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Abstract

Popular machine learning estimators involve
regularization parameters that can be chal-
lenging to tune, and standard strategies rely
on grid search for this task. In this paper,
we revisit the techniques of approximating
the regularization path up to predefined tol-
erance ε in a unified framework and show
that its complexity is O(1/ d

√
ε) for uniformly

convex loss of order d > 0 and O(1/
√
ε)

for Generalized Self-Concordant functions.
This framework encompasses least-squares
but also logistic regression (a case that as far
as we know was not handled as precisely by
previous works). We leverage our technique
to provide refined bounds on the validation
error as well as a practical algorithm for hy-
perparameter tuning. The later has global
convergence guarantee when targeting a pre-
scribed accuracy on the validation set. Last
but not least, our approach helps relieving
the practitioner from the (often neglected)
task of selecting a stopping criterion when
optimizing over the training set: our method
automatically calibrates it based on the tar-
geted accuracy on the validation set.

1 Introduction

Various machine learning problems are formulated as
minimization of an empirical loss function f plus a reg-
ularization function Ω whose calibration is controlled
by a non negative hyperparameter λ. The choice of
λ is crucial since it directly influences the generaliza-
tion performance of the estimator, i.e., its score on
unseen data sets. One of the most popular method in
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paristech.fr; joseph.salmon@umontpellier.fr;
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such a context is cross-validation, see Arlot and Celisse
(2010) for a detailed review. For simplicity, we investi-
gate here the holdout version that consists in splitting
the data in two parts: on the first part (training set)
the method is trained for a pre-defined collection of
candidates ΛT := {λ0, . . . , λT−1}, and on the second
part (validation set), the best parameter is selected.

For a piecewise quadratic loss f and a piecewise linear
regularization Ω (e.g., the Lasso estimator), (Osborne
et al., 2000; Rosset and Zhu, 2007) have shown that
the set of solutions follows a piecewise linear curve
w.r.t. to the parameter λ. There are several algo-
rithms that can generate the full path by maintaining
optimality conditions when the regularization param-
eter varies. This is what LARS is performing for Lasso
(Efron et al., 2004), but similar approaches exist for
SVM (Hastie et al., 2004) or generalized linear models
(GLM) (Park and Hastie, 2007). Unfortunately, these
methods have some drawbacks that can be critical in
many situations:

• their worst case complexity, i.e., the number of
linear segments, is exponential in the dimension
p of the problem (Gärtner et al., 2012) leading to
unpractical algorithms. Even in favorable cases,
a complexity linear in p can be expensive to com-
pute for large p.

• they suffer from numerical instabilities due to
multiple and expensive inversion of ill-conditioned
matrix. As a result, these algorithms may fail
before exploring the entire path, a crucial issue
whenever the regularization parameter decreases.

• they lack flexibility when it comes at incorpo-
rating different statistical learning tasks because
they usually rely on specific algebra to handle the
structure of the regularization and loss functions.
As far as we know, they apply to a limited num-
ber of cases and we are not aware of a general
framework that bypasses these issues.

• they cannot benefit of early stopping. Follow-
ing (Bottou and Bousquet, 2008), it is not nec-
essary to optimize below the statistical error to
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reach good generalization property. Exact reg-
ularization path algorithms require maintaining
optimality conditions when the hyperparameter
varies, which is time consuming.

To overcome these issues, an approximation of the so-
lution path up to accuracy ε > 0 was proposed and
optimal complexity was proven to be O(1/ε) by Giesen
et al. (2010) in a fairly general setting. A noticeable
contribution was proposed by Mairal and Yu (2012),
that come up with an algorithm whose complexity is
O(1/

√
ε) for the Lasso case. The later result was then

extended by Giesen et al. (2012) to objective function
that has a quadratic lower bound while providing a
lower and upper bound of order O(1/

√
ε). Unfortu-

nately, these assumptions fail to hold for a large class
of problems, including logistic regression or Huber loss.

Following such ideas, Shibagaki et al. (2015) have pro-
posed, for classification problems, to approximate the
regularization path on the hold-out cross-validation er-
ror. Indeed, the later is a more natural criterion to
monitor when one aims at selecting a hyperparameter
guaranteed to achieve the best validation error. The
main idea is to construct an upper and lower bound
on the validation error as simple functions of the reg-
ularization parameter. Hence by sequentially varying
the parameters, one can estimate a range of parameter
for which the validation error gap is smaller than an
accuracy εv > 0.

Contributions. We revisit the approximation of the
solution and validation path in a unified framework
under general regularity assumptions commonly met
in machine learning. We encompass both classifica-
tion and regression problems and provide a complexity
analysis along with optimality guarantees. We discuss
the relationship between the regularity of the loss func-
tion and the complexity of the approximation path.
We prove that its complexity is O(1/ d

√
ε) for uniformly

convex loss of order d > 0 (see (Bauschke and Com-
bettes, 2011, Definition 10.5)) and O(1/

√
ε) for the lo-

gistic loss thanks to a refined measure of its curvature
throughout its Generalized Self-Concordant properties
(Sun and Tran-Dinh, 2017). Finally, we provide an al-
gorithm with global convergence property for selecting
a hyperparameter with a validation error εv-close to
the optimal hyperparameter from a given grid.

Notation. Given a proper, closed and convex func-
tion f : Rn → R ∪ {+∞}, we denote dom f = {x ∈
Rn : f(x) < +∞}. If f is a twice continuously differ-
entiable function with positive definite Hessian∇2f(x)
at any x ∈ dom f , we denote ‖z‖x =

√
〈∇2f(x)z, z〉.

The Fenchel-Legendre transform of f is the func-
tion f∗ : Rn → R ∪ {+∞} defined by f∗(x∗) =

λmin λmax
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Figure 1: Illustration of the approximation path for
the Lasso at accuracy ε = ‖y‖22 /20. We choose
λmax = ‖X>y‖∞ and λmin = λmax/50. The shaded
gray region shows the interval where any ε-path must
lie. The exact path is computed with the LassoLars

on diabetes data from sklearn.

supx∈dom f 〈x∗, x〉 − f(x). The support function of a
nonempty set C is defined as σC(x) = supc∈C〈c, x〉. If
C is closed, convex and contains 0, we define its polar
as σ◦C(x∗) = supσC(x)≤1〈x∗, x〉. We denote by [T ] the
set {1, . . . , T} for any non zero integer T . The vec-
tor of observations is y ∈ Rn and the design matrix
X = [x1, . . . , xn]> ∈ Rn×p has n observations row-
wise, and p features (column-wise).

2 Problem setup

Let us consider the class of regularized learning meth-
ods expressed as convex optimization problems, such
as (regularized) GLM (McCullagh and Nelder, 1989):

β̂(λ) ∈ arg min
β∈Rp

f(Xβ) + λΩ(β)︸ ︷︷ ︸
Pλ(β)

(Primal). (1)

We highlight two important cases: the regularized
least-squares and logistic regression where the loss
functions are written as an empirical risk f(Xβ) =∑
i∈[n] fi(x

>
i β) with the fi’s given in Table 1. The

penalty term is often used to incorporate prior knowl-
edges by enforcing a certain regularity on the solu-
tions. For instance, choosing a Ridge penalty (Ho-

erl and Kennard, 1970) Ω(·) = ‖·‖22 /2 improves the
stability of the resolution of inverse problems while
Ω(·) = ‖·‖1 imposes sparsity at the feature level, a
motivation that led to the Lasso estimator (Tibshi-
rani, 1996); see also Bach et al. (2012) for extensions
to other structured penalties.

