, this method fails to find precisely the
one-bounce color except under an assumption that there
exists at least one point on each surface that is not af-
fected by interreflections.

Given that one can obtain the one-bounce and two-
bounce colors, the original image can be easily decom-
posed into two components corresponding to these col-
ors.

This approach was tested on both synthetic and real
images. The authors studied some special cases where

the two colors do not differ enough leading to confound
the two planes into one. However, they suggested that
SVD can detect this kind of cases, where no separation
of these two colors is possible.

This method separates one-bounce and two-bounce
colors based on RGB values taken from one image. It
is fast and needs no calibration or preprocessing. How-
ever, only one bounce of interreflection is taken into
consideration, and each surface needs to have a uni-
form spectral reflectance. Spectral power distribution
of lighting needs to be uniform in all directions. More-
over, this approach failed to suggest an upper bound
to the one-bounce color, so it assumes the existence of
at least one point on each surface that is not affected
by interreflections. A real world scene satisfying this
assumption is rather hard to meet.

3.3 Radiosity-Based Approaches

None of the previously presented approaches tried to
provide a model for interreflections. However, the ma-
jority of the existing approaches in the state of the art
are based on a physical definition of interreflections,
presented in this section, providing a rigorous model to
handle interreflections in computer vision applications.

3.3.1 Continuous model

Inspired by radiosity equation in computer graphics [1],
Koenderink and Van Doorn [19] introduced an inter-
reflection equation for Lambertian surfaces based on a
definition of a geometrical kernel. Different approaches
in the literature, especially in shape from shading re-
search field, are based on this equation. Based on the
works by Koenderink and Van Doorn [19], and by Forsyth
and Zisserman [4, 5, 20] and Nayar et al. [6], the inter-
reflection equation can be written, using the notations
and definitions introduced in Section 2, as:

L(Pi) = L1(Pi) +
ri
π

∫
Pj∈S

K(Pi, Pj)L(Pj)dPj , (25)

where S is the area containing all surface elements of
the scene, and K(Pi, Pj) is the geometrical kernel (or
interreflection kernel), driven from the definition of the
geometrical extent subtended by any pair of points Pi
and Pj in the scene, defined as:

K(Pi, Pj) =
(
−→
Ni.
−−→
PiPj)(

−→
Nj .
−−→
PjPi)V (Pi, Pj)

∆4
, (26)
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where
−→
Ni and

−→
Nj are the normals of surface elements i

and j respectively, the dot operator . is the dot product
between two vectors, ∆ is the euclidean distance be-
tween the two points, and V (Pi, Pj) is a visibility func-
tion giving 1 when the two points can see each other
and 0 otherwise, it can be defined as follows:

V (P1, P2) =

−→
N1.
−−−→
P1P2 + |

−→
N1.
−−−→
P1P2|

2|
−→
N1.
−−−→
P1P2|

.

−→
N2.
−−−→
P2P1 + |

−→
N2.
−−−→
P2P1|

2|
−→
N2.
−−−→
P2P1|

.

(27)

Equation (26) is driven from the definition of the ge-
ometrical extent, (see equation (2)). The reason behind
that ∆ is raised to the power 4 instead of the power 2,
is the use of dot products instead of cosθi and cosθj in
the numerator.

Note that this interreflection equation stands only
for Lambertian surfaces as the radiance is assumed to
be the same in all directions: L(Pj , Pi) = L(Pj).

Equation (25) does not have a straightforward so-
lution for L(Pi). However, an analytical solution to
this equation exists in case of uniformly colored sur-
faces [19], by modeling infinite bounces of direct radi-
ance, using Neumann series:

L(Pi) = L1(Pi) +

∞∑
b=1

rb
∫
Pj∈S

Kb(Pi, Pj)L1(Pj)dPj ,

(28)

where b denotes the number of bounces,

Kb(Pi, Pj) =

∫
Pk∈S

K(Pi, Pk)

π
Kb−1(Pk, Pj)dPk, (29)

and,

K1 =
K

π
, (30)

The solution, valid only in the case of Lambertian
surfaces with a uniform reflectance, can be computed
iteratively.

3.3.2 Discrete model

A more general solution to the interreflection equation
is proposed by Nayar et al. [6] by sampling the surface
to m facets. Both radiance and reflectance are consid-
ered to be constant over each facet. Considering the
facets to be infinitesimally small, a facet i is represented
by a point Pi and its area ∆Pi. Then, equation (25) can
be written as:

L(Pi) = L1(Pi) +
ri
π

∑
j 6=i

LjKij , (31)

where:

Kij = K(Pi, Pj)∆Pj . (32)

Then, the authors introduced a matrix form for the
geometrical kernel:

K =
1

π


0 K12 . . K1m

K21 0 . . K2m

. . 0 . .

Km1 . . . 0

 . (33)

Note that this matrix is always symmetric, i.e.,Kij =

Kji.
Moreover, as each facet has its own spectral re-

flectance, those for all the facets can be gathered into
a diagonal matrix, denoted as R:

R =


r1 0 ...... 0

0 r2 .... 0

. . . ....

. . . ...

0 0 .. rm

 . (34)

Then, equation (31) can be written as:

L = L1 +RKL, (35)

or:

L = (I−RK)−1L1, (36)

where L and L1 are vectors containing respectively the
final radiance as perceived by the observer, and the ra-
diance after the first bounce of direct light values on
each facet.

3.3.3 Application to shape from shading

Nayar et al. [6] used equation (36) to iteratively correct,
for gray surfaces, a pseudo shape and pre-estimated
reflectance values obtained by applying a shape from
shading method.

