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Abstract

In this paper, a new bijective digital rotation algorithm for the hexagonal grid is proposed. The method is based on
an original decomposition of rotations into shear transforms. It works for any angle with an hexagonal centroid as
rotation center and is easily invertible. The algorithm achieves an average distance between the digital rotated point
and the continuous rotated point of about 0.42 (for 1.0 the distance between two neighboring hexagons).
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1. Introduction

Applying a continuous geometric transform T : R2 −→

R2 to a 2D regular grid (defined by two vectors and an ori-
gin) is not trivial, although it is a fundamental problem in
imaging. A transformed grid point through a continuous
transform is usually not a grid point. One of the ways to
deal with this, is to add a digitization transform D, classi-
cally the nearest grid point. The digitized transform D◦T ,
has however no reasons, in general, to be injective nor
surjective, even when the original continuous transform
T is bijective. This leads to information loss. A digi-
tized rotation may cause up to 17% information loss. For
this reason, in imaging softwares, interpolation and some-
times oversampling are used to perform digital rotations
(Danielsson and Hammerin (1992), Sterling and Sterling
(1998)). This is however not always possible when the
image has low color resolution or when grid points carry
information that are not meant to be interpolated. That is
where bijective digital rotations are useful. In our case, we
are interested in bijective digital rotations on an hexago-
nal grid.

Hexagonal grids have enjoyed renewed interest these
last couple of years (Middleton and Sivaswamy (2005))
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with, in particular applications in 3D printing filling with
honeycomb structures (Compton and Lewis (2014), Gib-
son et al. (2014)), networks (Kayaturan and Vernitski
(2016), Stojmenovic (1995)), image processing (Grigo-
ryan and Agaian (2016), Karkishchenko and Mnukhin
(2017), Mostafa and Her (2016)), computer vision (He
and Jia (2005), Veni and Narayanankutty (2014)), etc.
Our motivation for lossless rotations in hexagonal grids
came from recent work by K. Pluta and al. (Pluta et al.
(2017, 2018)) and the perspectives it opened for 3D bijec-
tive rotations of honeycomb structures for 3D printing.

Transformations in hexagonal grids are still a largely
open problem with few references (see Her (1995) for a
discussion on transforms on hexagonal grids). Recently
K. Pluta et al. showed that, as for the square grid (Jacob
and Andres (1995), Nouvel and Remila (2005)), there are
angles for which the digitized rotation is bijective (Pluta
et al. (2017, 2018)) in the hexagonal grid. The problem
is that these angles represent only a subset of all angles
(Pluta et al. (2017, 2018)). This is the limitation we pro-
pose to overcome in this paper.

In order to propose a bijective rotation in the hexagonal
grid that works for all angles, we propose to revisit an idea
the author of the present paper has already used for bijec-
tive rigid motions in the classical square grid: decompos-
ing a rotation into a sequence of shear transforms (An-
dres (1996) developed out of an original idea by Reveillès

Preprint submitted to Elsevier October 21, 2018

Andres
Draft



(1991)). A.W. Paeth used such a decomposition in order
to propose a fast anti-aliasing method for image rotations
(Paeth (1986)). The idea proposed by J-P. Reveilles is to
use the same decomposition to push rows of pixels by an
integer number of pixels, ensuring bijectivity and trivial
reversibility. In this paper we propose to consider three
directions (the three symmetry axes of an hexagon) for
the shear transforms. With three such shear transforms
in the hexagonal coordinate system, one for each hexago-
nal symmetry direction, a novel rotation decomposition is
proposed. The idea behind the shear transforms is to push
whole rows of hexagons successively in those three di-
rections by integer numbers of hexagons, ensuring bijec-
tivity. As for the shear based rotation proposed by A.W.
Paeth, we have angles where the formula diverges. There
is however a very simple way to overcome this problem.
This leads to a digital rotation algorithm for all angles in
the hexagonal grid, with the limitation that the center is a
grid point (the centroid of an hexagon). A future work
could consist in lifting this limitation and proposing a
rigid motion transform (rotation with an arbitrary center).

The organization of the paper is as follows: in sec-
tion two, we present the preliminaries. In particular, we
present shear transforms and how shear transforms have
been used in the classical square grid to define digital rota-
tions. An error criteria based on the distance between the
continuous and the digital rotated points are presented. In
section three, we introduce our method of digital bijective
rotation for the hexagonal grids. We conclude and present
perspectives in the last section.

