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The first purpose of this article is to obtain a.s. asymptotic properties of the maximum likelihood estimator in the autoregressive process driven by a stationary Gaussian noise. The second purpose is to show the local asymptotic normality property of the likelihoods ratio in order to get a notion of asymptotic efficiency and to build an asymptotically uniformly invariant most powerful procedure for testing the significance of the autoregressive parameter.

Introduction.

Classical autoregressive processes driven by strong white noise were introduced by Box-Jenkins and studied as early in [START_REF] Brockwell | Time series: Theory and methods[END_REF]. Now models using autoregressive processes with dependant perturbations are widely used in various fields, especially in econometrics and finance. The asymptotic behavior of the least square estimator (LSE) is generally degraded for this type of process and no consistent for the autoregressive parameter (see [START_REF] Bercu | A sharp analysis on the asymptotic behavior of the Durbin-Watson statistic for the first-order autoregressive process[END_REF] for an illustration of this fact where the author consider an AR(1) process driven by an AR(1) noise). A more general study with an AR(p) process driven by an AR(1) noise was realized in [START_REF] Proïa | Further results on the h-test of durbin for stable autoregressive processes[END_REF] and some asymptotic properties of the maximum likelihood estimator (MLE) in the model presented later was studied in [START_REF] Brouste | Asymptotic properties of the MLE for the autoregressive process coefficients under stationary Gaussian noise[END_REF]. In this study no attention is paid to the obtention of a.s. properties of the estimation and no rate of convergence is obtained. We also address the questions of the asymptotic efficiency for the MLE and the optimality of the test of significance of the parameter driving the autoregressive dynamics.

We consider in this paper the stochastic process (X n ) indexed on N and satisfying for all n ∈ N, (1.1)

X n = p i=1 θ i X n-i + ξ n .
In (1.1) the nuisance process (ξ n ) is a stationary centered Gaussian process and we assume that

X -p = • • • = X -1 = 0.
To obtain an explicit formula for the MLE, a transformation of the model is carried out, in order to obtain an independent noise. Typically, the arguments used to obtain the asymptotic properties of the estimators in this type of processes call for results on martingales. To apply these results, ergodicity arguments are invoked but we will see later that this can not be verified, strictly speaking. We will therefore present in section 5 a new method to apply the standard results for martingales and to obtain the desired properties. The second section is devoted to the presentation of the model in particular, we recall the well-know results related to this AR process. The third section contains the presentation of the results etablished on the MLE. In particular, we are getting a.s. convergence for the filtered process, which furthermore makes it possible to obtain quadratic strong law for the MLE and its the strong consistency. In the same section, we also get the LAN property which will allow us to build an optimal test. For the sake of clarity, a part containing the auxiliary results precedes the part containing the proofs of the mains results 2. Preliminaries.

Model and assumptions.

In the rest of the article x refers to the euclidian norm of a vector x and Id p is the identity matrix of size p × p. When M is a matrix, M is the usual matrix norm induced by the Euclidian norm. Finally, A * is the transpose of A.

We use (1.1) in order to write the model in a vectorial form. Let

A 0 =       θ 1 θ 2 . . . . . . θ p 1 0 . . . 0 0 0 1 . . . 0 0 . . . . . . . . . . . . . . . 0 . . . 0 1 0       and Y n = (X n , X n-1 , . . . , X n-p+1 ) * .
Then, for all n,

(2.1)

Y n = A 0 Y n-1 + bξ n ,
where b = (1, 0 1×(p-1) ) * . In all that follows, we retain the following hypotheses :

• (H 1 ) ρ(A 0 ) < 1 where ρ refers to the spectral radius of the matrix A 0 . The Parametric space is therefore Θ = {θ ∈ R p |ρ(A 0 ) < 1}. • (H 2 ) the covariance fonction r of the nuisance process satisfies r(n) = O( c n α ) when n → ∞. In this relation, α > 0 and c is a positive constant.

• (H 3 ) Let (β n ) be the PACF of (ξ n ), we suppose that β 2 n = O( 1 n α ) for some α > 1.
The last assumption is slightly stronger than (β 2 n ) ∈ 1 (N) which holds in this study, but it will be required in our technical proofs. Let f ξ the spectral density of the process (ξ n ), not thats (H 2 ) can be rewritten (see [START_REF] Brouste | Asymptotic properties of the MLE for the autoregressive process coefficients under stationary Gaussian noise[END_REF]) in term on condition of the spectral density f ξ as

(2.2) π -π | log f ξ (λ)| dλ < ∞.

Model Transformation.

