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Abstract: Causal Temporal Signatures (CTS) is an efficient formalism for behaviors description and recognition of fault 

diagnosis in Discrete Event Systems (DES). The main advantages of this formalism are the readability and 

the expressivity. Indeed, it is able to describe clearly all desired behaviors and it is understandable and 

readable by an expert in the field. However, it raises the problem of acquisition and updating of expert 

knowledge stored in a CTS base. In this paper, we suggest an incremental learning approach based on the 

simulation to acquire and update automatically a consistent CTS base. The proposed approach is illustrated 

with an example applied to the turntable helps to understand the different modules of the method. 

1 INTRODUCTION 

Over the recent decades, the automation of industrial 

systems has aimed at increasing the production 

performance, enhancing product quality, reducing its 

cost and making its equipments more available in the 

market. Indeed, the Automated Production Systems 
(APS) can be considered from three different views 

depending on their dynamics: Continuous Systems, 

Discrete-Event Systems (DES) and Hybrid Systems. 

In this context, on-line diagnosis systems are 

necessary to detect, locate, and identify as soon as 

possible the potential failure at the system on run. In 

this paper, we are interested in an online diagnosis of 

APS considered as DES.  

In fact, when the system is running, a large 

number of observations come forward regularly and 

should be considered. These amounts of data cannot 

be processed online by a human operator due to their 
complexity and / or their large number. From this 

observation, the need for proposing specific support 

tools used to analyze and process these data has 

emerged in order to recognize both normal and faulty 

behaviors. These tools are able to first describe and 

represent the possible evolutions of the systems in 

form of rules or predicates and secondly to recognize 

these behaviors in a flow of events.  

The literature distinguishes several description 

and recognition tools, such as chronicles with 

different definitions (Dousson et al., 1993), (Boufaied 

et al., 2002), (Bertrand et al., 2007), (Carle et al., 

2011), (Subias et al, 2014), (Cram et al, 2012) and 

Causal Temporal Signatures (CTS) (Toguteni et al., 

1991), (Saddem et al., 2011), (Saddem et al, 2014), 

etc. The main advantage of these tools is their high 

efficiency due to the symptom to fault knowledge 

they rely on (Cordier et al., 2000). However, the 

common problem is the difficulty of acquiring and 
updating this expert knowledge. The literature shows 

two types of approaches on this problem: model 

based approaches (Guerraz and Dousson, 2004) 

(Saddem and Philippot, 2014) and data-based 

approaches (Dousson and duong, 1999) (Cordier and 

Dousson, 2000) (Cram et al . 2012), (Subias et al., 

2014). A key limitation of data-based approaches is 

the need of human expert (analyst) intervention. 

Indeed, they require its presence either for the 

qualification of the chronicles (Dousson and duong, 

1999) (Cordier and Dousson, 2000) or for the 
definition of constraints to guide the algorithm of the 

discovery of the chronicles of interests (Cram et al . 

2012), (Subias et al., 2014). This article offers a 

solution for CTS formalism that is very close to 

chronicle formalism. It presents a new approach 

based on past experiences and couples simulation 



with learning to automatic acquisition and updating 

of a CTS base. The coupling between simulation and 

learning (AI technique) is a promising solution where 

simulation is used as a technique for generating 
empirical knowledge for learning. On the one hand 

we propose a Representation of Observations in form 

of CTS Algorithm (ROCTSA) which describes the 

possible evolutions of the system to diagnose as a set 

of CTS. The algorithm allows to model normal 

behavior of the system as normal CTS and faulty 

behavior as abnormal CTS. This set constitutes the 

learning base. On the other hand, an incremental 

learning module is introduced to learn new CTS and 

to update the CTS base based on past experiences. 

The remainder of this paper is organized as follows. 
In section 2, problem background, definitions and 

concepts of CTS are detailed. In section 3, we 

describe an example of APS on which we will rely to 

illustrate our approach. Section 4 is devoted to present 

our proposed method.  In section 5, we present the 

results of applying our approach to the described 

example. A conclusion and a perspective for future 

works are presented in section 6. 

2 PROBLEM BACKGROUND, 

DEFINITIONS AND CONCEPTS  

We begin this section by presenting a short state of 

the art on knowledge building approaches for 

chronicle and CTS formalisms and providing 

concepts and definitions that explain CTS formalism.  
 

2.1 State of the Art on Knowledge 
Building Approaches for 
Chronicles and CTS 

In the literature, several approaches have been 
suggested for acquiring and updating chronicles or 

CTS base either from models or data. 