The authors’ first approach handled only one wave-
length. Later, they extended it to three wavebands cor-
responding to RGB channels [16]. They considered that
the image produced by a sensor with a narrow-band fil-
ter represents reflections and interreflections of almost a
monochromatic light. The shape from shading method
and the recovery of actual shape using interreflections
are applied separately for each color channel.
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In these approaches, both geometry and spectral re-
flectance are unknown and need to be estimated. Sur-
faces with different reflectances per position can be han-
dled, but this method requires that the surface has no
discontinuity.

3.3.4 Extension and application to interreflection
removal via light field

In the work by Seitz et al. [11], a theoretical proof of the
existence of a linear matrix transformation to obtain
the first-bounce radiance from the final radiance for any
scene is presented. An application of this theoretical
model is also presented for lambertian surfaces for any
lighting condition and without the use of a shape from
shading method.

The existence of interreflection cancellation opera-
tors enables the computation of n-bounce images (i.e.
images that would be obtained by capturing only light
rays being bounced n times), for each n, by matrix mul-
tiplication. This stands for any scene geometry and sur-
face BRDF.

The total radiance between two points written as:

L(Pi, Pj) = L1(Pi, Pj) + L2(Pi, Pj) + L3(Pi, Pj) + ...,

(37)

can be expressed as a light transport equation:

L(Pi, Pj) = L1(Pi, Pj) +

∫
k∈S

APj (Pk, Pi)L(Pk, Pi).

(38)

The term APj
(Pk, Pi) is a general term: it defines

the proportion of irradiance from point Pk to Pi that
gets transported as radiance towards Pj . It is a function
of the surface BRDF and of the visibility between the
two points. Thus, this equation is similar to the inter-
reflection equation (25) but it is more general as non
Lambertian surfaces can be handled.

By presenting the previous equation in matrix form
and developing it, we obtain:

L = (I−A)−1L1. (39)

Equation (36) is a special case of this equation (39).
Then, for any scene, we can write:

L1 = C1L, (40)

where C1 is defined as (I−A). Therefore, it is possible
to remove interreflections by multiplying the radiance
vector with the linear matrix C1.

Moreover, the authors proved that any bounce of
light can be found iteratively by treating indirect light
coming from a point as if it was a direct light.

Later, the authors proposed to relate equation (39)
to image intensities: for a ray i with a unit radiance
illuminating one point i of the scene, the resulting light
field ti captured by the sensor represents the full light
transport in response to that ray. Vector ti is called Im-
pulse Scatter Function (ISF). For a surface represented
bym points, and by concentrating them corresponding
rays, we can define a matrix T as [t1 t2 ... tm].

The authors considered the light to be linear, then
the cancellation operator can be written as:

C1 = T1T
−1, (41)

whereT1 is the matrix containing Impulse Scatter Func-
tion (ISF) due to 1-bounce reflection (with no inter-
reflections).

Note that, although T is measurable, T1 is gener-
ally not, so this is only a theoretical proof. However,
for Lambertian scenes and based on images taken at
a single camera viewpoint, the cancellation operator is
unique, and T1 is a diagonal matrix. In addition, we
can write:

T1[i, i] =
1

T−1[i, i]
. (42)

In the case of Lambertian surfaces, the incident and
outgoing light fields are both two dimensional, ISF ma-
trix can be captured by scanning a narrow beam of
light (Laser) over the surface and capturing an image
for each position of the beam.

In this work, the authors presented an important
theoretical proof of the existence of a matrix operator to
cancel the mutual illumination in any kind of scene. An
application is provided in case of Lambertian surfaces
based on light field. This approach works in any lighting
condition, even challenging ones like flashlight and non
uniform light sources. In addition, it is robust in case of
occlusions. However, the method needs the construction
of ISFs based on laser beams, which is not always easy
or available for everyday applications.

3.3.5 Application to interreflection removal without
light field

Another method to remove interreflections is proposed
in [12]. The authors describe a method to separate n-
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bounced light rays in order to remove the effect of in-
terreflection. However, no light field or ISF matrix is
needed. The only preconditions are: a single colored
surface, and the possibility to illuminate the scene with
various light sources of different SPDs.

The main idea in this approach is that, for Lam-
bertian surfaces with uniform reflectance, whenever a
light ray is bounced, its corresponding intensity in the
image is attenuated by the factor r corresponding to
the albedo of the surface. Thus, the measured intensity
value can be written as a polynomial function of r, and
the contribution of an n-bounced ray can be expressed
as rn.

Based on a similar definition of the geometrical ker-
nel as introduced before, and considering only Lam-
bertian surfaces with a homogeneous color, the authors
rewrote equation (28) as:

L(Pi) =
E0(Pi)

π
r+

∞∑
n=1

rn
∫
j∈S

Kn(Pi, Pj)
rE0(Pj)

π
dPj .

(43)

This equation can be seen as a polynomial function
of r, and can be rewritten as:

L(Pi) =
E0(Pi)

π
r+

∞∑
n=2

(

∫
j∈S

Kn−1(Pi, Pj)
E0(Pj)

π
dPj)r

n.

(44)

By defining:

C1(Pi) =
E0(Pi)

π
,

C2(Pi) =

∫
j∈S

K1(Pi, Pj)
E0(Pj)

π
dPj ,

...