In this section, we present a linear transformation in order to obtain a Markov process driven by independent noise. Let σ 1 ε 1 = ξ 1 and for all n 2, (2.3)

σ n ε n = ξ n -E(ξ n |ξ 1 , . . . , ξ n-1 ),
where (ε n ) are i.i.d. and ε n ∼ N (0, 1). By the Theorem of Normal Correlation (Theorem 13.1 in [START_REF] Liptser | Statistics of random processes: I, ii general theory[END_REF]) we have, (2.4)

σ n ε n = n i=1 k(n, i)ξ i ,
where (k(n, i) {1 i n,n∈N * } ) is a deterministic kernel and (σ 2 n ) is the variance of innovations. Let (2.5)

β n-1 = -k(n, 1).
By the Durbin-Levinson algorithm (see [START_REF] Durbin | The fitting of time series models. The fitting of time-series models[END_REF]), the following relations are true and make it possible to calculate the coefficients interventing in (2.4).

(2.6)

σ 2 n = n-1 i=1 (1 -β 2 i ), n 2, σ 1 = 1, (2.7) 
n i=1 k(n, i)r(i) = β n σ 2 n , k(n, n) = 1, (2.8) k(n + 1, n + 1 -i) = k(n, n -i) -β n k(n, i), 1 i n -1.
Now, let also (2.9)

Z n = n i=1 k(n, i)Y i ,
and,

(2.10)

ζ n = Z n n-1 k=1 β k Z k .
The initial estimation problem of θ is replaced by the estimation of the unknown parameter θ from the observations ζ = (ζ n , n 1). It was shown in [START_REF] Brouste | Kalman type filter under stationary noises[END_REF] that (ζ n ) is a 2p-dimensionnal Markov process. More precisely, for all n ∈ N * , (2.11)

ζ n = A n-1 ζ n-1 + σ n ε n ,
where

A n = A 0 β n A 0 β n Id p Id p , = (1, 0 1×(2p-1) ) * and ζ 0 = 0 2p×1 .
Therefore, the log-likelihood function is given by

(2.12) log L(θ, X (n) ) = - 1 2 n i=1 * (ζ i -A i-1 ζ i-1 ) σ i 2 - n 2 log 2π - 1 2 n i=1 σ 2 i
where θ = (θ 1 , . . . , θ p ) and X (n) = (X 0 , X 1 , . . . , X n ).

2.3. Construction of the MLE and reminders of known properties.

Using (2.12), it follows that the MLE is given by (2.13)

θ n = n i=1 a * i-1 ζ i-1 ζ * i-1 a i-1 σ 2 i -1 n i=1 a * i-1 ζ i-1 * ζ i σ 2 i ,
where a n = (Id p , β n Id p ) * . The matrix I(θ) is the unique solution of the Lyapunov equation given by (2.14) I(θ) = A * 0 I(θ)A 0 + bb * , and we have the following properties (see Theorem 1 in [START_REF] Brouste | Asymptotic properties of the MLE for the autoregressive process coefficients under stationary Gaussian noise[END_REF]) :

(2.15)

θ n P (n) θ ---→ n→∞ θ, (2.16) √ n( θ n -θ) L ---→ n→∞ N (0, I(θ) -1 ) under P (n) θ .
3. Mains Results.

3.1.

Almost sure properties of the MLE.

The results of this part is the strong consistency of the MLE, the quadratic strong law for the MLE and a law of the iteraded logarithm. All the results presented in this section are valid under (H 1 ), (H 2 ), (H 3 ). ---→ n→∞ θ.

Proof. See Section 6.1.

Theorem 3.2. We have the following quadratic strong law for the MLE,

(3.2) 1 log n n k=1 ( θ k -θ)( θ k -θ) * a.s.
---→ n→∞ I(θ) -1 .

The limit above is the same as the asymptotic covariance matrix in (2.16) and I(θ) is defined in (2.14).

Proof. See Section 6.2.

To conclude this section, we give the LLI of the MLE and hence the convergence rate of the MLE. Proposition 3.1. We have the following properties for all v ∈ R p ,

lim sup n→∞ n 2 log log n 1 2 v * ( θ n -θ) = -lim inf n→∞ n 2 log log n 1 2 v * ( θ n -θ) = (v * I(θ) -1 v) 1 2 a.s.
Consequently,

(3.3) θ n -θ 2 = O log log n n a.s.
Proof. See Section 6.3.

Local asymptotic normality property and application.

The LAN (local asymptotic normality) property is an important notion under which we can define a notion of asymptotic efficiency for estimators (see [START_REF] Cam | Locally asymptotically normal families[END_REF]). Before stating the results, we remind for the reader's convenience some properties and definitions under LAN statistical experiments. The LAN property for stationary Gaussian process was obtained in [START_REF] Cohen | LAN property for some fractional type Brownian motion[END_REF] with conditions on the spectral density. We present here direct computation based on the particular autoregressive structure in order to obtain the LAN property. Definition 3.1. We will say that a familly of measures

P (n) θ is LAN in θ 0 ∈ M ⊂ R d if
the following conditions are satisfied about the likelihood ratio,

(3.4) L n (u) = dP dP (n) θ 0 , (3.5) L n (u) = exp u, Z n (θ 0 ) - 1 2 u, J(θ 0 )u + R n (θ 0 , u) ,
where

(3.6) Z n (θ 0 ) L ---→ n→∞ N (0, J(θ 0 )),
and,

(3.7) R n (θ 0 , u) L ---→ n→∞ 0 under P (n) θ 0 .
The sequence (φ n (θ 0 )) satisfied

(3.8) φ n (θ 0 ) ---→ n→∞ 0.
In this definition u ∈ K ⊂ R d , φ n (θ 0 ) are non-singular matrix rate and J(θ 0 ) is a non singular d × d matrix.

