
HAL Id: hal-01900182
https://hal.science/hal-01900182v1

Submitted on 21 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

System-Level Design and Virtual Prototyping of a
Telecommunication Application on a NUMA Platform

Daniela Genius, Ludovic Apvrille

To cite this version:
Daniela Genius, Ludovic Apvrille. System-Level Design and Virtual Prototyping of a Telecommu-
nication Application on a NUMA Platform. 2018 13th International Symposium on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), Jul 2018, Lille, France. pp.1-8, �10.1109/Re-
CoSoC.2018.8449375�. �hal-01900182�

https://hal.science/hal-01900182v1
https://hal.archives-ouvertes.fr


System-Level Design and Virtual
Prototyping of a Telecommunication
Application on a NUMA Platform

Daniela Genius
Sorbonne Université, LIP6, CNRS UMR 7606, daniela.genius@lip6.fr

Ludovic Apvrille
LTCI, CNRS, Telecom ParisTech, Université Paris-Saclay, IMT, ludovic.apvrille@telecom-paristech.fr

Abstract—The use of model-driven approaches for
embedded system design has become a common
practice. Among these model-driven approaches, only
a few of them include the generation of a full-
system simulation comprising operating system, code
generation for tasks and hardware simulation models.
Even less common is the extension to massively
parallel, NoC based designs, such as required for high
performance streaming applications where dozens of
tasks are replicated onto identical general purpose
processor cores of a Multi-processor System-on-chip
(MP-SoC). We present the extension of a system-level
tool to handle clustered Network-on-Chip (NoC) with
virtual prototyping platforms. On the one hand, the
automatic generation of the virtual prototype becomes
more complex as topcell, address mapping and linker
script have to be adapted. On the other hand, the
exploration of the design space is particularly impor-
tant for this class of applications, as performance may
strongly be impacted by Non Uniform Memory Access
(NUMA).

I. INTRODUCTION

Multiprocessor-on-chip system architectures
feature complex, sometimes hierarchical,
interconnect-on-chip architectures, allowing to
execute communication-centric applications such
as telecommunication and video streaming. Usual
high-level UML/SysML-based model-driven
approaches target usual embedded applications
and therefore they do not natively support such
task-farm parallelism, neither from the application
nor from the complex interconnection networks
points of view. Thus, interconnection facilities are
often limited to simple buses.

The task farm paradigm consists of a set of tasks
waiting for data to be processed from one of the
(many) common input buffers, thus introducing a
high degree of non-determinism. On the contrary,
embedded systems communications are typically
one-to one, more rarely one-to-many e.g. broadcast.

In order to explore designs for high-performance
packet processing, virtual prototyping of clustered
platforms has already been proposed in [8]. The task
farm property was captured by multi-writer multi-
reader (MWMR) interfaces for channels mapped to
shared memory, accessible by hardware or software
tasks. Yet, the generation of platform variants was
only semi-automatic and the middleware protocol
lacked a formal basis.

In [11], we proposed a SysML based design
methodology for task-farm applications on a flat
interconnect. Only a simplified version of the ap-
plication was handled, abstracting from I/O and
internals (such as generation of descriptors, feed-
back of addresses, inspection of packets). This
paper proposes an extension in order to deploy
and analyze the (nearly) complete application on
NUMA architectures.

The paper is organized as follows. Section II
presents the related work. Section III shortly in-
troduces the System Level Design environment and
explains our extensions. Section IV illustrates our
approach with a case study. Section V discusses
experimental results. Finally, section VI concludes
the paper.



II. RELATED WORK

During the software development process, soft-
ware components are generally tested/executed on
a local host, and only later integrated once the
target is available. Software-hardware integration
is postponed to the availability of the hardware
target, often leading to late and costly revision on
the software side. A more adequate approach is
to frequently validate the different refinements of
software components in an as-realistic-as-possible
prototyping environment.

FPGAs can be used for this purpose [13], [14],
but this requires to develop the hardware elements
in detail, and to buy potentially costly FPGA.

Another promising, less costly, solution is the
use of virtual prototyping platforms. Their obvious
drawback is that software execution is commonly
less realistic, and takes much longer wrt. FPGAs.
Many fully software-based prototyping environ-
ments have been proposed, some restricted to high-
level analysis, others offering extended profiling
capabilities.