In practice, obtaining β̂(λ), an exact solution to Prob-
lem (1) is unpractical and one aims achieving a pre-
scribed precision ε > 0. More precisely, a (primal)
vector β(λ) := β(λ,ε) (we will drop the dependency in
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Lasso Logistic regr.
fi(z) (yi − z)2/2 log(1 + ez)− yiz
f∗i (u) ((u− yi)2 − y2i )/2 Nh(u+ yi)
Vf∗,x(u) ‖u‖22/2 w4(‖u‖2x/‖u‖2)‖u‖2u

Table 1: w4(τ) = (1−τ) log(1−τ)+τ
τ2

and Nh(x) = x log(x) + (1− x) log(1− x)

ε for readability) is referred to as an ε-solution for λ if
its (primal) objective value is optimal at precision ε:

Pλ(β(λ))− Pλ(β̂(λ)) ≤ ε . (2)

We recall and illustrate the notion of approximation
path in Figure 1 as described by Giesen et al. (2012).

Definition 1 (ε-path). A set Pε ⊂ Rp is called an
ε-path for a parameter range [λmin, λmax] if

∀λ ∈ [λmin, λmax],∃ an ε-solution β(λ) ∈ Pε . (3)

We call path complexity Tε for Problem (1) the cardi-
nality of the ε-path.

To achieve the targeted ε-precision in (2) over a whole
path and construct an ε-path 1, we rely on duality gap
evaluations. For that, we compute εc-solutions2 (for
an accuracy εc < ε) over a finite grid, and then we
control the gap variations w.r.t. λ to achieve the pre-
scribed ε-precision over the whole range [λmin, λmax];
see Algorithm 1. We now recall the Fenchel duality
(Rockafellar, 1997, Chapter 31):

θ̂(λ) ∈ arg max
θ∈Rn

−f∗(−λθ)− λΩ∗(X>θ)︸ ︷︷ ︸
Dλ(θ)

(Dual). (4)

For a (primal/dual) pair (β, θ) ∈ domPλ×domDλ, the
duality gap is defined as the difference between primal
and dual objectives:

Gλ(β, θ) = f(Xβ) + f∗(−λθ) + λ(Ω(β) + Ω∗(X>θ)) .

and weak duality yields Dλ(θ) ≤ Pλ(β) and

Pλ(β)− Pλ(β̂(λ)) ≤ Gλ(β, θ) , (5)

explaining the interest of the duality gap as an opti-
mality certificate. Using (5), we can safely construct
an approximation path for Problem (1) : if β(λ) is an
ε-solution for λ, it is guaranteed to remain one for all
parameters λ′ such that Gλ′(β(λ), θ(λ)) ≤ ε. Since the
function λ′ 7→ Gλ′(β(λ), θ(λ)) does not exhibit a sim-
ple dependence in λ, we rely on an upper bound on
the gap encoding the structural regularity of the loss
function (e.g., when f is strongly convex, we consider
a 1-dimensional quadratic). This bound allows to con-
trol the optimization error as λ varies while preserving
an optimal complexity on the approximation path.

1note that such a path depends on exact solutions β̂(λ)’s
2the c stands for computational in εc

λ0 = λmaxλ1λ2λ3λ4λ5 = λmin
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Figure 2: Illustration of the construction of an ε-
path for the Lasso on synthetic dataset generated with
sklearn as X, y = make regression(n = 30, p = 150)

at accuracy ε = ‖y‖22 /40 and εc = ε/10. We choose
λmax = ‖X>y‖∞ and λmin = λmax/10 leading to a
path complexity Tε = 6. For Lasso the bound is piece-
wise quadratic.

3 Bounds and approximation path

Definition 2. Given a differentiable function f and
x ∈ dom f , let Uf,x(·) and Vf,x(·) be non negative
functions that vanish at 0. We say that f is Uf,x-
convex (resp. Vf,x-smooth) at x when Inequality (6)
(resp. (7)) is satisfied for any z ∈ dom f

Uf,x(z − x) ≤ f(z)− f(x)− 〈∇f(x), z − x〉 , (6)

Vf,x(z − x) ≥ f(z)− f(x)− 〈∇f(x), z − x〉 . (7)

This extends µ-strong convexity and ν-smoothness
(Nesterov, 2004) and encompasses smooth uniformly
convex losses and generalized self-concordant ones.

Smooth uniformly convex case:

Uf,x(z − x) = U(‖z − x‖), Vf,x(z − x) = V(‖z − x‖),

where U(·) and V(·) are increasing from [0,+∞) to
[0,+∞] vanishing at 0; see Azé and Penot (1995). Ex-
amples of such functions are U(t) = µ

d t
d and V(t) =

ν
d t
d where d, µ and ν are positive constants. The case

d = 2 corresponds to strong convexity and smoothness;
in general they are called uniformly convex of order d,
see (Juditski and Nesterov, 2014) or (Bauschke and
Combettes, 2011, Ch. 10.2 and 18.5) for details.

Generalized self-concordant case: a C3 convex
function f is (Mf , ν)-generalized self-concordant of or-
der ν ≥ 2 and Mf ≥ 0 if ∀x ∈ dom f and ∀u, v ∈ Rn:∣∣〈∇3f(x)[v]u, u〉

∣∣ ≤Mf ‖u‖2x ‖v‖
ν−2
x ‖v‖3−ν2 .

In this case, (Sun and Tran-Dinh, 2017, Proposition
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10) shows that one could write:

Uf,x(y − x) = wν(−dν(x, y)) ‖y − x‖2x ,

Vf,x(y − x) = wν(dν(x, y)) ‖y − x‖2x ,

where the last equality holds if dν(x, y) < 1 for the case
ν > 2. Closed-form expressions for wν(·) and dν(·) are
recalled in Appendix for logistic and quadratic losses.

Approximating the duality gap path. Assume
we have constructed primal/dual feasible vectors for a
finite grid of parameters ΛT = {λ0, . . . , λT−1}, i.e., we
have at our disposal (β(λt), θ(λt)) for all λt ∈ ΛT . Let
us denote Gt = Gλt(β(λt), θ(λt)), and for ζt = −λtθ(λt),
∆t = f(Xβ(λt)) − f(∇f∗(ζt)). For any function φ :
Rn → [0,+∞] that vanishes at 0, ρ ∈ R, we define

Qt,φ(ρ) = Gt +ρ · (∆t − Gt) + φ(−ρ · ζt) . (8)

In the previous display, the Gt and ∆t represent a mea-
sure of the optimization error at λt. The notation in-
troduced in (8) will be convenient to write concisely
upper and lower bounds on the duality gap. This is
the goal of the next lemma which leverages regularity
of the loss function f , as introduced in Definition 2.
This provides control on how the duality gap deviates
when one evaluates it for another (close) parameter λ.