 

 Model based approaches:  

Are problem solving techniques based on models 

representing either the system to diagnose or the 

faults that may exist in the system. For example, 

(Guerraz and Dousson, 2004) developed a petri nets 

based method for the generation of chronicles 

necessary for diagnosis from the fault model of the 

system to diagnose. The proposal does not require 
knowledge of the global behavior of the system. 

Another solution is described in (Saddem and 

Philippot, 2014) to translate a timed Atomaton model 

of a diagnoser into CTS. The method ensures the 

completeness of the CTS data base but it is done 

manually.  

 Data based approaches:  
They rely on historical data by extracting significant 

features using temporal data mining techniques. One 

of the first examples is suggested in (Dousson and 

Duong 1999), (Cordier and Dousson, 2000). It 

introduced FACE (Frequency Analyzer for Chronicle 

Extraction) which is a technique for analyzing log 

files of alarms (i.e. events) inspired from data mining 

techniques. It allows analyzing log files of alarms in 

order to determine the most frequent alarms and to 

reduce their number displayed to the operator. The 

negative point of FACE is that during the generation 
of chronicles (candidates), there is only one time 

constraint that is taken into account.  

To fill this limit, (Cram et al., 2012) proposed a 

process of discovering chronicles from a trace (i.e. 

temporal sequence). The learning process is based on 

two steps:  

 

(i) Construction of a database of time constraints. It 

allows to associate for each pair of events, a set of 

temporal constraints represented in a graph called 

constraint graph. The graph is constructed through 

the Complete Constraint-Database Construction 

(CCDC) algorithm. 
(ii) A Heuristic Chronicle Discovery Algorithm 

(HCDA) that generates a set of chronicles 

(candidates) from a set of chronicles that are 

frequent and uses the temporal constraint database 

to explore the chronicle space.  
 

The latest solution is described in (Subias et al., 
2014). It improved the proposal of (Cram et al., 2012) 
to learn frequent chronicles for several temporal 
sequences (not only one temporal sequence) in order 
to represent variants of a single situation. 

The intervention of human experts (i.e. analysts) 
represents a major drawback to these data-based 
methods. Indeed, they require their presence either for 
the qualification of chronicles (Dousson and Duong, 
1999), (Cordier and Dousson, 2000) or for the 
definition of constraints to guide the algorithm of 
discovery of chronicles of interests (Cram et al . 
2012), (Subias et al., 2014). 

 
In this work, we present a new approach based on 

past experiences to automatic acquisition and 
updating of a CTS base. Construction and CTS 
labeling are purely automatic (they don’t require a 
human expert). The following section details the 
basic concepts of CTS formalism. 

 



2.2 Definitions and Concepts 

CTS were proposed in the early 90s by (Toguyeni et 

al., 1991). Then, they were improved by (Saddem et 

al., 2011). Like chronicles, a CTS is a formalism for 

the description and recognition of behaviors applied 
to the DES diagnosis. It was defined in the work of 

Saddem (Saddem et al., 2011) as "a subset of 

partially-ordered observable events that 

characterizes the system faulty behavior" and as "the 

description of a temporal pattern defining a partial 

order on events determined by their type and date of 

occurrence".  

Diagnosis based on CTS consists in interpreting 

online the event occurrence to instantiate the pattern 

to be recognized. In fact, a CTS is recognized when 

all its events occur while respecting their temporal 
constraints. This determines if the system is operating 

normally or not. The literature shows a variety of 

algorithms for chronicle and CTS recognition 

(Dousson et al., 1993), (Bertrand et al., 2007), 

(Saddem and Phillippot, 2014). In this paper, we are 

interested in the acquisition and the update of a set of 

CTS (CTS base) that will be the input of recognition 

algorithm. We present (in the rest of the section) the 

basic concepts of CTS formalism in the rest of the 

section. 

 

Definition 1 (Event)  
Let EN be a finite set whose elements are called by 

the observable events names. Let E be a finite set 

whose elements are observable events. A naming 

function is a total function H: E -> EN that assigns a 

name to each observable event. 

 

Definition 2 (Occurrence of an event) 

E is a finite set whose elements are observable events. 

Let F be a set of times corresponding to the times of 

events production. An occurrence function is a 

function O: E-> F that associates to each observable 
event a time at which it occurs. 

 

Definition 3 (CTS triplet) 

Let 
it  be a CTS triplet defined by: ( e

r
, e

c
, Ct

rc
) 

where e
r

 is the name of a reference observable event, 

e
c

is the name of an observable constrained event 

expected compared to e
r

, and Ct
rc

is a temporal 

constraint. 

