
HAL Id: hal-01900313
https://hal.science/hal-01900313v1

Submitted on 21 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Negotiation Strategy of Divisible Tasks for Large
Dataset Processing

Quentin Baert, Anne-Cécile Caron, Maxime Morge, Jean-Christophe Routier

To cite this version:
Quentin Baert, Anne-Cécile Caron, Maxime Morge, Jean-Christophe Routier. Negotiation Strategy
of Divisible Tasks for Large Dataset Processing. 15th European Conference on Multi-Agent Systems,
Nov 2017, Évry, France. pp.370-384, �10.1007/978-3-030-01713-2_26�. �hal-01900313�

https://hal.science/hal-01900313v1
https://hal.archives-ouvertes.fr


Negotiation Strategy of Divisible Tasks for Large
Dataset Processing ?

Quentin Baert�, Anne-Cécile Caron, Maxime Morge, and Jean-Christophe
Routier

Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en
Informatique Signal et Automatique de Lille, F-59000 Lille, France

{quentin.baert, anne-cecile.caron, maxime.morge,

jean-christophe.routier}@univ-lille1.fr

Abstract. MapReduce is a design pattern for processing large datasets
on a cluster. Its performances depend on some data skews and on the
runtime environment. In order to tackle these problems, we propose an
adaptive multiagent system. The agents interact during the data pro-
cessing and the dynamic task allocation is the outcome of negotiations.
These negotiations aim at improving the workload partition among the
nodes within a cluster and so decrease the runtime of the whole process.
Moreover, since the negotiations are iterative the system is responsive in
case of node performance variations. In this paper, we show how, when a
task is divisible, an agent may split it in order to negotiate its subtasks.

Keywords: Application of MAS, Automated negotiation, Adaptation

1 Introduction

The processing of large datasets requires to distribute data on multiple machines,
typically a cluster of PC. Processing such distributed data is the purpose of the
MapReduce design pattern [1]. A MapReduce application is composed of a map
function which filters the data in order to build key-value couples and a reduce
function which aggregates them. Many implementations of MapReduce exist,
but the most popular is the open-source implementation Hadoop.

The user of a distributed application based on the MapReduce design pattern
(e.g. Hadoop) must know its implementation, the input data and the runtime
environment in order to configure beforehand the job. Nevertheless, even with a
finely tuned configuration, data skews and heterogeneous runtime environments
challenge the implementation choices.

In [2], the authors identify two common data skews during the reduce phase:
(i) the partitioning skew occurs when a reducer processes a larger number of
keys than others; (ii) the expensive key groups occurs when few keys are as-
sociated with a large number of values. As stated in [3], these two skews are

? This project is supported by the CNRS Challenge Mastodons.



widespread in todays applications and, they lead to an unbalanced workload of
the reducers. Since the job ends when all the reducers have finished their work,
the process is penalized by the most loaded reducer or (the slowest one). In
this paper, we propose a multiagent system which implements the distributed
MapReduce pattern where reducer agents negotiate divisible tasks while they
process a job in order to improve the workload partition and so the runtime.
The adaptivity of the MAS allows us to tackle both the reduce phase data skews
and a heterogeneous runtime environment without data preprocessing. In [4],
we have discussed the formal properties of our MAS and we have shown the ad-
vantages of a MAS architecture. Moreover, we have addressed the partitioning
skew thanks to negotiations between reducers. Here, we address the expensive
key groups skew with a negotiation strategy of divisible tasks. When the task
delegation is socially irrational, our agents may split that task and negotiate
the subtasks in order to reach a fairer task allocation. A reducer negotiates and
splits tasks using its local beliefs about its peers workloads. These beliefs are
updated during the reduce phase using the informations exchanged through the
negotiations. Since the nodes may have heterogeneous performances, the process
constantly adapts the distribution of the computations to the dynamics of the
job processing. Furthermore, in order to improve the responsiveness of the MAS,
we extend the negotiation process such that the agents can simultaneously bid
in concurrent auctions. Finally, we show through several experiments that the
workload balancing speeds up the data processing.