PtolemyII [6] proposes a modeling environment
for the integration of diverse execution models, in
particular hardware and software components. If
design space exploration can be performed, its first
intent is the simulation of the modeled systems.

Metropolis [3], an extension of Polis, targets
heterogeneous systems and offers various execution
models. Architectural and application constraints
are however closely interwoven.

Sesame [7] proposes modeling and simulation
of features at several abstraction levels. Preexisting
virtual components are combined to form a complex
hardware architecture. In contrast to Metropolis,
application and architecture are clearly separated in
the modeling process. Currently, Sesame is limited
to the allocation of processing resources to applica-
tion processes. It neither models memory mapping
nor the choice of the communication architecture.

MARTE [17] shares many commonalities with
our approach, in terms of the capacity to separately
model communications from the pair application-
architecture. However, it intrinsically lacks sepa-
ration between control aspects and message ex-
changes. Other works based on UML/MARTE, such

as Gaspard2 [9], are dedicated to both hardware
and software synthesis, relying on a refinement
process based on user interaction to progressively
lower the level of abstraction of input models. Still,
such a refinement does not completely separate
the application (software synthesis) or architecture
(hardware synthesis) models from communication,
which hampers exploration for NUMA platforms.

Di Natale et al. [5] propose the generation of
communication managers for software low layers.
Yet, they do not handle the specificity of task-farm
applications nor they offer formal verification.

Batori [4] proposes a specific design method-
ology for telecommunication applications. From
use cases, the method proposes several formalisms
to capture the application structure ("interaction
model") and behavior (Finite State Machine) and
for its deployment from which executable code can
be generated. Design space exploration and virtual
prototyping are not part of the methodology; code
generation targets a real platform.

III. TTOOL

Our modeling framework is called TTool [1].
TTool relies on SysML to propose two abstract
modeling levels: (i) HW/SW partitioning and (ii)
software design and deployment [15]. From soft-
ware deployment, a virtual MP-SoC prototype can
be generated where software tasks run on multi-
purpose processors.

TTool includes a tool chain for generating code
— from software deployment diagrams — to be
executed on SoCLib [16] based MP-SoCs as ex-
plained in [10]. This toolchain thus takes as input a
software design and a deployment of that design
onto a hardware platform in order to generate a
SoCLib representation. Basically, this tool chain
works as follows:

• Each SysML block modeling a software task
is translated into an executable thread. The
behavior of the block, expressed with state
machine diagrams, is translated to a set of
actions relying on C primitives defined in a
runtime library.

• The main program instantiates the POSIX
threads of the blocks, translating logical chan-



nels as software objects stored in on-chip
memory.

• The top cell generator generates a SystemC
top cell for cycle-accurate bit-accurate simula-
tion from the model of the HW architecture.

• The linker script is generated taking into ac-
count the mapping specified in the deployment
diagram.

These four kinds of input necessary for SoClib are
created by generators written in JAVA, profiting
from a very powerful approach to generate code
from SysML supported by TTool [2]. For topcell
and linker script generation, the information con-
tained in the mapping diagram is parsed. Where
information is missing, default values are supplied
where possible, otherwise a warning is displayed.
Addresses are automatically calculated based on the
number of clusters, of targets etc..

Up to now, TTool did not provide support for
modeling multi-level interconnects and NUMA ar-
chitectures. Inspired from [8], we propose a way to
integrate clustered interconnect and NUMA in our
SysML framework, and to automatically generate
from the SysML diagrams the corresponding plat-
form (HW and SW). To do so, we suggest to add
the following features to TTool:

• Multi-level interconnects can be built up from
a (new) local crossbar modeling component
and from the capacity to connect communica-
tion components (e.g., crossbar, bus) together.

• The possibility to integrate I/O coprocessors.
• The definition and generation of more complex

topcell and ldscript in order to support the new
hardware elements listed above.

A. Clustered Interconnects
A Virtual Generic Micro Network (VGMN), with

a round-robin arbitration policy, or a Virtual Generic
Serial Bus (VGSB) serve as central interconnect,
and local crossbars connect the components within
the cluster. Thus, the TTool deployment diagram of-
fers the possibility to use crossbars, and to connect
interconnect models with one another.