2. Preliminaries

2.1. Hexagonal grid

We are considering an hexagonal cell (centered on the
grid point) with ”pointy top” hexagons (two sides of the
hexagons are parallel to the ordinate axis of the classical
Euclidean coordinate system). It should be easy to trans-
pose this work for other hexagon orientations or hexagon
sizes. The hexagons are regular with a side length of 1

√
3
.

This means that between the centroids of two neighboring
hexagons, there is a distance of 1. There are various ways
of creating a coordinate system for hexagonal grids. We
chose a simple 2D coordinate system where the first co-
ordinate, the hexagonal hx-axis, is given by the Cartesian
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Figure 1: coordinate system, hexagon size and A, B and C directions

vector (1, 0) and the second coordinate, the hexagonal hy-

axis, is defined by the Cartesian vector
(

1
2 ,
√

3
2

)
(Snyder

et al. (1999)). The coordinate transforms from hexagonal
grid to the Cartesian grid and vice versa are given by the
following transforms (Snyder et al. (1999)):

Cart2Hex : (x, y) 7→ (xh, yh) =

(
x −

y
√

3
,

2y
√

3

)

Hex2Cart : (xh, yh) 7→ (x, y) =

xh +
yh

2
,

yh
√

3
2


We define three directions: direction A defined by vector
(1, 0), direction B defined by vector (0, 1) and direction C
defined by vector (−1, 1). These vectors are given in the
hexagonal coordinate system (see Figure 1). A A-row is
a set of hexagonal grid points with hexagonal coordinates
(x, y) ∈ Z2 such that they have all the same y value. All
the hexagons of an A-row are aligned in the A-direction
and are generated by hexagonal coordinate vector (1, 0)
and one of its points. A B-row is a set of hexagonal grid
points with hexagonal coordinates (x, y) ∈ Z2 such that
they have all the same x value. All the hexagons of a B-
row are aligned in the B-direction and are generated by
hexagonal coordinates vector (0, 1) and one of its points.
A C-row is a set of hexagonal grid points with hexagonal
coordinates (x, y) ∈ Z2 such that they have all the same
x+y value. All the hexagons of a C-row are aligned in the
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C-direction and are generated by hexagonal coordinates
vector (−1, 1) and one of its points.

2.2. Shear Transforms

The idea behind the method proposed in this paper is to
decompose a rotation transform into a sequence of shear
transforms in the hexagonal coordinate system. A shear
transform is a linear mapping that translates a point in
a given direction by an vector proportional (by a shear
factor) to the signed distance to a line parallel to that di-
rection. A typical shear transform uses the axis-lines as
shear lines. Shear transforms preserve areas. This is why
it is quite natural to decompose isometries into sequences
of shear transforms (as atomic transforms). As an exam-
ple, the decomposition of a rotation into three shear trans-
forms with the Cartesian axes as shear lines (an ’ULU’
decomposition with ’1’s on the diagonals) used by A.W.
Paeth (Paeth (1986)):(

cos θ − sin θ
sin θ cos θ

)
=

(
1 − tan θ

2
0 1

) (
1 0

sin θ 1

) (
1 − tan θ

2
0 1

)
This rotation decomposition leads to a fast and simple an-
tialised rotation that is still in use in some image libraries
such as ImageMagick.

2.3. Bijective Digital Rotations in the square grid

In this paper we are interested in bijective digital rota-
tions on hexagonal grids. Let us first see how this problem
has been tackled in the classical square grid. Let us con-
sider a digitized rotation DR(α):

DR(θ) :
(

x
y

)
7→

(
bx cos θ + y sin θ + 0.5c
b−x sin θ + y cos θ + 0.5c

)
with buc the biggest integer smaller or equal to u (i.e. floor
function).

A digitized rotation is not, in general, surjective or in-
jective, except for some angles where the transform is
actually bijective. For the interested reader, please refer
to Jacob and Andres (1995), Nouvel and Remila (2005),
Roussillon and Coeurjolly (2016). The problem with the
angles for which the digitized rotation is bijective is that
they do not cover all angles. J.P. Reveilles took the same
decomposition than A.W. Paeth to propose a bijective dig-
ital rotation that works for all angles (Reveillès (1991)).