 

Definition 4 (Temporal constraint) 

Let Ct
rc

be a temporal constraint which corresponds to 

a relative time separating the occurrence of an event 

having e
r

reference and an expected one e
c

. The time 

constraint can be a date, a period or a duration.  

 

 Date constraint:  

A date constraint (figure 1) allows modeling the exact 

time separating the occurrence of two events. It is 

defined by: 

( ) ( )O e O e t
c r
    (1) 

 

Figure 1: Date constraint. 

 Period constraint: 

A period constraint (figure 2) allows the modeling, 
with uncertainty degree, of the time between the 

occurrence of two events. It expresses that ec must 

occur after e
r

in a time interval [α, β] where α and β 

∈Q+. 

( ) ( )O e O e
c r

                       (2)                                      

 
 

Figure 2: Period constraint. 

 

 Duration constraint 

A duration constraint is generally used to characterize 

an event which persists in time. It shows that an event 

e
i
occurs for the date 

1t  to the date
1t +

2t . 

Note 1: 

In order to describe the dynamics of DES that we are 

studying, we consider time as a set of discrete 

linearly-ordered instants and we use only the period 
constraint in our examples. 

Definition 5 (CTS) 

Let T be a countable set whose elements are triplets 

of CTS. Indeed, a CTS represents a rule that can be 

formally defined as follows: 

 
X Y  (3) 



 X consists of a sequence of a subset of triplets TR 

included in T where 
it * 

jt  describes the 

recognition of triplet 
it  followed by that of triplet

jt .  

 Y represents the state of the system following this 

signature (normal or faulty behavior). 

 We choose to identify each CTS by a unique 

identifier which is an integer. 

 

Definition 6 (Normal CTS) 

It is a CTS that describes a normal behavior in the 
system. It is defined by:  

X N  (4) 

N denotes a normal behavior in the system. 

Definition 7 (Abnormal CTS) 

It is a CTS that describes a faulty behavior in the 

system. It is defined by:  

X Fi  (5) 

Fi presents a system failure. 

 

We note that APS study is carried out from the point 

of view of the operative part (OP). That’s why we 

only treat internal failures, those caused by the OP, 

such as the stuck-off to 1 or 0 of a sensor or an 

actuator. 

 

Example 1: 

       , , *   , , 1, 2  *  , , 3, 4   1In A nct A B t t A D t t F          (6) 

 

In is the name of an observable event that is always 
occurring. It is used as the reference of events that are 

not constrained. nct: implies the absence of time 

constraint. The rule (6) implies that if event A (not 

limited by any temporal constraint) occurs followed 

by the occurrence of event B satisfying the period 

constraint [t1, t2] with respect to A and the occurrence 

of event D satisfying the period constraint [t3, t4] 

with respect to A, then we can deduce the system is 

faulty and F1 is the fault. 

3 STUDY FRAMEWORK 

In this section, we describe an example of APS which 

we will rely on to illustrate our approach presented 

later. We chose the sorting system which brings boxes 

of entry conveyor to exit conveyor by sorting them 

according to their size. The system has 11 sensors to 

determine boxes size (small or large) and the box 

entry or exit in different conveyors (feeding, 

intermediate, and evacuation) or turntable. It also has 
7 actuators to activate the various conveyors and the 

turntable. In our case, we only present our results for 

the turntable, a component of the sorting system. It 

has 2 sensors (c4, c5) and 1 actuator (S4). The 

specifications retained are presented through a state 
automaton with 6 states and 10 transitions (figure 3). 

Normal behavior of the component can be described 

through two paths: 

Path A: State 0 -> State 1 -> State 2 -> State 3 

 -> State 4 -> State 5 -> State 0  

From the initial state '0', the turntable is in the c4 

loading position. If the S4 actuator is activated, the 

turntable is moving and sensor c4 is deactivated 

(transition from state "1" to "2"). From there, if the 

command is still active, the turntable returns to the 

unloading position (transition from state "2" to "3"). 
Disabling the S4 actuators allows returning to the 

original position (states "4" after "5" then "0"). 

Path B: State 0 -> State 1 -> State 2 -> State 5  

-> State 0  

From state '2', during the movement, and if the S4 

actuator is deactivated, the turntable returns directly 

to state '0'. 

 
c4: Detector of the turntable loading position 

c5: Detector of the turntable unloading position 

S4: Turntable 
Figure 3: Model of turntable.  

