
HAL Id: hal-01900360
https://hal.science/hal-01900360v1

Submitted on 22 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mind the Gap: Autonomous Detection of Partitioned
MANET Systems using Opportunistic Aggregation

Simon Bouget, Yérom-David Bromberg, Hugues Mercier, Etienne Rivière,
François Taïani

To cite this version:
Simon Bouget, Yérom-David Bromberg, Hugues Mercier, Etienne Rivière, François Taïani. Mind the
Gap: Autonomous Detection of Partitioned MANET Systems using Opportunistic Aggregation. SRDS
2018 - 37th IEEE International Symposium on Reliable Distributed Systems, Oct 2018, Salvador,
Brazil. pp.143-152, �10.1109/SRDS.2018.00025�. �hal-01900360�

https://hal.science/hal-01900360v1
https://hal.archives-ouvertes.fr

Mind the Gap: Autonomous Detection of Partitioned
MANET Systems using Opportunistic Aggregation

Simon Bouget∗, Yérom-David Bromberg∗, Hugues Mercier†, Etienne Rivière‡ and François Taiani∗

∗University of Rennes, Inria, CNRS, IRISA, France;
†University of Neuchâtel, Switzerland; ‡Université catholique de Louvain, Belgium

first.last@{irisa.fr,unine.ch,uclouvain.be}

Abstract—Mobile Ad-hoc Networks (MANETs) use limited-
range wireless communications and are thus exposed to partitions
when nodes fail or move out of reach of each other. Detecting
partitions in MANETs is unfortunately a nontrivial task due
to their inherently decentralized design and limited resources
such as power or bandwidth. In this paper, we propose a novel
and fully decentralized approach to detect partitions (and other
large membership changes) in MANETs that is both accurate
and resource efficient. We monitor the current composition
of a MANET using the lightweight aggregation of compact
membership-encoding filters. Changes in these filters allow us
to infer the likelihood of a partition with a quantifiable level
of confidence. We first present an analysis of our approach, and
show that it can detect close to 100% of partitions under realistic
settings, while at the same time being robust to false positives due
to churn or dropped packets. We perform a series of simulations
that compare against alternative approaches and confirm our
theoretical results, including above 90% accurate detection even
under a 40% message loss rate.

I. INTRODUCTION

Mobile Ad-hoc Networks (MANETs) do not rely on any
fixed network infrastructure, but instead exploit mesh network-
ing protocols [1], [2] to overcome the mobility of nodes and the
imperfect and unpredictable nature of wireless communications.
Because they operate in open, dynamic and sometimes hostile
environments, MANETs can easily become partitioned, for
instance because some key nodes have failed, because nodes
have moved out of reach from one another, or because
environmental conditions hinder wireless communications.
When this occurs, the network becomes disconnected, greatly
hampering its overall operation.

A partition can be mitigated using different techniques. For
instance, the transmission range of the wireless nodes may be
increased; some of the nodes might fall back on an alternative
wireless technology (e.g. a broadband cellular network) [3];
or the system might leverage additional resources such as a
supporting Flying Ad-Hoc Network (FANET) [4], [5] to extend
the routing coverage [6].

Before any explicit mitigating action can be taken, however,
the partition must first be detected. Detecting a partition in a
MANET is unfortunately a challenging task: MANETs typically
lack any central element, forcing each node to build its own
perception of the network’s current state. This decentralized

monitoring must also remain extremely lightweight in order to
meet the memory, CPU, and energy constraints of mobile nodes.

Previous proposals to detect partitions in MANETs have
either assumed extended node capabilities [7], [8] (such as
GPS sensors or accelerators), thus limiting their applicability to
high-end deployments, or have attempted to construct explicit
membership and path information [9]–[11]. As MANETs
reach several hundreds of nodes, gathering explicit node
lists is increasingly problematic: explicit representations incur
important communication costs and lead to a rapid depletion
of energy resources.

In this work, we tackle partition detection in MANETs by
coupling a probabilistic compact representation of a network’s
composition with a periodic and opportunistic aggregation
procedure inspired by gossip protocols [12], [13] and designed
to piggyback on existing communications required by routing
protocols. These two primitives in tandem allow us to arbitrate
the inherent tradeoffs arising between speed, accuracy, and
cost of the detection. They offer an adaptable range of guaran-
tees tailored to each system’s requirements in a lightweight,
decentralized and accurate fashion. We instantiate them so
that partitions can either be self-detected by a MANET by
identifying temporal discrepancies, or detected by a second ex-
ternal network by monitoring spatial discrepancies. The choice
between these two use cases depends on whether mitigating
measures should be triggered by the partitioned network (such
as switching to an alternative wireless technology [3]), or by
some external system (such as offering bridging capabilities
by a FANET [4], [6]).

More precisely, we make the following contributions:

1) We use random bit signatures to concisely encode a
MANET’s set of nodes, or membership list into a filter,
and show that this compact and stochastic representation
can detect large connectivity changes.

2) We present two partition-detection algorithms that com-
bine our probabilistic representation with a periodic
aggregation procedure. Our algorithms provide an internal
self-detection mechanism (in which a MANET A detects
it has partitioned), and an external third-party detection
service (in which a system B detects that a MANET A
has partitioned).

Initial
A's filter
= A's signature

B

A

C

gossip
exchanges

System S

A's
converged
filter

B

A

C

Start of Epoch e

End of Epoch e

multiple
gossiping rounds

2

31

4

Figure 1. Starting from their individual signature, nodes progressively
aggregate other nodes’ signatures in their local filter. At an epoch’s end,
they converge to a summary representing the composition of the subnetwork
they were able to hear from (shown only for the nodes A, B, C for simplicity).

3) We develop a theoretical analysis to tune implementation
parameters based on the environment in which the network
is deployed. We show that as long as the filters are not
completely saturated with ‘1’s , we detect close to 100%
of partitions and almost none of the non-partition events.

4) We demonstrate the practical relevance of our approach
through an extensive series of simulations. As an example,
we show that even with 40% message loss, performances
are still satisfying with an error rate below 10%.

In the following, we present our approach in Section II, analyze
it formally in Section III, and present an in depth experimental
evaluation in Section IV. We discuss related work in Section V
and conclude in Section VI.

II. APPROACH

We start with a general overview of our approach, and then
detail the two variants of our partition detection mechanisms.

