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Speeding up CGM-Based Parallel Algorithm for Minimum Cost
Parenthesizing Problem

Jerry Lacmou Zeutouo and Vianney Kengne Tchendji
Department of Mathematics and Computer Science, University of Dschang, Dschang, Cameroon

Abstract— Parallelization of dynamic programming algo-
rithms is a very well studied topic. This paper presents a
parallel algorithm on the Coarse Grained Multicomputer
model (CGM for short) for solving the Optimal String Paren-
thesizing Problem or Minimum Cost Parenthesizing Problem.
In the previous best CGM algorithm for this problem, which
uses regular partitioning of the dynamic graph, it is difficult
to simultaneously optimize load-balancing of the processors
and minimization of the communication time in the same
algorithm. In this paper, we try to bring a solution to these
two contradictory objectives. We propose a new technique of
irregular partitioning of this graph which allows processors
to stay active as long as possible. This promotes load-
balancing and thus minimizes the overall computation time
of processors. This also reduces their latency, which is the
largest part of the overall communication time.

Keywords: Dynamic Programming, Parallel Algorithm, Coarse
Grained Multicomputer, Dynamic Graph, Irregular Partitioning

1. Introduction
Dynamic programming (DP for short) is a technique which

can be applied to solve several combinatorial optimization
problems. The idea in DP is to order the computations of
solutions of sub-problems in such a way that each of them
is compute once. The study of dependency between sub-
problems shows that they are organizable on a multi levels
Directed Acyclic Graph (DAG for short). DP problems are
often solved through shortest path problems on weighted
DAGs. In this paper we are interested in a typical DP
problems class that can be modelled by Equation (1). It is
the class of all combinatorial optimization problems that uses
a graphic model proposed by Bradford [1], called dynamic
graph, to solve the Minimum Cost Parenthesizing Problem.

The Minimum Cost Parenthesizing Problem (MPP for
short) consists of finding, given a chain of characters, the
parenthesizing that will minimize the cost of the computa-
tions involved. It is also called Optimal String Parenthesizing
problem. The classical sequential algorithm for this problem
requires O(n3) time steps and O(n2) memory space [2].

The parallelisation of the classical sequential algorithm
was extensively treated by the community of parallel pro-
cessing researchers for the different computing parallel
models. Ibarra et al. [3] presented a solution in O(n2)
time steps on O(n) processors on a hypercube. Guibas et

al. [4] proposed a bidirectional systolic algorithm on O(n2)
processors with O(n) running time. Karypis and Kumar [5]
mapped a systolic table onto a mesh-connected array of size
n2. Myoupo [6] proposed a technique for mapping the MPP
to a linear systolic array. Huang et al. [7] improved the
PRAM solution in 1994, reducing the number of processors
to O(n6/ log5 n).

In this paper, we tackle the problem of parallelizing MPP
algorithm on the BSP/CGM (Bulk Synchronous Parallel
model/Coarse Grained Multicomputer) [8][9]. CGM seems
best suited for the design of algorithms that are not too de-
pendent on an individual architecture. A BSP/CGM machine
is a set of p processors. Each having its own local memory of
size m (with O(m)� O(1)) and connected to a router able
to deliver messages in point-to-point fashion. A BSP/CGM
algorithm consists in alternating local computations and
global communication rounds. Each communication round
consists in routing a single h-relation with h = O(m).
A CGM computation/communication round corresponds to
a BSP super-step with communication cost g × m [10].
g is the cost of the communication of a word in the
BSP model. To produce an efficient BSP/CGM algorithm,
designers effort tend to maximize speedup and minimize the
number of communication rounds (ideally independent from
the problem size, and, constant in the optimum).

Tchendji and Myoupo [11][12], have shown that for MPP,
load balancing of the processors and minimization of the
communication time are two contradictory objectives when
the corresponding tasks graph is partitioned into sub-graphs
(or blocks) of the same size. Indeed, as each block of the
graph is fully evaluated by a single processor, we have the
following two scenarios:

1) for minimizing communication rounds, the blocks
must be of large size, thus the number of blocks of
the graph is minimized, and therefore the number of
communication rounds of the corresponding algorithm
is reduced. It is the case of the CGM-based paralell al-
gorithm proposed by Tchendji and Myoupo [12] which
requires d

√
2pe communication rounds and O(n3/p)

time steps on p processors;
2) for load-balancing of the processors, the blocks must

be of smaller size. Thus, if a processor has one more
block than another processor, because blocks are of
small size, the load difference between the processors
will also be low. It is the case of the CGM-based
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paralell algorithm proposed by Kechid and Myoupo
[13] which requires O(p) communication rounds and
O(n3/p) time steps on p processors.

