N

N

Optimization of Calibration Algorithms on a Manycore
Embedded Platform

Nicolas Sourbier, Jean-Francgois Nezan, Cyril Tasse, Julien Hascoet

» To cite this version:

Nicolas Sourbier, Jean-Frangois Nezan, Cyril Tasse, Julien Hascoet. Optimization of Calibration
Algorithms on a Manycore Embedded Platform. IEEE Workshop on Signal Processing Systems (SIPS),
Oct 2018, Cape Town, South Africa. 10.1109/sips.2018.8598369 . hal-01900350

HAL Id: hal-01900350
https://hal.science/hal-01900350
Submitted on 21 Oct 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01900350
https://hal.archives-ouvertes.fr

Optimization of Calibration Algorithms on a
Manycore Embedded Platform

SOURBIER Nicolas
Univ. Rennes, INSA
IETR, CNRS UMR 6164
Rennes, France
Nicolas.Sourbier @insa-rennes.fr

NEZAN Jean-Frangois

IETR, CNRS UMR 6164
Rennes, France
jnezan @insa-rennes.fr

Abstract—This paper presents the porting and the optimization
of full polarization, direction independent calibration algorithm
for radio-interferometry, on an embedded many-core platform.
In astronomy, calibration algorithms consist of solving for the
unknown complex antenna gains using a known model of the
sky. Calibration is a key computation to provide images of the
sky at good quality and high resolutions. In the context of the
Square Kilometer Array (SKA) project, real-time and low power
execution of the calibration is challenging. In this paper, we
show that the CohJohnes algorithm provides good properties for
being executed efficiently on the new generation of many-core
embedded platforms. Experimental results are provided using
the Kalray MPPA Bostan platform running 288 64-bit VLIW
cores and delivering up to 845 GFLOPS at 12W.

Index Terms—Signal Processing, Astronomy, Calibration, SKA
project, Many-core Embedded Systems, Optimizations

I. INTRODUCTION

Calibration is a key computation to go from the radio
interferometer measurement to the evaluation of the signal
produced by a source in the universe. The gain calibration aims
to converge theoretical gains toward the unknown complex
antenna gains using a sky model. In the context of the Square
Kilometer Array (SKA) project, the calibration algorithm will
have to compute the data from a huge number of antenna. For
instance, the SKA1 Low subproject will deliver 157 terabytes
per second, enough to fill up 35000 DVD every second.
Furthermore the computations must be done on site, as close
as possible to the antenna to decrease the cost of the data
transfers. As a result, the calibration algorithm must provide
the best trade-off in terms of the resulting image quality,
computation time and energy consumption.

After decades of exponential growth, the processing capabil-
ity of individual Processing Elements (PEs) have leveled-off,
due to complexity and power consumption considerations. In
order to cope with the rising complexity of modern embed-
ded applications, Multiprocessor Systems-on-Chips (MPSoCs)
have now increased their processing capabilities by integrating
more and more PEs, a wide variety of memory architectures,
and complex on-chip interconnects. The MPPA processor from
Kalray consists of a set of 16 clusters communicating through
a Network-on-Chip (NoC), where a cluster designates a set of
16 PEs sharing a local memory of 2 MBytes. Programming
MPSoCs with hundreds of heterogeneous PEs, complex mem-

Univ. Rennes, INSA Observatoire de Paris, CNRS

HASCOET Julien
Kalray

TASSE Cyril

PSL University
Meudon, France
cyril.tasse @obspm.fr

Montbonnot-Saint-Martin, France
jhascoet@Xkalray.eu

ory architectures, and NoCs remains a challenge for embedded
system designers but at the same time it delivers high energy
efficiency compared to conventional solutions.

Gain calibration is a complex non-linear least square prob-
lem and is solved here by the approach of Levenberg-Maquardt
(LM) based on the Radio-Interferometric Measurement Equa-
tion (RIME [1]) to compute direction independent (DI) gain
calibration. Furthermore, this study will rely on the Wirtinger
optimization presented in [2] that allows faster computations
due to matrix simplifications. The sparse properties of matrices
allows to drastically reduce the algorithmic complexity of
some computations such as inversions or matrix products.We
show here how the properties of the CohJohnes algorithm can
be exploited to efficiently execute the calibration on modern
MPSoCs. Results are obtained on an Bostan MPPA platform
in term of speed and energy consumption.