A. Overview

A simple approach to partition detection consists in maintain-
ing and propagating a list of a system’s connected nodes [9]–
[11]. If two lists for the same system are sufficiently different,
the system is likely partitioned. Unfortunately, this direct
approach is, in most cases, not tractable: it incurs a high
overhead in large systems, both in terms of memory usage,
bandwidth consumption, and hence energy consumption, a
prime limiting factor in MANETs.

To overcome this difficulty, our approach (which we term
MtG for Mind the Gap, as partitions create gaps in connectivity)
replaces the explicit representation of reachable nodes by a
potentially inaccurate but compact summary of a system’s
connectivity. More precisely, each node of a system repeatedly

B

A

C

gossip
exchanges

initial
A's filter
= A's signature

C's converged
filter

Start of Epoch e+1

End of Epoch e+1

multiple
gossiping rounds

6

7

B

A

C

≠
e

e+1

partition

partition
detected

5

Figure 2. When a partition occurs, the summaries between two successive
epochs change suddenly, as the signatures of unreachable nodes are no longer
aggregated in the converged summary. This sudden change can be detected,
and a partition detection event raised.

constructs a summary of the currently reachable network, and
nodes infer a partition when two summaries about the same
system differ markedly. In practice, this will detect any large
change in system’s connectivity, not only partitions, but non-
partition events often need to be addressed in the same way
and can be easily filtered out with minor changes we won’t
detail here.

1) Constructing summaries: To be practical and scalable,
summaries should ideally be accurate, compact, and robust to
network delays and interference. Our approach uses fixed-size
bit arrays, termed filters, which we construct over recurring
periods of times, called epochs, using a wireless gossip
aggregation procedure. This aggregation procedure is designed
to leverage existing periodic communications in the MANET
system, such as the periodic beacon messages employed by
many MANET routing protocols [2]. The size of the filters is
fixed in advance and uniform in the system, but only requires
a rough estimate of the network size (see Section III).

Figure 1 illustrates this construction in a small network of
nine nodes. Upon initialization, each node is assigned an initial
bit array (the node’s signature) of the size of the summaries
to be constructed. This initial filter contains only unset bits
except for one of them. The set bit is selected uniformly at
random when a node is configured. 1

When an epoch starts, nodes initialize their local filter with
their signature (Label Ê in Fig. 1, here shown for nodes A,
B, C). They then broadcast their current filter (Label Ë),
and aggregate the filters received from other nodes with

1Note we could have used a hash function on the node identifier to derive
a node’s signature, in effect constructing a Bloom filter with a single hash
function [14]. Bloom filters offer additional but unneeded features, so an initial
random bit is both simpler and sufficient.

Table I
NOTATIONS AND VARIABLES

Constants and functions
∆epoch Duration of an epoch.
γ Threshold used to detect a partition.
f Size of the bit arrays
hdist(s1, s2) Hamming distance between the bit arrays s1 and s2.
PARTITION(i, e) Event representing a partition in system i at epoch e.

Variables maintained by a node pi in a monitored system
sysIDi The ID of the system the node pi belongs to.
clocki pi’s local clock.
epochi pi’s current epoch number.
node sigi The one-bit signature of pi.
filter i The system summary being constructed by pi
sumi[] An array of the system summaries observed by pi at

the end of each past epoch, indexed by epoch numbers
(used for self-detection)

Variables maintained by a node pi in a monitoring system
sumSeti The set of summaries propagated to the monitoring

node. (id, ep, s) ∈ sumSeti means that a node from
system id generated a system summary s at the end
of epoch ep, and that pi is aware of this summary.

OR operations on each bit. This procedure is repeated over
multiple asynchronous rounds during an entire epoch (Label Ì).
Eventually, provided the system is connected and the epoch
is long enough, each node converges to a summary of the
currently reachable network [12], [13]. This summary contains
the bit-signatures of all participants the local node was able
to hear from (Label Í, for clarity the figure only shows the
signatures of nodes A, B, C). In the following we often use the
words filter and summary interchangeably, privileging summary
when denoting the state of a filter at the end of an epoch.

2) Detecting partitions: The system summaries constructed
by individual nodes can be exploited in two ways: (i) Self-
Detection to detect partitions from within a partitioned system,
and (ii) Assisted-Detection to detect the partition of a monitored
system from an external monitoring system.

Self-detection is illustrated in Figure 2. Suppose that a
partition occurs just after the construction of the summaries
of Figure 1 when Epoch e ends (Label Î). The summaries
constructed by each node during Epoch e+1 will therefore only
encompass signatures from its connected subnetwork (Label Ï).
The summary obtained by Node C for Epoch e+ 1 will not
contain the signatures of A or B. This summary will thus
differ sufficiently from that of Epoch e, allowing C to detect
a partition (Label Ð).

Assisted-detection works along the same lines but involves
an external monitoring system, and uses discrepancies in space
rather than in time. Both types of detection are presented more
formally in Sections II-B and II-C.

3) Parameter tradeoffs: So far, we have assumed that the
construction of summaries was done perfectly. In practice, two
summaries of the same system might diverge for other reasons
than a partition. First, individual nodes might crash, leading to
small changes in individual summaries. Second, filters might
propagate imperfectly over an epoch due to network failures or

Algorithm 1: MtG/Self-detect: Filter aggregation (at pi)

1 every X seconds do
2 BROADCAST AGG〈sysID i, epochi,filter i〉

3 on receive AGG〈sysID , epoch,filter〉 do
4 if epochi = epoch and sysID i = sysID then
5 filter i ← OR(filter i,filter)

Algorithm 2: MtG/Self-detect: Change of epoch (at pi)

6 on expiration EPOCH TIMER do
7 sumi[epochi]← filter i

8 for t ∈ 0..epochi − 1 do
9 if hdist(sumi[epochi], sumi[t]) > γ then

10 raise PARTITION(sysID i, epochi)

11 filter i ← node sig i BResetting pi’s filter

12 epochi ←
⌊

clocki
∆epoch

⌋
BNew epoch

13 set timer EPOCH TIMER at (epochi + 1)×∆epoch

if an epoch is too short with respect to the network diameter.
Such imperfect propagation will lead to variations in the
summaries constructed by a same node over successive epochs
(used for self-detection), and by different nodes over the same
epoch (used for assisted-detection).