Section 2 presents the MapReduce design pattern and the related works. In
Section 3, we shortly present our negotiation process with an illustrative example
and we present our negotiation strategy of divisible task. Section 4 presents our
experiments which highlight the added value of our adaptive multiagent system.
Finally, Section 5 concludes and presents future works.

2 Motivation

MapReduce jobs consist of two sets of tasks, i.e. the map tasks and the reduce
tasks, which are distributed among nodes within a cluster. A node which per-
forms a map task (resp. a reduce task) is called a mapper (resp. a reducer). In
order to perform such tasks, the nodes need these two functions given by the
user:

map: (K1, V 1)→ list[(K2, V 2)]
reduce: (K2, list[V 2])→ list[(K3, V 3)]

Figure 1 illustrates the MapReduce data flow as implemented in Hadoop:

1. the supervisor shares input data by giving a slot to each mapper;
2. the mappers apply the map function over their slots and build the interme-

diate key-value pairs (key : K2, value : V 2);
3. a partitioning function is applied over the output of the mappers in order to

split them in subsets, i.e. one subset per reducer such that the couples with



the same key are sent to the same reducer. In this way, a reducer process all
the values of the same key (for data consistency);

4. the reducers aggregate the intermediate key-value to build the couples (K2, list[V 2]).
They apply the reduce function over the groups of values associated to each
key;

5. the final key-value couples (K3, V 3) are written in the distributed file system.

Supervisor

slot 0 map

slot 1 map

slot 2 map

4 reduce part 0

reduce part 1

2

merge

5

3

1

intermediate results locations final result location

Fig. 1: MapReduce data flow.

Several criteria must be considered to compare our proposal to others1:

1. Prior knowledge about the data. Since the datasets are large, analyzing data
beforehand is not realistic;

2. Data skew. We aim at addressing the data skews which lead to an unbalanced
workload;

3. Self-adaptivity. We want the system to autonomously and constantly balance
the workload.

4. Decentralization. A decentralized process is more responsive, robust and
efficient than a centralized one.

5. Weak parametrization. Setting the parameters of a job requires to know the
input data, the runtime environment and the MapReduce implementation.
We aim at providing a solution which adapts the task allocation without
expertise about the data and the computation environment.

The distribution of the MapReduce pattern needs to tackle the data skews
which penalize the efficiency of the computation. [5] and [6] predict the perfor-
mance with job profiling by collecting data during the previous runs. We do not

1 Fault tolerance is out of the scope of our study.



want to preprocess data due to its computational cost, in particular for large
datasets.

The partitioning skew leads to an unbalanced key allocation to the reducers.
Without any prior knowledge about the data, the partitioning function cannot
warrant a fair key allocation, and so a fair task allocation among the reducers.
This data skew is tackled in [2, 7, 8] using centralized solutions with prior knowl-
edge about the data and the environment or parametrized system. In [4], we also
address it with a dynamic task allocation which is the outcome of concurrent
negotiations between reducer agents all along the reduce phase. Unlike the other
works, our proposal is decentralized and it does not require any configuration.

The data skew of expensive key groups is due to the fact that few keys are
associated with a large number of values. For instance, it happens when the data
can be approximated with a Zipfian distribution [9], i.e. the number of values for
a key is inversely proportional to its rank in the frequency table. The consequent
congestion phenomenon in the reduce phase is studied in [10]. Most of the time,
this problem cannot be solved by a different key allocation to the reducers since a
reducer is overloaded as soon as it is responsible for an expensive task. Even if this
data skew is raised in [2], no solution is given. In [11], the authors also highlight
this data skew. Since they claim that MapReduce requires that each key must be
processed by a single reducer, they consider that the possibilities of fitting the
system for this skew are very small. Then, their proposal is restricted to a user
alert and ad-hoc solutions. In [8], the authors concretely tackle this issue. They
propose to split the outputs of the mappers into blocks whose size must be a
priori set up by the user. Thus, the values associated with the same key can be
distributed in several blocks. The authors introduce the notion of intermediate
reduce tasks which are applied to a subset of the values to produce intermediate
results. Since the size of these tasks are parameterized, it is easier to balance the
workload. The intermediate results for the same key are aggregated during the
final reduce phase. This approach is centralized since the master node gathers all
the information about the intermediate tasks and it orchestrates the reduce tasks
allocation. Moreover, this proposal is based on some parameters which must be
defined a priori (e.g. the size of non-divisible tasks). Finally, the task split is
systematic. In this paper, we adopt a similar approach by splitting the tasks
corresponding to the keys with a large number of values. The resulting subtasks
can be negotiated and so dynamically allocated to the reducers in order to reach
a balanced workload. However, unlike [8], the task split is only performed if
necessary. Moreover, this mechanism does not require any predefined parameter
to setup the size of the subtasks.