Cn(Pi) =

∫
j∈S

Kn−1(Pi, Pj)
E0(Pj)

π
dPj , (45)

we can write:

L(Pi) =

∞∑
n=1

Cn(Pi)r
n. (46)

By considering only the first two bounces of light,
the previous equation becomes:

L(Pi) = C1(Pi)r + C2(Pi)r
2. (47)

Note that the terms Cn depend upon direct irradi-
ance and scene geometry. When the radiance L(Pi) is

measured twice (L(1)(Pi), L
(2)(Pi)) for the same light-

ing and scene geometry but for two different known
albedos of the surface (r1, r2), the following two equa-
tions (with two unknowns C1 and C2) can be written
as:

L(1)(Pi) = C1(Pi)r1 + C2(Pi)r
2
1,

L(2)(Pi) = C1(Pi)r2 + C2(Pi)r
2
2. (48)

There are two major difficulties with these equa-
tions. The first one is how to change surface albedo eas-
ily. The second is how to determine the surface albedo.

For the first issue, the authors proposed to simulate
the change of surface albedo by varying the light color,
based on the idea that albedo is light spectrum depen-
dent. However, C1 and C2 depend upon direct irradi-
ance, so the previous equation solving holds only when
lighting is the same. In order to keep only two unknowns
in the equation, the authors calibrated the light source
to calculate the ratio between the irradiance received
from different light sources. For this purpose, they use
a gray convex object having a wavelength-independent
albedo for any light spectrum.

Assuming that the irradiance with the second light-
ing is α times the irradiance with the first one, i.e.,
E

(2)
0 (P1) = αE

(1)
0 (P1), and considering that the ratio

between the two albedos, β, is known, the equations in
(48) become:

L(1)(Pi) = C1(Pi)r1 + C2(Pi)r
2
1,

L(2)(Pi)/α = βC1(Pi)r1 + βC2(Pi)r
2
1. (49)

Knowing α and β, the terms C1(Pi)r1 and C2(Pi)r
2
1

can be calculated.
Another calibration step is needed to obtain β by us-

ing a non-concave object of the same material, thereby
having the same reflectance, as the object of the scene.
This calibration step is used to calculate the ratio be-
tween image intensities corresponding to the used lights.

In this approach, the authors use two images to sep-
arate the first and second bounced light with no need
to construct a light field. This method is suitable for
real-time applications and can be applied for all scenes
whatever the geometry is, and under any static light
sources. This approach can be extended in order to
separate more bounces with the condition of adding a
lighting with a different SPD for each additional bounce
needed. However, this algorithm is applicable only to
surfaces having a uniform reflectance. In addition, two
calibration steps are needed using a gray-scale sphere
and a non-concave surface of the same material as the
surfaces in the scene.
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Later, Fu et al. [13] extended this approach using
fluorescing surfaces. They proposed to remove the ef-
fects of interreflections by a bi-spectral observation of
fluorescent and reflective components. Their approach
is based on a single image, under the assumption of
available fluorescent materials.

Other Radiosity-based approaches are worth to be
listed, Shimshoni et al. [21] used an inter-reflection model
similar to [16] coupled with a reflectance model for spec-
ular objects to recover the shape of polyhedral objects.
Stewart and Langer [22] adapted a similar interreflec-
tion model to be used for shape recovery under dif-
fuse lighting. Chandraker et al. [23] showed that inter-
reflection solve generalized bas-relief ambiguity in un-
calibrated photometric stereo.

3.4 Other Approaches

There exist in the literature other approaches that tried
to handle interreflections. In this section, a brief de-
scription of these approaches is given. We chose to not
give a detailed presentation of these methods for mainly
two reasons, either because they do not treat interreflec-
tions directly, or because they do not fit in the main
domain of interest of this survey.

Based on the dichromatic reflectance model pro-
posed by Shafer [24], Bajcsy et al. [25, 26] analyzed in-
terreflections by dividing them into four components,
interface-interface, body-interface, interface-body and
body-body reflections. The authors proposed a method
that can handle and separate some interreflections in a
metric space of intensity, hue and saturation in order to
perform color image segmentation for dielectric materi-
als. In [27], the authors located image areas affected by
interreflections in the chromaticity sphere. Given that
object colors are already estimated, they found the in-
terreflection color by plane intersection.

In spectral imaging, Tominaga et al. [17, 28] pro-
posed to use interreflections between fluorescent objects
in order to characterize the spectral image component
from the observed spectral radiance. Their method is
based on a two-bounce bispectral interreflection model.

In the domain of object recoloring, handling inter-
reflections can be necessary in order to give realistic
rendering. A common approach for Lambertian scenes
is to estimate two intrinsic images: reflectance intrinsic
image related to surface reflectance, and illumination
intrinsic image related to light’s SPD. Then, in order to
take into consideration diffuse interreflections, Caroll et
al. [29] proposed a user-assisted method to separate the
illumination intrinsic image into direct and multiple in-
direct components. In another work, Beigpour and Van

de Weijer [30] proposed to estimate Multi-illuminant
Dichromatic Reflection model for a pre-segmented single-
colored object in order to deal with multiple light sources,
and indirect light sources such as interreflections.

Interreflections, as well as other indirect illumina-
tion, have been also studied in the domain of 3D-scanning
using structured light. Nayar et al. [31] presented a
method to separate the radiance into direct and indi-
rect components by using high frequency illumination
patterns. Based on this work, many researchers [32–34]
have proposed to perform scanning under indirect illu-
mination using structured light. However, these meth-
ods may fail in case of strong interreflections, in addi-
tion they suffer from noise and need a high number of
images compared to the traditional techniques. In order
to handle interreflections, Couture et al. [35] used band-
pass unstructured patterns, but a large number of im-
ages is still required in this approach. Recently, Gupta
et al. [36] analyzed the error in structured lights intro-
duced by indirect illumination and proposed to combine
different binary structured light pattern, each resilient
to an individual indirect illumination in order to ob-
tain a 3D scanning system applicable in the presence of
a broader range of indirect illumination while needing
fewer images compared to the previous approaches.