Their solution gives to the final user the choice to optimize
one criterion or another according to the parameters g (gran-
ularity of their model) and p (number of processors) [11].

The main drawback of this solution is the contradictory
optimization criterion caused by the regular size of blocks
of the tasks graph when partitioning. Indeed, the final
user cannot optimize more than one criterion. The second
drawback is idleness of processors. Indeed, the number of
blocks of the diagonals become quickly lower than p; and so
several processors cannot be active at the same time. From
there, over time, there is more and more idle processors (one
more after each step). Yet, the blocks of the upper levels are
those which induce biggest loads. Therefore this idleness is
at the origin of the unbalance load between the processors
and even of their latency.

Our contribution is to propose a BSP/CGM parallel algo-
rithm based on a dynamic graph for solving the MPP which
try to bring a solution to the contradictory objectives of the
minimization of the communication time and the load bal-
ancing of the processors in this type of graph. It use our new
technique of irregular partitioning of this graph which allows
processors to stay active as long as possible. This promotes
load-balancing and thus minimizes the overall computation
time of processors. This also reduces their latency, which is
the largest part of the overall communication time.

The remainder of this paper is organized as follow:
In Section 2, we give the definition of the MPP and a
short review of its sequential solution. Section 3 present a
dynamic graph model for MPP. Section 4 is devoted to the
presentation of our BSP/CGM algorithm. The experimental
results are analyzed in Section 5. The last section concludes
our work.

2. Minimum cost parenthesizing prob-
lem

The Minimum Cost Parenthesizing Problem (MPP for
short), also called Optimal String Parenthesizing problem,
consists of finding the parenthesizing given a chain of
characters that will minimize the cost of the computations
involved. This problem represents the class of all combinato-
rial optimization problems that can be modelled by Equation
(1), such that :

Cost(i, j) =


Init(i) if 1 ≤ i = j ≤ n
min
i≤k<j

{Cost(i, k) + Cost(k + 1, j) + F (i, k, j)}

if 1 ≤ i < j ≤ n
(1)

In Equation (1), n is the size of the problem, and the
values Init(i) and F (i, k, j) are known or can be easily
computed. The optimal solution of the problem at hand is

given by Cost(1, n). In the function F , F (i, k, j) gives for
the sub-problem (i, j), the cost of combining the two optimal
solutions of (i, k) and (k+1, j) in order to produce optimal
solution for (i, j). This function, called union function,
depends in the intrinsic characteristics of concerned problem.

The number of possible solutions for a problem of size n,
is exponential in n: Ω

(
4n/n3/2

)
. Thus, a solution based on

the direct exhaustive search is very poor. In the early 1970s,
several researchers noted the presence of characteristics, like
optimality and the overlapping sub-problems, in the Matrix
Chain Ordering Problem (MCOP for short). Applying the
technique of dynamic programming, in 1973, Godbole [2]
proposed the first polynomial time solution for the MCOP.
It requires O(n3) time steps and O(n2) memory space.
The structure and the complexity of this solution being
independent of the MCOP union function F , it has become
the standard algorithm for solving all problems that can be
modelled by equation (1). That is why this algorithm is
often called generic algorithm in the literature. Its general
structure is given in Algorithm 1.

Algorithm 1: The general structure of Godbole
algorithm.

1 for d = 1 to n do
2 for i = 1 to n− d+ 1 do
3 Cost(i, i+ d− 1)←∞;
4 for k = i to i+ d− 2 do
5 temp← Cost(i, k) +Cost(k+ 1, i+ d−

1) + F (i, k, i+ d− 1);
6 if temp < Cost(i, i+ d− 1) then
7 Cost(i, i+ d− 1)← temp;

The calculation of Cost(1, n) involves the resolution of
all sub-problems (i, j)/1 ≤ i ≤ j ≤ n. The study of the
dependencies between the sub-problems shows that they are
organized on a n-level Directed Acyclic Graph (DAG for
short) with the following properties:
• each node represents a sub-problem. A level d is

a set of nodes representing the set of sub-problems
(i, i+ d− 1)/1 ≤ i ≤ n− d+ 1;

• an arc from a node representing (i, j) to the one repre-
senting (i′, j′) indicates that computing of Cost(i′, j′)
depends on Cost(i, j). The node with no outgoing arcs
represents the original problem, Cost(1, n).