More generally, the multiagent approach for distributed problem solving,
which encompasses distributed constraint solving [12] and negotiation [13], is
suitable for adapting to unknown data and dynamic computing environments. It
is worth noticing that, in most of the works on negotiation, agents give priority
to their own goals. Conversely, in our context of distributed problem solving,
agents have a common goal which has the priority over the individual ones.
Contrary to [13], our mechanism does not allocate resources based on agents’



preferences once for all, but it iterates several task negotiations based on a local
estimation of the remaining tasks to perform. In [12], the authors consider the
problem of parallelizing heterogeneous computational tasks where each agent
may not be able to perform all the tasks and may have different computational
speeds. Let us note that this work addresses problems where the interactions
between the tasks and machines are sparse, i.e. each agent can execute a small
number of tasks and each task can be executed by a small number of agents.
This is not the case in MapReduce applications. To our best knowledge, there are
few works linking MAS and MapReduce frameworks. [14] presents a MapReduce
pattern implementation based on mobile agents to replicate code and data for
fault tolerance. However, this work does not apply self-organization techniques
in order to adapt the MAS to the input data or the runtime environment. For
this purpose, we adopt multiagent negotiation techniques.

3 Proposal

Our MAS addresses the two following data skews: the partitioning skew and the
expensive key groups.

In order to address the partitioning skew, our reducers negotiate tasks using
the Contract Net protocol. Doing so, they balance their workloads (called con-
tributions) while they perform tasks during the reduce phase. It is important
to note that task processing and negotiations simultaneously occur. Adaptation
of the workload is then continuous. This process was presented in [4]. Here we
extend it in order to allow agents to simultaneously bid in concurrent auctions,
then to address the data skew of expensive key groups, we introduce a task split
mechanism which allows reducers to partially process a task. This process leads
to subtasks negotiations which refine the workload balancing.

3.1 Negotiation process

Let us recall the basic principles of the negotiation process through an example.
We consider here a particular auction for a single MapReduce job.

A reduce task represents a key and all its associated values. The cost of a
task is defined by the number of values it contains. Thereby a task has the same
cost for all the reducers of the system. We call contribution of a reducer the sum
of costs for the remaining tasks it must perform.

In our example, we assume that the mapper phase has been completed and
that the reduce tasks are initially allocated to four reducers, Ω = {1, 2, 3, 4}. We
focus on the task allocation at time t such that the individual contributions are
c1(t) = 10, c2(t) = 8, c3(t) = 3 and c4(t) = 5 where ci(t) is the contribution of
the agent i at time t (see Figure 2a). Each reducer has beliefs concerning the
contributions of others. These beliefs are updated through information carried
by the negotiation messages.