B. I/O Coprocesors
In order to extend communication capacities, we

have also defined hardware coprocessors reading

packets from Ethernet connections. These coproces-
sors are connected by MWMR wrappers. Yet, in an
early design phase, hardware coprocessors are not
yet available because they need to be designed in
a precise way in SoCLib, i.e. directly in SystemC,
but our approach focuses on the use of high-level
modeling languages only. An option is to rely on
software tasks capturing the behavior of the hard-
ware coprocessors, but since they are mapped on
general processors, they tend to falsify the results.

Currently, we suggest to rely on the SoCLib
models from [8], called Input and Output Engine.
The software design shows the channels with which
they are connected to the other (software) tasks,
while the deployment diagram contains the I/O
engines for the generation of the virtual platform
with HW coprocessors.

C. Generation of Topcell and Ldscript

SoCLib is based on the shared memory paradigm.
The SoCLib mapping table is a centralized descrip-
tion of both the address space segmentation and
the mapping of the segments on the VCI physical
targets. It is described in the topcell. When gener-
ating the topcell from the deployment diagram, we
first detect if a clustered interconnect is present. If
this is the case, we automatically generate a two
level mapping table by determining the number of
segments and their size. The size of the data items
and the maximum depth of the channel determine
the size of the allocated memory.

IV. CASE STUDY

We consider a parallel telecommunication ap-
plication, where all tasks of level n can read the
data output by all tasks of level n − 1. Network
packets are initially cut into chunks of equal size
by the input coprocessor. Each packet chunk has a
descriptor referencing the address of the next chunk
and containing some additional information. Only
64 bit descriptors are sent through the channels:
the packet chunks themselves are stored in on-chip
or off-chip memory. We do not model the packet
storage because it has no impact of the logical and
physical channels of the classification application.

The application tasks are the following.



<<block>>

Scheduling

- packet : PacketDesc;

~ in from_queue_low(PacketDesc packet)
~ in from_queue_medium(PacketDesc packet)
~ in from_queue_high(PacketDesc packet)
~ out to_scheduler0(PacketDesc packet)
~ out to_scheduler1(PacketDesc packet)
~ out packet(PacketDesc packet)
~ in scheduledPacket0(PacketDesc packet)
~ in scheduledPacket1(PacketDesc packet)

<<block>>

Sched0

- packet : PacketDesc;

~ out scheduledPacket0(PacketDesc packet)
~ in toScheduler0(PacketDesc packet)

<<block>>

Sched1

- packet : PacketDesc;

~ out scheduledPacket1(PacketDesc packet)
~ in toScheduler1(PacketDesc packet)

<<block>>

Classification

- packet : PacketDesc;
- f1 = true : bool;
- f0 = true : bool;
- f2 = true : bool;

~ out queue_low(PacketDesc packet)
~ out queue_medium(PacketDesc packet)
~ out queue_high(PacketDesc packet)
~ in c0_to_queue_low(PacketDesc packet)
~ in c1_to_queue_low(PacketDesc packet)
~ in c2_to_queue_low(PacketDesc packet)
~ in c0_to_queue_medium(PacketDesc packet)
~ in c1_to_queue_medium(PacketDesc packet)
~ in c2_to_queue_medium(PacketDesc packet)
~ in c0_to_queue_high(PacketDesc packet)
~ in c1_to_queue_high(PacketDesc packet)
~ in c2_to_queue_high(PacketDesc packet)
~ in from_IE(PacketDesc packet)
~ out to_c0(PacketDesc packet)
~ out to_c1(PacketDesc packet)
~ out to_c2(PacketDesc packet)

<<block>>

Classif2

- packet : PacketDesc;

~ out to_queue_low(PacketDesc packet)
~ out to_queue_medium(PacketDesc packet)
~ out to_queue_high(PacketDesc packet)
~ in from_classif(PacketDesc packet)

<<block>>

Classif1

- packet : PacketDesc;

~ out to_queue_low(PacketDesc packet)
~ out to_queue_medium(PacketDesc packet)
~ out to_queue_high(PacketDesc packet)
~ in from_classif(PacketDesc packet)

<<block>>

Classif0

- packet : PacketDesc;
- nbPackets : int;

~ out to_queue_low(PacketDesc packet)
~ out to_queue_medium(PacketDesc packet)
~ out to_queue_high(PacketDesc packet)
~ in from_classif(PacketDesc packet)

<<datatype>>
PacketDesc

- address : int;
- date : int;

<<block>>

InputEngine

- packet : PacketDesc;
- address : int;
- frequency = 24 : int;
- priority : int;

~ out packet(PacketDesc packet)
~ in address(int address)
~ in bootstrap(int address)

<<block>>

OutputEngine

- packet : PacketDesc;
- address : int;

~ out address(int address)
~ in packet(PacketDesc packet)

<<block>>

Bootstrap

- address : int;
- counter = 16 : int;

~ out address(int address)

Fig. 1. Block Diagram of the classification application

• A bootstrap task organizes the system start-up
and fills the address channel with a set of ad-
dresses generated from the addresses available
in packet memory.