Lemma 1. We assume that −λθ(λt) ∈ dom f∗ and
X>θ(λt) ∈ dom Ω∗. If f∗ is Vf∗ -smooth (resp. Uf∗ -
convex)3, then for ρ = 1 − λ/λt, the right (resp. left)
hand side of Inequality (9) holds true

Qt,Uf∗ (ρ) ≤ Gλ(β(λt), θ(λt)) ≤ Qt,Vf∗ (ρ) . (9)

Proof. Proof for this result and for other propositions
and theorems are deferred to the Appendix.

The function φ, chosen as Vf∗ (resp. Uf∗) for the upper
(resp. lower) bound, essentially captures the regularity
needed to approximate the duality gap at parameter
λ when using primal/dual vector (β(λt), θ(λt)) for λt
close to λ. When the function satisfies both inequali-
ties, the tightness of the bound can be related to the
conditioning Uf∗/Vf∗ of the dual loss f∗. Equality

holds for the least-squares case (Uf∗ ≡ Vf∗ ≡ ‖·‖22 /2),
which certifies the tightness of the bounds.

From Lemma 1, we have Gλ(β(λt), θ(λt)) ≤ ε as soon
as Qt,Vf∗ (ρ) ≤ ε where ρ = 1 − λ/λt varies with λ.
Hence, we obtain the following proposition that allows
to track the regularization path for an arbitrary pre-
cision on the duality gap. It proceeds by choosing the
largest ρ = ρt such that the upper bound in Equa-
tion (9) remains below ε and leads to Algorithm 1 for
computing an ε-path.

3we drop x in Uf,x and write Uf if no ambiguity holds.

Proposition 1 (Grid for a prescribed precision).
Given (β(λt), θ(λt)) such that Gt ≤ εc ≤ ε, for all λ ∈
λt×

[
1− ρ`t(ε), 1 + ρrt (ε)

]
, we have Gλ(β(λt), θ(λt)) ≤ ε

where ρ`t(ε) (resp. ρrt (ε)) is the largest non-negative ρ
s.t. Qt,Vf∗ (ρ) ≤ ε (resp. Qt,Vf∗ (−ρ) ≤ ε).

Algorithm 1 training path

Input: f,Ω, ε, εc, [λmin, λmax]
Initialization: t = 0, λ0 = λmax, Λ = {λmax}
repeat

Get β(λt) solving (1) for λ = λt to accuracy εc < ε

Compute ρ`t(ε) = max{ρ s.t. Qt,Vf∗ (ρ) ≤ ε}
Set λt+1 = max(λt × (1− ρ`t), λmin)
Λ← Λ ∪ {λt+1} and t← t+ 1

until λt ≤ λmin

Return: {β(λt) : λt ∈ Λ}

Conversely, given a grid4 of T parameters ΛT =
{λ0, . . . , λT−1}, we define εΛT , the error of the approx-
imation path on [λmin, λmax] by using a piecewise con-
stant approximation of the map λ 7→ Gλ(β(λt), θ(λt)):

εΛT = sup
λ∈[λmin,λmax]

min
λt∈ΛT

Gλ(β(λt), θ(λt)) . (10)

This error is however difficult to evaluate in practice
so we rely on a tight upper bound based on Lemma 1
that often leads to closed-form expressions.

Proposition 2 (Precision for a given grid). Given a
grid of parameters ΛT , the set {β(λ) : λ ∈ ΛT } is an
εΛT -path with εΛT ≤ maxt∈[T ]Qt,Vf∗ (1−λ?t /λt) where
for all t ∈ {0, . . . , T−1}, λ?t is the largest λ ∈ [λt+1, λt]
such that Qt,Vf∗ (1− λ/λt) ≥ Qt+1,Vf∗ (1− λ/λt+1).

Construction of dual feasible vector. We rely on
gradient rescaling to produce a dual feasible vector:

Lemma 2. For any β(λt) ∈ Rp, the vector

θ(λt) =
−∇f(Xβ(λt))

max(λt, σ◦dom Ω∗(X
>∇f(Xβ(λt)))

,

is feasible: −λθ(λt) ∈ dom f∗, X>θ(λt) ∈ dom Ω∗.

Remark 1. When the regularization is a norm, Ω(·) =
‖·‖ then σ◦dom Ω∗ is the associated dual norm ‖·‖∗.

This choice guarantees that the duality gap Gt and ∆t

converge to 0 when β(λt) converges to a solution β̂(λt).

Finding ρ. Following Prop. 1, one needs to solve 1-
dimensional equations like Qt,Vf∗ (ρ) = ε to obtain an
ε-path. This can be done efficiently at high precision
by numerical solvers if no explicit solution is available.

As a corollary from Lemma 1 and Proposition 2, we
recover the analysis by Giesen et al. (2012):

4we assume a decreasing order λt+1 < λt, reflecting
common practices for GLM, e.g., for the Lasso.
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Corollary 1. If the function f∗ is ν
2‖·‖2-smooth, the

left (ρ`t) and right (ρrt ) step sizes defined in Proposi-
tion 1 have closed-form expressions:

ρ`t =

√
2νδt ‖ζt‖2+ δ̃2

t − δ̃t
ν ‖ζt‖2

, ρrt =

√
2νδt ‖ζt‖2+ δ̃2

t + δ̃t

ν ‖ζt‖2
,

where δt := ε− Gt and δ̃t := ∆t − Gt.

3.1 Discretization strategies

We now establish new strategies for the exploration of
the hyperparameter space in the search for an ε-path.

For regularized supervised learning methods, it is cus-
tomary to start from a large regularizer5 λ0 = λmax

and then to perform iteratively the computation of
β̂(λt+1) after the one of β̂(λt), until the smallest param-
eter of interest λmin is reached. Generally, models are
computing by increasing complexity which allows im-
portant speed-ups due to warm start (Friedman et al.,
2007), provided that the parameters λ’s are close to
each other. Knowing λt we will provide recursive strat-
egy constructing λt+1.

Adaptive unilateral. The strategy we call Uni-
lateral consist in computing the new parameter as
λt+1 = λt × (1− ρ`t(ε)) as in Proposition 1.

Proposition 3 (Unilateral approximation path). As-
sume that f∗ is Vf∗-smooth. We construct the grid of
parameters Λ(u)(ε) = {λ0, . . . , λTε−1} by

λ0 = λmax, λt+1 = λt × (1− ρ`t(ε)) ,

and (β(λt), θ(λt)) s.t. Gt ≤ εc < ε for all t. Then, the
set {β(λt) : λt ∈ Λ(u)(ε)} is an ε-path for Problem (1).

This strategy is illustrated in Figure 2 on a Lasso ex-
ample. It stands as a generic algorithm for computing
an approximation path for loss functions satisfying the
loose regularity assumption in Definition 2.

Adaptive bilateral. For uniformly convex func-
tions, we can make a larger step by combining the
information given by the left and right step sizes. In-
deed, let us assume that we explore the parameter
range from λmax to λmin. Starting from a parame-
ter λt, we define the next step, given by Proposition 1,
λ`t := λt(1 − ρ`t). Then it exists λt′ ≤ λ`t such that
λrt′ := λt′(1+ρrt′) = λ`t. Thus a larger step can be done
by using λt′ = λt× (1− ρ`t)/(1 + ρrt′). However ρrt′ de-
pends on the (approximated) solution β(λt′ ) that we do
not know before optimizing the problem for parame-
ter λt′ when computing sequentially the grid points in

5for the Lasso one often chooses λ0 = λmax :=
∥∥X>y∥∥∞

decreasing order i.e., λt′ ≤ λt. We overcome this is-
sue in Lemma 3 by (upper) bounding all the constants
in Qt′,Vf∗ (ρ) that depend on the solution β(λt′ ), by

constants involving only information given by β(λt).