4 Spectral Infinite-Bounce Model

In this section, we propose an original spectral infinite-
bounce model which is more general than the ones pre-
sented in Section 3 and Table 1. It relates directly a
physical model of interreflection to image values. This
model is defined based on radiometric concepts. First,
the continuous model is presented. Then, we introduce
the model after surface sampling yielding to a matrix
formalism. Finally, a generalization of this model, in or-
der to take into consideration all wavelengths, is given.

4.1 Bases of the model

As seen before, the total irradiance in the scene is the
sum of direct irradiance and indirect irradiance (irradi-
ance after the first bounce of light, the second one, the
third one and so on..). The total irradiance in a given
position P1, received after one bounce of light from all
other points Pi of the surface, can be written as:

E1(P1) =

∫
Pi∈S

ri
E0

π
K(Pi, P1)dPi, (50)

where the definition of geometrical kernel,K(Pi, P1),
is given by equation (26).
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Similarly, taking into consideration the second bounce
of light from all points Pj , we can write:

E2(P1) =

∫
Pi∈S

∫
Pj∈S

rirj
E0

π2
K(Pj , Pi)K(Pi, P1)dPjdPi,

(51)

and for the third bounce:

E3(P1) =

∫
S

∫
S

∫
S
rirjrk

E0

π3
K(Pk, Pj)K(Pj , Pi)

K(Pi, P1)dPkdPjdPi,

(52)

and so on.
The drawback of the continuous model is that the

equations contain integrals which cannot be analyti-
cally computed in the general case. By sampling the
surface into a finite number of facets as proposed by
Nayar et al. [6], a discrete version of this model can be
obtained, providing a simpler mathematical formalism.

By sampling the surface into m infinitesimal facets,
the irradiance after first, second and third bounces can
be written as:

E1(P1) =
∑
i∈S

ri
E0

π
K(Pi, P1)dPi, (53)

E2(P1) =
∑
i∈S

∑
j∈S

rirj
E0

π2
,K(Pj , Pi)K(Pi, P1)dPidPi,

(54)

E3(P1) =
∑
i∈S

∑
j∈S

∑
k∈S

rirjrk
E0

π3
K(Pk, Pj)K(Pj , Pi)

K(Pi, P1)dPkdPjdPi.

(55)

Both irradiance and reflectance are considered to be
constant over each facet.

Note that K(Pi, Pj) is the element (i, j) of matrix
K presented earlier in equation (33). Note also that
ri is the element (i, i) of the matrix R presented pre-
viously in equation (34). Then, the irradiance vector,
corresponding to the surface irradiance in its m facets,
after n bounces of light can be written as:

E =

b=n∑
b=0

(KR)bE0. (56)

Note that the division on π has been included inside
K.

This sum is a geometric series, which, when n goes
to infinity, converges to:

E = (I−KR)−1E0. (57)

The convergence is guaranteed and can be proved
physically. The energy after each bounce decreases for
Lambertian nonfluorescent surfaces. This is a general
equation of irradiance after infinite bounces of light for
a Lambertian scene. This equation is a function of wave-
length.

The total irradiance E is unknown and cannot be
measured easily, in opposition to the total radiance.
Hence, equation (57) can be written in terms of total
radiance as:

L =
1

π
R(I−KR)−1E0

=
1

π
(R−1 −K)−1E0.

(58)

4.2 Relation with Nayar’s model [6]

At first sight, equation (58) seems different from (36)
proposed by Nayar et al. [6] (cf. section 3.3.2). However,
by developing equation (36) in order to write it in term
of irradiance, we can show that they are equivalent:

1

π
RE = (I−RK)−1

1

π
RE0. (59)

Then,

E = R−1(I−RK)−1RE0

= ((I−RK)R)−1RE0

= ((R−1(I−RK)R))−1E0

= (I−KR)−1E0

(60)

4.3 Generalization to Spectral Model

In a vision system, the radiance is captured by cam-
era sensors, and is converted to image intensity values
based on sensors’ response functions as follows:

ρj=

∫ λl

λ1

Cj(λ)L(λ)dλ. (61)

By sampling the spectrum, this equation can be
written in a matrix form:
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ρ = CLλ, (62)

where ρ is a column vector containing the sensor values
of a pixel, C is the camera response matrix of size s× l
where s is the number of channels and l is the number
of wavelengths, and Lλ is a column vector containing
the radiance values at all different wavelengths.

Let us note that the previous equation is defined for
one pixel and all wavelengths. However, the equation
of radiance with interreflection introduced earlier is de-
fined for one wavelength and for all pixels in order to
take into consideration the geometrical kernel. Thus, in
order to be able to combine the two equations, we need
to extend the matrices to take into consideration both
all pixels and all wavelengths.

We propose to extend the vector ρ to the vector ρext
whose size is ms × 1, where m is the number of pixels
in the image, and whose form is:

ρext =
[
ρ11 .. ρ1m ρ21 .. ρ2m ... ρb1 .. ρbm

]T
.

(63)

The vector of irradiance E0 is extended in a similar
way. The extended form, E0ext, has the size of ml × 1

by concatenating the E0 vector for each wavelength one
after the other.

The reflectance matrix R is extended to the square
diagonal matrix Rext whose size is ml × ml. As R is
defined for one wavelength, we can name it Rλ, then
the extended form is a concatenation of all diagonal
matrices, Rλ, on the diagonal of the new matrix:

Rext =


R1 0 ...... 0

. R2 ..... .

. .... . 0

0 . ...... Rl

 . (64)

The geometrical kernel matrix K is extended to a
ml×ml block matrix whose blocks on the diagonal are
K and all others are zero block matrices:

Kext =

K 0 ...... . . . . 0

. K . .... . . . .