Figure 1 shows the form of the n-level DAG (with n = 4).
In fact, algorithm 1 solves sub-problems corresponding to
the multi-level DAG using a bottom-up approach, level
by level from the lowest level. It is called a dynamic
programming algorithm [2]. For each sub-problem it solves,
the value of its optimal solution is save in a table (a (n, n)
triangular matrix) called the dynamic programming table.
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Fig. 1: 4-levels DAG schematizing dependencies between
different sub-problems involved in the calculation of
Cost(1, 4).

3. Dynamic graph model
The dynamic programming problems are often solved

through the shortest paths problems on weighted DAGs. For
the problems class described in Section 2, a graphic model,
called dynamic graph, appeared in [1]. It is noted Dn for
a problem of size n. Figure 2 shows the dynamic graph
Dn for n = 4. It has the same form of DAG representing
the dependency between sub-problems presented above, with
an additional node (0, 0). Bradford [1] shown that the
calculation of Cost(i, j) is equivalent to search in Dn the
shortest path from node (0, 0) to (i, j). In a dynamic graph,
each path from the root to an edge node corresponds to one
of the possible parenthesizings. Therefore, the shortest path
corresponds to the optimal parenthesizing.

Fig. 2: Dynamic graph D4.

Therefore, it is straightforward to prove that the Godbole
algorithm presented above (Algorithm 1) is equivalent to
calculating the shortest paths from (0, 0) to the other ver-
tices in a dynamic graph Dn, incrementally, diagonal after
diagonal, from left to right. A table called the tasks graph
or Shortest Paths Matrix, SP (n, n), is defined by setting
SP (i, j) to be the matrix of the shortest path from node
(0, 0) to (i, j)/1 ≤ i ≤ j ≤ n.

Given a problem of size n and its corresponding dynamic
graph Dn, it was shown in [1] that:

Theorem 1 (Duality theorem): If the shortest path from

(0, 0) to (i, k) needs the edge from (i, j) to (i, k), then there
exists a dual shortest path with the same cost needing the
edge from (j + 1, k) to (i, k).

This is a fundamental element of our BSP/CGM algo-
rithm. It helps to avoid computation redundancy of the
shortest path costs in Dn.

4. CGM algorithm for MPP
In of this section, we present our CGM algorithm for MPP

which try to bring a solution to the contradictory objectives
mentioned in Introduction. Firstly we partition the shortest
path matrix (or the Dn graph) into sub-matrices (or sub-
graphs) of varying size (irregular size) in Section 4.1. Next,
we study the dependencies between sub-problems in Section
4.2 and distribute the blocks onto processors in Section 4.3.
Finally, we present the CGM algorithm in Section 4.4.

4.1 Task graph partitioning
The idea is to start the subdivision on the largest diagonal

of the shortest path matrix with blocks of large sizes, in order
to minimize the number of communications. We reiterate
this same partitioning on the following diagonals. Then,
since the number of blocks per diagonal quickly becomes
smaller than the number of processors; when a diagonal
reaches half of the first diagonal of blocks, fragmentation
is carried out (that is to say, the size of the blocks is
reduced) to catch up (or exceed by one notch) the number of
blocks of the first diagonal of blocks in order to increase the
number of blocks of these diagonals and allow a maximum
of processors to remain active. This minimizes the idleness
of the processors, and thus promotes their loads balancing.
After k fragmentations, we no longer modify the size of the
blocks and the rest of the partitioning becomes traditional
because an excessive fragmentation of the blocks would lead
to a drastic increase in the number of communication rounds.

Formally, denote f(p) = d
√

2pe, θ(n, p) = bn/f(p)c
and θ(n, p, k) = dθ(n, p)/2ke, we partition the shortest
path matrix SP (n, n) into sub-matrices or blocks (SM(i, j)
for short). SM(i, j) is a θ(n, p, k) × θ(n, p, k) matrix at
the kth fragmentation, i.e. at each fragmentation we di-
vide the current size of the blocks into 4. Equation (2)
shows the entries of the table SP (n, n) delimiting a block
SM(i, j)/1 ≤ i ≤ j ≤ n.