Lemma 3. Assuming f uniformly smooth yields
‖∇f(Xβ(λt′ ))‖∗ ≤ R̃t, where R̃t := V∗f−1

(
f(Xβ(λt))+

2εc
ρ`t(ε)

)
. If additionally f is uniformly convex, this

yields ∆t′ ≤ ∆̃t, where ∆̃t := R̃t × U−1
f (εc) as well

as Gλ(β(λt′ ), θ(λt′ )) ≤ Qt′,Vf∗ (ρ) ≤ Q̃t,Vf∗ (ρ), where

Q̃t,Vf∗ (ρ) = εc + ρ · (∆̃t − εc) + Vf∗
(
|ρ| · R̃t

)
.

Let us now define ρ
(b)
t (ε) =

ρ`t(ε) + ρ̃rt (ε)

1 + ρ̃rt (ε)
, where ρ`t(ε)

is defined in Proposition 1 and ρ̃rt (ε) is the largest non

negative ρ such that Q̃t,Vf∗ (ρ) ≤ ε in Lemma 3.

Proposition 4 (Bilateral Approximation Path).
Assume that f is uniformly convex and smooth. We
construct the grid Λ(b)(ε) = {λ0, . . . , λTε−1} by

λ0 = λmax, λt+1 = λt × (1− ρ(b)
t (ε)) ,

and (β(λt), θ(λt)) s.t. Gt ≤ εc < ε for all t. Then the
set {β(λt) : λt ∈ Λ(b)(ε)} is an ε-path for Problem (1).

Uniform unilateral and bilateral. Given the ini-
tial information from the initialization (β(λ0), θ(λ0)),
we can build a (crude) uniform grid that guarantees
an ε-approximation before solving any optimization
problem. Indeed, by applying Lemma 3 at t = 0,
we have Gλ(β(λt), θ(λt)) ≤ Q̃0,Vf∗ (ρ). We can define

ρ̃`0(ε) (resp. ρ̃r0(ε)) as the largest non-negative ρ s.t.

Q̃0,Vf∗ (ρ) ≤ ε (resp. Q̃0,Vf∗ (−ρ) ≤ ε) and also

ρ0(ε) =

{
ρ̃`0(ε) for Unilateral path,
ρ̃`0(ε)+ρ̃r0(ε)

1+ρ̃r0(ε) for Bilateral path.
(11)

Proposition 5 (Uniform approximation path).
Assume that f is uniformly convex and smooth, and
define the grid Λ(0)(ε) = {λ0, . . . , λTε−1} by

λ0 = λmax, λt+1 = λt × (1− ρ0(ε)) ,

and ∀t ∈ [T ], (β(λt), θ(λt)) s.t. Gt ≤ εc < ε. Then the
set {β(λt) : λt ∈ Λ(0)(ε)} is an ε-path for Problem (1)
with at most Tε grid points where

Tε =

⌊
log(λmax/λmin)

log(1− ρ0(ε))

⌋
.

Remark 2. For cases such as the Lasso, an explicit
value of β(λmax) can be obtained, say β(λ0) = 0, for
λ0 =

∥∥X>y∥∥∞. Since the uniform grid depends only

on this initially known value β(λ0), it can be computed
prior any optimization solver is launched. Hence, this
case is well suited for naive parallel computation over
the grid of parameters.
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Figure 3: Computation of the approximation path at the same error than the default grid.

3.2 Limitations of previous framework

Previous algorithms and analysis for computing an ε-
path have been initially developed with a complexity
of O(1/ε) (Clarkson, 2010; Giesen et al., 2010) in a
large class of problem. Nevertheless, data fitting func-
tions arising in machine earning have often nicer reg-
ularities that must be exploited. This is all the more
striking in the Lasso example where a better complex-
ity in O(1/

√
ε) was obtained by Mairal and Yu (2012);

Giesen et al. (2012).

The relation between the complexity of the path and
the regularity of the objective function remains unclear
and previous methods do not apply to many machine
learning problem. For instance, for the logistic regres-
sion, the dual loss f∗ is not uniformly smooth: so in
order to apply the previous theory, one needs to re-
strict the solution on a (potentially badly pre-selected)
compact set.

Let us consider the one dimensional toy example where
β ∈ R, X = Id and y = −1, f(Xβ) = log(1 + exp(β)).
We have, ∇2f(β) = exp(β)/(1 + exp(β))2. Then for

Problem (1), since Pλ(β̂(λ)) ≤ Pλ(0), we have |β̂(λ)| ∈
[0, log(2)/λ] and a smoothness constant of the dual can
be reasonably estimated as νf∗ = (1 + exp(log(2)/λ))2

at each step. This leads to an unreasonable algorithm
with tiny step sizes in Corollary 1, since for λmin =
λmax/10 we already have νf∗ ≈ exp(100). Also, note
that the dual function is not polynomial; hence, the
algorithm proposed by Giesen et al. (2012) can not be
applied for the logistic loss.

Our proposed algorithm does not suffer from such lim-
itations and we introduce a finer analysis that takes
into account the regularity of the loss functions.

3.3 Complexity and regularity

Lower bound on the path complexity. For our
method, the lower bound on the duality gap quantifies
how close the proposed step in Proposition 1 is from
the best possible step one can achieve for smooth loss
functions. Indeed, at the optimal solution, we have
Gt = ∆t = 0. Thus the largest possible step — starting
at λt and moving in decreasing order — is given by the
smallest λ between λmin and λt such that Uf∗(−ζt ×
ρ) > ε. Hence, any algorithm for computing an ε-path
with the duality gap for Uf∗ -uniformly convex dual
loss, have necessarily a complexity of order at least
O(1/U−1

f∗ (ε)).

Upper bounds. We remind that we write Tε for
the complexity of our proposed approximation path
i.e., the cardinality of the grid returned by Algo-
rithm 1. In the following proposition, we propose a
bound on the complexity w.r.t. the regularity of the
loss function (details on the constants appearing in
the following result are provided in Appendix).

Proposition 6 (Approximation path: complexity).
For εc < ε, there exists Cf (εc) > 0 such that

Tε ≤ log

(
λmax

λmin

)
× Cf (εc)

Wf∗(ε− εc)
,

where for all t > 0, the function Wf∗ is defined by

Wf∗ =


V−1
f∗ , if f is uniformly convex and smooth√·, if f is Generalized Self-Concordant

and uniformly-smooth.

Moreover, Cf (εc) tends to a finite constant Cf when
εc goes to 0.
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Figure 4: Safe selection of the optimal hyperparameter for Elastic Net regression when the targeted accuracy εv
on the validation set (30% of the observations) is refined. The range of parameters investigated is generated by
Algorithm 2 (with bilateral path) between λmax = ‖X>y‖∞ and λmin = λmax/100. Note that for loose precision,
suboptimal parameter are identified, but better and better candidates are found as the accuracy εv decreases.