Another cause of inaccuracy stems from the compact nature
of node signatures and summaries. Signatures can collide, and
a partition might only cause small changes in a network’s
summaries. Consider, in the worst case, a large network using
small filters. It is highly probable that all the bits of the
summaries will be set to one before and after a large partition.
Using a very large filter solves this problem but is a waste
of precious resources. The size of system summaries, the
length of an epoch, the frequency of gossiping rounds, and the
threshold used to detect partitions must therefore be selected
with care, depending on the size, dynamism, memory and
energy constraints of the system.

B. Self-detection protocol (MtG/Self-detect)

The first way we use summaries is to allow a system to
monitor its own evolution over time and detect when it becomes
partitioned, an ability we have termed self-detection. The
protocol implementing this behavior, called MtG/Self-detect, is
described by Algorithms 1 and 2. Table I provides a summary
of the variables and notations used.

When a node pi starts participating to the system, it does not
take part in the current epoch (its epochi variable is set to ⊥),
and waits for the next epoch to start at time

(⌊
clocki
∆epoch

⌋
+ 1
)
×

∆epoch before joining the protocol, where ∆epoch is the duration
of an epoch, and clocki represents pi’s local clock. We assume
that clocks are loosely synchronized between all nodes, with
a drift remaining small compared to the duration of an epoch
∆epoch, so that all nodes in the MANET work for the same
epoch during a large fraction of ∆epoch. Using a date instead

Algorithm 3: MtG/Assisted: Change of epoch at a node
pi belonging to a monitored system

14 on expiration EPOCH TIMER do
15 BROADCAST SUMMARY〈sysID i, epochi,filter i〉
16 filter i ← node sig i Bresetting pi’s filter

17 epochi ←
⌊

clocki
∆epoch

⌋
BNew epoch

18 set timer EPOCH TIMER at (epochi + 1)×∆epoch

of a duration for our timers ensures we leverage that loose
synchrony and that the drifts don’t accumulate over multiple
epochs. The code of the joining mechanism is not shown in
the presented pseudo-code for the sake of clarity.

We assume that nodes know the identifier of the system they
belong to, and that they can ignore messages sent by nodes
belonging to other systems, if necessary. When a node actively
participates in an epoch, it periodically broadcasts its current
filter (lines 1-2 of Alg. 1), typically by leveraging existing
periodic beaconing messages used by the routing protocol.
When a node receives a neighbor’s filter for the system it
belongs to, and for the epoch it currently participates in (lines 3-
4), it incorporates the received filter into its own filter by using
a logical OR over the two bit fields (line 5). Otherwise, the
message is simply dropped. This simple process implements a
push-based aggregation [12], and is robust and efficient.

At the end of an epoch, each node stores its final filter as the
system summary for this epoch (line 7 of Alg. 2) and compares
it to prior summaries by calculating the Hamming distance
between the two filters (hdist(−,−), line 9), i.e. counting the
number of bits in which they differ. The current filter is then
reset (line 11) and a new aggregation epoch starts (lines 12-13).

If there is “enough” difference between filters (using the
threshold γ at line 9), this is a sign of significant change in
the MANET over the corresponding epoch and a partition is
detected (with the PARTITION event at line 10). The main
difficulty, and an important contribution of this work, is to
determine the proper threshold parameter γ to detect actual
partitions while avoiding false positives, a point we revisit in
detail in our analysis of Section III.

C. Assisted-detection protocol (MtG/Assisted)

As an alternative to self-detection, summaries can also be
used to provide assisted-detection, i.e. the detection by a
monitoring MANET that the MANET being monitored has
partitioned. We assume the monitoring system is strongly
connected and does not suffer from the same issues as
the monitored system. The corresponding protocol (termed
MtG/Assisted) is detailed in Algorithms 3 and 4. The main
idea consists in propagating within the monitoring MANET
summaries constructed by nodes of the monitored system. This
propagation makes it then possible to detect whether two nodes
from the monitoring system have observed a large enough
discrepancy in two summaries of the same monitored system
for the same epoch, hinting at a partition.

Algorithm 4: MtG/Assisted: Signature aggregation at a
node pi belonging to a monitoring system

19 on receive SUMMARY〈sysID , epoch,filter〉 do
20 if sysID i 6= sysID then
21 sumSet i ← sumSet i ∪

{
(sysID , epoch,filter)

}
22 CHECKPARTITION()

23 every Y seconds do
24 BROADCAST SUMMARY SET〈sysID i, sumSet i〉

25 on receive SUMMARY SET〈sysID , sumSet〉 do
26 if sysID i = sysID then
27 sumSet i ← sumSet i ∪ sumSet
28 CHECKPARTITION()

29 procedure CHECKPARTITION() is

30 P ←
{

(i, e, s1, s2) | hdist(s1, s2) > γ ∧{
(i, e, s1), (i, e, s2)

}
⊆ sumSet i

}
31 For all (i, e, s1, s2) ∈ P do
32 sumSet i ← sumSet i \

{
(i, e, s1), (i, e, s2)

}
33 raise PARTITION(i, e)

More specifically, nodes in the target system execute the
same aggregation gossip as previously (cf. Alg. 1). At the end
of an epoch, however, the nodes do not store the filter but
instead broadcasts them with a SUMMARY message (line 15
in Alg. 3).

When a node from the monitoring system receives a
SUMMARY message (line 19 in Alg. 4), it stores it (line 21).
The monitoring system then executes its own gossip aggregation
of the target system’s signatures with SUMMARY SET
messages (lines 23-28 in Alg. 4). When a node receives a
SUMMARY SET message, it stores the new summaries
(line 27) and then checks if it has two different enough
summaries from the same epoch and for the same target system,
indicating a potential partition (procedure CHECKPARTITION(),
lines 29-33). Note that a more optimized and energy-aware
variant could reduce the number of calls to CHECKPARTITION()
and make sure that any partition event is raised only once.

III. ANALYSIS

To understand the behavior of summaries and therefore the
MtG protocols, we first discuss how the threshold parameter γ
should be set assuming ideal network conditions (Sec. III-B),
before proposing a more in-depth analysis when considering
an imperfect and hostile but realistic network (Sec. III-C).

A. Overview: The role of γ

Both MtG/Self-detect and MtG/Assisted use the parameter
γ to decide when the hamming distance hdist(−,−) between
two summaries is large enough to denote a partition with
high probability. The difference between the two variants
stems from how the two compared summaries are obtained. In
MtG/Self-detect, the two summaries sumi[e] and sumi[e+ 1]

are computed by the same node ni over two consecutive epochs
e and e+ 1 (line 9 in Algorithm 2), whereas in MtG/Assisted,
sumi[e] and sumj [e] are computed by two different nodes ni
and nj over the same epoch e.