In order to decrease their contribution all the reducers initiate auctions. In
particular, reducer #1 initiates an auction about the task τ with cτ = 3 through



a call for proposal (cfp) sent to the peers (see Figure 2b). A cfp contains the
contribution of the initiator (c1(t)) and the cost of the task to negotiate (cτ ).
In order to decide if it can manage the task τ at time t+1, reducer i (i ∈ Ω\{1})
must satisfy the following acceptability criterion: ci(t)+cτ < c1(t). The reducers
which satisfy this criterion will improve the workload partition since they may
take the responsibility of the task τ . Therefore, they make a proposal for τ while
the others refuse the task delegation. For instance, reducer #2 does not take
the responsibility of τ . Otherwise, its contribution c2(t) + cτ would be higher
than c1(t). Meanwhile, reducer #3 and reducer #4 make some proposals for τ
by sending their contributions to reducer #1 (see Figure 2c).
Reducer #1 receives the proposals of the agents Ω′ = {3, 4}. It updates its
belief contributions about the other for future decisions. Then, it chooses to
delegate τ to the least loaded bidder by applying the following selection criterion:
argmin
j∈Ω′

(cj(t)). In this way, reducer #1 accepts the proposal of reducer #3 and

it rejects the one of reducer #4 (see Figure 2d).

After the negotiation (at time t + 1), we observe that the task τ belongs to
reducer #3. The new contributions are c1(t+ 1) = 7, c2(t+ 1) = 8, c3(t+ 1) = 6
and c4(t+1) = 5. Negotiation leads to a more efficient configuration, i.e. a fairer
task allocation (see Figure 2e).

(a) Initial allocation: #1 is the
most loaded one

(b) #1 proposes the task τ (c) Acceptability criterion

(d) #1 applies the selection cri-
terion

(e) Re-allocation

Fig. 2: Step-by-step negotiation process: reducer #1 delegates the task τ .

As it will be illustrated in our experiments (cf. Section 4), the task alloca-
tion is dynamic and adaptive since negotiations are repeated. For instance, if



a reducer is slowed down for some reasons, then an unbalanced allocation will
appear, and so a negotiation will be triggered in order to delegate another task
and decrease the current contribution of the delayed reducer.

Several reducers can simultaneously initiate negotiations but a reducer is
either initiator or bidder at time t. In the following section, we will allow a
bidder to be involved in more than one auction at a time.

3.2 Multi-auctions

We consider here a concurrent multi-auction process which allows agent to bid
in several simultaneous auctions. In this way, the gap between the most loaded
reducer and the least loaded one is filled faster and so, the responsiveness of the
MAS is improved.

In order to manage several concurrent auctions, a bidder maintains an over-
head of its current contribution. This overhead is the sum of all the task costs
for which the bidder has made a proposal. In other words, a bidder records the
overhead corresponding to the win of all the auctions in which it is involved. In
this way, a bidder can make relevant proposals in several auctions and bids only
if it may fulfill the acceptability criterion with its expected contribution (which
includes its current contribution and its overhead).

Let c be the contribution of the reducer and o its current overhead. Initially,
o = 0. When the reducer receives a cfp about a task τ with the cost cτ from an
initiator i with the contribution ci, the bidder adopts the following behaviour:

– either c+ cτ ≥ ci, the bidder does not fulfill the acceptability criterion and
it declines the cfp;

– or c+o+cτ < ci, the bidder makes a proposal with its expected contribution
(i.e. c+ o) since it fulfils the acceptability criterion whatever is the outcome
of the pending auctions. Then, o← o+ cτ ;

– or c + o + cτ ≥ ci and c + cτ < ci, its reply depends on the outcome of the
pending auctions, so it stores the cfp in order to re-evaluate the correspond-
ing acceptability criteria later.

When an auction ends, the bidder:

1. updates the overhead, i.e. o← o−cτ , and possibly its contribution c← c+cτ
if it wins the bid;

2. re-evaluates the stored cfps with its current contribution and the updated
overhead. According to the previous behaviour, the bidder can reply to the
stored cfps by an acceptance, a refusal, or postponing them.

Finally, the bidder only keeps the last cfp for each peer in order to avoid
replying to a closed auction.



3.3 Task split: principle and bootstrapping

The skew of expensive key groups can be tackled neither with a static partition
nor with our negotiation process. In order to allow reducers with expensive
tasks to decrease their contributions by negotiation, we consider that the tasks
are divisible. Therefore, we propose to split the expensive tasks into cheaper
subtasks which are negotiable. In order to decrease the communicational and
computational overhead of negotiations, tasks are split only if required.