4 Validation path

To achieve good generalization performance, estima-
tors defined as solution of Problem 1 require careful ad-
justment of the regularization parameter λ, to balance
between data-fitting and regularization. A standard
approach in machine learning to tune such a parame-
ter is to select it by comparing the validation errors on
a finite grid (potentially using K-fold cross-validation).
Unfortunately, it is often difficult to determine a priori
the number of points in the grid or how they should be
distributed to achieve low validation error, and prac-
titioners often rely on rules of thumb for that task.

Considering the validation data (X ′, y′) (with n′ ob-
servations) and loss6 L, we define the validation error
for β ∈ Rp as

Ev(β) = L(y′, X ′β) . (12)

For selecting a hyperparameter, we leverage our ap-
proximation path to solve the bi-level problem

arg min
λ∈[λmin,λmax]

Ev(β̂
(λ)) = L(y′, X ′β̂(λ))

s.t. β̂(λ) ∈ arg min
β∈Rp

f(Xβ) + λΩ(β) .

Recent works have addressed this problem by us-
ing gradient-based algorithms, see for instance Pe-

6the data-fitting terms might differ from training to
testing; for instance for logistic regression one would use
the `0/1-loss for validation but optimize the logistic func-
tion at training.

dregosa (2016); Franceschi et al. (2018) who have
shown promising results in computational time and
scalability w.r.t. multiple hyperparameters. However,
they require assumptions such as smoothness of the
validation function Ev and non-singular Hessian of the
inner optimization problem at optimal values which
are difficult to check in practice since they depends on
the optimal solutions β̂(λ). Moreover, they can only
guarantee convergence to stationary point.

In this section, we generalize the approach of Shibagaki
et al. (2015) and show that with a safe and simple ex-
ploration of the parameter space, our algorithm has a
global convergence property. The following conditions,
on the validation loss and on the inner optimization
objective, are assumed through the section:

A1 : |L(a, b)− L(a, c)| ≤ L(b, c) for ant a, b, c ∈ Rn.

A2 : The function β 7→ Pλ(β) is µ-strongly convex.

Note that the assumption on the loss function is veri-
fied for norms (regression) and indicator function (clas-
sification). Indeed, for any norm L(a, b) = ‖a − b‖,
A1 corresponds to the triangle inequality. For the
`0/1-loss L(a, b) = 1

n

∑n
i=1 1aibi<0, and given any real

values s, u and v, |1us<0 − 1uv<0| ≤ 1sv<0, one has∣∣ 1
n

∑n
i=1 1aibi<0 − 1

n

∑n
i=1 1aici<0

∣∣ ≤ 1
n

∑n
i=1 1bici<0.

Definition 3. Given a primal solution β̂(λ) for pa-
rameter λ and a primal point β(λt) returned by an
algorithm, we define the gap on the validation error
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between λ and λt as

∆Ev(λt, λ) :=
∣∣Ev(β̂(λ))− Ev(β(λt))

∣∣ . (13)

Suppose we have fixed a tolerance εv on the gap on
validation error i.e., ∆Ev(λt, λ) ≤ εv. Based on As-
sumption A1, if there is a region Rλ that contains the
optimal solution β̂(λ) at parameter λ, then we have

∆Ev(λt, λ) ≤ L(X ′β̂(λ), X ′β(λt))

≤ max
β∈Rλ

L(X ′β,X ′β(λt)) .

A simple strategy consists in choosing Rλ as a ball.

Lemma 4 (Gap safe region (Ndiaye et al., 2017)). Un-

der Assumption A2, any primal solution β̂(λ) belongs
to the Euclidean ball with center β(λt) and radius

rt,µ(λ) =

√
2

µ
Gλ(β(λt), θ(λt)) . (14)

Such a ball relying on a duality gap evaluation has
been recently proved useful to speed-up sparse opti-
mization solvers. Their good performance comes from
their ability to iteratively identify the sparsity struc-
ture of the optimal solutions, and are referred to as
safe screening rules as they provide safe certificates for
such structures (El Ghaoui et al., 2012; Fercoq et al.,
2015; Shibagaki et al., 2016; Ndiaye et al., 2017).

Since the radius in Equation (14) depends explicitly on
the duality gap, we can sequentially track a range of
parameters for which the gap on the validation error
remains below a prescribed tolerance by controlling
the optimization error.

Proposition 7 (Grid for prescribed validation error).
Under Assumptions A1 and A2, let us define

εv,µ =


µ
2 ×

(
εv
‖X′‖

)2

(regression)

µ
2 ×

(
x′>(bnεvc+1)β

(λt)

‖x′(bnεvc+1)‖

)2

(classification)

where
(x′>(bnεvc+1)β

(λt)

‖x′(bnεvc+1)‖
)2

is the (bnεvc + 1)-th smallest

value of
(x′>i β(λt)

‖x′i‖
)2

for i ∈ [n′]. Given (β(λt), θ(λt))

such that Gt ≤ εv,µ, we have ∆Ev(λt, λ) ≤ εv for all

λ ∈ λt ×
[
1− ρ`t(εv,µ), 1 + ρrt (εv,µ)

]
,

where ρ`t(εv,µ), ρrt (εv,µ) are defined in Proposition 1.

Remark 3. Considering the current regularization
parameter λt, we have

∆Ev(λt, λt) =
∣∣Ev(β̂(λt))− Ev(β(λt))

∣∣ ≤ εv ,

Algorithm 2 εv-path for Validation Set

Input: f,Ω, εv, [λmin, λmax]
Compute εv,µ as in Proposition 7
Λ(εv,µ) = training path (f,Ω, εv,µ, [λmin, λmax])
Return: Λ(εv,µ)

as soon as Gt ≤ εv,µ, which gives us a stopping crite-
rion for solving the optimization problem on the train-
ing set (X, y) relative to the desired accuracy εv on
the validation set (X ′, y′). This point of view has the
appealing property of relieving the practitioner from
selecting the stopping criterion εc while optimizing on
the training set.

Algorithm 2 outputs a discrete set of parameters
Λ(εv,µ) s.t. {β(λt) for λt ∈ Λ(εv,µ)} is an εv-path for
the validation error. Thus, for any λ in [λmin, λmax],
there exists λt ∈ Λ(εv,µ) such that

Ev(β
(λt))− εv ≤ Ev(β̂(λ)) .

The following proposition is obtained by taking the
minimum on both sides of the inequality.

Proposition 8. Under Assumptions A1 and A2,
{β(λt) for λt ∈ Λ(εv,µ)} is an εv-path for the error and

min
λt∈Λ(εv,µ)

Ev(β
(λt))− min

λ∈[λmin,λmax]
Ev(β̂

(λ)) ≤ εv .

5 Numerical experiments

We illustrate our method on `1-regularized least
squares and logistic regression by comparing the com-
putational times and number of grid points needed to
compute an ε-path for a given range [λmin, λmax].

We first consider the default grid in sklearn (Pe-
dregosa et al., 2011) and glmnet (Friedman et al.,
2010) which is defined as λt = λmax×10−δt/(T−1) (here
δ = 3). Thanks to Proposition 2, we measure the ap-
proximation path error ε of the default grid of size T
and report the times and numbers of grid points Tε
needed to achieve a smaller approximation error. Our
experiments were conducted on the following datasets:
leukemia, available in sklearn and the climate data
NCEP/NCAR Reanalysis (Kalnay et al., 1996). Results
are reported in Figure 3 for both classification and re-
gression problem. Our approach leads to a better ap-
proximation of the regularization path w.r.t. the de-
fault grid, as larger steps are obtain at each λt. This
often results in a significant gain in computating time.