In section II we present the MPPA platform and its ar-
chitecture. You will find there more details about the data
communication on the chip, the clustered architecture and
the organization of the shared memory. Section III is about
the Antenna calibration algorithms, related works and opti-
mizations used to solve the calibration problem. The RIME
equation are first reminded. The scalar polarization calibration
is then briefly explained followed by the fully polarized case.
Section IV shows how we adapt the calibration algorithms
to the MPPA platform, present the structure of the program
and the results in terms of speed and energy consumption.

Notations and frequently used symbols

Symbol Description

7 Gain vector at the iteration i
J g Jacobian of g;

J ;i Hermitian Transpose of the Jacobian
H Hessian matrix

A damping coefficient

U, visibility vector

h(g:) data vector of g;

Na number of antenna

Nbl number of baselines

Nd number of directions

Nt number of time-frequency points
number of polarizations

II. MANYCORE EMBEDDED PLATFORM PROGRAMMING

The Kalray MPPA (Multi-Purpose Processing Array) many-
core architecture is the state-of-the-art in terms of many-core
embedded architecture. It is a great opportunity to execute
calibration algorithms in SKA in real-time and at low power.
The MPPA2-256 many-core processor integrates 256 VLIW
application cores and 32 VLIW management cores operating at
400MHz on a single chip and delivers more than 80 GOPS/W.

The 256 VLIW application cores are grouped in 16 compute
clusters connected with each other by a dual Network-On-Chip
(NoC). Each cluster has 2 MB of locally shared memory called
SMEM and available for application code and data. In addition
to the 16 compute clusters, the MPPA includes 2 Input/Output
clusters that communicate with the external world through
high-speed interfaces such as the PCle Gen3 and Ethernet
10 Gbits/s. Those I/O clusters also integrate quad-cores with
the same VLIW architecture and are connected to up to 4GB
of external DDR3 memory. Each MPPA core implements a
32-bit VLIW architecture which issues up to 5 instructions
per cycle, corresponding to the following execution units:
branch & control unit (BCU), ALUO, ALU]1, load-store unit
(LSU), multiply-accumulate unit (MAU) combined with a
floating-point unit (FPU). We use the MPPA POSIX-Level

ETHERNET

Quad Quad
() oom J_roe J%)

Manycore Processor

VLIW Core

Compute Cluster

Fig. 1. MPPA-256 Bostan processor architecture.

programming model [3] in which the distribution of code and
data across the compute clusters are explicitly managed. With
this model, each compute cluster can execute an independent
process started from its own binary executable. Inside each
compute cluster, up to 15 additional POSIX threads can be
created as a first thread already runs the main program.
This programming model offers control over the memory
footprint and supports thread-level parallel execution within
each cluster with one thread per core. The POSIX-Level
programming model also manages data transfers by using the
POSIX synchronous and asynchronous file operations. These
operations activate the dual NoC for internal communications
and the high speed interfaces (Ethernet, PCle Gen3, NoCX)
for communications with the external world.

The programming of such an architecture is challenging due
to the memory architecture (shared memory inside clusters
and distributed memory between clusters) and the small size
of the SMEMs compared to the large data to compute. The
80 GOPS/W are reached if the algorithm can be mapped
and scheduled on the 256 cores without waiting times due

to data transfers. A great care on the algorithm selection and
implementation strategies are required.

III. ANTENNA CALIBRATION BACKGROUND
A. RIME formalism and Calibration Algorithm

The RIME equation is obtained by correlating data coming
from two radio-telescopes. The RIME is presented in [4] and
details about Antenna calibration can be found in [5]. Each
antenna A; delivers complex voltages V from an electromag-
netic field E. G are the complex gains we want to compute in
the calibration process, B represents the Bias effects and k is
the complex exponential term.

Vi = Ep = exp (2jm(Qt + ka;)) = GiBi x ki E- (1)

The calibration is computed using the visibilities which are
correlation between two antenna (A4, and A;) :

Vaa, = <VpxVIH> 2
= GapBapkap EEH x Ik, « BE G (3)
Traditional non-linear least squares problem are solved

using iterative algorithms like Gauss-Newton (GN) or
Levenberg-Marquardt (LM) algorithms. Those algorithms have
been extended to complex functions using a formalism called
the Wirtinger derivative in which the conventional real Jaco-
bian becomes a complex.