C =

 SP (i, j − S + 1) · · · SP (i, j)
... · · ·

...
SP (i+ S − 1, j − S + 1) · · · SP (i+ S − 1, j)


where C = SM(i, j) and S = θ(n, p, k)

(2)
Figure 3 shows two scenarios of this partitioning for n =

32, k = 2 and p ∈ {2, 3, 4}. The number in each block
represents the diagonal in which it belongs.
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(a) For n = 32, k = 2 and p = 2,
the shortest path matrix is partitioned
into nine blocks.

(b) For n = 32, k = 2 and p ∈
{3, 4}, the shortest path matrix is
partitioned into twenty four blocks.

Fig. 3: Partitioning for n = 32, k = 2 and p ∈ {2, 3, 4}.

Remark 1: .
1) the blocks of the first diagonal are upper triangular

matrices of θ(n, p) lines and θ(n, p) columns;
2) a block is full if it is a non-triangular matrix of size

θ(n, p, k)× θ(n, p, k);
3) in general, blocks in the last column of blocks are not

full (this is shown in figure 3b);
4) one fragmentation increases df(p)/2e+ 1 diagonals;
5) when f(p) is odd, the number of blocks in a diagonal

after each fragmentation exceeds by one notch the
number of superblocks (the larger blocks) of the first
diagonal (this is illustrated in figure 3b where there are
3 blocks in diagonal 1 and 4 blocks in the diagonal 3).

We can now derive the following lemmas 1 and 2.
Lemma 1: The number of blocks of the dynamic graph

(the shortest path matrix) after partitioning is a function of
k and is:

C = (k − 1)×
(S + 1)(S + 2β)−

⌈
S
2

⌉ (⌈
S
2

⌉
− 1
)

2
+

(S + 1)(S + β) +

⌈
S

2

⌉
1−

⌈
S
2

⌉
2

with S = f(p) and β = (S mod 2).
Proof: After partitioning, there is exactly S(S+1)/2−

dS/2e (dS/2e+ 1)/2 superblocks. Depending on the parity
of S, we have the following two scenarios:

1) when S is even, there is (k−1)×(S(S+1)/2−dS/2e
(dS/2e − 1)/2) blocks in the diagonals from the first
to the (k− 1)th fragmentation (for example diagonals
2, 3 and 4 on figure 3b). This number increases by
S(S+1)/2+dS/2e blocks after the kth fragmentation;

2) when S is odd, the principle is the same as when it
is even, except that here fragmentation increases (S+
1) additional blocks on the initial block numbers (see
point 5 of remark 1).

Denote by β = (S mod 2) the variable which determines

the parity of S. Thus, we have:

C = (k − 1)×

(
S(S + 1)−

⌈
S
2

⌉ (⌈
S
2

⌉
− 1
)

2
+ β(S + 1)

)
+⌈

S

2

⌉
+
S(S + 1)

2
+ β(S + 1) +

S(S + 1)−
⌈
S
2

⌉ (⌈
S
2

⌉
+ 1
)

2

= (k − 1)×
(S + 1)(S + 2β)−

⌈
S
2

⌉ (⌈
S
2

⌉
− 1
)

2
+

(S + 1)(S + β) +

⌈
S

2

⌉
1−

⌈
S
2

⌉
2

Lemma 2: Our strategy of irregular partitioning of the
dynamic graph induces f(p)+k× (df(p)/2e+1) diagonals
of blocks when the blocks undergo k successives fragmen-
tations.

Proof: If no fragmentation is performed when par-
titioning the task graph (i.e. if k = 0), then there are
f(p) diagonals. Suppose there are k fragmentations. One
fragmentation increases df(p)/2e + 1 diagonals. Indeed, a
fragmentation is performed when the number of blocks of
a diagonal is equal to df(p)/2e. This fragmentation, which
decreases the size of the blocks by 1/4, creates a diagonal
of df(p)/2e blocks; then the following diagonals contain
successively 2×df(p)/2e blocks, 2×df(p)/2e−1 blocks,. . .,
df(p)/2e + 1 blocks; this is equivalent to df(p)/2e + 1
diagonals (for example the diagonals 2, 3 and 4 on figure 3b).
At the next diagonal, another fragmentation is done. We
conclude from all this that after k fragmentations, we have
f(p) + k × (df(p)/2e+ 1) diagonals.