The convergence of our method is illustrated for
Elasatic Net in Figure 4 on synthetic databases gener-
ated with sklearn as a random regression problem
make regression and make sparse uncorrelated
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(with low number of informative features) presented
in Celeux et al. (2012). For a decreasing sequence of
validation errors, we represent the hyperparameter se-
lected by our algorithm and its corresponding safe in-
terval. Note that, even if the validation curve is often
non smooth and non convex, the output of the safe grid
search converges to the global minimum as guaranteed
in Proposition 8.
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6 Appendix

6.1 Generalized self-concordant functions

Proposition 9 (Sun and Tran-Dinh (2017), Proposition 10). If (Mf , ν)-generalized self concordant, then

wν(−dν(x, y)) ‖y − x‖2x ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ wν(dν(x, y)) ‖y − x‖2x (15)

where the right-hand side inequality holds if dν(x, y) < 1 for the case ν > 2 and where

dν(x, y) :=

{
Mf ‖y − x‖2 if ν = 2,(
ν
2 − 1

)
Mf ‖y − x‖3−ν2 ‖y − x‖ν−2

x if ν > 2,
(16)

and

wν(τ) :=


eτ−τ−1
τ2 if ν = 2,

−τ−log(1−τ)
τ2 if ν = 3,

(1−τ) log(1−τ)+τ
τ2 if ν = 4,(

ν−2
4−ν

)
1
τ

[
ν−2

2(3−ν)τ

(
(1− τ)

2(3−ν)
2−ν − 1

)
− 1
]

otherwise.

(17)

Remark 4. The dual of the logistic loss is Generalized Self-Concordant with Mf∗ = 1, ν = 4.
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Figure 5: Illustration of the functions in self concordant bounds Equation (17)

6.2 Proof of the bounds for the warm start error and approximation path error

Lemma 1. We assume that −λθ(λt) ∈ dom f∗ and X>θ(λt) ∈ dom Ω∗. If f∗ is Vf∗-smooth (resp. Uf∗-convex),
then, for ρ = 1− λ/λt, the right (resp. left) hand side of Inequality (18) holds true

Qt,Uf∗ (ρ) ≤ Gλ(β(λt), θ(λt)) ≤ Qt,Vf∗ (ρ). (18)

Proof. We recall that Gt := Gλt(β(λt), θ(λt)) and we denote for simplicity

Gλtλ := Gλ(β(λt), θ(λt)) and Γt := Ω(β(λt)) + Ω∗(X>θ(λt)) .
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By definition for any (β, θ) ∈ domPλ × domDλ we have Gλ(β, θ) = f(Xβ) + f∗(−λθ) + λ(Ω(β) + Ω∗(X>θ)), so
the following holds

1

λt
[Gt−f(Xβ(λt))− f∗(−λtθ(λt))] = Γt . (19)

Hence using Equality (19) in the definition of Gλtλ , we have:

Gλtλ = f(Xβ(λt)) + f∗(−λθ(λt)) + λΓt

(19)
=

λ

λt
Gt +

(
1− λ

λt

)
[f(Xβ(λt)) + f∗(−λtθ(λt))] + f∗(−λθ(λt))− f∗(−λtθ(λt)).

Let us write the proof for the upper bound (the proof for the lower bound is similar). We apply the smoothness
property and the Fenchel-Young Inequality (22) to the function f∗(·) with z = −λθ(λt) and x = ζt := −λtθ(λt)

to obtain

Gλtλ ≤
λ

λt
Gt +

(
1− λ

λt

)
∆t + Vf∗,ζt

(
(λt − λ)θ(λt)

)
,

where we have used the equality case in the Fenchel-Young Inequality (20) to get:

∆t = f(Xβ(λt)) + f∗(ζt) + 〈∇f∗(ζt),−ζt〉 = f(Xβ(λt))− f(∇f∗(ζt)) .

We conclude by noticing that λ
λt
Gt +

(
1− λ

λt

)
∆t = Gt +

(
1− λ

λt

)
(∆t − Gt).

Proposition 2 (Precision for a Given Grid). Given a grid of parameter ΛT , the set {β(λ) : λ ∈ ΛT } is an
εΛT -path and εΛT ≤ maxt∈[T ]Qt,Vf∗ (1−λ?t /λt) where for all t ∈ [T − 1], λ?t is the largest λ ∈ [λt+1, λt] such that
Qt,Vf∗ (1− λ/λt) ≥ Qt+1,Vf∗ (1− λ/λt+1).

Proof. From the upper bound Gλ(β(λt), θ(λt)) ≤ Qt,Vf∗ (1 − λ/λt) for all λ and λt, and since one can partition
the parameter set as [λmin, λmax] = ∪t∈[0:T−1][λt+1, λt], we have

εΛt ≤ max
t∈[0:T−1]

sup
λ∈[λt+1,λt]

min
λt∈ΛT

Qt,Vf∗ (1− λ/λt)

≤ max
t∈[0:T−1]

sup
λ∈[λt+1,λt]

min
t′∈{t+1,t}

Qt′,Vf∗ (1− λ/λt′) .

where the last inequality holds since {λt+1, λt} is a subset of ΛT . Let us define

∀λ ∈ [λt+1, λt], ψt(λ) := min{Qt+1,Vf∗ (1− λ/λt+1), Qt,Vf∗ (1− λ/λt)} .
The quantity Qt+1,Vf∗ (1−λ/λt+1) (resp. Qt,Vf∗ (1−λ/λt)) is monotonically increasing w.r.t. λ (resp. decreasing),
so supλ∈[λt+1,λt] ψt(λ) is reached for the largest λ satisfying

Qt,Vf∗ (1− λ/λt) ≥ Qt+1,Vf∗ (1− λ/λt+1) .

Corollary 1. If the function f∗ is ν
2‖·‖2-smooth, the left (ρ`t) and right (ρrt ) step sizes defined in Proposition 1

have closed-form expressions:

ρ`t =

√
2νδt ‖ζt‖2+ δ̃2

t − δ̃t
ν ‖ζt‖2

, ρrt =

√
2νδt ‖ζt‖2+ δ̃2

t + δ̃t

ν ‖ζt‖2
,

where δt := ε− Gt and δ̃t := ∆t − Gt.

Proof. If f∗ is ν
2 ‖·‖

2
-smooth (which is equivalent to f is 1

2ν ‖·‖
2
-strongly convex), we have from Lemma 1

Gλ(β(λt), θ(λt)) ≤ Qt,Vf∗ (ρ) = Gt +ρ(∆t − Gt) +
νρ2

2
‖ζt‖2 .