Theorem 3.3. Suppose that the family of measures

P (n) θ , θ ∈ M ⊂ R d is LAN in θ 0 . Then for any δ > 0, (3.9) lim inf n→∞ sup φn(θ 0 ) -1 (θ-θ 0 ) δ E (n) θ 0 f φ n (θ 0 ) -1 ( θ n -θ) R m f J(θ 0 ) -1 2 x Φ d (x) dx,
for any estimator θ n and for any cost function f such that f is continuous, symmetric, quasi-convex and f (z)exp(-

z 2 2 ) → 0 when z → ∞.
Here Φ d is the density of the standard d-dimensionnal Gaussian distribution.

For a proof of the last result see Theorem 12.1, chapter 2 in [START_REF] Ibragimov | Statistical estimation: Asymtotic theory[END_REF]. We can now give the LAN property in the model that interests us. 

n (θ 0 ) = 1 √ n Id p we have (3.10) log L(θ 0 + φ n (θ 0 )u, X (n) ) L(θ 0 , X (n) ) = u, M n √ n - 1 2 u, I(θ 0 )u + R n (θ 0 , u),
where ( Mn √ n ) satisfied condition (3.6) under P

(n) θ 0 with J(θ 0 ) = I(θ 0 ) and R n (θ 0 , u) satisfied condition (3.7) under P (n) θ 0 . In this Theorem, u ∈ B(0; R) for any R > 0. Proof. See Section 6.4.

We are now in position to give a result concerning the asymptotic efficiency of the MLE. Proposition 3.2. Under (H 1 ) and (H 2 ), the MLE is asymptotically efficient, more precicely the lower-bound given by the Theorem 3.3 is reached for the MLE.

Proof. See Section 6.5.

We will now focus on the optimality of the multidimensional hypotheses test in the autoregressive setting. Always for reader's convenience we recall notions and results on the tests which were introduced in [START_REF] Choi | Asymptotically uniformly most powerful tests in parametric and semiparametric models[END_REF]. Suppose that the familly of measures P (n) θ is LAN in θ 0 . We would like to build an optimal procedure to test θ = θ 0 against θ = θ 0 .

Definition 3.2. A test φ 1 n is said AU M P (α) (asymptotically uniformly most powerful of level α) if (3.11) lim sup n→∞ E (n) θ 0 (φ 1 n ) α,
and for any other test φ 2 n of asymptotic level α, (3.12) lim sup

n→∞ E (n) θ 0 +φn(θ 0 )u (φ 2 n ) lim inf n→∞ E (n) θ 0 +φn(θ 0 )u (φ 1 n ).
Remark 3.1. We give a lemma set in [START_REF] Choi | Asymptotically uniformly most powerful tests in parametric and semiparametric models[END_REF] in order to formalize the next definition. We formulate this lemma in our context, i.e. without the parameters of nuisance since in our case, it is possible to compute them (via the Durbin-Levinson algorithm).

Lemma 3.1. With the notation of Definition 3.1, for every test φ 1 n and every subsequence n , we cand find a subsequence n of n and a test φ from R p to [0; 1] such that for every u ∈ K, (3.13) lim

n →∞ E (n ) θ 0 +φ n (θ 0 )u (φ 1 n ) = R d φ(x)Φ d (x -J(θ 0 )u) dx,
where Φ d is defined as in Theorem 3.3.

We will now introduce an invariance principle by rotation who is involved in the next Definition.

Definition 3.3. A test φ 1 n is AUMPI(α)
is the condition of the Definition 3.2 are satisfied and for all subsequence n the corresponding test φ (obtained via Lemma 3.1) satisfied φ(Ru) = φ(u) for any rotation from R d to R d .

To finish this section we give an AUMPI test to test the significance of the autoregressive parameter.

Theorem 3.5. The test

(3.14) φ n = 1 2 log L ( θn,X (n) ) L ( θ,X (n) )
Cα is AUMPI(α) to test θ = θ 0 against θ = θ 0 where C α is the α-quantile of χ 2 p . Proof. See Section 6.6

Conclusion.

We have seen through this study that the classical properties on the stable autoregressive processes concerning the MLE are preserved despite the harmful effects of the filter which leads to the lack of ergodicity. On the other hand, the results obtained in [START_REF] Brouste | Asymptotic properties of the MLE for the autoregressive process coefficients under stationary Gaussian noise[END_REF] are sufficient to deduce the LAN property which leads to the asymptotic efficiency for the estimation of the autoregressive parameter and to the construction of an asymptotically optimal procedure to test the significance of the same parameter. It would be interesting in the future to extend this study without any assumption on convergence rate of the PACF of the nuisance process. It would be just as interesting to build a procedure to detect a change in the autoregressive dynamic. They would be needed for that convergence rate in (5.6) and (5.11) in order to apply the method proposed in [START_REF] Davis | Testing for a change in the parameter values and order of an autoregressive model[END_REF].