• An input task reads one after the other the
addresses initially generated by the bootstrap
task. Also, addresses freed from packets hav-
ing left the system can be reused. Messages
between bootstrap, input and output tasks cor-
respond to 32-bit addresses. The Input Engine
reads Ethernet encapsulated IP packets, cuts
them into slots of equal size, and copies these
slots to dedicated memory regions.

• A classification task reads one or several de-
scriptors at a time, then retrieves the first chunk
of the corresponding packet from memory.
Any classification task can access any chunk.

• The scheduling task reads one of the queues
according to their priority order, and then
writes the descriptor to the output queue. Both

classification and scheduling tasks use try-read
primitives to run as soon as data is available.

• The output task constantly reads the output
queue. Each time a slot is read, the output task
frees corresponding addresses, and send them
to the address channel for reuse.

Overall, the application task graph is thus inherently
cyclic and very vulnerable to buffer overflows due
to contentions.

Former work [8] proposed to map this applica-
tion on a clustered interconnect. This work also
included the definition of new hardware components
in SoCLib to better handle I/O operations. Our
contribution reuses these enhancements.

A. Software Design

Figure 1 displays the software design, using a
SysML block diagram, of the telecommunication
application. Addresses are represented by 32-bit
integers. Packet descriptor are modeled as a data



type, containing an address and 32-bit of additional
information.

The Input Engine reads addresses from the boot-
strap task until the counter arrives at a preconfigured
number. Then, when no more bootstrap addresses
are available, the Input Engine uses addresses lib-
erated meanwhile by the Output Engine. It then
assigns a random number corresponding to the pri-
ority - abstracting from a stream containing packets
with IP addresses. The Input Engine works at a fre-
quency which can be parametrized for exploration;
if it is made to read packets too fast from Ethernet,
buffers will overflow.

The classification tasks are represented in an
hierarchical manner but, as the behavior is de-
scribed much more precisely (packet inspection,
non-arbitrary choice of the priority queue), they are
far more complex than in [11]. All classification
tasks write into one of three priority queues, cor-
responding to three information signals exchanged
on the central channel in the SysML block diagram.
Figure 2 shows the rather complex state machines of
the outer classification task. The non-deterministic
dispatching of the descriptors read from the input
queue and the retrieving of the descriptor as belong-
ing to packets of low, medium, or high priority, as
well as the dispatching to one of the three priority
queues, is modeled in much more detail as in [11].

The scheduling tasks are also organized in a
hierarchical manner. Each of them takes a descriptor
as soon as it is available, and enqueues it after
a waiting time depending on its priority. Figure
3 shows in the center and on its right the state
machines of the outer and one of the two (identical)
inner tasks, respectively.

The Output Engine receives descriptors from
the channel shared by the scheduling tasks. A re-
ordered flow of packets (in our abstracted model,
descriptors are simply discarded) is then sent and
freed addresses are fed back to the Input Engine.

B. Architecture and Mapping

The target architecture features a two-level inter-
connect based on a Virtual Generic Micro Network
(VGMN), which behaves as two independent packet
switched networks for commands and responses,

and three local crossbars, one per cluster. The I/O
operations and the communication channels be-
tween classification and scheduling tasks play a cru-
cial role for investigating performance bottlenecks.
Thus, we have extended deployment diagrams so
that I/O tasks become explicit (Figure 4). Also, all
functions (hardware, software) are now connected
to the interconnect by MWMR wrappers.

V. EXPERIMENTS AND RESULTS

The case study we present is known to suf-
fer from several major performance impediments,
such as overflow of the channels for high through-
put, which can only be revealed once input and
output hardware accelerators with parameterizable
throughput are available. Our previous work could
not capture these effects since our models were
limited to the software part of the application only.