We implement here the CohJones algorithm described in [2]
and based on the LM algorithm using the Jacobian matrix in
the Wirtinger framework. More details are available in [6]. In
this approach, visibilities are written v, or v,, for a baseline
pg, at time ¢ and frequency v such as :

Upg = Um = Vec(Vipgu) 4)
= Z(Jgtu ® Jgtu)vec(sd)k?pq)tu (5)
d

Where d represents the directions, J the Jacobian matrix, Sy
is the four-polarization sky matrix and k = exp(—2im(ul +
vm 4+ w(n — 1))) with n =1 — 12 — m2.

Results presented here focus on a single direction (d = 1)
and are time frequency independent. Furthermore, we consider
only one source in the center of the observation field (I =
m = 0) so the complex exponential k£ = 1. This simplification
avoids the calculation of the exponential but does not interfere
with the Levenberg-Maquardt algorithm. Eq.5 becomes :

Upq = (th @ Jpi)Vece(S) (6)

where J,, is the 2 X 2 Jones matrix of the antenna p.

The CohJones algorithm being iterative, a distinction is
made between the measured visibilities v, obtained with
eq.4 and the estimated visibilities v; at an iteration 7. The
calibration gain vector g; at iteration 7 is computed using Eq.7
and converge toward the G; gains of eq.1.

Gir1 = gi + (H |g +X - diag(H |5) 7T [(vm —vi) (D

with H i ®)

a=J 157

B. Considering a scalar polarization

We can then rewrite eq.5 for a scalar polarization :
Vpg = Jg X Jp)

where J,, is a scalar term.

1) The Jacobian matrix: The Wirtinger Jacobian matrix
Ju,,,gw 18 ONerous to compute due to its dimensions. In the DI
problem, its size is : NpNyng x 2N, N,. and is, for a given
baseline:

J

Upgs9w

:[J

Upq>9

J'quaﬁ] (10)
Hopefully the Wirtinger optimization allows to compute and
use only half of that matrix. The matrix below details the
structure of the Jacobian (in the case of a three antenna
calibration) that we will be dealing with.

a 0 0
b 0 O
0 ¢ O
Jo,gw = 0 d o (11)
0 0 e
0 0 f

Where the a to f components are complexes. In fact, for a
scalar polarization, one line of the Jacobian for the antenna a
can be written as:

[y, o] = {gq fora=p (12)

0 otherwise

2) Inverting the Hessian Matrix: As the Hessian H = JH.J
is a diagonal matrix. The diagonal coefficients are no longer
complex but real values. This matrix will be easily inverted
with an algorithmic computation of O(Na). Furthermore we
have that equation from [2] :

U= (ng |§)g (13)
Injecting equation 13 in equation 7, and having H = diag(H)
we obtain the hereafter algorithm:

G = XA+t 4+ 0+ 1) H |g5,1 Jog |E v (14)

C. Considering the fully polarized case

In the fully polarized case, eq.6 cannot be simplified as eq.9
and J, is the 2X2 Jones matrix of the antenna p.

1) The Jacobian matrix: the a to f components described
in equation 11 are now 4 x 4 blocks. The shape of one block
is described in the hereafter matrix 15. More details about the
Jacobian can be found in [4].

5)

vaq,gw =

o0 O
o o8 O
O QU O
QU O o O

2) Inverting the Hessian Matrix: In the fully polarized case,
this matrix is block diagonal with hermitian blocks that present
the same structure as the matrix 15 with ¢ = b and each block
corresponds to a specific antenna. In practice, the coefficients
b and c have a smaller amplitude than a and d. It is then
possible to make the approximation H ~ diag(H) allowing
to calibrate data using the algorithm described in equation 14.