4.2 Blocks dependancy
Lemma 3 (Nodes dependency): To find the cost of the

shortest path to a node (i, j) in graph Dn, it is necessary
to know the cost of shortest path of each one of nodes
(i, i), . . . , (i, j − 1) and (i+ 1, j), . . . , (j, j).

Proof: See proof in [13].
Lemma 4 (Weights of jumps to a block): To compute the

weights of jumps from nodes of SP (i, k) to nodes of
SP (i, j)/1 ≤ i ≤ k ≤ j ≤ n, we only need the costs
of the shortest paths to nodes of SP (k − θ(n, p) + 2, j).

Proof: See proof in [12].
From Lemma 3 and Lemma 4, we have the following:
Theorem 2 (Blocks dependency): Let u an integer such

that u = d(j− i)/θ(n, p, k)e. The costs of the shortest paths
to every node in blocks SM(i, j − θ(n, p, k)), SM(i, j −
2 × θ(n, p, k)),. . .,SM(i, j − (u − 1) × θ(n, p, k)), and
SM(i+θ(n, p, k), j), SM(i+2×θ(n, p, k), j),. . .,SM(i+
(u− 1)× θ(n, p, k), j) are necessary for the evaluations of
shortest paths to the nodes of block SM(i, j) where is found
at the kth fragmentation.

Figure 4 shows the dependency of SM(i, j) and SM(h, l)
on the other blocks (in bold). The evaluation of the shortest
paths for nodes of different blocks of the same diagonal
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can be carried out in parallel because the dependency
relationship between blocks shows that those on the same
diagonal are independent.

Fig. 4: Two blocks dependency representation.

Remark 2: In order to minimize the amount of data
exchanged between the processors in the communication
phases, each processor communicates only the sub-set of
its block, corresponding to the size of the target block.

4.3 Mapping blocks onto processors
In this mapping, all blocks of the main diagonal are

assigned from the leftmost upper corner to the rightmost
lower corner. This process is renewed until all processors
have been used, starting with processor 1 and traveling
through the blocks with a "snake like" path, as shown
in figure 5.

Fig. 5: Snake-like mapping of blocks onto processors for
p = 6, k = 1 and n = 32.

This mapping allows to some processors to evaluate at
most one block more than the others. Also, it contribute to
load-balancing between processors because the blocks are
evenly distributed among the processors. However, it has
a drawback: due to the snake-like data distribution onto
processors, communications are not minimized.

Lemma 5: With the snake-like distribution of the blocks
onto processors, each processor has to evaluate at most

(3k+2) blocks. k is the number of fragmentations of blocks
performed.

Proof: Depending on the parity of f(p), we have the
following two scenarios:

1) when f(p) is odd, each processor has to evaluate at
most one super-block, 3(k−1) blocks in the diagonals
from the first to the (k − 1)th fragmentation and 4
blocks after the kth fragmentation; thus 1 + 3(k −
1) + 4 = 3k + 2 blocks in total;

2) when f(p) is even, each processor has to evaluate at
most 2 super-blocks, 2(k− 1) blocks in the diagonals
from the first to the (k − 1)th fragmentation and 3
blocks after the kth fragmentation; thus 2 + 2(k −
1) + 3 = 2k + 3 blocks in total.

Since 3k + 2 ≥ 2k + 3 when k ≥ 1, we conclude that each
processor has to evaluate at most (3k + 2) blocks.

4.4 CGM algorithm
Owing to the dependencies of the data between the blocks

of the graph Dn, the evaluation of these blocks must be
done according to a well adapted order. Indeed, the values
of the shortest paths to the vertices of the blocks of a
diagonal d cannot be obtained before those of the vertices
contained in each of the blocks on which they depend on the
preceding diagonals (the diagonals 1, 2, . . . , d− 1 according
to Theorem 2). However, the nature of these calculations
(minimum values) allows to start them before the end of the
evaluation of the blocks of the diagonal d− 1.