0 0 .. . . . ...... K

 . (65)

Finally, the camera response matrix is extended to
the size ms×ml to take into consideration all the pix-
els. In order to explain the form of matrix Cext, let us
introduce the matrix Ci

λ whose size is m×m:

Ci
λ =

ciλ1
0 ...... . . . . 0

0 ciλ1
. .... . . . .

0 0 .. . . . ...... ciλ1

 . (66)

Then, the extended matrix form of C can be written
as:

Cext =


C1
λ1

C1
λ2
...... . . . . C1

λl

C2
λ1

C2
λ2
...... . . . . C2

λl

. . . . . . . .

Cs
λ1

Cs
λ2
...... . . . . Cs

λl

 . (67)

After the introduction of these new matrices, a gen-
eralized spectral form of the equation (58) can be writ-
ten as:

ρext =
1

π
Cext(R

−1
ext −Kext)

−1E0ext. (68)

5 Estimation of the geometrical kernel

In this section, a more detailed study of the geometrical
kernel is given. The problem of its calculation and a
proposed solution are introduced.

5.1 The problem

The calculation of the discrete geometrical kernel pre-
sented in section 3.3.2 gives good approximation only
in case that the facets i and j are infinitesimal and dis-
tant from each other. However, in vision systems, we
are limited to the resolution of sensors when choosing
the size of facets.

As the distance between the facets becomes smaller,
especially when the facets are adjacent (see Figure 3),
the error of calculation becomes important. Thus, cal-
culation based on this discrete geometrical kernel model
becomes false. This problem was identified by Nayar et
al. [6], but no solution has been proposed.

5.2 Monte Carlo estimation

The definition of geometrical kernel is driven from the
definition of geometrical extent, which is defined be-
tween two surfaces S1 and S2 and can be written in
terms of solid angle as:

d2G = dS1cosθdω, (69)
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Z

X

Y

Fig. 3: Geometrical Kernel Problem: in the case of these
two facets (in dark green and dark red), the error of
calculation is important

where dS1cosθ is the apparent area of the infinitesimal
surface dS1, and dω is an infinitesimal solid angle.

The function we need to estimate is then:

G =

∫
P1∈S1

∫
Ω

cosθdωdP1, (70)

where Ω is the set of direction where S2 is visible to S1,
this can be found by projecting S2 on the unit hemi-
sphere centered on P1.

In order to resolve this problem we propose to esti-
mate this integration with Monte Carlo estimator. This
is done by sampling the surface of each facet and the
hemisphere around the sample point: one million sam-
ples are chosen randomly over the facet, and from each
sample point a ray with a random direction inside the
hemisphere is traced to see if it hits the other facet.
Finally, the geometrical kernel is obtained by dividing
the geometrical extent on the surface of the facet.

Note that, the previous definition of geometrical ex-
tent based on solid angle is chosen for our estimator
instead of the definition based on the distance between
the two facets. This choice is motivated by the fact that
using the distance for adjacent facets is prone to error.

6 The Model in Practice: Experiments and
Results

We performed the experiments with two objectives in
mind. The first is to study the accuracy of our model in
interreflection simulation in comparison to real camera
outputs. The second objective is to study the effect of

using infinite bounces in comparison to using only two
bounces. As seen in the state of the art, using only two
bounces is very common to simplify the interreflection
model [9, 10,12].

We divide the experiments in several sets to cover
different cases of interreflection. The extensive study
is performed for cases of self-interreflection and inter-
reflection between two different surfaces for two planar
Lambertian surfaces S1 and S2 having an edge con-
tact as illustrated in Figure 4, with a known angle θ
between them. Each surface has its own coordinates
system, X1Y1 and X2Y2 for S1 and S2 respectively. By
defining a global coordinates system XY Z as shown
in Figure 4, and by performing the coordinates system
changes, the geometrical kernel can be easily obtained
by Monte Carlo estimation after discretization each sur-
face into a finite set of facets. Later, other experiments
handling more complicated surfaces and geometries are
also shown.

In order to be able to perform these experiments,
we assume that the geometrical kernel, the direct irra-
diance, the surface spectral reflectance, and the cam-
era response functions are known. Then, the model can
be tested for its ability to accurately simulate the cam-
era sensor values in case of interreflection. Using Canon
EOS 1000D camera with known spectral responses, we
captured images, in RAW format, of the used patches
under the same configuration as in simulation in order
to compare simulated images to real ones. All spectral
functions are taken between 400 nm and 700 nm with a
a discretization step of 10 nm. The user chose the area
corresponding to a surface in the image, then this area
is discretized in the same way as in the simulation. The
mean value over each discrete facet is calculated and
compared with the corresponding simulated value. An
example of a the camera output we uses in our experi-
ments is shown in Figure 5.

6.1 Self-interreflection

We chose to start with the case of self-interreflection,
where interreflection happens between surfaces having
the same spectral reflectance. In this case, the effect of
interreflection can be easily observed and compared.

In this experience, we used six uniform colored pa-
pers, one of them is a Red Munsell paper (5R 6/12),
and the other five are textile samples (see Figure 6).
For each sample, we have a set of two patches of size
4×4 cm. The spectral reflectances of these papers were
measured using the Minolta X-Rite Color i7. Using a
platform to fix two papers on planar surfaces and to set
various angles between them, we were able to capture
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Y1θ

Fig. 4: First case study: two adjacent planar surfaces
with a known angle θ

Fig. 5: An example of a camera output we used in our
experiments: an orange and a Munsell red patches with
an angle of 45◦

images of interreflections between two surfaces with an-
gles of 45◦ and of 60◦ between them.