As explained in Section 2, the tasks split requires to slightly modify the
design pattern by introducing an intermediate reduce phase and a final reduce
phase. Similarly to [8], we define the three following functions:

map: (K1, V 1)→ list[(K2, V 2)]
IR: (K2, list[V 2])→ (K2, list[V 2])

FR: (K2, list[V 2])→ list[(K3, V 3)]

The user must decompose the reduce function R in an intermediate reduce
function (IR) and a final reduce function (FR) such that for each key k and
its values S, R(k, S) = FR(k,< IR(k, S1); · · · ; IR(k, Sn) >) whatever is the
partitioning of the values S = S1 ∪ · · · ∪ Sn.

The reduce function is an aggregation function. In [15], the authors identify
three families of those functions: (i) the distributive functions where the reduce,
the intermediate reduce and the final reduce are the same function (e.g. sum,
min, max, count); (ii) the algebraic functions which can be decomposed using a
bounded number of distributive functions (e.g. avg is decomposed by using an
intermediate reduce function computing a sum and count the number of values,
the division of the sum by the number of values is performed by the final reduce);
and (iii) the holistic functions which are neither distributive nor algebraic (such
as the median). It is difficult to find a relavante (IR, FR) decomposition for such
functions since it may require too much intermediate data.

When a task is split into subtasks, IR is applied on each sub-task, producing
an intermediate result, and FR is applied on all these intermediate results to
produce the final result. Subtasks are considered as any other tasks, so they can
be split and negotiated. The intermediate results have to be processed by the
same reducer to compute the final result. So when a reducer initially splits a
task, it collects the intermediate results and apply the final reduce function.

Let us study an example. The task τ is allocated to reducer i. This reducer
splits τ in {τ1, τ2, τ3}. It processes τ1 with IR function and it delegates τ2 and
τ3 to reducers j and l, respectively. Reducer j splits τ2 in τ21 and τ22 in order
to delegate τ22 to a fourth reducer. The results of the application of IR on
{τ1, τ21, τ22, τ3} are sent to reducer i, i.e. the reducer which has split the initial
task τ . Thereafter, i applies the final reduce function FR on these intermediates
results.

In order to illustrate the negotiation strategy of subtasks, let us consider a
population of n reducers. In order to bootstrap a task split, reducer i must fulfill
the following split conditions:



1. there exist m reducers (1 ≤ m ≤ n−1) which are less loaded than i according
to its beliefs;

2. i cannot delegate any task according to its beliefs;

Reducer i aims at decreasing its contribution. For this purpose, it splits its
most expensive task in k + 1 subtasks of the same cost with 1 ≤ k ≤ m. The
allocation of the k subtasks is conventionally negotiated with the peers.

3.4 Task split process

The task split heuristic is based on the beliefs of the reducer about the other re-
ducers contributions. Let’s remember that each reducer receives call for proposal
from its pairs during negotiations. These messages contain the contributions of
the auctioneers and allow the initiator to keep its beliefs up to date.

Definition 1 (Delta of contribution) Let Ω = {1, . . . , n} be a population of
n reducers. At time t, each reducer i with the contribution ci(t) has a vector
ri = < ri1 , . . . , rin−1

> ∈ Ωn−1 of its peers by increasing order of contributions.
Let cik(t) be the estimated contribution of reducer rik (i.e. the belief of reducer i
about the contribution of the kth reducer in ri). For each rik ∈ ri, we define the
delta of contributions as:

∆k
i = ci(t)− cik(t)

According to the split conditions, if agent i can split a task, then there are m
reducers which are less loaded than i. None of its tasks are negotiable, especially
its biggest task τ and so we have: ∀k ∈ [1;m], cτ ≥ ∆k

i . Thus, the split of the
task τ aims at delegating k subtasks with the same cost. This delegation allows
the reducers to decrease its contribution as much as possible.