 

An expert work allowed to obtain the following 

internal failures that may occur in the turntable: F1: 

c4 stuck at 0, F2: c4 stuck at 1, F3: c5 stuck at 0, F4: 

c5 stuck at 1, F5: S4 stuck at 0, F6: S4 stuck at 1, F7: 

unexpected passage of c4 from 0 to 1, F8: unexpected 

passage of c4 from 1 to 0, F9: unexpected passage of 

c5 from 0 to 1, F10: unexpected passage of c5 from 1 

to 0.  
In the following sections, we will try to formulate 

automatically CTS which are able to describe these 

normal and faulty behaviors of the turntable.  Our 

approach is presented in the next section. 

4 PROPOSED APPROACH 

The main idea of our approach (figure 4) is to couple 

simulation with learning (AI technique) (Monostori et 



al., 2000), (Belisario et al., 2015). The simulation 

describes the evolution of the studied model over time 

in order to provide useful information on its dynamic 

behavior in different situations (including situations 
of dysfunctioning). This information can be exploited 

by an expert system or a decision maker (Pierreval 

and Ralambondrainy, 1992). 

In our proposal, this information (i.e. signals of 

sensors and actuators) is the input of the proposed 

Representation of Observations in form of CTS 

Algorithm (ROCTSA) which allows to model the 

normal behavior of the system as a set of normal CTS  

and the faulty behavior as a set of abnormal CTS. 

From these CTS examples (i.e learning base), an 

incremental learning is introduced to learn new CTS 
and to update the CTS base based on past 

experiences. 

Figure 4: Proposed approach. 

4.1 Simulation  

Simulation is a necessary module to generate 

examples of CTS from which it will be possible to 

learn new knowledge and update the knowledge base. 

It consists in:  

a) Operating the model of the real system in a 
normal mode (absence of failures) and abnormal 

mode (triggering failures). 

b) Collecting for each mode the relevant 

information (values of the sensors +actuators+ 

dates) from the model.  
c) Generating from these information causal 

temporal signatures through the proposed 
Representation of Observations in form of CTS 
Algorithm (ROCTSA) which will be presented in 
the following paragraph. 

4.1.1 Principle of ROCTSA 

For each PLC cycle (T), the algorithm constructs a 

triplet ( e
r

, e
c

, Ct
rc

) from a binary signature which 

represents the signals of sensors and actuators of the 

system to be diagnosed and from a binary signature 

which represents the signals during the previous PLC 

cycle (T-1). A CTS is the concatenation of at least 

two triplets. 
The proposed algorithm can be illustrated through 

these steps: 
 Step 1: Group the signals of the sensors and 

actuators of the system to be diagnosed during 

the PLC cycle (T) in order to construct a binary 

signature and associate a cycle time to it. (Note: 

tampon is the binary signature of the previous 

PLC cycle (T-1) and PreviouscycleTime is its 

cycle time). 

 Step 2: Formulate the reference event ( e
r

): If this 

is the first PLC cycle executed then er <- "IN" 

otherwise the constrained event of the previous 

PLC cycle (T-1) becomes the reference event of 

the PLC cycle T. 

 Step 3: Formulate the constrained event ( e
c

): 

Each element of the binary signature is 

transformed into an event that can be either the 

rising edge (denoted by R) or the falling edge 

(denoted by F) of a sensor or actuator. This event 

is defined as a constrained event. 

 Step 4: Formulate the temporal constraint 

(temporalC): If the referent event(er) is equal to 

IN then absence of the temporal constraint (nct) 

otherwise the temporal constraint is constructed 

from two times [DateMin, DateMax]. 

DateMin<- CurrentcycleTime- PreviouscycleTime 

DateMax<- DateMin +d 
       with "d" is the duration of the PLC cycle, 

DateMin is the lower bound of the period 
constaint and DateMax is the upper bound of the 
period constraint.  

 Step 5: Group the result of the 3 previous steps 

to construct a triplet of the CTS. 

The complexity of the algorithm is a linear 

complexity with respect to the size of the binary 

signature: O (K (n + m)) where K is the number of 

PLC cycles performed by the automated production 

system, n is the number of sensors and m is the 

number of actuators. 

4.1.2 Labeling of CTS 

The operation of the model in a normal mode and 

abnormal mode (triggering failures) allows the 

labeling of each instance of CTS automatically 

without the need for an expert accompanying the data 

formatting process and it does not need to give advice 

(normal or faulty behavior). The normal functioning 

of the model is represented as a set of normal CTS, 

while the faulty one is defined as a set of abnormal 



CTS. Both types of CTS are stored in a CTS Base. 