E. Andres improved on this idea and gave formulas for
an improved bijective digital rotation and a bijective rigid
motion in the classical square grid (Andres (1996)). The
idea that leads to a bijective digital rotation is the follow-
ing: the shear coefficients multiplied by x and y respec-
tively, −x tan θ

2 and y sin θ, are approximated by their clos-
est integer

⌊
−x tan θ

2 + 0.5
⌋

and by sin θ + 0.5c. Moving a
grid point in the x-axis direction and y-axis direction by
an integer displacement is obviously a reversible opera-
tion. One could think that this leads to a very coarse ap-
proximation of the continuous rotation, but this is not the
case. The way to measure this “approximation” has lead
E. Andres to propose an error measure for digital bijec-
tive rotations (Andres (1992, 1996)) which we’ll present
in the next subsection.

2.4. Error Measure

Each grid point has one and only one image through a
bijective digital rotation but that does not mean that the
digital rotation is a good approximation of the continuous
one. To measure how “wrong” we are by choosing the
digital rotation over the continuous one, we are consid-
ering two distance criterii (Andres (1992, 1996)). Let us
first denote G =

{
axg + byg|(a, b) ∈ Z2

}
⊂ R2 a grid de-

fined by the point (0, 0) and two vectors xg and yg. Let us
denote Rθ(p) the continuous rotation of center (0, 0) and
angle θ of a grid point p ∈ G and Rθ(p) its digital rotation
of center (0, 0) (Rθ(p) is a grid point in this case).

The Maximum Distance error criteria (MD) con-
sists in computing maxp∈G (d(Rθ(p),Rθ(p)). The Aver-
age Distance error criteria (AD) consists in computing
avgp∈G (d(Rθ(p),Rθ(p)), where avgp∈G is the average dis-
tance over the grid.

3. Bijective Digital Rotation in the Hexagonal Grid

3.1. Rotation decomposition into shears in the hexagonal
grid

K. Pluta showed that there exists a subset of angles for
which the digitized rotation of an hexagonal grid is bijec-
tive (Pluta et al. (2017, 2018)). Our idea is to use shear
transforms to define a digital rotation is the hexagonal
grid that works for all angles by pushing grid points into
specific directions. Since we are working in an hexago-
nal grid, we have three privileged directions to push grid
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points: direction A defined by vector (1, 0), direction B
defined by vector (0, 1) and direction C defined by vec-
tor (−1, 1) (vectors expressed in the hexagonal coordi-
nate system. See Figure 1). The shear transforms for the
three directions, expressed in the hexagonal grid coordi-
nate system, correspond to the following matrices:

matAhex =

(
1 a
0 1

)
; matBhex =

(
1 0
b 1

)

matChex =

(
1 − c −c

c 1 + c

)
matAhex and matBhex are classical shear transforms with
the axis as shear lines. For the third matrix, it is the same
idea: We have a direction C defined by the vector (−1, 1)
with an orthogonal direction (1, 1) (in the hexagonal co-
ordinate system) . This leads to matrix matChex.

Since the rotation matrix is simplest expressed in the
classical Cartesian coordinate system, we switch back to
the Cartesian coordinate system, which leads to:

matAcart =

(
1 2a

√
3

0 1

)

matBcart =

 1 + b
2 − b

2
√

3
b
√

3
2 1 − b

2


matCcart =

 1 − c
2 − c

2
√

3
c
√

3
2 1 + c

2


Each of the matrices matXcart corresponds to matXhex ex-
pressed in the classical Cartesian coordinate system. The
idea of our method is to push grid points in those three
directions in order to approximate a rotation. Therefore,
we solved the following equation:

matAcart.matBcart.matCcart =

(
cos θ − sin θ
sin θ cos θ

)
which has a unique solution for a, b, c: a

b
c

 =


−1 +

√
3−2 sin θ

√
3 cos θ−sin θ

1 − cos θ + sin θ
√

3

1 −
√

3−2 sin θ
√

3 cos θ−sin θ


It is easy to see that a = −c. Let us note that from here

on, we are only going to work in the hexagonal coordinate
system with matrices matAhex,matBhex and matChex.