Auxiliary results.

This section is devoted to the numerous technicals lemmas and proposition that we will use for the proof of the results of section 3. Before starting the proofs, we give technical results established in [START_REF] Brouste | Asymptotic properties of the MLE for the autoregressive process coefficients under stationary Gaussian noise[END_REF]. We can write (5.1)

θ n -θ = ( M n ) -1 M n ,
where

M n = n i=1 a * i-1 ζ i-1 ζ * i-1 a i-1 σ 2 i and M n = n i=1 a * i-1 ζ i-1 ε i σ i .
Let F n = F(X 0 , X 1 , . . . , X n ) be the σ-algebra generated by the values of the process up to time n. It follows that (M n ) is a F n -martingale, and that ( M n ) is its bracket process.

We also have the following properties :

(5.2) ∞ i=1 β 2 i < ∞, (5.3) 
M n n

P (n) θ ---→ n→∞ I(θ),
where I(θ) is defined in (2.14),

(5.4)

σ 2 n ---→ n→∞ σ 2 ∞ > 0, (5.5) M n √ n L ---→ n→∞ N (0, I(θ)) under P (n) θ .
Remark 5.1. The process (ζ n ) obtained via (2.10) is a Markov process, but unfortunately inhomogeneous. The first step in our proofs will be to show that the firt p components of (ζ n ) have the same asymptotic behavior as an autoregressive process strictly stationary and ergodic.

Proposition 5.1.

Let (ζ (1) 
n ) be the firt p components of (ζ n ) defined in (2.11), and (ζ

n ) be the last p components. Consider the process

γ n = A 0 γ n-1 + 1 σ ∞ ε n , ∀n 1
with γ 0 having the strictly stationnary and ergodic distribution associated with the autoregressive relation, and 1 = (1, 0 . . . , 0) * a vector of lenght p. Then, (5.6) ζ (1) n -γ n a.s.

---→ n→∞ 0.

Proof. See Section 5.1.

Remark 5.2. Since ρ(A 0 ) < 1 the process (γ n ) admits a unique representation with the following properties : causality, stationarity and ergodicity (see [START_REF] Brockwell | Time series: Theory and methods[END_REF] for more details). This property about (γ n ) will allow us later via ergodicity arguments to obtain the a.s convergences. Since (γ n ) is a Gaussian ergodic process, E( γ n p ) = K p < ∞ for all p.

Lemma 5.1. Consider a random vector T n ∈ R d such that, for all n 1,

T n ∼ N (0, A n )
where the covariance matrix satisfies A n = O(n -δ ) for some δ > 0. Then,

(5.7) T n a.s.
---→ n→∞ 0.

Proof. Following the idea of Lemma A.1 in [START_REF] Cohen | LAN property for some fractional type Brownian motion[END_REF], let ε > 0 such that

P( T n > ε) = P( T n 2 > ε 2 ) = P( A n µ n , µ n > ε 2 ) P µ n 2 > ε 2 A n ,
where µ n 2 ∼ χ 2 (d) which, in turn, implies

P( µ n 2 > ε 2 A n -1 ) = ∞ ε 2 An -1 c(d)x d 2 -1 exp - x 2 dx ∞ ε 2 An -1 c(d)x -β dx
for any β > 0 and n big enough, where c(d) is some positive constant independent of x and n. Making use of the hypothesis on A n , we get

∞ ε 2 An -1 c(d)x -β dx = c(d)ε 2(1-β) A n β-1 β -1 = O(n δ(1-β) )
as soon as β > 1. Let us choose β such that δ(1 -β) < -1, i.e. β > 1+δ δ . It remains to apply Borel-Cantelli's lemma to reach the desired result.

The following lemma will allow us to control the norm of the matrix A n . Lemma 5.2. Let A n be the transition matrix as it is defined in (2.11), namely

∀n 1, A n = A 0 β n A 0 β n Id p Id p with A 0 = A 0 A 0 Id p Id p .
Then,

(5.8) sup n∈N n i=1 A n-i < ∞.
Proof. Let T 0 = Id 2p and, for n 1,

T n = n i=1 A n-i .
Working block by block, it is not hard to see that

         T (11) n+1 = A 0 T (11) n + β n A 0 T (21) n T (12) n+1 = A 0 T (12) n + β n A 0 T (22) n T (21) n+1 = β n T (11) n + T (21) n T (22) n+1 = β n T (12) n + T (21) n
from the recursive equation T n+1 = A n T n , where we use the notation