In both cases the threshold parameter γ captures the trade-
off between false positives and false negatives: a low γ will
cause both protocols to react to small changes in summaries,
decreasing the risk of missing actual partitions (false negatives),
but increasing the risk of raising an alert when no partition
has occurred (false positives). A high γ has a reverse effect.

The most challenging situation is when the two summaries
sum1 and sum2 represent two sets of nodes S1 and S2 that
have similar sizes. They are more likely to have bits in common,
and hence a low Hamming distance. This situation is more
likely to occur with the MtG/Assisted protocol, when the same
network S becomes split into two equal parts S1 and S2.

To investigate this case, we will consider the following
scenario. A monitoring node nmon receives two summaries
sum1 and sum2 for the same system i and same epoch e (i.e.,
(i, e, s1, sum1) and (i, e, s1, sum2) both belong to P at line 30
of Algorithm 4). Let us note S1 the connected (sub)network
from which sum1 originated, and S2 the one of sum2. nmon

must decide based on the hamming distance between sum1 and
sum2 whether they come from the same connected network
(S1 = S2 = S, no partition), or if they originate from two
disconnected subnetworks (S1 6= S2, there is a partition).
B. Operating in paradise: ideal network conditions

We first consider the case where network conditions are
ideal, i.e., there is no churn, no noise, and no packet loss.
If the duration of an epoch ∆epoch is sufficiently long, all
the summaries produced with a connected (sub)network are
identical at the end of each epoch.

In this scenario, S1 = S2 implies that hdist(sum1, sum2) =
0, and therefore, hdist(sum1, sum2) > 0 implies S1 6= S2. In
other words, under these ideal conditions, choosing γ = 0 in
Algorithm 4 guarantees all PARTITION events raised by nmon

correspond to an actual partition, i.e., there cannot be any false
positive. The same reasoning applies to Algorithm 2.

hdist(sum1, sum2) = 0 does not imply, however, that
S1 = S2. sum1 and sum2 may still originate from differ-
ent subnetworks due to collisions in the random choice of
the original node signatures, yielding a false negative (an
undetected partition). We now evaluate the likelihood of such
a scenario. Let B (sum) be the number of nonzero bits
in a summary of size f when inserting n node signatures
into it. Because the node signature are uniformly random,
the expected number of bits set to ‘1’ in the summary is
E
(
B (sum)

)
= f ·

(
1−

(
1− 1

f

)n)
. More precisely, it was

shown in [15] that the probability of the same summary to

contain j non-zero bits is P
(
B (sum) = j

)
=

(f
j)·j!·{n

j }
fn ,

where
{

a
b

}
stands for the Stirling numbers of the second

kind [16]. Stirling numbers are gruesome to handle and are
usually tackled asymptotically, but since in this work we are
ultimately interested in efficient implementations using small
summaries, we resort instead to mathematical simulations.

0 5 10 15 20 25 30

0.03

0.06

0.09

0.12

0.15

Hamming distance between filters

P
ro
ba
bi
lit
y

Figure 3. Distribution of the Hamming distance of two summaries of size f =
32 with n = 64 inserted signatures coming from independent subnetworks.

32 64 128 256 512
100

200

500

1000

2000

5000

Size of summaries

N
et
w
or
k
si
ze

Figure 4. Maximum network size for a probability of false negative of 10−5

when partitioned into two partitions of equal size for different summary sizes.

As n and f increase, the distribution of B (sum) is sharply
concentrated around its expected value [17]. At first sight, this
is disappointing: for instance with f = 32 and n = 64 the
expected number of ‘1’s in the summaries is 27.8. However,
Figure 3 shows the distribution of the Hamming distance of
the summaries for two disjoint subnetworks S1 and S2 of 64
nodes each (corresponding to a global network S = S1 ∪ S2

of 128 nodes partitioned in two equal halves) with summaries
sum1 and sum2 of size 32 bits. In this example, the probability
that the Hamming distance between sum1 and sum2 is zero
(and hence the rate of false positives) is approximately 10−5.

Two partitions of equal size is the worst possible scenario
since the probability that both summaries are identical decreases
quickly as the size of each subnetwork diverges. Note that in
the self-detection variant, there is no central authority that can
compare the summaries from both partitions; if the size of
the partitions greatly differs, the small subnetwork will easily
detect the partition and trigger mitigating measures. This is
further discussed in the next section.

Figure 4 shows the maximum network size allowing a
probability of false negative of 10−5 when partitioned into
two partitions of equal size for different summary sizes (again
this is the worst possible scenario). Under perfect network and
convergence assumptions, MtG can thus easily handle partition
detection with high accuracy in networks of 128 nodes or less
with 32-bit summaries, in networks of 800 nodes or less with
128-bit summaries, and in networks of 4500 nodes or less with
512-bit summaries. The sub-linear trend is due to summaries
being wrongly identical when they are entirely filled with ’1’s.
This corresponds to the coupon collector problem, and it takes
n.log(n) random node signatures to fill a n-bit filter.

C. Operating in reality: dynamism and imperfect aggregation

In a real deployment, of course, summaries may diverge
within the same system connected S due to churn, node crashes,
and imperfect aggregation caused by network contention, node
mobility or a hostile environment. In other words, we might

c=1
c=2
c=3
c=4
c=5

c=6
c=7
c=8
c=9
c=10

0 5 10 15 20
0.0

0.2

0.4

0.6

Hamming distance between filters

P
ro
ba
bi
lit
y

Figure 5. Distribution of the Hamming distance of two summaries of size f =
32 with n = 64 inserted signatures and churn parameter c ∈ {1, 2, 3, . . . , 10}
(gray curves). The blue points correspond to two partitioned systems of 32
nodes. Probability mass functions calculated with 105 randomized experiments.

have hdist(sum1, sum2) 6= 0, even though there is no partition.
One should therefore set the threshold γ to a strictly positive
value to account for these causes of divergence, thus reducing
the chances that MtG/Self-detect and MtG/Assisted might
erroneously detect partitions that do not exist. For our analysis,
we model the effect of the above imperfections through a
generic “churn” parameter c that seeks to capture the differences
between sum1 and sum2 caused by isolated node failures and
imperfect communication. More precisely, we will assume that
sum1 and sum2 contain the nodes signatures of two sets S1

and S2 such that |S1 \ S2| = |S2 \ S1| = c. In the case of
MtG/Assisted, this correspond to the situation in which c nodes
of the global network S did not make it into sum1, and c other
and distinct nodes did not make it into sum2. In the case
of MtG/Self-detect, this correspond to a scenario in which c
nodes present in epoch e fail in epoch e+ 1, and conversely c
nodes that were failed in epoch e appear in epoch e+ 1. This
simple model completely ignores topology because all nodes
in a connected subset all have the same filter, so it doesn’t
matter where the churn happens.