Theorem 3: After the computation of solutions of each
diagonal h, d(j − i/2)e + 1 ≤ h ≤ j − i + 1, at least two
possible values of the shortest path from each node in block
SM(i, j) can be evaluated.

Proof: See proof in [12].
Our BSP/CGM algorithm is a succession of f(p) + k ×

(df(p)/2e+1) similar steps (iterations). In each of them, the
blocks of a diagonal (called on line diagonal) are evaluated
in parallel. We start processing on the first diagonal, followed
by the second and so on till the last. The overall structure
of our algorithm given by the Algoritm 2, allows at the end
of the process, to obtain the value of Cost(1, n).

Our approach consists of progressively compute the values
of shortest paths to each node of sub-graphs (blocks). The
evaluation of the shortest path to a node of a block of
diagonal d starts at diagonals dd/2e, the numbering of
diagonal goes from left to right and ranges from 1 to
f(p)+k× (df(p)/2e+1). At the end of the computation of
blocks on diagonal d (step 1 of Algoritm 2 at iteration d),
each block is forwarded (step 3 of Algoritm 2 at iteration
d) to processors that need these blocks for updating (step 2
of Algoritm 2) or for finalizing (step 1 of Algoritm 2) the
computations of values in next iterations. In fact at iteration
d+ 1 two tasks have to be done :

1) for each input of a block of a diagonal m, (d + 2 ≤
m ≤ 2d), some new values may be computed and an
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Algorithm 2: The general structure of our BSP/CGM
algorithm.

Data: Shortest paths matrix (SP (n, n)), initialized
to 0 and stored on a CGM(n, p).

Result: For each processor the values of the shortest
paths for each sub-problem it holds.

1 for d = 1 to f(p) + k × (df(p)/2e+ 1) do
2 Step 1 : Finalization of computation of the

values of the shortest paths to nodes in blocks
of diagonal d ;

3 Step 2: Update the values of the shortest paths
to each block of diagonals (d+ 1, d+ 2, . . . ,
min{2× (d− 1), f(p) + k × (df(p)/2e+ 1)}) ;

4 Step 3: Communication of block SM(i, j) of
on line diagonal to the processors that detain
upper blocks and right blocks ;

update of its temporary values is done (path relaxation
principle [14]);

2) for each entry of a block of a diagonal d + 1, some
new values may be computed and a final update of its
temporary values is done.

These processes are repeated at each iteration until the
iteration f(p) + k × (df(p)/2e + 1) where only step 1 of
Algorithm is carried out. At iteration 1, only steps 1 and
3 are executed. It is not difficult to observe that computing
the values of the shortest paths (in which jumps from blocks
SM(i, k) are involved) to block SM(i, j) is equivalent to
the sequential matrix-multiplication1 (+,min) of the two
matrices SM(i, k) and SM(k− θ(n, p, k) + 2, j). Thus, the
procedures for phases 1 and 2 of the algorithm are given
below.

Algorithm 3: Finalization of computation of block
SM(i, j).

1 for d = (j − i− θ(n, p, k)) to (j − i) do
2 foreach node s of diagonal d belonging to

SP (i, j) do
3 SP (s)← minimum (SP (s), weight of paths

whose final edge are jumps coming from
block SP (i, i+ θ(n, p, k)), weights of paths
whose final edges are internal jumps, weights
of paths whose final edges are unit edges).

After the (j − i)th iteration of Algorithm 2, the only
paths which remain to be valuated for nodes in SP (i, j) are
those whose last edge is (1) either a unit edge (vertical or

1Matrix-multiplication (+,min) is a multiplication of matrices in which
the operations of multiplication and summation are replaced by addition and
the minimum, respectively.

Algorithm 4: Update of block SM(i, j) at (h+1)th

iteration, d(j − i/2)e+ 1 ≤ h ≤ j − i+ 1.

1 for d = (j − i− θ(n, p, k)) to (j − i) do
2 M1 ← matrix-multiplication(+,min)

(SP (i, h+ i− 1), SP (h+ i− 1, j));
3 M2 ← matrix-multiplication(+,min)

(SP (i, j − h+ 1), SP (j − h+ 1, j));
4 SP (i, j)← min{SP (i, j),M1,M2};

horizontal), (2) either an horizontal jump which comes from
an internal node in SP (i, j) or (3) an horizontal jump which
comes from a node in SP (i, i). In any case, the computation
of the weight induced by each of these paths (due to these
edges) to a node (i′, j′) of block SP (i, j) needs the value
of shortest path from a node (e′, f ′) of block SP (i, j) such
that f ′ − e′ < j′ − i′.