Reducer i computes k such that:

k = argmin
k∈[1;m]

(ci(t)− k∆k
i

k+1 )

This leads to the building of k + 1 subtasks τ1, . . . , τk+1 with cτ1 = . . . =

cτk =
∆k

i

k+1 and cτk+1
= cτ − k∆k

i

k+1 .
The following example illustrates how k is chosen and the impact it has on

the contributions after negotiations.

Example Let Ω = {1, 2, 3, 4} be a set of four reducers with the contributions
c1(t) = 80, c2(t) = 20, c3(t) = 40 and c4(t) = 30. Reducer #1 has two tasks:
τ and µ. Since µ is the current running task, reducer #1 can only initiate an
auction about the task τ which is not negotiable (see Figure 3). Therefore, there
exist m = 3 reducers which are less loaded than reducer #1. The latter can split
the task τ to decrease its contribution. We observe:

– r1 =< 2, 4, 3 > (i.e. the peers by increasing order of contributions);



Fig. 3: Initial configuration where reducer #1 cannot negotiate the task τ .

– ∆1
1 = c1(t)− c2(t) = 60, ∆2

1 = c1(t)− c4(t) = 50, ∆3
1 = c1(t)− c3(t) = 40.

The number of subtasks modifies the resulting contributions. It is not al-
ways the case that k = m gives the lowest contribution among the peers to the
initiator.

If reducer #1 shares the task τ with a single reducer (k = 1), it builds
the subtasks in order to balance its contribution with the peers. The best split
to balance c1 and c2 consists in only considering ∆1

1 and splitting it into two
subtasks with the same cost. Therefore, the subtasks τ1 and τ2 are built from τ

such that cτ1 =
∆1

1

2 and cτ2 = cτ − cτ1 = cτ − ∆1
1

2 . In this way, reducer #2 may
accept the task τ1 which leads to a configuration where c1(t+1) = c2(t+1) = 50
(see Figure 4).

In the same way, the configurations with k = 2 (see Figure 4) is such that
c1(t + 1) = c4(t + 1) = 46 and c1(t + 1) = c3(t + 1) = 50 in the configuration
with k = 3 (see Figure 4).

More generally, if reducer #1 delegates k subtasks with the cost
∆k

1

k+1 , its new

contribution is c1(t+ 1) = c1(t)− k∆k
1

k+1 . We can observe that there is a value for
k (here k = 2) which minimizes c1(t+ 1) :

k = argmin
k∈[1;3]

(c1(t)− k∆k
1

k+1 ).

Due to lack of place, we only have presented a continuous tasks split. In
reality, the tasks are composed of indivisible chunks of data (previously produced
by the mappers). The actual task split process, which is similar to this continuous
heuristic, take these chunks into account.

4 Experiments

Our experiments compare our proposal to the classical MapReduce distribution.
Moreover, they evaluate the added-value of the negotiation of divisible tasks and
of the multi-auction process. In other words, we compare our MAS with the one
previously proposed in [4] using these metrics:

– the runtime of the reduce phase;
– the contribution fairness, i.e. the ratio between the minimum and the maxi-

mum contributions of the system at time t;



–

–

Fig. 4: Split of the task τ between reducers #1 and #2 (top), between reducers
#1, #2 and #4 (center) and between reducers #1, #2, #3 and #4 (bottom).



– the runtime fairness, i.e. the ratio between the runtime of the slowest reducer
and the runtime of the fastest one.

We have implemented our prototype with the programming language Scala
and the Akka toolkit. The latter, based on the actor model, helps to fill the gap
between the specification of the MAS and its implementation. Moreover, the
deployment on a cluster of PCs is straightforward.

Previous experiments [16] have shown that our MAS is not penalized by the
communicational and computational overhead due to the negotiation tasks since
(i) if there are divisible tasks, the task split is performed only if required; and
(ii) the reducers actually perform tasks while they negotiate. In this way, we do
not increase the runtime of the reduce phase even if the workload distribution
does not need to be improved.

Here, we make the assumption that the negotiation of divisible tasks may
decrease the runtime of the reduce phase and that it helps the system to adapt
itself to the heterogeneous performances of nodes.