Figure 5 shows the distribution of the Hamming distance of
two summaries of size f = 32 used by a connected system
of |S| = 64 nodes. Each gray curve corresponds to a churn
level c varying from 1 to 10. For comparison, the blue points
correspond to the situation in which S becomes partitioned into
two equal halves of 32 nodes. The gray and blue probability
mass functions are almost disjoint, thus if we set the partition
threshold to γ = 7, we essentially detect 100% of the partitions
and no false positives. In figure 6, we repeat the process with
the same summary size but with systems of n = 128 nodes.
There is a small overlap between the gray and blue curves, but
by setting the partition threshold to γ = 2, we still detect 99%
of the worst possible partitions and treat less than 1% of the
normal events at c = 10 as partitions.

D. Discussion

It is important to note that the choice of c is arbitrary. What is
“normal churn” and what is “a partition” is entirely dependent
on the context and the specific circumstances of a real world
network, and the value of c should be chosen by a network
operator depending on their objectives. Our goal is to show that
the operator of a very noisy network can set c to a high value,

c=1
c=2
c=3
c=4
c=5

c=6
c=7
c=8
c=9
c=10

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Hamming distance between filters

P
ro
ba
bi
lit
y

Figure 6. Distribution of the Hamming distance of two summaries of
size f = 32 with n = 128 inserted signatures and churn parameter
c ∈ {1, 2, 3, . . . , 10} (gray curves). The blue points correspond to two
partitioned systems of 64 nodes. The probability mass functions are calculated
with 105 randomized experiments.

so MtG won’t raise too many false alerts, and that our approach
still works in adversarial circumstances. In other words, in a
real world deployment, the value of c is context-specific, but
in this analysis, we want c as high as possible.

The use of c to bound the amount of change under which
our protocol should not detect any partition means that if a
system S looses c nodes that become disconnected from the
rest of S, but do not crash, S will no raise any alert when
using MtG/Self-detect. However, in this case, the c nodes are
still active and, from their point of view, a drastic partition
just occurred. They will therefore produce an alert, and allow
for mitigation actions.

Finally, we also emphasize that these results are conservative
for two reasons. First, c = 10 and n = 64 corresponds to a
churn rate of 15% per epoch. The operator of a network in
such an environment might want to trigger mitigating measures
even in the absence of a partition. Second, it assumes that
the network is partitioned in two pieces of equal size. As
mentioned earlier, this is the most pessimistic scenario (i.e., it
will systematically yield the lowest Hamming distances between
summaries for the different subsystems). It is thus clear that like
for many applications of bit fields as a compact representation,
such as Bloom filters [18], the efficiency of our approach is
uniquely determined by the size of the filters/summaries and
the number of nodes in the network: with very small filters and
very large networks, the filters, even once partitioned equally,
will be filled with ‘1’s. As a result, and similarly to the situation
where we consider ideal network and convergence assumptions,
under realistic settings MtG can still reliably detect partitions
in networks of 128 nodes or less with 32-bit filters, in networks
of size 800 nodes or less with 128-bit filters.

IV. EVALUATION

We evaluate our proposal along three dimensions. We first
investigate whether filters can effectively distinguish between
joined and partitioned networks (Section IV-B). We then assess
the ability of MtG to detect partitions and compare them to
two alternative approaches (Section IV-C). Finally, we explore
the parameters space in Section IV-D.

A. Experimental setup and metrics

Unless stated otherwise, we configure MtG to use 32-bit
filters, asynchronous rounds of 0.3 second, and epochs of
16 rounds (i.e., roughly 5 seconds per epoch). Naturally, our
results apply to lower communication frequencies, provided that
the epoch time be adjusted accordingly to comprise the same
number of rounds. Typically, the communication frequency is
set by the beaconing frequency of the routing protocol, and
aggregation messages piggyback on these beacon messages.
During each round, each node can push its current filter to
all neighbors in its communication range, which we set to be
100m. Nodes are positioned over a 400m×400m area. The
exact number of nodes, their position, and their mobility depend
on the experiment, as we detail below.

We use the Omnet++/Inet framework [19] for our simulations.
Presented results are averages over 10 runs using different
random seeds for nodes signatures and positions. We do not
show error bars as they prove to be negligible. We use the
following metrics:
• The normalized maximum pair-wise internal distance

(internal distance for short) measures the maximum
Hamming distance between the filters being maintained by
two nodes of the same monitored system S, normalized
by the size of the filters f (32 in our experiments).
When S is connected, this distance should converge
to zero at the end of each epoch. Formally, we have:
internal d(S) = max(pi,pj)∈S2

(
hdist(filteri,filterj)

f

)
.

• The normalized minimum pair-wise inter-partition
distance (external distance for short) measures the min-
imum Hamming distance between the filters of two
partitions S1 and S2 of a system, normalized by the size
of the filters. When S1 and S2 are disconnected, this
distance should remain above the γ threshold, even in a
converged state, in order to distinguish a partition from a
connected configuration. Formally we have:
external d(S1, S2) = min(pi,pj)∈

S1×S2

(
hdist(filteri,filterj)

f

)
.

• The error rate is the number of nodes belonging to a
partitioned system that do not detect the partition (false
negatives) summed with the number of nodes belonging
to a fully connected system that raise a partition alert
(false positives), over the total number of nodes.

• The per-node per-round bandwidth (bandwidth for
short) represents the amount of information sent by each
node per round, measured in bits.