In cases (1) and (2), this value is necessary to compute
the shortest path of the departure node of the last edge. In
case (3), this value is necessary for computing the weight
of the last edge. Therefore, the procedure for step 1 is a
classical algorithm of the shortest path in block SP (i, j), in
which each node can receive a simple edge or a jump from
an internal node in block SP (i, j) or in block SP (i, i).

Lemma 6: The time complexity of the Algorithms 3 and
4 is O(n3/(2p)3/2).

Proof: The finalization in step 1 uses the Godbole
sequential algorithm on problems of size θ(n, p), which is a
size of super-blocks. The update in step 2 uses the sequential
multiplication of θ(n, p) × θ(n, p) matrices. So, its time
complexity in the worst case is in O(n3/(2p)3/2).

Theorem 4: The CGM algorithm runs, in the worst case,
in O

(
n3/p

)
time steps per processor and d

√
2pe + k ×(⌈

d
√

2pe/2
⌉

+ 1
)

communication rounds. k is the number
of fragmentations of blocks performed.

Proof: At the kth fragmentation, the Godbole se-
quential algorithm (Alogrithm 3) and the sequential mul-
tiplication of two matrices (Algorithm 4) used in the lo-
cal computation phases of our CGM algorithm requires
O
(
n3/(22k × (2p)2/2)

)
= O

(
n3/(4k × (2p))

)
local com-

putations for the evaluation of each block of a diagonal of
blocks. So, we have for each processor (see proof of lemma
5):

D = O
(
n3

2p

)
×
(

1 +
3

4
+

3

42
+ · · ·+ 3

4k−1
+

4

4k

)
= O

(
n3

p

)
We conclude that this algorithm requires O

(
n3/p

)
local

computations time on each processor. The number of rounds
of communication is derived from lemma 2.

Remark 3: When k = 0, our CGM algorithm reduces to
the one in [12], with O

(
n3/p

)
time steps per processor and⌈√

2p
⌉

communication rounds.
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5. Experimental results
We implemented our algorithm on the cluster dol-

phin of the MATRICS platform of the University of Pi-
cardie Jules Verne using 60 computation nodes, and which
each node is an Intel Xeon Processor E5-2680 V4 (35M
Cache, 2.40GHz).

The C programming language is used, on the operating
system CentOS Linux release 7.4.1708. The inter-processor
communication is implemented with the MPI library (Open-
MPI version). To explore the performance of our algorithm,
the results presented here are derived from its execution for
different values of the triplet (n, p, k), where:
• n is the problem size (number of data), with values in

the set {512, 1024, 2048, 4096};
• p is the number of processors, with values in the set
{1, 2, 5, 8, 25, 28, 32};

• k is the number of fragmentations of blocks performed,
with values in the set {0, 1, 2}.

Figure 6a presents the curves of different loads compared
to their average load (each value of k has its own load
average). It show that irregular partitioning of the dynamic
graph balances the load between the processors better than
regular partitioning of this graph. It is due to the progressive
reduction of size of the blocks which allows processors to
stay active as long as possible. Thus, it minimize the overall
computations times of processors. This also reduces their
latency and then minimizes the communication time. Figure
6b shows that all this reduces the overall execution time of
the algorithm as the number of fragmentations increases.

6. Conclusion and future works
In this paper, we have presented an efficient parallel

algorithm on the BSP/CGM model for solving the MPP
on p processors. It use our new technique of irregular
partitioning of the dynamic graph to try to bring a solution
to the contradictory objectives of the minimization of the
communication time and the load balancing of the processors
in this type of graph. It runs, in the worst case, in O

(
n3/p

)
time steps per processor and d

√
2pe+k×

(⌈
d
√

2pe/2
⌉

+ 1
)

communication rounds. The experimental results show a
good agreement with theoretical predictions.

The irregular partitioning technique of the tasks graph may
be applicable to other dynamic programming problems in the
same class of the MPP as Matrix Chain Ordering Problem.
This work is also left for future works.
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