A. Testbed

For virtual prototyping, hardware is described
on CABA (Cycle/Bit Accurate) level, with high
precision at the price of rather slow simulation.
We perform simulations of the virtual prototype
for three classifiers, three priority queues, and two
schedulers and the initial mapping proposed in [8].
General purpose processors are SoCLib PowerPC
405 running at 433MHZ.

Hardware spies allow to log and analyze all traffic
on the VCI interconnect. They are based on the
VCI_logger module proposed in SoCLib. Figure 4
shows how this spy mechanism, described in [12],
is now integrated in the deployment diagram. These
spies are represented in the form of magnifying
glasses. The automatically generated topcell de-
scribes the corresponding logger/statistics modules,
relying on the name of the software objects to spy,
derived from the TTool diagrams.

As we now model the (nearly) complete appli-
cation, the generated platform should yield results
comparable to the original one with 3 classifiers, 2
schedulers, no bursts and no packet memory access.

B. Latencies

It is well known that memory access latencies
for clustered platforms suffer a high standard de-
viation with regards to usual platforms. Channels
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are stored in memory, and the communications via
these channels represented a high fraction of the
application activity. The higher the number of tasks
accessing a channel, the higher the amount of time
spent waiting for the lock.

Spies for measuring the latency are placed on
all four channels in Figure 4. Figure 5 shows the
mean latencies for all four channels. They are about
30% faster than those of the original application but
results are only partially comparable as we do not
yet model packet memory accesses and IP address
inspection.

The single input channel (InputEngine/out

packet, spyglass 1), mapped on the I/O cluster and
accessed by the classification tasks from cluster 0
does suffer much less from high latency than the
three priority queues (Classification/out queue_low,
spyglass 2), mapped on Memory0 but written by
three classification tasks and read by two scheduling
tasks.

The graph also shows that the proportion of
time to obtain a lock scales with the number of
reader/writer tasks. Input and Output Engine being
on the same cluster, the channel feeding back the
addresses (OutputEngine/out address, spyglass 4)
is less concerned by NUMA memory access, as
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expected. The Scheduling/out packet (spyglass 3),
is even less concerned, even if descriptors have
to transit from cluster 1 to cluster 2. Accordingly,
standard deviations range from 214 for the priority
queues to 61 for the output channel, which is still
very high.

C. Buffer Fill State

Adding I/O coprocessors now also allows us to
monitor the fill state of all channels of the original
application, in particular InputEngine/out packet,
known to suffer from overflows when the frequency
of packet arrival increases. In the example shown
here, we do not fix a frequency, addresses are read if
they are available and there is space in the channel.
The critical channel was dimensioned to hold 128
descriptors (1024 bytes), which proves sufficient
here but will be too low when higher frequencies
are imposed. Figure 6 shows the mean fill state of
the channels, unsurprisingly low.

D. Discussion

Our overall results are rather close to the ones
obtained with the original application and far more
realistic than those obtained in [11] for only the
software part, even though we do not model the
access to packet memory on the one hand (to
our advantage) and do not use burst transfers on
the other (to our disadvantage). These two aspects
remain to be added, but will not change results
by orders of magnitude [8]. While the original
modeling and deployment was a PhD thesis subject
in itself, it took us little more than a week to write
the models and do the evaluations shown here. The
original application featured dozens of classification
tasks; the design space was explored (using scripts)
in order to determine the best number of and ation
between classification and scheduling tasks for a
given throughput. Currently, TTool block diagrams
are limited by the fact that identical task replication
cannot be represented.
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VI. CONCLUSION AND FUTURE WORK

We extend a UML/SysML virtual prototyping
environment for SoCLib-based platforms with new
modeling and evaluation capabilities for streaming
applications. Our extensions are based on clustered
interconnects and I/O elements. We are currently
working on another extension of the tool which will
enable us to compare high-level simulation results -
e.g., at partitioning - with results obtained with the
virtual prototype. As high performance streaming
applications usually feature a larger number of
tasks, we will also add the possibility to describe
and generate multiple identical tasks. Knowing well
the results of former design space explorations for
this particular application, we plan to use it as
a particularly challenging test case for the explo-
rations capabilities of our tool. Finally, we intend
to enable the modeling and generation of Virtual
Coprocessors from TTool descriptions, starting at
partitioning level and handing these descriptions all
the way down to the SoCLib virtual platform.
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