B. Effective representation

We set up a system S of 120 nodes divided into two groups
S1 and S2 of 60 nodes each. S1 and S2 are initially distributed
over the same 400m×400m area, but drift apart in opposite
direction at 25 m/s, S1 heading North and S2 South. S1 and S2

thus become unable to reach each other at around 15 seconds
into the experiment (end of the 3rd epoch). We monitor over
time the internal distance of S and the external distance between
S1 and S2. Figure 7 shows that before the partition (0-15
seconds), the internal distance goes down to 0 very rapidly, in

 0

 0.25

 0.5

 0.75

 0 5 10 15 20

n
o
rm
a
liz
e
d

d
is
ta
n
c
e

time (s)

internal distance
external distance

Figure 7. Filters are an effective representation of a network membership.
They converge when the system is connected, and they are clearly distinct
when there is a partition.

less than 2 seconds (6 rounds). Once the partition occurs (15-
24 seconds), the external distance between the two partitions
is always strictly positive, and converges quickly to a value
noticeably above 0.

These two results combined demonstrate that filters are
efficient to represent a system membership, in a quick, accurate,
and compact manner. Even after only a few rounds, all nodes
in a system agree on the same filter, while disconnected
subsystems have very distinct filters, all the while using 32-bit
filters for systems containing over a hundred nodes.

C. Partition detection

In this second set of experiments we compare the filters
used by MtG with those of two baseline approaches:
• The graph-coloring baseline: Each node randomly

choses a 16-bit integer, a color, and starts spreading it.
When it receives a color announce from another node, it
keeps the color with the biggest integer value and gossips
this value thereafter. If a network is not partitioned, all
nodes will eventually agree on the same color; if there
is a partition, each subsystem will agree on a different
color. Hence, the color can serve as a simple way to
distinguish subsystems. Similarly to MtG, it uses a fixed-
size information per node and for any gossip exchange.

• The full-list baseline: Each node maintains an exhaustive
list of all node identifiers it has encountered, and gossips
it around. Nodes merge incoming lists with their local
list using an union operator. At the end of an epoch, all
connected nodes agree on the same list, which is the
membership list of their subsystem. If two different lists
are observed, it is a sign of a partition. Unlike MtG and
the graph-coloring baseline, the space cost of this method
is linear in the number of nodes in the system.

We repeat the setup of the previous subsection: two 60-node
groups moving away from each other. We run four experiments
in which nodes execute either one of the variants of MtG or
one of the two other protocols.
• In the first experiment, all 120 nodes execute MtG/Self-

detect, the self-detection version of our approach.
• In the second one, we add a third group of nodes

from an independent system in the middle, serving as
the monitoring group, and we run MtG/Assisted, the

Table II
PARTITION DETECTION PERFORMANCE.

Bandwidth
Approach Error rate (bits sent/round/node)

average max
graph-coloring 50% 16 16

full-list 0% 1995 3840
MtG (self-detect) 0% 32 32

MtG (monitoring node) 0% 32 64
(monitored node) 32 32

third-party version of our protocol. The third group is
constituted of 20 fixed nodes, set up to ensure the coverage
of the whole area of the experiment.

• In a third experiment, we used the graph-coloring baseline
instead of our proposed filters to represent the network
membership, in self-detect mode.

• Finally in the fourth experiment, we used the full-list
baseline instead of filters, in self-detect mode.

The results are summarized in Table II. The bandwidth
consumption assumes the following: filters are 32 bits long,
node identifiers use 32 bits (size of an IPV4 address), and
colors are 16-bit integers.

In both modes, our protocols accurately detect the parti-
tion when it happens, with modest bandwidth consumption,
comparable to the graph-coloring approach. In contrast, the
graph-coloring approach only detects the partition for half of
the nodes. Indeed, the nodes in the group of the “winning”
color do not see any change when the partition happens.

The extensive-list approach detects partitions accurately, but
its bandwidth consumption is orders of magnitude bigger than
with our approach, even with a system featuring as little as 120
nodes. Moreover, this bandwidth usage varies considerably over
the execution of the protocol, with a low bandwidth usage at
the beginning of an epoch (using small lists) and an unbounded
usage as lists are aggregated to the full membership, e.g. up
to 1,920 bits for a 60-node group, or 3,840 for a 120-node
group. This bandwidth usage is orders of magnitude higher
than with the filters, and increases linearly with the network
size. Furthermore, it is in the expected common case when the
lists are converged and that there is no partition that the usage
is the highest, which is the opposite of the desired behavior.

D. Pushing the limits

In Section III, we mentioned that a network split perfectly
in half was the worst case for MtG, because the summaries
of each half are the closest to each other. This is clearly
true in MtG/Assisted, however, in MtG/Self-detect a node
compare its own summary to its summary from the previous
epoch. When the network does not split exactly in half but
instead in two subnetworks, one large and one small, the small
group will converge to a significantly different summary. It
will therefore detect the partition easily. The large subset on
the other hand will observe a limited change between the
summaries, and might miss a partition detection. To analyze
this effect, we set up the same experiment as in subsection IV-B
except that instead of 60 nodes in S1 and S2 each, we use

Table III
DETECTION IN CASE OF UNEVEN NETWORK SPLIT.

Share of Detection by S1 Detection by S2

nodes in S1 (small group) (large group)
50% 4 4

20% 4 4

15% 4 8

5% 4 8

varying proportions for the group sizes, from 50%-50% (S1 =
S2 = 60 nodes) to 5%-95% (S1 = 6 nodes, S2 = 114 nodes).
The results are given by Table III.

As expected, the small group S1 always detects the partition.
Even with only 20% of nodes leaving (24 nodes in S1), nodes
in the larger group S2 still detect the partition as well. It is
only when S1 contains 15% or less of the network (18 nodes
or less) that S2 begins to miss the partition. It is interesting
to look more precisely at the distance between the signatures
of each group before and after the partition. This is shown
by Figure 8. The distances for both groups converge toward
the same value when the original group is split exactly in half.
This confirms that the even split is the worst scenario, even in
MtG/Self-detect. In other cases, the detection and the triggering
of mitigation measures is systematically easier for the smaller
group resulting from the split.

We now explore specific adversarial conditions that MtG
may encounter, and suggest countermeasures. First, the length
of the epochs is a tradeoff between the quality of convergence
between filters and the freshness of the information they contain.
While a long epoch provides better convergence guarantees,
shorter epochs avoid keeping information about crashed or
unreachable nodes. The length of the epochs needs to be
adapted to the size of the considered systems. To illustrate this,
we set up an experiment with systems of increasing sizes. We
keep the density of nodes constant between all experiments,
simply distributing a larger number of nodes over a larger
area, resulting in systems of increasing diameters, from 4
to 16 hops. The length of rounds and epochs is constant
between experiments. Figure 9 shows the evolution of the
internal distance of these systems over time. As the diameter
increases, the convergence is slower. Past a certain diameter,
filters do not have enough time to converge anymore, as the
distance does not reach zero.