Fig. 6: The set of used samples: the first sample is a
Munsell paper (5R 6/12 Mat). The other samples are
textile ones.

Two different configurations are used to perform the
experiments. The first is in a dark room, we use a light

source to illuminate directly the platform of interreflec-
tion. The spectral power distribution of this light is
measured using the Minolta cs-1000 spectroradiometer
(see Figure 7). The irradiance received from direct light
at each point need to be known. For this purpose, we as-
sume having a homogeneous light source assuring that
every point receives approximately the same amount of
light. The second is under direct sunlight in the early
afternoon, we use CIE Standard Illuminant D50 to sim-
ulate this light.

Even though we did not control all the settings in
our acquisition, we were able to evaluate the ability of
our model to simulate interreflections by comparing it
to RGB values from real camera output.
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Fig. 7: Spectral Power Distribution of the lighting used
in the indoor experiments.

Results We used our model to simulate infinite-bounces
images for two patches of the same color with a known
angle between them (60◦ and 45◦). In addition, to be
able to see the effect of using an infinite number of
bounces instead of only two, we used our model to sim-
ulate two bounce images of the two patches under the
same configuration. This process was then repeated for
all the patches in our sample set. The number of facets
used in simulation is 8 × 8, where each facet is of size
5× 5 mm corresponding to approximately 2000 pixels.

Root mean square error (RMSE) values between the
vector of all RGB values of camera outputs and that of
the simulated image using our model with two bounces
and infinite number of bounces are given in Tables 2
and 3 for angles of 45◦ and 60◦ respectively for the case
of indoor direct light, and in Tables 4 and 5 for angles of
45◦ and 60◦ respectively for the case of direct sunlight.

In Figure 8, we show an example of obtained RGB
values in the case of two pieces of Munsell sheets, of
the same color, with an angle of 45◦ between them.
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The values obtained from the camera output, and from
simulation with infinite bounces and with two bounces
are shown.

(a) With real image values

(b) With ∞-bounce

(c) With 2-bounce

Fig. 8: Real and constructed image values of two Mun-
sell papers with an angle of 45◦ in indoor environment
under direct light.

Table 2: RMSE values between the simulated image
values using 2 and ∞ bounces and the camera output,
for self-interreflection under indoor configuration with
an angle of 45◦. Significant differences are highlighted
in green when the error is reduced and in red otherwise

RMSE (%) 2 bounces ∞ bounces
R G B R G B

Red Munsell 8.6 3.4 0.3 5.7 2.7 0.4
Red 7.9 4.1 0.3 8.7 3.1 0.3
Orange 9.6 5.9 0.2 7.2 4.0 0.3
Blue 2.5 3.6 2.4 2.4 3.5 2.5
Cyan 1.2 7.2 3.7 1.5 4.0 2.1
Gray 4.2 7.3 1.7 4.2 5.6 1.5

6.2 Interreflection between two surfaces with different
colors

In this section, we study the case of interreflection be-
tween two surfaces with different spectral reflectance

Table 3: RMSE values between the simulated image
values using 2 and ∞ bounces and the camera output,
for self-interreflection under indoor configuration with
an angle of 60◦. Significant differences are highlighted
in green when the error is reduced and in red otherwise.

RMSE (%) 2 bounces ∞ bounces
R G B R G B

Red Munsell 7.3 3.5 0.6 4.6 2.8 0.6
Red 6.7 3.5 0.6 5.4 3.0 0.7
Orange 7.2 5.3 0.3 8.0 4.3 0.3
Blue 3.2 4.0 3.2 3.1 3.9 3.4
Cyan 1.7 6.2 6.2 1.6 5.4 2.1
Gray 3.9 6.4 1.5 3.7 5.3 1.4

Table 4: RMSE values between the simulated image
values using 2 and ∞ bounces and the camera output,
for self-interreflection under outdoor configuration with
an angle of 45◦. Significant differences are highlighted
in green when the error is reduced and in red otherwise

RMSE (%) 2 bounces ∞ bounces
R G B R G B

Red Munsell 10.6 6.5 1.3 4.7 4.5 0.9
Red 6.6 1.2 2.3 3.1 1.8 1.4
Orange 6.1 2.3 1.6 5.3 3.6 0.6
Blue 10.0 2.9 9.9 9.9 3.1 9.7
Cyan 3.9 5.4 5.1 3.1 1.9 4.4
Gray 3.6 2.6 3.0 3.8 3.2 3.5

Table 5: RMSE values between the simulated image
values using 2 and ∞ bounces and the camera output,
for self-interreflection under outdoor configuration with
an angle of 60◦. Significant differences are highlighted
in green when the error is reduced and in red otherwise

RMSE (%) 2 bounces ∞ bounces
R G B R G B

Red Munsell 11.2 6.7 3.2 7.7 5.4 2.1
Red 8.2 5.9 1.6 5.4 4.5 1.0
Orange 7.4 4.1 1.8 3.4 2.3 0.8
Blue 27.4 7.0 34.1 27.4 6.9 33.9
Cyan 2.4 2.5 3.2 2.0 3.5 3.3
Gray 6.1 4.4 7.3 6.1 3.9 7.4

functions. The acquisitions were done under direct sun-
light whose spectral reflectance is considered that of
Standard Illuminant D50 in the simulation. The an-
gle between the two surfaces is set to 45◦. We did two
different experiments, the first is for interreflection be-
tween two colored surfaces. For this case, the patches,
the sizes, and all the other settings are exactly the
same as explained in the previous section. The sec-
ond is for interreflection between one colored surface
and another white one. Both surfaces are of the size of
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9cm×6cm, each is discretized into 100 facets of the size
of 9mm × 6mm. For the colored surfaces we used the
same set of patches as before. The white patch is the
White Balance Chart of the ColorChecker Passport.