T n = T (11) n T (12) n T (21) n T (22) n .
Since ρ(A 0 ) < 1, we know that there exists a matrix norm where, for a better readability, we set a 0 = A 0 * . From the previous relations, there is some constant C > 0 such that (5.9) T

• * = sup(|• u| * ; u ∈ C p , |u| * = 1) satisfying A 0 * < 1 (
n+1 * + T (21) n * C n i=1 H i , where ∀i 1, H i = a 0 |β i |a 0 |β i | 1 . (11) 
Now, to evaluate H i , one is going to study the spectrum of

H * i H i . Let P i (λ) = λ 2 -λ(1 + a 2 0 )(1 + β 2 i ) + a 2 0 (1 -β 2 i
) 2 be the characteristic polynomial of H * i H i defined for all λ ∈ C. Then, a straightforward calculation gives (5.10)

∆ i = [(1 -a 0 ) 2 + β 2 i (1 + a 0 ) 2 ][(1 + a 0 ) 2 + β i (1 -a 0 ) 2 ]
> 0 as discriminant of the equation P i (λ) = 0, thus leading to real eingenvalues

λ k,i = (1 -a 2 0 )(1 + β 2 i ) ± √ ∆ i 2 , k = 1, 2.
Since we recall that β n → 0, a Taylor expansion of √ ∆ i enables to write

λ k,i = (1 + a 2 0 )(1 + β 2 i ) 2 ± 1 -a 2 0 2 [1 + K i β 2 i + o(β 2 i )] for some easily identifiable |K i | = O(1), as i → ∞. Consequently, λ 1,i = a 2 0 + O(β 2 i ) and λ 2,i = 1 + O(β 2 i ) which clearly gives H i 2 = 1 + O(β 2 i
). This rate together with (5.9) and (5.2) are sufficient to get T [START_REF] Duflo | Random iterative models[END_REF] n+1 * + T ---→ n→∞ 0.

Proof. The autoregressive relation leads to

ζ n = n-1 k=1 k i=1 A n-i σ n-k ε n-k + σ n ε n .
Thus,

E β 2 n ζ n ζ * n =β 2 n n k=1 P k,n σ 2 n-k E(ε 2 n-k ) * P * k,n + β 2 n * σ 2 n E(ε 2 n ) =β 2 n n k=1 P k,n σ 2 n-k * P * k,n + σ 2 n *
where, for n -

1 k 1, P k,n = A n-1 ... A n-k . From Lemma 5.2, E β 2 n ζ n ζ * n β 2 n n k=1 P k,n 2 σ 2 n-k + σ 2 n Knβ 2 n
for some K > 0 and a sufficiently large n. Thus, from hypothesis (H 3 ),

E β 2 n ζ n ζ * n K
n δ for some δ > 0, and Lemma 5.1 gives the result.

We can now use the previous Lemmas to prove the Proposition 5.1.

Proof of Proposition 5.1.

Proof. The direct calculation shows that

ζ (1) n -γ n = A 0 (ζ (1) n-1 -γ n-1 ) + β n-1 A 0 ζ (2) n-1 + 1 (σ n -σ ∞ )ε n . From Lemma 5.3, β n-1 A 0 ζ (2) n-1 a.s.
---→ n→∞ 0 and, from (5.4) and the normality of (ε n ),

1 (σ n -σ ∞ )ε n a.s.
---→ n→∞ 0. Hence, using the same norm as the proof of Lemma 5.2, for all η > 0, there exists a random n 0 such that, for all n n 0 ,

ζ (1) n -γ n * A 0 * ζ (1) n-1 -γ n-1 * + η a.s. Since A 0 * < 1, we conclude that ζ (1)
n -γ n a.s.

---→ n→∞ 0.

Lemma 5.4. Under P

(n)

θ 0 we have, (5.12) 2 log L( θ n , X (n) ) L(θ 0 , X (n) ) L ---→ n→∞ χ 2 p .
Proof. By using the decomposition in the proof of Theorem 3.4, we have,

2 log L( θ n , X (n) ) L(θ 0 , X (n) ) =2 √ n( θ n -θ 0 ), M n √ n - √ n( θ n -θ 0 ), I(θ 0 ) √ n( θ n -θ 0 ) - √ n( θ n -θ 0 ), ( M n n -I(θ 0 )) √ n( θ n -θ 0 ) = M -1 2 n M n , M -1 2
n M n . Thus (5.12) follows immediately from (5.3) and (5.5).

The following lemma can be seen as a matrix Toeplitz lemma, in some sense (see Theorem 1.1 in [START_REF] Li | Toeplitz lemma, complete convergence, and complete moment convergence[END_REF]).