Hence we conclude by solving in ρ the inequality Qt,Vf∗ (ρ) ≤ ε.
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6.3 Useful convexity inequalities

Lemma 5 (Fenchel-Young inequalities). Let f be a continuously differentiable function. For all x, x∗, we have

f(x) + f∗(x∗) ≥ 〈x∗, x〉, (20)

with equalities if and only if x∗ = ∇f(x) (or equivalently x = ∇f∗(x∗)). Moreover, if f is Uf,x-convex (resp.
Vf,x-smooth) Inequality (21) (resp. Inequality (22)) holds true:

f(x) + f∗(x∗) ≥ 〈x∗, x〉+ Uf,x(x−∇f∗(x∗)), (21)

f(x) + f∗(x∗) ≤ 〈x∗, x〉+ Vf,x(x−∇f∗(x∗)). (22)

Proof. We have from the Uf,x-convexity and the equality f(z) + f∗(∇f(z)) = 〈∇f(z), z〉
−f∗(∇f(z)) + 〈∇f(z), x〉+ Uf,x(x− z) = f(z) + 〈∇f(z), x− z〉+ Uf,x(x− z) ≤ f(x).

We conclude by applying the inequality at z = ∇f∗(x∗) and remark that ∇f(z) = x∗. The same proof holds for
the upper bound (22).

Applying Fenchel-Young Inequalities (21) and (22) give the following bounds.

Lemma 6. We assume that −λθ ∈ Dom(f∗) and X>θ ∈ Dom(Ω∗). Then, the Inequality (23) (resp. (23))
provided that f is Uf -convex (resp. Vf -smooth).

λΩ̃(β, θ) + Uf (Xβ −∇f∗(−λθ)) ≤ Gλ(β, θ) (23)

λΩ̃(β, θ) + Vf (Xβ −∇f∗(−λθ)) ≥ Gλ(β, θ) (24)

where Ω̃(β, θ) = Ω(β) + Ω∗(X>θ) + 〈β,−X>θ〉.

Proof. We apply the Fenchel-Young Inequality (21) to obtain

Gλ(β, θ) =f(Xβ) + f∗(−λθ) + λ(Ω(β) + Ω∗(X>θ))

≥〈Xβ,−λθ〉+ Uf (Xβ −∇f∗(−λθ)) + λ(Ω(β) + Ω∗(X>θ))

=Uf (Xβ −∇f∗(−λθ)) + λ
(
Ω(β) + Ω∗(X>θ) + 〈β,−X>θ〉

)
.

The same technique applies for the upper bound with the Fenchel-Young Inequality (22).

Remark 5. From the Fenchel-Young Inequality (20), we have Ω(β) + Ω∗(X>θ) ≥ 〈β,X>θ〉, so the lower bound
is always non negative.

Variation of the loss function along the path

Lemma 7. Let β(λt) (resp. β(λt′ )) be an ε-solution at parameter λt (resp. λt′), then we have(
1− λt′

λt

)(
f(Xβ(λt′ ))− f(Xβ(λt))

)
≤ Gt′ +

λt′

λt
Gt .

where Gs := Gλs(β(λs), θ(λs)) for s ∈ {t, t′}. Moreover, the mapping λ 7→ f(Xβ̂(λ)) is non-increasing.

Proof. Since β̂(λ) is optimal at parameter λ, we have:

f(Xβ(λ)) + λΩ(β(λ))− ε ≤ f(Xβ̂(λ)) + λΩ(β̂(λ)) ≤ f(Xβ(λt)) + λΩ(β(λt)) .

Moreover,

f(Xβ(λt)) + λΩ(β(λt)) =
λ

λt

(
f(Xβ(λt)) + λtΩ(β(λt))

)
+

(
1− λ

λt

)
f(Xβ(λt))

≤ λ

λt

(
f(Xβ̂(λt)) + λtΩ(β̂(λt)) + ε

)
+

(
1− λ

λt

)
f(Xβ(λt))

≤ λ

λt

(
f(Xβ(λ)) + λtΩ(β(λ)) + ε

)
+

(
1− λ

λt

)
f(Xβ(λt)) .
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The last inequality comes from the optimality of β̂(λt) at parameter λt. Hence,

f(Xβ(λ)) + λΩ(β(λ))− ε ≤ λ

λt

(
f(Xβ(λ)) + λtΩ(β(λ)) + ε

)
+

(
1− λ

λt

)
f(Xβ(λt)) .

At optimality, ε = 0 and we can deduce that
(

1− λ
λt

)
f(Xβ̂(λ)) ≤

(
1− λ

λt

)
f(Xβ̂(λt)), hence the second

result.

Bounding the gradient along the path

We can furthermore bound the norm of the gradient of the loss when the parameter λ varies.

Lemma 8. For x ∈ Dom(f), if f is Vf,x-smooth, then writing V∗f,x = (Vf,x)∗ for the Fenchel-Legendre transform,
one has

V∗f,x(−∇f(x)) ≤ f(x)− inf
z
f(z) .

Proof. From the smoothness of f , we have

inf
z
f(z) ≤ inf

z
(f(x) + 〈∇f(x), z − x〉+ Vf,x(z − x)) = f(x)− (Vf,x)∗(−∇f(x)) .

A direct application of Lemma 8 and Lemma 7 yields:

Lemma 9. Assume that f is uniformly smooth and let β(λt′ ) (resp. β(λt)) be an ε-solution at parameter λt′

(resp. λt). Then for δε(λt′ , λt) := λt+λt′
λt−λt′

ε, we have

V∗f (−∇f(Xβ(λt′ ))) ≤ f(Xβ(λt)) + δε(λt′ , λt) .

At optimality ε = 0 and so δε(λt′ , λt) = 0 and we have

V∗f (−∇f(Xβ̂(λt′ ))) ≤ f(Xβ̂(λt)).

Lemma 10. Assuming f is uniformly smooth and ρ`t(ε) = 1− λt′
λt

, we have ‖∇f(Xβ(λt′ ))‖ ≤ R̃t. If in addition,

f is uniformly convex, we have ∆t′ ≤ ∆̃t.

Proof. If f is uniformly smooth, from Lemma 9, we have:

V∗f (−∇f(Xβ(λt′ ))) ≤ f(Xβ(λt)) + δε(λt′ , λt)

‖∇f(Xβ(λt′ ))‖∗ ≤ V∗f−1

(
f(Xβ(λt)) +

2ε

ρ`t(ε)

)
=: R̃t

where the first line follows from Lemma 9 and the second follows from the fact that for Vf = V ◦ ‖·‖, we have
V∗f := (Vf )∗ = V∗ ◦ ‖·‖∗ and since λt′ ≤ λt, then δε(λt′ , λt) ≤ 2ελt/(λt − λt′) = 2ε/ρ`t(ε).

Since f is convex, we have

∆t := f(Xβ(λt))− f(∇f∗(−λtθ(λt))) ≤ −〈∇f(Xβ(λt)),∇f∗(−λtθ(λt))−Xβ(λt)〉
≤ ‖∇f(Xβ(λt))‖∗‖∇f∗(−λtθ(λt))−Xβ(λt)‖
≤ ‖∇f(Xβ(λt))‖∗ × U−1

f (Gλt(β(λt), θ(λt)))

where the two last inequalities comes from Holder inequality and Lemma 6.
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6.4 Proof of the complexity bound

We denote Tε the cardinality of the grid returned by Algorithm 1 and let (ρt)t∈[0:Tε−1] be the set of step size

needed to cover the interval [λmin, λmax]. Using ρt = 1− λt+1

λt
, we have

log

(
λmax

λmin

)
= log

(
Tε−1∏
t=0

λt
λt+1

)
=

Tε−1∑
t=0

log

(
1

1− ρt

)
.