Given the number and types of devices deployed in a
MANET and the physical area over which they are deployed,
a network operator can get a rough estimation of its system’s
diameter. Based on our experiments, we recommend to set the
length of an epoch (in rounds) to twice the expected maximal
diameter of the system (in hops).

Finally, we test the resilience of MtG to bad communication
conditions and message losses. We set up a system of 120
nodes distributed in two groups of 60 nodes each and make
them drift apart under the scenario previously described. In
order to stress the system, we reduce the length of the epoch
to only 6 rounds, and we tune the drifting speed so that a

 0

 5

 10

 15

 20

 25

 30

 0 0.1 0.2 0.3 0.4 0.5

#
b
its

s
w
a
p
s

a
ft
e
r
p
a
rt
iti
o
n

Fraction of nodes in the smaller group

S1 (smaller group)
S2 (larger group)

Figure 8. Numbers of bits swapping in the signature
of each group after a partition (120 nodes overall,
in the 2-group scenario of Sec. IV-B)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10

d
is
ta
n
c
e

(n
o
rm
a
liz
e
d
)

time (s)

d > 4
d > 8

d > 12
d > 16

Figure 9. With fixed epoch and round durations,
the larger the network is, the longer it takes to
converge. If the network is too large, the filters do
not converge anymore, so it is important to adapt
the length of an epoch to the size of the network.

 0%

20%

40%

60%

80%

100%

1 2 3 4

%

n
o
d
e
s

ra
is
in
g

a
n

a
le
rt

epoch

20% msg loss
40% msg loss
60% msg loss

Figure 10. Fraction of nodes detecting a partition,
under varying message loss levels. A real partition
happens at the end of epoch 2. MtG resists message
loss until a certain level where it can start to confuse
the effect of message loss with partition.

partition happens at the end of the second epoch. MtG should
hence raise a partition alert during epoch 3. Figure 10 shows
the fraction of nodes that raise an alert during each epoch.
With 20% of lost messages, the detection rate is not affected.
With 40% message loss, barely 10% of the nodes confuse the
effect of bad communication conditions with a real partition
in epoch 2. It is however only when reaching a tremendous
level of 60% message loss that a noticeable fraction of MtG
nodes raise a false alert before the partition actually happens.
We argue that under such harsh conditions, a system operator
has more pressing issues than partitions, and will want to
trigger available counter-measures just as if a real partition
was happening. This makes us confident that MtG is resilient
to message loss rates under all the circumstances where its
detection capabilities can prove useful.

V. RELATED WORK

Partitions are known to be problematic for MANETs and
Wireless Sensor Networks, and have therefore been investigated
in the past. To the best of our knowledge, however, none of
these earlier approaches considered the use of compact filters
as MtG does. In the following we review related work on
partition detection, as well as on related problems, such as cut
detection, partition prediction, and partition recovery.

a) Membership and partition detection: The work of
Arantes et al. [9], [10] formalizes the notions of partition
detector and partition participants detector in a manner similar
to the classical formalization of failure detectors [20]. The
two algorithms they propose accumulate information about
broadcast propagation paths over epochs in order to construct
local reachability information. When the set of nodes in the
system is known beforehand [9], a partition is detected when
some of these nodes become unreachable (possibly because
of crashes). This approach is extended to systems with an
arbitrary number of unknown participants [10], for which the
detector is able to return the set of nodes present in the local
partition, provided that the local partition eventually stabilizes.
The accumulation of network participants in a list is similar
to the way we accumulate members in our filters. For large
networks, however, such an explicit approach is likely not to
scale as we show in our evaluation.

Ritter et al. [11] propose an approach to detect partitions in
MANETs in which a subset of active nodes exchange beacon
messages that traverse the network. The proposed heuristic
tends to position active nodes at the border of the network,
in order to maximize the network nodes covered by a beacon
propagation path. When beacons repeatedly fail to propagate
between two active nodes, a partition is suspected. In contrast
to MtG, this strategy assumes that border nodes can be reliably
detected, and only change slowly.

Khelil et al. [21] present a broadcast strategy for parti-
tionable MANETS based on hypergossiping, the selective re-
broadcasting of partially broadcast messages. This strategy
includes a mechanism to detect partition joins, i.e. the rejoining
of the two parts of a previously disconnected network. This
mechanism exploits Last Broadcast Received (LBR) lists, a list
of the identifiers of the k last broadcast messages received by a
node. Nodes periodically exchange this list, and conclude that
they are rejoining a partitioned subnetwork when their local
LBR substantially differ from that of their neighbors. Because
the main goal of this approach is to maximize the delivery
ratio of system-wide broadcasts, the partition join detection
mechanism tends to err on the side of over-detection, with
numerous wrong detection decisions in some instances [22].

b) Cut detection: Cut detection is a problem related, but
distinct from partition detection in MANETs, and focuses
on mostly static Wireless Sensor Networks, in which sensors
forward their readings to dedicated sink nodes. A cut occurs
when some nodes become disconnected from the sink.

The work of Barooah et al. [23] allows each sensor node
to detect when it becomes disconnected from the sink, and
whether other sensor nodes have become disconnected. Won et
al. [24] target only the second problem and adds consideration
about energy and robustness to malicious nodes. Because of
the specific topology of sink-based sensor networks, these
approaches are however not applicable here.

c) Partition prediction: Some works try to predict parti-
tions before they happen, but require more powerful primitives
than MtG. Some use GPS information (regarding both location
and speed) to build a mobility model of the network and
predict when nodes are likely to get out of range [7]. Other

proposals [8] assume the existence of a distributed algorithm
that returns the set of disjoint paths between two nodes, and
predict partitions based on the number of paths and their length.
By comparison, our solution makes no assumption regarding
the higher level capabilities of a network, and only assumes a
one-hop broadcast primitive.

d) Address allocation: A few papers focus on allocating
addresses to nodes, including after a network partition. The
work of Singh et al. [25] only deals with graceful partitions
(i.e. nodes detect and announce when they will leave/merge
with the network), and propose a protocol to elect a new cluster
head when a partition looses access to the initial head, but
does not consider the kind of abrupt partitions we deal with.
The solution of Zhou et al. [26] is designed to address this
problem even in case of partitions, and so does not consider
the problem of detecting them.

e) Partition recovery: Some works look at the problem
of partition recovery, once a partition has been detected. For
example, Han, Swindlehurst and Liu [5] consider the optimal
placement of Unmanned Aerial Vehicles (UAV) to overcome
the disconnection of ground-based MANETs. Their approach is
based on heuristics that seek to maximize different metrics of
connectivity, but assumes a central location where all relevant
information about MANETs nodes and UAV positions can be
aggregated and processed, an assumption we do not make.