Due to floating points approximations, we chose not to
approximate the calculation of H~!. As the inversion of a 4 x
4 matrix is a bit onerous, we rely on its shape and properties
to show that as long as H is invertible each block of H~! can
be written as:

d 0 —-b O
0 d 0 -b
— 0 a 0 (16)
0 —c O a

: _ 1
with o = prmel

IV. MPPA IMPLEMENTATION AND RESULTS
A. Mapping the calibration on the MPPA cores

Using the property that it is possible to separate data over
antenna, we built a two level master-slave software. The
I/Os processor enslaves the clusters, then the main core of
a cluster enslaves the other cores of its cluster. The three
following graphs display the structure of the program and
the parallelism. Considering a scalar polarization and for one

Initialize test | Simulate
vector testdata
h

Beginning of the
iterative algorithm

h 4

Send antenna data
to the clusters

As long as there
are antenna left
|_to be computed

16 Clusters

‘ Update data

______ Wait for the cluster
to finish their job

______ for all
iterations

Synchronize

Update the Jacobian

End of the algorithm

Fig. 2. Program execution on the 10/s

Wait for data sent
by the I/'Os

Initialization

N * Copy data in the
,,,,,, cluster's memory
* Initialize pointers and
data structures

16 cores

Update the data on the PEs ‘

Write back the updated
data in the DDR

Fig. 3. Program execution on each Clusters

Synchronize with
the main PE

Fetch Data

Update Step

Write back
updated Data

it

Fig. 4. Program execution on the PEs

iteration, indexes corresponding to antennas are sent from the
I/Os to the clusters and each cluster fetches the data pertaining
to the indexes. Then the main PE of the cluster dispatches the
data corresponding to one antenna on each core and begin the
computation. At the end of the execution, the updated part of
the vector is written back into the DDR.

In a fully polarized case, the computation is more complex
and the number of data is increased so that the 2Mb limit in
a cluster do not allow to compute the data of one antenna on
each core of a cluster. The matrix operations on the data of
one antenna are executed in parallel over the 16 cores of the
cluster.

B. Optimizations

As seen before, the calibration involves onerous matrix com-
putation and the MPPA architecture comes with consequent
memory constraints. We present here various optimizations
to reduce both the complexity and the computation time but
also to ensure the portability of the algorithms on the MPPA.
We present here the optimizations on the scalar polarization
problem but the same have been used for the full-polarization.

1) Optimizations based on the Jacobian shape: Relying on
the idea that the Jacobian had the structure presented in eq.11,
only the non null components in a vector are stored. As the
native Jacobian had to store Na(Na—1)* Na complex floats,

we save Na * 64bits. Furthermore, considering the Jacobian
as a vector makes the complexity of J,, 4 |§I Uy, product going
from O(Na?) to O(Na?).

2) Optimizations around the Hessian: The Hessian H is
obtained by the calculation H |5= J |§{ J |g;- Knowing the
diagonal structure of the Hessian, we consider it as a vector of
Na components instead of a Na* Na matrix. As we consider
the Jacobian as a vector, the computation of the Hessian has
no longer a complexity in O(Na*) but in O(Na?). Moreover,
considering the Hessian as a 1-D vector saves some memory
in a cluster. As long as all the components of H are non-null,
this matrix is trivially invertible. Another matrix product is
required in this algorithm (the one between H ! -that should
be Nax Na elements- and J, 4 |q§l v, -that is a Na elements
vector). The complexity of this product is reduced to O(Na)
by the previous optimization.

C. Performances

This part presents, compares and comments MPPA and x86
(intel Core 15-3570 CPU - 3.40GHz x 4) implementations in
terms of quality, computation time and energy consumption
(estimating the power consumption of an x86 architecture at
50 W). The following table is obtained after 60 iterations.

| Na_ | memory (Mo) | computing time (s) | Energy (J) |

’ non-optimized code on a x86 platform (single core) ‘

32 0.279 1.039 51.95
64 2.163 4.587 229.35
256 1357 174.364 8718.2
1024 | >8600 unable to run X
’ non-optimized code on the MPPA (single core) ‘
32 0.279 927.651 435.6
>62 | >1.97 unable to run X
optimized code for MPPA (256 cores)
32 0.008 0.063 0.51
64 0.017 0.197 0.87
256 | 0.066 2.736 8.35
1024 | 0.262 43.562 140.15