This base is the learning base. 

4.2 Learning Module 

For new CTS learning, we rely on the learning data 

stored in the CTS base obtained during the simulation 

module. Each new observation is transformed into a 

new CTS (nCTS) through ROCTSA.  The principle 

of this module consists in extracting, for each nCTS, 

the similar or nearest CTS from the CTS Base. The 

research is based on the use of a similarity metrics that 

calculates the degree of similarity between the new 

CTS and the past CTS.  

For this reason, we use a similarity calculator that 

has as input a nCTS and the CTS base. Its outputs are 
the similarity values between the nCTS and all the 

past CTS (pCTS) stored in the base. Then, the new 

CTS will inherit the result of the CTS having the 

greatest similarity and will be stored in CTS Base. 

4.2.1 Similarity Calculator 

Let S be the similarity relation defined by: 
 

S= CTS × CTS -> [0, 1] 

-If CTS
i
and CTS

j
 are equal, then S ( CTS

i
, CTS

j
) =1 

-If CTS
i
and CTS

j
are not equal, then S ( CTS

i
, CTS

j
) 

=0 

Calculate the similarity between two CTS is to 

calculate the distance: 

To calculate the distance between two CTS, we 

must compute the distance separating its triplets. The 

triplets consist of different types of elements (event 

of chain type, time constraint of interval type), which 

makes the distance calculating a difficult step.  

To solve this problem, we propose to discretize 
the values of the triplets’ elements as follows: 

 To events, we assign the value 1 if Val ( )
,eti k

= Val ( )
,et j k

and the value 0 if Val ( )
,eti k

≠ Val ( )
,et j k

 

where Val is the value of the event, ( )
,eti k

denotes an 

event of a triplet 
kt of a CTS

i
 and ( )

,et j k
 represents an 

event of a triplet 
kt  of CTS

j
. 

 To temporal constraints of interval type, we 

assign the value 1 if Val (lower bound ( )
,

C
ti k

) >= Val 

(lower bound ( )
,

C
t j k

) and Val (upper bound ( )
,

C
ti k

) < = 

Val (upper bound ( )
,

C
ti k

), otherwise 0, where Val is 

the value of the lower or upper bound of the temporal 

constraint, ( )
,

C
ti k

is a time constraint of a triplet 
kt of 

a CTS
i
 and ( )

,
C

t j k
 is a time constraint of a triplet 

kt  of 

a CTS
j
. Thus, the value of a triplet 

kt of a CTS
i

( ),Vti k

is calculated by the aggregation of values of its events 

and its temporal constraint. 

4.2.2 Distance Metric 

The choice of distance metric depends on data type to 

compare (nominal, ordinal, continuous or binary). 

Indeed, values of triplets are numerical. Therefore we 

choose the Manhattan distance (Stahl, 2003) to 

calculate the distance between two CTS. 
1

( , ) , ,13
mD CTS CTS Vt Vti k j ki j km

            (8) 

Where TR is the set of triplets representing a CTS 

defined by
1 2 3{ , , ,..., }mTR t t t t , m is the triplets 

number of a CTS, m>=2 and ,Vti k , ,Vt j k are the triplet 

values.  

5 EXPERIMENTATION 

To validate our proposal, we exploit the Interactive 

Training System for PLC (ITS PLC) proposed by the 

Portuguese company Real Games 

(www.realgames.pt). ITS PLC is an education and 

training tool dedicated to programming the PLC and 
validating the control algorithm through a real time 

interactive experience (Riera et al., 2010). It offers 3D 

simulations of Operative Parts (OP) of 5 industrial 

systems (sorting, batching, palletizer, pick and place 

and automatic warehouse). Each system a graphical 

simulation of an operative part including its sensors 

and its actuators and allowing a PLC to control it. 
We use the beta version of ITS PLC in this study 

which allows: (a) using scripts in IronPyton 

(http://ironpython.net) to write its own controllers in 

a language close to the ST (Structured Text). (b) 
accessing to an Interactive IronPython Interpreter 

allowing the user to interact with each simulated 

system by accessing for example to its inputs / outputs 

through the IO object. IO.Actuators and IO.Sensors 

respectively return the actuators and sensors signals. 