VI. CONCLUSION & FUTURE WORK

We presented in this article MtG, a lightweight method to
detect partitions in a MANET, either by the nodes forming
the MANET themselves or by an external supporting system.
Our analysis and evaluation show the ability of our approach
to detect such partitions even under aggregation imperfection
and imperfect networking conditions. For our future work, we
are interested in developing a more formal method to derive
the partition threshold γ based on the filter and network sizes,
or at least to provide these thresholds for a larger number of
parameters. In particular, as mentioned in Section III we do
not leverage the number of bits set to ‘1’ in our summaries.
When a system is partitioned, two general cases can occur. If
both partitions have the same size, the summaries from one
epoch to the next will very likely contain significantly less
bits set to ‘1’. If one partition is small and the other is large,
the large partition might view its evolution as a normal churn
event, but the small partition will see an even higher reduction
in its number of summary bits set to ‘1’ between consecutive
epochs. Considering the number of bits set to ‘1’ may allow
us to tackle higher noise levels, as well as larger systems with
good accuracy, without increasing the filter size. It would also
avoid triggering an alert when a large number of nodes join
the network or when two partitions reconnect, since this events
increase the number of ‘1’ in the filters, but are still detected
with our current approach as large changes in membership.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the French Agence Nationale de la Recherche (ANR)

under project PAMELA (ANR-16-CE23-0016), from CHIST-
ERA under project DIONASYS, from the EU’s H2020–The
EU Framework Program for Research and Innovation 2014-
2020 under Grants 653884 and 692178, and from the Swiss
National Science Foundation (SNSF) under grant 155249.

REFERENCES

[1] P. Ruiz and P. Bouvry, “Survey on broadcast algorithms for mobile ad
hoc networks,” ACM Computing Surveys, vol. 48, no. 1, Jul. 2015.

[2] K. Akkaya and M. Younis, “A survey on routing protocols for wireless
sensor networks,” Ad Hoc Networks, vol. 3, no. 3, pp. 325 – 349, 2005.

[3] P. Grace, D. Hughes, B. Porter, G. S. Blair, G. Coulson, and F. Taiani,
“Experiences with open overlays: A middleware approach to network
heterogeneity,” in European Conf. on Comp. Sys., ser. EuroSys, 2008.

[4] I. Bekmezci, O. K. Sahingoz, and S. Temel, “Flying ad-hoc networks
(FANETs): A survey,” Ad Hoc Networks, vol. 11, no. 3, 2013.

[5] Z. Han, A. L. Swindlehurst, and K. R. Liu, “Optimization of MANET
connectivity via smart deployment/movement of unmanned air vehicles,”
IEEE Trans. on Vehicular Tech., vol. 58, no. 7, pp. 3533–3546, 2009.

[6] G. Blair, Y.-D. Bromberg, G. Coulson, Y. Elkhatib, L. Réveillère, H. B.
Ribeiro, E. Rivière, and F. Taı̈ani, “Holons: Towards a systematic
approach to composing systems of systems,” in Int. Workshop on Adaptive
and Reflective Middleware, ser. ARM, 2015.

[7] B. Milic, N. Milanovic, and M. Malek, “Prediction of partitioning in
location-aware mobile ad hoc networks,” in 38th Annual HICSS, 2005.

[8] M. Hauspie, J. Carle, and D. Simplot, “Partition detection in mobile ad-
hoc networks using multiple disjoint paths set,” in International Workshop
on Objects models and Multimedia technologies, 2003.

[9] D. Conan, P. Sens, L. Arantes, and M. Bouillaguet, “Failure, disconnection
and partition detection in mobile environment,” in 7th IEEE NCA, 2008.

[10] L. Arantes, P. Sens, G. Thomas, D. Conan, and L. Lim, “Partition
participant detector with dynamic paths in mobile networks,” in 9th
IEEE NCA, 2010.

[11] H. Ritter, R. Winter, and J. Schiller, “A partition detection system for
mobile ad-hoc networks,” in 1st IEEE ComSoc Conference on Sensor
and Ad Hoc Communications and Networks, ser. SECON, 2004.

[12] M. Jelasity, A. Montresor, and Ö. Babaoglu, “Gossip-based aggregation
in large dynamic networks,” ACM TOCS, 2005.

[13] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of
aggregate information,” in 44th Annual IEEE FOCS, 2003.

[14] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communication of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[15] R. Barazzutti, P. Felber, H. Mercier, E. Onica, and E. Rivière, “Effi-
cient and confidentiality-preserving content-based publish/subscribe with
prefiltering,” IEEE TDSC, 2017.

[16] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics.
Addison-Wesley, 1994.

[17] R. Motwani and P. Raghavan, Randomized algorithms. Chapman &
Hall/CRC, 2010.

[18] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509, 2002.

[19] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation
environment,” in SIMUTools, 2008.

[20] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” Journal of the ACM, 1996.

[21] A. Khelil, P. J. Marrón, C. Becker, and K. Rothermel, “Hypergossiping:
A generalized broadcast strategy for mobile ad hoc networks,” Ad Hoc
Networks, vol. 5, no. 5, pp. 531–546, 2007.

[22] A. Khelil, P. J. Marrón, R. Dietrich, and K. Rothermel, “Evaluation of
partition-aware manet protocols and applications with ns-2,” in SPECTS,
2005.

[23] P. Barooah, H. Chenji, R. Stoleru, and T. Kalmár-Nagy, “Cut detection in
wireless sensor networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 23, no. 3, pp. 483–490, 2012.

[24] M. Won, S. M. George, and R. Stoleru, “Towards robustness and energy
efficiency of cut detection in wireless sensor networks,” Ad Hoc Networks,
vol. 9, no. 3, 2011.

[25] S. Singh, N. Rajpal, and A. Sharma, “Address allocation for MANET
merge and partition using cluster based routing,” SpringerPlus, 2014.

[26] H. Zhou, L. M. Ni, and M. W. Mutka, “Prophet address allocation for
large scale manets,” Ad Hoc Networks, vol. 1, no. 4, pp. 423–434, 2003.