Fig. 5. Program performance in a scalar polarization case

1) Scalar polarization: The figure 5 displays the results in
terms of speed and of energy consumption of the calibration
of Na antenna while considering a scalar polarization on dif-
ferent platforms and with optimized/unoptimized implementa-
tions. The "unable to run” value refers in fact to a saturated
memory (RAM for the x86 architecture and Cluster memory
for the MPPA). Data separation and reshaping matrices allow
us to calibrate up to 6000 antenna on the MPPA. In the
unoptimized case, we can estimate the amount of data in one
cluster using the formula memoryyseq = Na®+2Na?+ Na.
Without taking into account local variables, code, etc... Using
8 Bytes variables leads to fill the memory of a cluster if we
try to calibrate 62 antenna or more (52 in practice).

The calibration time and the energy consumption of a
calibration is not linearly scaled up with the number of
antenna. This is due to the size of the matrices that we have to
compute with. Indeed, if we take the Jacobian’s case, dealing
with 6 antenna will lead to a matrix with 18 elements (6
with our optimization) and calibrating 4 antenna will lead to
a Jacobian of 48 elements (12 with optimizations). Obviously,
bigger matrices lead to bigger computation and requires more
resources. This justifies all the computational shortcuts and the
reshaping of the matrices. The optimized code on the MPPA
applies a separation over the antenna. It leads to have in each
cluster and for each antenna, matrix sizes that vary linearly
with Na. However, using this software architecture don’t lead
to a linear energy consumption or runtime. As each cluster
is designed to calibrate 16 antenna (one antenna per PE) at
its maximum, only two clusters are required to calibrate 32
antenna but the 16 clusters start and fetch data 4 time to
calibrate 1024 antenna over one iteration. Moreover, updating
the Jacobian matrix in the IO is an heavy computation that
also increase the energy consumption and calibration time
independently of the clusters. With the parameter Na fixed
to 256, the measured speed-up between 1 core on 1 cluster
and the 256 cores over one iteration of the MPPA is 33. This
low value is due to the fact that starting one PE on one cluster
will grant him direct access to the DDR as the NoC will not
be used by any other cluster.

The here after figure 6 displays a comparison of the number
of operations per Joules between a x86 architecture and the
MPPA.

Although we know the link between energy consumption
and computation time, this table is a good indicator to find out
an optimal configuration to run our program. We can easily
extract from this table a linear coefficient between the iteration
time and the number of started clusters. By choosing the
number of started clusters and PE, we are able to regulate the
energy consumption to get closer to the real-time constraint.

le-1 le-1
le-2 le-2 23
le-3 le-3 |}
la-4 le-4
.ig 185 w le-5
%_ le-6 E le-G ¢
£ 1e7 = le-7
2 s 1)
g le-s 8 1e10)
4 le-10 o
o 1e-11
le-11 18-12 b
le-12 le-12 [
le-13 le-14 b
le=-14 1e-15
le-15 1e-15

5 10 15 20 25
Iteration

5 1015 20 25 20
Iteration

Na architecture op/J
32 x86 37
MPPA 2341
64 x86 16
MPPA 2526
256 x86 2
MPPA 1233

Fig. 6. Number of operations per Joules on different platforms

The following table 7 sums up the cost of 1 iteration in terms

Fig. 8. Amplitude and phase of the difference between the estimated gains
at iteration « and the true gain vector in a 40 antenna scalar calibration case

We can use this plot to deduce a better design of our system.
As the SKA project requires a specific precision (around
10~7), we can then choose the optimal number of iterations
to reduce both computation time and energy consumption.

2) Full polarization: The figure 9 displays the results in
terms of speed and energy consumption of the calibration of
Na antenna while considering a fully polarized problem using
the MPPA and a x86 architecture. The comparison with an
unoptimized program on the MPPA is not relevant as without
optimization, the memory of a cluster would be filled with 20
antenna.

| Na_ | memory (Mo) | computing time (s) | Energy (J) |

of time and energy consumption with several different started
cluster/PE configurations (sorted by energy consumption) for

a fixed number of antenna.