Results in terms of RMSE values between camera
output and simulation are shown in Table 6 for in-
terreflection between two-colored surfaces and between
one white and one colored surfaces.

Table 6: RMSE values between the simulated image
values using 2 and ∞ bounces and the camera output,
for interreflection between two different surfaces under
outdoor configuration with an angle of 45◦. Significant
differences are highlighted in green when the error is
reduced and in red otherwise

RMSE (%) 2 bounces ∞ bounces
R G B R G B

Red Munsell 15.9 2.2 1.7 4.1 1.2 1.9
Orange 5.7 7.6 3.1 9.5 5.6 2.8
Red Munsell 8.2 3.0 4.3 5.8 2.5 5.0
Cyan 1.1 2.5 3.6 1.1 3.7 3.1
Red Munsell 4.7 3.1 2.3 5.9 3.1 2.8
Blue 5.3 5.4 8.9 5.9 5.7 8.6
White 0.8 7.3 7.9 2.6 5.5 4.4
Cyan 2.2 10.1 10.4 2.3 5.9 6.0
White 1.7 4.8 4.4 5.8 3.6 3.5
Red 18.8 4.8 4.6 10.5 5.4 4.9

6.3 Interreflection with different geometries and
surfaces

In this section, we present some examples of interreflec-
tion simulation with different geometries and more than
two surfaces with different spectral reflectance. The first
example is for two planar surfaces each of two colors
with an angle of 45◦ between them (see Figure (9)). The
acquisition is done under direct sunlight. Each surface
is of the size of 8cm × 4cm and is discretized into 100

facets of size 8mm × 4mm. The shared edge between
the surfaces is along the longest dimension.

RMSE values are shown in Table 7 for simulation
with infinite bounces and with two bounces for each
uniformly colored surfaces.

The second example is with a geometry of the shape
W where the central surfaces are shallower than the
exterior ones (see Figure (10)). The exterior surfaces
are both of a size of 10cm×8cm and are discretized each
to 200 facets of the size of 10mm× 4mm. The interior
surfaces are of a size of 10mm×4mm and are discretized
each to 100 facets of the size of 10mm × 4mm. The
shared edge between the surfaces is along the longest

Fig. 9: The camera output we used in our experiments
for surfaces with multiple spectral reflectances: orange-
red and cyan-orange surfaces with an angle of 45◦

Table 7: RMSE values between the simulated image
values using 2 and ∞ bounces and the camera output,
for interreflection between two different surfaces each of
two colors under outdoor configuration with an angle
of 45◦. Significant differences are highlighted in green
when the error is reduced and in red otherwise

RMSE (%) 2 bounces ∞ bounces
R G B R G B

Orange 1 4.4 12.0 1.1 8.7 9.7 1.4
Red 19.9 1.8 4.7 8.0 2.4 4.9
Cyan 2.3 4.6 2.5 1.5 3.4 1.9
Orange 2 8.3 8.9 0.6 7.4 6.7 0.6

dimension. The acquisitions here also are done under
direct sunlight.

Fig. 10: The camera output we used in our experiments
for surfaces with geometry showing occlusions: W shape
with red, orange, cyan and white surfaces. The angles
are approximately 45◦

RMSE values are shown in Table 8 for simulation
with infinite bounces and with two bounces for each
uniformly colored surfaces.
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Table 8: RMSE values between the simulated image val-
ues using 2 and ∞ bounces and the camera output,
for interreflection between surfaces of a W shape under
outdoor configuration. Significant differences are high-
lighted in green when the error is reduced and in red
otherwise

RMSE (%) 2 bounces ∞ bounces
R G B R G B

Red 18.5 7.1 5.2 10.7 5.1 5.3
Orange 11.7 2.9 5.3 6.0 4.4 2.7
Cyan 1.8 9.5 5.6 1.8 7.1 4.4
White 3.9 14.2 8.5 2.4 8.6 5.8

6.4 Discussion

From the previous tables, we can observe that there is
sometimes no significant enhancement when using an
infinite-bounce model in comparison to a two-bounce
model. However, the smaller the angle the stronger the
enhancement. This is especially true in case of out-
door configuration where the homogeneity of illuminant
can be guaranteed. In the case of Lambertian surfaces,
which is almost the case for the Munsell sheets, RMSE
values are always smaller when using our infinite-bounce
model. At first sight, it seems that the assumption that
it is enough to take into consideration only two bounces
of light, thus only one bounce of interreflection, is true.
However, if we look at the RSME values taken for the
closet facets to the joint edge between the patches, the
difference between RMSE values when simulating with
infinite bounces and with two bounces becomes impor-
tant. In Table 9, the evolution of RMSE values with
number of bounces in indoor configuration is shown. In
this table, RMSE values are calculated using only the
first column of facets; it is the closest to the shared
edge, thus the most subject to interreflection. The ef-
fect of interreflections is very important in this area and
decreases when getting farther from the joint edge. The
RMSE values are shown for the channel where the error
is the highest. For Munsell sheets, the error is tripled
when using only two bounces. The error decreases when
adding extra bounces.

Notice that this observation is true only in case of a
surface with a high reflectance (the surface spectral re-
flectance function shows high values). For surfaces with
low reflectance, the error difference is negligible. For
example, for the blue patch, the error in all cases is
small (see Table 9). The blue patch as a much lower
reflectance that the Munsell patch, as shown in Figure
11.