Hence, denoting ρmin(ε) = mint∈[0:Tε−1] ρt, we have

Tε × ρmin(ε) ≤ log

(
λmax

λmin

)
. (25)

Moreover, to simplify our analysis we will suppose that at each step λt, we have solved the optimization problem
with two measures of accuracy Gt ≤ εc and ∆t ≤ εc for εc < ε. Also, we assume that we explore the parameter
range in decreasing order. Then we recall from Lemma 1 that Gλ(β(λt), θ(λt)) ≤ Qt,Vf∗ (ρ) which is smaller than
ε as soon as Vf∗,ζt(−ζt ·ρ) ≤ ε− εc. Since ρmin(ε) = mint∈[0:Tε−1] ρt = mint∈[0:Tε−1] sup{ρ : Qt,Vf∗ (ρ) ≤ ε}, then

ρmin(ε) ≥ min
t∈[0:Tε−1]

sup{ρ : Vf∗,ζt(−ζt · ρ) ≤ ε− εc} . (26)

Hence the complexity of the path is bounded as follows.

Proposition 6 (Complexity of the approximation path). For εc < ε, there exists Cf (εc) > 0 such that

Tε ≤ log

(
λmax

λmin

)
× Cf (εc)

Wf∗(ε− εc)
,

where for all t > 0, the function Wf∗ is defined by

Wf∗ =


V−1
f∗ , if f is uniformly convex and smooth√·, if f is Generalized Self-Concordant

and uniformly-smooth.

Moreover, Cf (εc) tends to a finite constant Cf when εc goes to 0.

Proof. In the uniformly convex case, Vf∗,ζt(−ζt ·ρ) = Vf∗(ρ ‖ζt‖∗), hence we can deduce from Equation (25) and
(26) that

Tε ≤
1

ρmin(ε)
× log

(
λmax

λmin

)
≤ log

(
λmax

λmin

)
× maxt∈[0:Nε−1] ‖ζt‖∗

V−1
f∗ (ε− εc)

,

so we just need to uniformly bound ‖ζs‖. By construction of the dual point Lemma 2, we have:

‖ζt‖∗ =
λt

max(λt, σ◦dom Ω∗(X
>∇f(Xβ(λt)))

∥∥∇f(Xβλt)
∥∥
∗ ≤ ‖∇f(Xβλt)‖∗ ≤ R̃0 , (27)

where the last inequality comes from Lemma 10.

For the Generalized Self-Concordant case, we first recall that the functions wν(·) in Equation (17) are increasing
and wν(0) = 1/2. Then there exists a positive constant aν such that wν(τ) ≤ 1 for τ ∈ [0, aν ] (in fact aν = 1 for

the logistic regression). Thus, provided ρdν(ζt) ≤ aν , we can derive the bound Vf∗(−ζt × ρ) ≤ ρ2 ‖ζt‖2ζt .
Like in the uniformly convex case, in order to get the complexity of the ε-path, we also need a uniform bound
on ‖ζt‖ζt . By taking (6) on f∗ with x = ζt and z = 0, we obtain

wν(−dν(ζt)) ‖ζt‖2ζt = Uf∗,ζt(−ζt) ≤ f∗(0)− f∗(ζt)− 〈∇f∗(ζt),−ζt〉 = f(∇f∗(ζt)) = f(Xβ(λt))−∆t

≤ f(Xβ(λt)) + εc ≤ f(Xβ(λ0)) +
2εc
ρ`0(ε)

+ εc =: R̄0
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where we used the inequality case of Fenchel-Young Inequality and the fact that f∗(0) = − inf f = 0. This shows
that ψ(ζt) := Uf∗,ζt(−ζt) ≤ R̄0. Since the function ψ is continuous, then its level set is closed i.e.,

{z ∈ Rn : ψ(z) ≤ R̄0} is closed. Recalling Equation (27), we have ‖ζt‖∗ ≤ R̃0. Then we have

dν(ζt) ≤ supz∈Hf dν(z) =: Bf where Hf := {z ∈ Rn : ψ(z) ≤ R̄0} ∩ {z : ‖z‖∗ ≤ R̃0} is a compact set.

Since the function wν(·) is increasing, we have wν(−Bf ) ‖ζt‖2ζt ≤ wν(−dν(ζt)) ‖ζt‖2ζt ≤ R̄0 which implies that

‖ζt‖2ζt ≤
R̄0

wν(−Bf ) . Thus, provided ρdν(ζt) ≤ āν , we can derive the bound Vf∗(ζt × ρ) ≤ ρ2 ‖ζt‖2ζt . Whence

ρmin(ε) ≥ mint
√
ε−ε0
‖ζt‖ζt

. Hence the complexity is bounded as Tε ≤ log
(
λmax

λmin

) √
R̄0/wν(−Bf )√

ε−εc
.

6.5 Proof of the validation error bounds

Proposition 7 (Grid for a prescribed validation error). Suppose that we have solved problem (1) for a parameter
λt up to accuracy Gλt(β(λt), θ(λt)) ≤ ξ(εv, µ,X ′), then we have ∆Ev(λt, λ) ≤ εv for all

λ ∈ λt ×
[
1− ρ`t(ξ(εv, µ,X ′)), 1 + ρrt (ξ(εv, µ,X

′))
]

where ρ`t(ε) and ρrt (ε) for ε > 0 are defined in Proposition 1.

Proof. We distinguish the two cases of interest: classification and regression.

• Case where the loss function is a norm:

we have

max
β∈B(β(λt),r)

L(X ′β,X ′β(λt)) = max
β∈B(β(λt),r)

‖X ′(β − β(λt))‖ ≤ rλ,µ‖X ′‖

where rλ,µ is the duality gap safe radius defined in Equation (14). Hence by using the bounds on the duality

gap in Lemma 1, we can ensure ∆Ev(λt, λ) ≤ εv for all ρ = 1− λ/λt such that Qt,Vf∗ (ρ) ≤ µε2v
2‖X′‖2 .

• Case where the loss function is the indicator function:

using the inequality −2ab ≤ (a − b)2 − b2 for a = x′
>
i β and b = x′

>
i β

(λt) and |x′>i (β − β(λt))| ≤ r‖x′i‖ for
all β ∈ B(β(λt), r) we have:

−2(x′
>
i β)(x′

>
i β

(λt)) ≤ (r‖x′i‖)2 − (x′
>
i β

(λt))2.

Hence we obtain the following upper bound

max
β∈B(β(λt),r)

L(X ′β,X ′β(λt)) = max
β∈B(β(λt),r)

1

n

n∑
i=1

1(x′>i β
(λt))(x′>i β)<0 ≤

1

n

n∑
i=1

1|x′>i β(λt)|≤r‖x′i‖.

By using the bound on the duality gap, we can ensure ∆Ev(λ0, λ) ≤ εv for all λ such that:

#

i ∈ [n] : ξi :=
µ

2

(
x′
>
i β

(λt)

‖x′i‖

)2

≤ Qt,Vf∗ (1− λ/λt)

 ≤ bnεvc.
By denoting

(
ξ(i)
)
i∈[n]

the (increasing) ordered sequence, we need the inequality to be true for at most the

bnεvc first values i.e., we choose λ such that:

Qt,Vf∗

(
1− λ

λt

)
<
µ

2

(
x′
>
(bnεvc+1)β

(λt)∥∥x′(bnεvc+1)

∥∥
)2

.
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