Our experiments are based on a dataset2 representing a snapshot of the
Yahoo! Music community’s preferences for various songs. The dataset contains
over 717 million 5-star ratings of 136 thousand songs given by 1.8 million users
of Yahoo! Music services. The data collected between 2002 and 2006 represents
10 Go. The job we consider counts the number of n-star ratings, with n ∈ [1, 5].
This dataset contains 4 “expensive” keys and 1 “cheap” one.

We compare the runtime of the reduce phase in the classical distribution of
MapReduce with the MAS proposed in [4] and with our MAS which split tasks.
We perform the job with one reducer per node. Since a reducer can process data
from a mapper on another machine, the reduce phase is penalized by the non-
locality of the data. This is the reason why we deploy the mappers on different
machines than reducers in our experiments.

Figure 5 shows the runtimes according to the number of machines used, i.e.
Intel (R) Core (TM) i5 3.30GHz PCs with 4 cores and 8GB of RAM. For each
set of parameters, we perform 5 runs. Since the standard deviation due to the
non-determinism of the scheduler is weak, we only show the averages on the
different runs. The classical approach and the negotiation of indivisible tasks
have the same performance since the 5 keys are not negotiable. They are not
suitable for expensive key groups and so they are penalized by this data skew.
By contrast, the negotiation of divisible tasks ends earlier since the available
resources are better used. The runtime fairness reached by the negotiation of
divisible tasks is about 0.99 while the runtime fairness of the classical approach
is closed to 0 when at least one reducer does not perform any task and 0.36 with
5 reducers.

Figure 6 illustrates the dynamic of the contributions during the reduce phase
due to the negotiation of divisible tasks between 12 agents. This mechanism
quickly fills the gap between the most loaded reducer and the least loaded one
during the whole process. Indeed, the negotiation of divisible tasks occurs simul-

2 http://webscope.sandbox.yahoo.com/



����

����

����

����

����

����

����

����

����

�� �� �� �� �� ��� ��� ���

�
�
�
���

�
�
��
�

������������������

���������������������������������������������������
������������������������������

Fig. 5: Runtimes of the reduce phases

taneously to task processing, this makes it possible to dynamically and contin-
uously allocate the tasks to the least loaded reducers. Additionally, we compare
the concurrent multi-auction process which allows agent to bid in several simulta-
neous auctions to a single auction process where each reducer can be involved as
an auctioneer in at most one auction at a time. While the single-auction process
requires 58s to reach a contribution fairness greater than 0.70, the multi-auction
process only needs 3s3. Since the multi-auction process improves the respon-
siveness, the reduce phase with a multi-auction process is faster by 33s (around
12 %).

Fig. 6: Evolution of the contributions with a single-auction process (at left) and
a multi-auction process (at right). The contribution fairness is defined in [0; 1].

Finally, we have performed the same job on 7 machines. The first 6 reducers
run alone on one computer and the 6 other reducers run together on a single
computer and are then penalized. In our approach, the task allocation is adapted

3 It is worth noticing that the negotiations and the data processing are not sequential
but concurrent.



to the heterogeneous performance of nodes (cf. right of Figure 7). We can see
that the system has distributed the tasks such that the reducers end their work
at the same time according to the performances of their nodes. The dynamic
and continuous task reallocation loads more the first 6 reducers which run alone
on a computer until a runtime fairness of 0.99, i.e. the reducers finish their work
almost simultaneously. Indeed, the negotiation of divisible tasks makes it possible
to dynamically and continuously allocate the tasks to the fastest reducers. For
comparison, left of Figure 7 shows the amount of work done by each reducer at
the end of the job with an homogeneous environment.

Fig. 7: The amount of work done by each reducer at the end of the job in a
homogeneous runtime environment (at left) and in an heterogeneous runtime
environment (at right).

These experiments show that our MAS benefits from the parallelism more
than the other implementations. In particular, the negotiation of divisible tasks
decreases the runtime of the reduce phase by improving the workload partition.
Moreover, the multi-auction process improve the responsiveness.