Figure (12) shows the evolution of RMSE values
with the column number starting from the shared edge
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Fig. 11: Spectral reflectance functions: Munsell patch
in red, blue patch in blue.

for the case of self-interreflection with an angle of 45◦

of Munsell Sheet.
We also compared the radiances after two bounces

and infinity of bounces. Figure (13a) shows that ra-
diance after infinite bounces of interreflection carries
more energy compared to that after one bounce of in-
terreflection for a facet close to the shared edge. When a
facet which is far from this edge, the difference between
the two radiances becomes small, (13b).

Fig. 12: RMSE values with column number starting
from the shared edge between: circle for infinite bounce,
cross for 2 bounces.

Sources of error The model we proposed is driven from
a physical background which guarantees its accuracy in
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Table 9: RMSE between the simulated image values of the column closest to the joint edge and those of the camera
output with an angle of 45◦

RMSE (%) Color Channel 2 Bounces 3 Bounces 4 Bounces ∞ Bounces
Munsell R 20.4 12.0 8.8 6.7
Red R 22.2 14.9 12.1 10.3
Orange R 21.4 11.7 7.6 4.5
Blue B 2.0 1.7 1.7 1.7

(a) Center facet in the column closest to
the joint edge

(b) Center facet in the column farthest
to the joint edge

Fig. 13: Radiance after two bounces, in red, and infi-
nite number of bounces, in green of interreflection for
Munsell red patch with an angle of 45◦.

the continuous domain and we have seen in Tables 2 to
6 that the error in simulation compared to the image is
less than 6% in most of the tests. Although this error
value can be considered as neglectable in most of the
computer vision applications, it is important to have
an idea about the reasons explaining this error. In the
following, a discussion about some possible sources of
this error is presented.

– Non homogeneity of light: The illuminant used in
our indoor experiments is an optical fiber behind a
diffusing disk, which illuminates directly the plat-
form. Even though we have considered the light to
be perfectly diffuse and homogeneous, in reality it is
not the case. Therefore, using a flat white surface,

we performed a study on the homogeneity of this
illuminant.
We measured the spectral power distribution of light
on different places on a region of the white surface
corresponding to the size of our samples. The coef-
ficient of variation of the RMSE between different
measurements is 1.4% . However, as the direct irra-
diance received on a surface element depends on its
distance from the light source, variations in irradi-
ance per surface element are important especially in
our experiments where surfaces are close to the light
source. We calculated the coefficient of variation of
RMSE values for two different distances between the
white surface and the light source. The value we ob-
tained is 14%. The two distances correspond to the
closest and farthest edges of the used interreflection
platform. In addition, we calculated the RMSE val-
ues between image intensities taken for the white
surface and its mean value. The RMSE values are
0.025, 0.031 and 0.013 for R, G and B channels re-
spectively. However, these values do not correspond
solely to the non-homogeneity of lighting, they are
related also to image noise introduced by the cam-
era sensors. Thus, these values may vary when the
settings of camera change.
The non-homogeneity of the indoor illuminant ex-
plain that the results in outdoor configuration are
better. However, ambient light is not taken into con-
sideration in outdoor simulation, which plays a role
too in increasing the error.

– Surface defects: the textile surfaces we have used
are not totally homogeneous. They show a texture
in them which introduces an error in the measure-
ments. Moreover, neither the size nor the angle are
totally controlled, which contributes to the error we
obtained.

– Facets size: the physical model is accurate in contin-
uous space. When passing to discrete space, the er-
ror is increased with the size of the facets. However,
in our case, doubling the number of facets reduced
the error of simulation of only 0.2% this probably
due to the noisy nature of the used camera outputs.
The choice of the number of facets is an important
trade-off between the processing time, the accuracy,
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and the sensors noise. For most vision application,
reasonably big facets can be the best choice.

Limitations One of the possible limitations of the pro-
posed model is the rapid increase of the number of
facets needed to to simulate interreflection with good
accuracy with the increase of complexity of geometry
or the spectral reflectances of the surface. This leads
to extremely big matrices and to a high complexity,
memory usage and processing time. One solution that
we are investigating is to use sparse matrices due to
the fact that the matrices used contains a large num-
ber of zeros. Even though the accuracy is theoretically
increased with the number of facets, image values are
more prone to sensor noise which introduces errors in
the simulation compared to real camera outputs.

7 Conclusion

In this paper, we have presented existing approaches
in the state of the art in the domain of interreflec-
tion modeling for computer vision applications. Differ-
ent classifications of these methods have been intro-
duced regarding the number of bounces and the num-
ber of color channels or wavelengths used, as well as
regarding the preconditions needed for each approach
to perform properly. Preconditions can be light related,
surface related or any dependency on other method or
on calibration steps.

Moreover, we introduced a new model, a spectral
infinite-bounce interreflection model, inspired by the
radiosity equation. In this approach, a physical model
of interreflection, taking into consideration an infinite
number of bounces, is directly related to RGB values
of an image. Complex Lambertian surfaces, with a dif-
ferent spectral reflectance per surface element, can be
handled. Our results proved the importance of the use
of infinite number of bounces to model interreflection
especially for areas close to edges where adjacent el-
ements can see each others. This model, being more
general than those of the state of the art, can open, we
believe, a new possibility in front of the research in this
area.

We aim to use this model in order to solve the in-
verse problem in computer vision. It can be used in
spectral reflectance estimation, in illuminant SPD esti-
mation or in color calibration. In addition, we believe
that this model can be used in combination with pat-
tern recognition approaches in domains such as deep
color constancy, image colorization, style transfer, etc.
However, an extension to non-Lambertian surfaces can
be important in order to be able to handle real-life im-
ages.
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