Lemma 5.5. Let (B k,n ) and (A n ) be two sequences of square matrices such that

• A n -A ---→ n→∞ 0, • n k=1 B k,n -B ---→ n→∞ 0,
• n k=1 B k,n is bounded with respect to n, • for all n 0 > 0,

n 0 k=1 B k,n ---→ n→∞ 0.
Then, (

n k=1 A k B k,n -AB ---→ n→∞ 0. 5.13) 
Proof. We have,

n k=1 A k B k,n -AB = n k=1 A k B k,n - n k=1 AB k,n + n k=1 AB k,n -AB.
For all ε > 0, one can find n 0 > 0 such that, for all n n 0 , A n -A < ε. Thus,

n k=1 A k B k,n -AB n k=1 (A k -A)B k,n + n k=1 A(B k,n -B) n 0 -1 k=1 A k -A B k,n + ε n k=n 0 B k,n + A n k=1 B k,n -B .
The combination of the whole hypotheses enables to show that the right-hand side of latter expression can be made arbritrarily small, as n tends to infinity.

Remark 5.3. The last result can be easily extended when hypotheses holds a.s. Remark 5.4. Given two sequences of vectors (u n ) and 

(v n ) ∈ R d . We have u n v * n = u n v * n , where 
u n =      

Proof. Let

P (z) = 1 -θ 1 z -. . . θ p z p ,
a polynomial function defined on C. (H 1 ) is equivalent at the following condition (see [START_REF] Brockwell | Time series: Theory and methods[END_REF]) :

(5.14) if |z| 1 then |P (z)| > 0. Let α = (α 1 , α 2 , . . . , α p ) ∈ R p and Q α (z) = 1 -(θ 1 + α 1 )z -• • • -(θ p + α p )z p ,
then, for all |z| 1, Proof. We have,

|Q α (z)| = |P (z) -α 1 z -• • • -α p z p | |P (z)| -|α 1 z + • • • + α p z p | |P (z)| -|α 1 | -• • • -|α p |.
M n n = 1 n n i=1 (ζ (1) 
i-1 + β i-1 ζ (2) i-1 -γ i-1 + γ i-1 )(ζ (1) 
i-1 + β i-1 ζ (2) i-1 -γ i-1 + γ i-1 ) * σ 2 i = S n + r n where S n = 1 n n k=1 γ i-1 γ * i-1 σ 2 i .
The remainder term r n is shown to be negligible via Cesàro's theorem as well as the ergodicty of (γ n ), Lemma 5. ---→ n→∞ I(θ).

Thus, (6.1) M n n a.s.

---→ n→∞ I(θ).

By using the fact that ε n is independent of γ n-1 and similar arguments as in this proof, we have, (

M n n a.s.

---→ ---→ n→∞ θ.

From now on, let Fn be the σ-algebra Fn = Fn (X 0 , . . . , X n , γ 0 , . . . , γ n ) where, (γ n ) is the process defined in Proposition 5.1.

Remark 6.1. (M n ) is a Fn -martingale and the introduction of Fn is necessary in the following proof.

6.2. Proof of Theorem 3.2.

Proof. In order to prove Theorem 3.2, we will use the quadratic stong law for martingales (see Theorem 2.1 in [START_REF] Chaabane | Théorèmes limites avec poids pour les martingales vectorielles[END_REF]). Take V n = √ nId p , a sequence of regular matrices in the sense of Chaabane and Maouia. Now, we studing the asymptotic behavior of

(6.3) [M ] n n = 1 n n i=1 (ζ (1) 
i-1 + β i-1 ζ (2) i-1 -γ i-1 + γ i-1 )(ζ (1) 
i-1 + β i-1 ζ (2) i-1 -γ i-1 + γ i-1 ) * σ 2 i ε 2 i .
By using similar arguments as in the previous proof we have, (6.4) [M ] n n a.s.

---

→ n→∞ E γ 1 γ * 1 σ 2 ∞ .
Let us now look at the Lindeberg's condition, we have to show that, for all ε > 0, (6.5)

L n = 1 n n i=1 E ∆M i 2 1 { ∆M i ε √ n} Fi-1 a.s.
---→ n→∞ 0.

Let M > 0 and

L n,M = 1 n n i=1 E ∆M i 2 1 { ∆M i M } Fi-1 .
From (5.1) and the definition of a n , we have ∆M 1 = M 1 and, for n 2,

∆M n = (ζ (1) 
n-1 + β n-1 ζ (2) 
n-1 )ε n σ n .

It follows that

∆M n 2 = (ζ (1) 
n-1 -γ n-1 + β n-1 ζ (2) n-1 + γ n-1 )ε n σ n 2 2 ζ (1) n-1 -γ n-1 + β n-1 ζ (2) n-1 2 ε 2 n σ 2 n + 2 γ n-1 2 ε 2 n σ 2 n .
Then,

L n,M 2R 1,n + 2R 2,n + 2R 3,n ,
where,

R 1,n = 1 n n i=1 ζ (1) 
i-1 -γ i-1 + β i-1 ζ (2) i-1 2 σ 2 i , R 2,n = 1 n n i=1 E γ i-1 2 σ 2 i ε 2 i 1 γ i-1 |ε i | σ i M 2
Fi-1 , and,