5 Conclusion

In this paper we have shown how the deployment of the MapReduce design
pattern using a MAS can address the data skews which penalize the reduce
phase, in particular the expensive key groups. Our system requires neither pre-
processing nor parametrization depending on the data but it addresses most
of the practical applications. In our MAS implementation, the reducer agents
split “non-negotiable” tasks and negotiate the task allocation while they pro-
cess the data. Their decisions are based on the remaining data to process, i.e.
their contributions. This continuous decision-making process is local and it re-
quires no centralization of information. In order to improve the responsiveness,
we have proposed a multi-auction process which allows agent to bid in several
simultaneous auctions. It is worth noticing that if the runtime environment is



heterogeneous, the system is self-adaptive. Our experiments have shown that the
negotiation of divisible tasks can decrease the runtime of the reduce phase by
iteratively relieving the most loaded (or slowest) reducers.

In future works, we will integrate a data locality criterion in the collective
decision-making process in order to limit the data transfer cost. For this purpose,
we plan to abstract away from our practical application to consider the general
problem of dynamic task re-allocation between heterogeneous machines.

References

1. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
In: SOSDI. (2004) 137–150

2. Kwon, Y., Balazinska, M., Howe, B., Rolia, J.: Skewtune: Mitigating skew in
MapReduce applications. In: ACM SIGMOD ICMD. (2012) 25–36

3. Kwon, Y., Ren, K., Balazinska, M., Howe, B.: Managing skew in Hadoop. IEEE
Data Eng. Bull. 36(1) (2013) 24–33

4. Baert, Q., Caron, A.C., Morge, M., Routier, J.C.: Fair multi-agent task allocation
for large datasets analysis. KAIS (2017) 10.1007/s10115–017–1087–4

5. Lama, P., Zhou, X.: Aroma: Automated resource allocation and configuration of
MapReduce environment in the cloud. In: ICAC. (2012) 63–72

6. Verma, A., Cherkasova, L., Campbell, R.: Aria: Automatic resource inference and
allocation for MapReduce environments. In: ICAC. (2011) 235–244

7. Chen, Q., Zhang, D., Guo, M., Deng, Q., Guo, S.: SAMR: A self-adaptive MapRe-
duce scheduling algorithm in heterogeneous environment. In: ICCIT, IEEE (2010)
2736–2743

8. Liroz-Gistau, M., Akbarinia, R., Valduriez, P.: FP-Hadoop: efficient execution of
parallel jobs over skewed data. VLDB Endowment 8(12) (2015) 1856–1859

9. Li, W.: Random texts exhibit Zipf’s-law-like word frequency distribution. IEEE
Transactions on Information Theory 38(6) (1992) 1842–1845

10. Lin, J.: The curse of Zipf and limits to parallelization: A look at the stragglers
problem in MapReduce. In: Workshop on Large-Scale Distributed Systems for
Information Retrieval. (2009) 2009

11. Gufler, B., Augsten, N., Reiser, A., Kemper, A.: Handling data skew in MapRe-
duce. In: ICCCSS. (2011) 574–583

12. Vinyals, M., Macarthur, K.S., Farinelli, A., Ramchurn, S.D., Jennings, N.R.: A
message-passing approach to decentralized parallel machine scheduling. The Com-
puter Journal 57(6) (2014) 856–874

13. Nongaillard, A., Mathieu, P.: Egalitarian negotiations in agent societies. AAI
25(9) (2011) 799–821

14. Essa, Y.M., Attiya, G., El-Sayed, A.: Mobile agent based new framework for
improving big data analysis. IJACSA 5(3) (2014) 25–32

15. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.,
Pellow, F., Pirahesh, H.: Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. Data Mining and Knowledge Discovery 1(1)
(1997) 29–53

16. Baert, Q., Caron, A.C., Morge, M., Routier, J.C.: Stratégie de découpe de tâche
pour le traitement de données massives. In Garbay, C., Bonnet, G., eds.: Journées
Francophones sur les Systèmes Multi-Agents. Cohésion : fondement ou propriété
émergente, Caen, France, Cépaudès édition (July 2017) 65–75