Algorithm 1: RotCBA(x, y, θ): Point Rot. CBA of
center (0, 0) and angle θ

Input : (x, y) ∈ Z2, 0 ≤ θ < 2π/3
Output: (x3, y3) ∈ Z2

If θ = π
3 Then

(
x3
y3

)
←

(
−y

x + y

)
1

Else
(

a
b

)
←

 −1 +
√

3−2 sin θ
√

3 cos θ−sin θ
1 − cos θ + sin θ

√
3


2 (

x1
y1

)
←

(
bx ∗ (1 + a) + y ∗ a + 0.5c
b−x ∗ a + y ∗ (1 − a) + 0.5c

)
3 (

x2
y2

)
←

(
x1

y1 + bx1 ∗ b + 0.5c

)
4 (

x3
y3

)
←

(
x2 + by2 ∗ a + 0.5c

y2

)
5

return (x3, y3)6

Average Distance

Maximal Distance

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 2: Average (AD) and Maximal (MD) Distance error criteria for
Rotation CBA for angles 0 to 2π

3.2. Dealing with the divergence and the inverse

The proposed solution for (a, b, c) is not universal: the
denominator for a (and c),

√
3 cos θ − sin θ, is equal to 0

for θ equal to π/3 or 4π/3 (all angles are considered to be
between 0 and 2π). As one can see in Figure 2, the zeros
for π/3 and 4π/3 are not of the same nature: limt→ π

3
a =

0.5 and limt→ 4π
3

a = ±∞. Angle π/3 is a point singularity
that can be easily dealt with since it is trivial to rotate an
hexagonal image by such an angle bijectively: R π

3
(x, y) =

(−y, x + y) is still an hexagonal grid point if (x, y) is one.
This leads to the digital Rotation RotCBA (Algorithm 1)
that rotates an hexagonal grid point for angles from 0 to
2π/3.
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Algorithm 2: RotCBANeg(x, y, θ): Inverse Rot.
CBA of center (0, 0) and angle θ

Input : (x, y) ∈ Z2, 0 ≤ θ < 2π/3
Output: (x3, y3) ∈ Z2

If θ = π
3 Then

(
x3
y3

)
←

(
x + y
−x

)
– Rotation -π/3

1

Else
(

a
b

)
←

 1 −
√

3−2 sin θ
√

3 cos θ−sin θ
−1 + cos θ − sin θ

√
3


2 (

x1
y1

)
←

(
x + by ∗ a + 0.5c

y

)
3 (

x2
y2

)
←

(
x1

y1 + bx1 ∗ b + 0.5c

)
4 (

x3
y3

)
←

(
bx2 ∗ (1 + a) + y2 ∗ a + 0.5c
b−x2 ∗ a + y2 ∗ (1 − a) + 0.5c

)
5

return (x3, y3)6

Let us see how we can handle the problems around
4π/3. In Figure 2, we can see that all the values around
angle 4π/3 are affected by the divergence. Actually, start-
ing at 2π/3 the average (AD) and maximal (MD) distance
error values start to increase. The idea here is to consider
only rotations for angles between 0 and 2π/3 and map
all the other angles to this interval. This is not that diffi-
cult since, in the hexagonal grid, rotations by angles kπ/3
(with a grid point center) are naturally bijective so that for
an angle θ, we can always decompose it as θ = kπ/3 + θ′

where 0 ≤ θ′ ≤ 2π/3.
There is however another problem that needs to be dealt

with if we want an easy to use digital rotation algorithm:
invertibility. Indeed, with Algorithm 1, RotCBA(x, y, θ)−1

is not equal to RotCBA(x, y,−θ). Having a bijective trans-
form does not automatically mean that we have an easy
way of performing the inverse transform. The approach
we adopted to be sure that our rotation for angle θ is eas-
ily invertible is to perform all hexagon push operations
in the reverse order for an angle −θ (or more precisely
2π − θ). For this, we introduce Algorithm 2 which is lit-
erally the inverse mapping of the mapping of algorithm 1,
with shear factors −(a, b) and reversed shear transforms
application order. With all this, we can now propose a ro-
tation for an hexagonal point. The rotation of a point (x, y)
by an angle 0 ≤ θ < 2π is performed in the following way
(see Algorithm 3):

Algorithm 3: RotPoint(x, y, θ): Rotation of center
(0, 0) and angle θ of point (x,y) in the hexagonal
Grid.