R 3,n = 1 n n i=1 E   γ i-1 2 σ 2 i ε 2 i 1 ζ (1) i-1 -γ i-1 +β i-1 ζ (2) i-1 |ε i | σ i M 2 Fi-1   .
The same reasoning as above shows that R 1,n tend to 0, a.s. Let us focus on the more intricate terms R 2,n and R 3,n . First, we know from (5.4) that, for some 0 < m < σ ∞ , there exists n 0 such that, for n n 0 , |σ n | m. Hence,

R 2,n R (0) 2,n + 1 n n i=n 0 E γ i-1 2 m 2 ε 2 i 1 γ i-1 |ε i | m M 2 Fi-1 ,
where obviously, R

---→ n→∞ 0. The process (γ n-1 ε n ) is ergodic since (ε n ) is i.i.d. and since there exist φ independent of n such that γ n-1 = φ(ε n-1 , ε n-2 , . . . ) (See theorem 5.3.8 in [START_REF] Stout | Almost sure convergence[END_REF]). Thus,

lim n→∞ R 2,n E γ 0 2 m 2 ε 2 1 1 γ 0 m |ε 1 | M 2 Fi-1 ,
and letting M → ∞ leads to R 2,n a.s.

-----→ n,M →∞ 0. Then, by Cauchy-Schwarz's inequality,

R 2 3,n 1 n 2 n i=1 E γ i-1 4 σ 4 i ε 4 i Fi-1 n i=1 E   1 ζ (1) i-1 -γ i-1 +β i-1 ζ (2) i-1 |ε i | |σ i | M 2 Fi-1   3 n 2 n i=1 γ i-1 4 σ 4 i n i=1   1 ζ (1) i-1 -γ i-1 +β i-1 ζ (2) i-1 |σ i | √ M √ 2 + P |ε 1 | √ M √ 2   . Since ζ (1) i-1 -γ i-1 + β i-1 ζ (2) i-1 a.s.
---→ n→∞ 0 by Proposition 5.1 and Lemma 5.3, and since (ε n ) is Gaussian, another application of the ergodic theorem is sufficient to ensure that R 3,n a.s.

---→ n→∞ 0, letting again M → ∞. Thus, L n,M a.s.

-----→ n,M →∞ 0 and so L n a.s.

---→ n→∞ 0.

By the quadratic strong law for martingales, (6.6)

1 p log n n k=1 1 - k p (k + 1) p M k M * k k a.s. ---→ n→∞ I(θ). Let λ (k) = ρ(M k M * k ) = M k M * k T r(M k M * k )
because the matrices M k M * k are positives. Put v i = (0, . . . , 0, 1, 0, . . . , 0) * a vector of length p with 1 at the i-th coordinate and 0 elsewhere. Then, (6.7)

1 p log n n k=1 1 - k p (k + 1) p λ (k) k 1 p log n p i=1 n k=1 1 - k p (k + 1) p v i , M k M * k v i k a.s.
Since the right member of (6.7) is bounded, the conditions of Lemma 5.5 are satisfied, and we have,

(6.8) 1 log n n k=1 ( θ k -θ)( θ k -θ) * = 1 log n n k=1 M -1 k M k M * k M -1 k . Since 1 -k p (k+1) p
∼ p k by using (6.6), (6.8), (6.1) together with Lemma 5.5, we obtain, (6.9)

1 log n n k=1 ( θ k -θ)( θ k -θ) * a.s.
---→ n→∞ I(θ) -1 .

Proof of Proposition 3.1.

Proof. To prove the law of iterated logarithm, one is going to apply Lemma C.2 of [START_REF] Bercu | Central limit theorem and law of iterated logarithm for least squares algorithms in adaptive tracking[END_REF]. We have already etablished (6.1), so it remains to show that where m is chosen as in the preceding proof. Since (γ n ) is a Gaussian ergodic process, γ n = O(n α ) a.s for all 0 < α < Let θ i n be the i-th component of θ n and v i = (0, . . . , 0, 1, 0, . . . , 0) * a vector of length p with 1 at the i-th coordinate and 0 elsewhere. The inequality above implies immediatly (3.3). Then, log L(θ 0 + φ n (θ 0 )u,

X (n) ) L(θ 0 , X (n) ) = - 1 2 n k=1 * (2ζ k -2 A k-1 ζ k-1 -U k-1 √ n ζ k-1 ) * (-U k-1 √ n ζ k-1 ) σ 2 k
Denoting δ n = I(θ 0 ) -1 Mn √ n , Mn √ n -2 log L( θn,X (n) ) L(θ 0 ,X (n) ) , we have for all ε > 0, θ 0 where Z ∼ χ 2 p . Since the second member of (6.14) is uniformly bounded with respect to n by 1, we have, (6.16) lim sup

n→∞ E (n) θ 0 (| φ n -φ n |) 2P(Z C α ) -2P(Z C α + ε),
and the previous inequality leads to (6.17)

E (n) θ 0 (| φ n -φ n |) ---→ n→∞ 0.
The last condition ensures that the tests φ n and φ n are asymptotically equivalent.