PE | clusters | iteration time (ms) | Energy (J)
16 | 1 35.83 0.097
16 | 4 8.99 0.107
8 8 4.82 0.127
1 1 76.39 0.132
1 16 5.80 0.155
4 16 3.00 0.167
16 | 16 2.45 0.207

Fig. 7.

of cluster and PE started

Energy consumption and calibration time depending on the number

’ non-optimized code on a x86 platform (single core)

32 4.36 28.08 1404
64 342 124.66 6233
128 | 271 659.109 32955
] optimized code for MPPA (64 cores)

32 0.002 0.53 1.93
64 0.004 2.09 6.25
128 | 0.008 8.34 24.23
512 | 0.033 133.3 410.85
1024 | 0.066 533.2 795.58

Here, we chose to start only 64 cores of the MPPA (16
clusters of 4 PE) to reduce the size of the data transfers and

Fig. 9. Program performance in a fully polarized case

focus more on the computation. One antenna is computed at
a time on one cluster and we use data parallelism to compute
the four different polarizations on four PEs. The speedup on
the iterative part of a 256 antenna calibration is 147.

Na architecture op/J
32 x86 5.47
MPPA 3979
64 x86 2.46
MPPA 2457
128 x86 0.93
MPPA 1268

Fig. 10. Number of operations per Joules

The figure 11 displays the accuracy of the computing on a
10 antenna calibration for the real and imaginary part of each
antenna at each polarization. We can see on these plot that the
algorithm takes more time to converge. This is partly due to
a mathematical shortcut that we use to perform singular value
decomposition to take the first antenna as a reference.

Residual Amplitude
Residual phase

10 20 30 40 50 &0 10 20 30 40 50 &0
lteration lteration

Fig. 11. Amplitude and phase of the difference between the estimated gains
at iteration x and the true gain vector in a 10 polarized antenna case

The time spent for an iteration (the parallelized step) take
a negligible amount of time in comparison with the whole
program. This is mainly due to the computation of the Jacobian
that requires the whole Gain vector to be computed. As this
gain vector is wide (INp * Na elements of 8 bytes and the
optimized Jacobian has also Na * (Na — 1) * Np elements),
migrating the computation of this matrix on the clusters is
difficult and don’t really improve the performances as the NoC
is overloaded all the time.

V. CONCLUSION

This paper shows that calibration algorithms are efficiently
executed on a MPPA many-core platform in terms of com-
puting time and energy consumption. By studying the various

equations, the shapes of the matrix and their properties, we
have been able to significantly reduce the time of computation
and thus to increase our performances. Numerous efforts
have been made to reduce the size of the data, to ensure
the computation on the 16 clusters of the chip. Hopefully
properties of data separation and the computation on matrices
lead to an obvious parallelism that is suitable for the MPPA.

This study was a first approach to the calibration problem
and the final algorithms will take several time-frequency
blocks and calibration’s direction. The architecture of the
MPPA is adapted for the computation of integers and the
next generation of MPPA will improve the floating point
performances. Future research will evaluate and compare fixed
point and floating point implementations.

Even if there is still a lot to be done on these algorithms,
we show here that the optimizations and the properties of the
MPPA platform are relevant solutions for the SKA project on
the calibration algorithms.

REFERENCES

[1] S. R.J. Hamaker J. P., Bregman J. D. 1996.

[2] C. Tasse., “Applying wirtinger derivatives to the radio interferometry
calibration problem,” 2014.

[3] B. D. D. Dinechin and G. L. C. L. B. O. J. R. T. S. al., Pierre Guironnet
de Massas, A Distributed Run-Time Environment for the Kalray MPPA-
256 Integrated Manycore Processor. June 2013.

[4] O. Smirnov, “Revisiting the radio interferometer measurement equation,”
arXiv, 2011.

[5] C. O.M. Smirnov, “Radio interferometric gain calibration as a complex
optimization problem,” arXiv, 2015.

[6] R. Hunger, “An introduction to complex differentials and complex
differentiability,” TUM, 2007.

[71 S. Kosnac, “Kalray mppa many-core processors,” 2015.

[8] W. Wirtinger Mathematische Annalen, 1927.

[9] K. Madsen, H. B. Nielsen, and O. Tingleff, “Methods for non-linear

least squares problems (2nd ed.),” 2004.

B. D. de Dinechin, “Engineering a manycore processor platform for

mission-critical applications,” 2015.

[10]