Input : (x, y) ∈ Z2, θ ∈ R2

Output: (x′′, y′′) ∈ Z2

θ = θ Mod 2π1

If 0 ≤ θ ≤ 2π
3 Then (x′′, y′′)← RotCBA(x, y, θ)2

Elsif 2π
3 < θ ≤ π Then3

(x′′, y′′)← RotCBA
(
−x − y, x, θ − 2π

3

)
Elsif π < θ < 4π

3 Then4

(x′, y′)← RotCBANeg
(
x, y, 4π

3 − θ
)
;

(x′′, y′′)← (y′,−x′ − y′)
Else (x′′, y′′)← RotCBANeg(x, y, 2π − θ)5

Return(x′′, y′′)6

1. For an angle 0 ≤ θ2 ≤ 2π/3: apply algorithm 1 to
the point (x, y) with angle θ;

2. For an angle 2π/3 < θ ≤ π: apply algorithm 1 to
the point (−x − y, x) with angle θ − 2π/3 (the point
(−x − y, x) is the rotation of (x, y) by 2π/3);

3. For an angle π < θ < 4π/3: apply algorithm 2 to the
point (x, y) with angle 4π/3 − θ and then perform a
rotation of angle −2π/3 on the resulting point (x′, y′)
which maps the point (x′, y′) to (y′,−x′ − y′) (This
ensures that operations are exactly performed in the
reverse order of point 2 (angle 2π/3 < θ ≤ π)).

4. For an angle 4π/3 ≤ θ < 2π: apply algorithm 2 to
the point (x, y) with an angle 2π − θ. This ensures
that operations are exactly performed in the reverse
order of point 1 (angle 0 ≤ θ ≤ 2π/3).

This leads to point rotation RotPoint (Algorithm 3)
and to the final bijective rotation RotHexa (Algorithm 4).
We’ll explain why Rotation Algorithm 4 is bijective in the
next subsection.

Let us quickly comment Figure 3 which illustrates the
distance error criterii for the bijective digital rotation al-
gorithm. In order to have a point of comparison, let us
note that the best MD and AD error values are obtained
when considering digitized rotations in the hexagonal grid
(that are not necessarily bijective). Except for the angles
kπ/3, we obtain mostly MD error values of

√
3

3 ≈ 0.57
and AD error values of ≈ 0.35 (which can be analytically
calculated as the distance from a randomly point inside a
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Algorithm 4: RotHexa(ImageIn, θ): Bijective Rota-
tion for the hexagonal Grid of center (0, 0) and an-
gle θ

Input : ImageIn, θ
Output: ImageOut
For all (x, y) in ImageIn1

(x′, y′)← RotPoint(x, y, θ)2

ImageOut (x′, y′)← ImageIn(x, y)3

return ImageOut4

Average Distance

Maximal Distance

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Average (AD) and Maximal (MD) Distance error criteria for
the hexagonal grid Rotation Algorithm for angles 0 to 2π

unit hexagon to its center). As a reminder, the distance be-
tween two neighboring grid points is 1. In figure 3, we see
that for our algorithm, the average distance (AD criteria)
between a point rotated continuously and a point rotated
discretely is very stable and close to 0.42 (compared to
0.35). The maximal distance (MD criteria) does not ex-
ceed 1.1 (compared to 0.57). This means basically that
an hexagon lands usually in the immediate grid neighbor-
hood of the spot where he should be. Let us note that we
obtain slightly better error values than for the similar type
of algorithm in the square grid (Andres (1996)).

3.3. Bijectivity

All has been done inorder to have a bijective transform
RotHexa. Let us show that formally by examining the
mappings of Algorithm 1. Let us define the mapping
A(a) : (x, y) 7→ (x + bay + 0.5c , y), a ∈ R2 (line 5 in
Algorithm 1). For a A-row, we haveA(a)(S ) = S (y does

not change). All hexagons on a given A-row are pushed
in direction A by the same integer number of grid points.

In the same way, for the mapping B(b) : (x, y) 7→
(x, y + bbx + 0.5c , y), b ∈ R2 (line 4 in Algorithm 1), if
S is a B-row, we have B(b)(S ) = S (x does not change).
All hexagons on a given B-row are pushed in direction B
by the same integer number of grid points.

Let us now consider the mapping C(a) : (x, y) 7→
(bx(1 + a) + ay + 0.5c , b−ax + y(1 − a) + 0.5c), a ∈ R2

(line 3 in Algorithm 1). Let us show that for a C-row
S , we have C(a)(S ) = S (i.e. that x + y does not
change). Let us consider a point (x, y) ∈ S and (x′, y′) =

C(a)(x, y). We have x′ + y′ = bx(1 + a) + ay + 0.5c +

b−ax + y(1 − a) + 0.5c = x + y + ba(x + y) + 0.5c +

b−a(x + y) + 0.5c. Now bx + 0.5c is the rounding function
and it is easy to see that b−u + 0.5c = − bu + 0.5c which
proves that x′ + y′ = x + y and thus that C(a)(x, y) ∈ S .
All hexagons on a given C-row are pushed in direction
C by the same integer number of grid points. All this is
of course verified as well for Algorithm 2. All the other
mappings (rotations by kπ/3 angles) are trivially bijective.