Theorem 3 . 1 .

 31 The MLE is strongly consistent, i.e.

Theorem 3 . 4 .

 34 With the notation of Definition 3.1 and denoting φ

Lemma 5 . 3 .

 53 (21) n+1 * < ∞. Since the same reasoning holds for T (12) n+1 * + T (22) n+1 * , the desired result is proved through the definition of T n .The next lemma is interested in the a.s. convergence of (β n ζ n ). Consider the process (ζ n ) defined in(2.11). Then,(5.11) β n ζ n a.s.

u 11 0.

 11 . . . . . . 0 u 21 0 . . . . . . 0 . . . . . . . . . . . . . . . u (d-1)1 0 . . . . . . 0 u d1 0 . . . . . . 0 More precisely, u n is d × d matrix with u n for first column and 0 elsewhere. Then u n v * n u n v * n , and, since we work in finite dimension, u n -u ---→ n→∞ 0 if and only if each component of u n -u converges to 0. Lemma 5.6. Θ is an open subset of R p .

Condition ( 5 .Remark 5 . 5 . 6 . 6 . 1 .

 555661 14) ensures that inf z∈D(0;1) |P (z)| = δ min > 0. It remains to choose |α 1 | + • • • + |α p | < δ min in order to reach the desired result. The last Lemma ensures that if θ ∈ Θ then for all u ∈ R p and for n big enough, θ + u √ n ∈ Θ. Take the notation of the last proof and choose α ∈ R p such that α < δ min , then, for any rotation R from R p to R p and n big enough, θ + Ru √ n ∈ Θ. Proofs of the mains results. Proof of Theorem 3.1.

3 ,

 3 Proposition 5.1, Lemma 5.5 and Remark 5.4. A direct application of the ergodic theorem together with Lemma 5.5 leads to

<

  ∞ a.s.for some β > 2. From Proposition 5.1 and Lemma 5.3, there exists a sequence (τ n ) such that a * n ζ n = γ n + τ n and τ n → 0 a.s. Consequently, for a sufficiently large n,

1 2 .

 2 The last inequality leads for n sufficiently large toa * n ζ n |σ n+1 | √ n C > 0.The desired result follows when β > 2 1-2α > 2. Hence,

6. 4 .u 1

 41 Proof of Theorem 3.4.Proof. Let φ n (θ 0 ) = Id p √ n , u = (u 1 , u 2 , . . . , u p ) * , u 2 . . . u p β n u 1 β n u 2 . . .β n u p 0 0 . . . . . . . . . . . . . . . 0 . . . . . . . . . . . . . . . . * U n = u * a * n .

(6. 14 )θ 0 ,

 140 | φ n -φ n | φ n + φ n -21 2 log L( θn,X (n) ) L(θ 0 ,X (n) ) Cα+ε 1 {δn -ε} .It's easy to see that δ n L then Slutsky's Theorem together with Lemma 5.4 and the continuous mapping Theorem's (see Theorem 2.1 in[START_REF] Billingsley | Convergence of Probability Measures, 2nd Edition[END_REF]) gives,

(n) θ 0 +φn(θ 0 )u
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and the LAN property in θ 0 follows immediatly from (5.5) and (5.3). Remark 6.2. In [START_REF] Ibragimov | Statistical estimation: Asymtotic theory[END_REF], the LAN property is defined for stastistical experiments admitting decomposition (3.5) with J(θ 0 ) = Id d . Is not a real restriction since the decomposition (3.5) can be reformulated as the Definition 2.1, chapter 2 in [START_REF] Ibragimov | Statistical estimation: Asymtotic theory[END_REF] by letting v = J(θ 0 ) -1 2 u or equivalently considering a new sequence of matrix rate given by φ n (θ 0 ) = φ n (θ 0 )J(θ 0 ) -1 2 .

6.5. Proof of Proposition 3.2.

Proof. The result follows from (2.16). More precisely the following condition to obtained the equality in Lemma 13.1, chapter 2 of [START_REF] Ibragimov | Statistical estimation: Asymtotic theory[END_REF] (6.10)

is satisfied since the MLE is asymptotically efficient in Fisher's sense.

We can now state the theorem characterizing the tests AUMPI(α) established in Theorem 3 of [START_REF] Choi | Asymptotically uniformly most powerful tests in parametric and semiparametric models[END_REF].

Theorem 6.1. Take notation of definition 3.1 and denote by C α the α-quantile of χ 2 d . Then, the test (6.12)

is AUMPI(α) to test θ = θ 0 against θ = θ 0 and any other asymptotically equivalent test is AUMPI(α).

6.6. Proof of Theorem 3.5.

Proof. We have just to show that the test φ n is asymptotically equivalent to the test given in Theorem 6.1 under P (n) θ 0 (the null hypothesis). We have, (6.13) | φ n -φ n | = φ n + φ n -2 φ n φ n .