(c) simulating failures in sensors and actuators. Our 

proposal was led through the development of 2 

scripts: 

( , ) 1 ( , )D CTS CTS S CTS CTS
i j i j

     (7) 



 The first one allows controlling the sorting system 

without the need for a real API 

 The second one allows access to the inputs / 

outputs of the simulated system each the 16ms 
(ITSPLC cycle duration), to implement the 

ROCTSA (simulation module) and the similarity 

calculator (learning module). 

Note: we chose the duration of a temporal constraint 

of period type (d) is 5ms. 

   During the simulation module, the set of normal and 

abnormal CTS are recorded in the CTS base to form 

the learning base. Figure 5 shows various examples 

of CTS instances with the different attributes of the 

learning base. It describes 10 instances labeled as 

normal behaviors of the turntable and 7 instances 
labeled by the various failures as previously 

described. 

Instance 5 of the learning base is a normal CTS which 

corresponds to this rule:   

 (In, ↑S4, nct)* (↑S4, ↓c4, [80, 85])* (↓c4, ↑c5, 

[2816, 2821])* (↑c5, ↓S4, [6912, 6917])* (↓S4, ↓c5, 

[80, 85])* (↓c5, ↑c4, [2816, 2821]) -> N  

 

 This signature describes the passage through the 

different states of path A (introduced above). It 

implies that if the rising edge of the S4 actuator (↑S4) 

occurs followed by the occurrence of the falling edge 
of sensor c4 (↓c4) satisfying the time constraint [80, 

85] with respect to ↑S4, the occurrence of the  rising 

edge of the sensor c5 (↑c5) satisfying the constraint 

[2816, 2821] with respect to ↓c4, the occurrence of 

the falling edge of the S4 actuator (↓S4) satisfying the 

constraint [6912, 6917] with respect to ↑c5 of the 

falling edge of the sensor (↓c5) satisfying the 

constraint [80, 85] with respect to ↓S4 and the rising 

edge of sensor c4 (↑c4) satisfying the constraint 

[2816, 2821] with respect to ↓c5, then we 

the normal behavior of the system. 

Instance 11 of the learning base is an abnormal 

CTS which corresponds to this rule:   

   (In, ↑S4, nct)*(↑S4, ↑c5, [2896, 2901])-> F2  

It implies that if the rising edge of the S4 actuator 
(↑S4) occurs followed by the occurrence of the rising 

edge of sensor c5 (↑c5) satisfying the time constraint 

[2896, 2901], then we can deduce the faulty behavior 

F2. The learning module uses these past experiences 

to add new CTS to the CTS base (to promote 

learning). 

Example: We propose to add an nCTS and search the 

most similar using our similarity calculator. 

ROCTSA starts generating an nCTS: 

 

nCTS: (↑c4, ↑S4, [65664,65669])* (↑S4, ↓c4, [80, 
85])-> ?  

It does not exist in the CTS base. Consequently, 

the similarity calculator can be launched. The nCTS 

inherits the (normal or faulty) behavior of the CTS 

which has the minimum distance and will be stored in 
the CTS Base. In this example, CTS 6 has the 

minimum distance (D=0.166). Therefore, the nCTS 

inherits the normal behavior of CTS 6 and is stored in 

the CTS Base.  

6 CONCLUSIONS 

In the context of diagnoses, we suggest a new 

approach based on past experiences which couples a 

simulation with learning for automatic acquisition 

and update of a set of CTS. We present ROCTSA 

algorithm allowing to model the normal behavior of 

the system to diagnose as a set of normal CTS and the 

faulty behavior as a set of abnormal CTS. A learning 

module is introduced to learn new CTS and to update 
the CTS base. The proposed approach has many 

advantages: (i) An easy update for the CTS Base. 

Indeed, when a new behavior occurs in the APS, a 

new CTS will be added to the CTS base that models 

this new behavior. (ii) It is a generic approach that can 

be applied to any APS. (iii) It does not require the 

presence of an expert who might be reluctant to 

acquire a CTS base. As a prospect, to improve the 

expressiveness of ROCRSA, we will express the 

absence of events (negation operators). Then, we will 

use this work to introduce a distributed approach for 

complex system diagnoses.  It will be based on a 
multi-agent architecture which decomposes the 

system to be diagnosed into subsystems. Each 

subsystem will be supervised through an agent which 

is responsible for the acquisition of its CTS Base and 

its local diagnosis.  
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ID : identifier of the instance, X: sequence of triplets,  Y: state of the system, ti : CTS triplet,  

er
: reference event, ec

: constrained event, L: lower bound of the period constraint, U: upper bound of 

the period constraint. 

Figure 5: Learning base. 

 

 