This proves that the transform presented in Algorithm
4 is bijective (as sequence of bijective mappings). By
design, we have made sure that the transform is also
easily invertible such that, for ImageIn an image in
the hexagonal grid, we have RotHexa(ImageIn, θ)−1 =

RotHexa(ImageIn,−θ). Figure 4 shows how each ma-
trix acts on the hexagons. In order to illustrate the action
of each shear transform, we set a = b = c = 1. The
rows containing the rotation center (0, 0) (marked by an
ellipse) do not move. On the right of Figure 4, we show
an actual rotation of the proposed image by an angle of
π/8. Lastly, Figure 5 shows the result of the bijective ro-
tation on a ’Lena’ image of size 32x32 and 128x128 for
different angles.

4. Conclusions

In this paper, we have proposed a bijective digital ro-
tation method for hexagonal grids that works for all an-
gles. For this rotation, the average distance, on an image,
between a point rotated by a continuous rotation and the
point rotated by the digital rotation is about 0.42 (with a
distance of 1.0 between two neighboring hexagons), while
the maximal distance is bounded by 1.1. This algorithm
extends the direct mapping proposed by K. Pluta in the
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Original Image After matA with a=1 

After matB with b=1 

After matC with c=1 

Image After Rotation 
of angle 𝜋/8, center (0,0)

A Row pushed by -1

A Row pushed by +1

A Row pushed by +2

B Row pushed by -1

B Row pushed by -2

B Row pushed by -3

B Row pushed by +3

B Row pushed by +2

B Row pushed by +1

C Row pushed by +2

C Row pushed by +1

C Row pushed by -2

C Row pushed by -1

A Row pushed by -2

C Row pushed by -3

C Row 
pushed by +3

Figure 4: shears in directions A,B,C with a=b=c=1. The rows containing (0, 0) (marked by an ellipse) do not move. On the right, rotation by π/8
and center (0, 0).

sense that it works for all angles. However, contrary to his
work, we have only an algorithm that works for hexagonal
grid points as center. Extending our method to arbitrary
centers would be a very interesting extension. There are
many other questions that are raised by this work. Using
shears for directions that are not the usual axis directions
can of course be applied to the regular square grid. How
does that type of rotation measure up to the previously
published bijective rotations Andres (1996)? the triangu-
lar grid is a dual grid of the hexagonal grid however so
may be there is something that can be done there. What
about bijective rotations in arbitrary grids? One aspect
that is of special for us is the extension to higher dimen-
sions especially for honeycomb type grids with possible
applications in 3D printing.
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bourg, France.

Andres, E., 1996. The quasi-shear rotation, in: Interna-
tional Conference on Discrete Geometry for Computer
Imagery, Springer. pp. 307–314.

Compton, B.G., Lewis, J.A., 2014. 3d-printing of
lightweight cellular composites. Advanced materials
26, 5930–5935.

Danielsson, P.E., Hammerin, M., 1992. High-accuracy ro-
tation of images. CVGIP: Graphical Models and Image
Processing 54, 340–344.

Gibson, I., Rosen, D., Stucker, B., 2014. Additive manu-

7



facturing technologies: 3D printing, rapid prototyping,
and direct digital manufacturing. Springer.

Grigoryan, A.M., Agaian, S.S., 2016. 2d hexagonal
quaternion fourier transform in color image process-
ing, in: Mobile Multimedia/Image Processing, Secu-
rity, and Applications 2016, International Society for
Optics and Photonics. p. 98690N.

He, X., Jia, W., 2005. Hexagonal structure for intelligent
vision, in: Information and Communication Technolo-
gies, 2005. ICICT 2005. First International Conference
on, IEEE. pp. 52–64.

Her, I., 1995. Geometric transformations on the hexag-
onal grid. IEEE Transaction on Image Processing 4,
1213–1221.

Jacob, M., Andres, E., 1995. On discrete rotations, in:
Int. Workshop on Discrete Geometry for Computer Im-
agery 1995, Clermont-Ferrand (France), pp. 161–174.

Karkishchenko, A., Mnukhin, V., 2017. Hexagonal im-
ages processing over finite eisenstein fields. Procedia
Engineering 201, 287–295.
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Figure 5: Examples with a Lena image size 32x32 and 128x128 in a hexagonal grid.
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