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Abstract— The operation of bearings usually results in a 
dynamic behavior generating stationary and non-stationary 
vibration signals mixed with an amount of background noise. 
Therefore, the condition monitoring of bearings becomes difficult 
since the purpose is to extract health indicators able to detect the 
appearance of faults, track their evolution and predict the 
bearings’ remaining useful life.  

The aim of this paper is the introduction of a new approach 
for the health monitoring of bearings. This approach is based on 
health indicators extracted from raw vibration signals filtered by 
the Hilbert-Huang transform. The proposed approach is 
composed of three steps. The first step uses the empirical mode 
decomposition to separate each vibration signal into different 
intrinsic mode functions (IMFs), where each IMF is located 
within a specific frequency band. The second step extracts 
instantaneous amplitudes and frequencies for each mode in order 
to identify its frequency band. Finally, the third step selects the 
interesting IMFs according to the characteristic frequencies of 
the bearing failures. The Hilbert marginal spectrum of the 
selected intrinsic mode functions are then considered as health 
indicators. The proposed approach is validated by real data 
taken from the PRONOSTIA experimental platform. 

Keywords— Beating, feature extraction, condition monitoring, 
fault detection, fault diagnostic, time-frequency analysis, 
empirical mode decomposition, Hilbert transform. 

I.  INTRODUCTION 
Bearings are mechanical components used in different 

industrial equipments. They can be considered as critical 
components as their failures reduce the equipments’ reliability 
and availability, and increase the risk of human accidents. 
Furthermore, their failures generate additional maintenance 
costs and produce a negative environmental impact. To face 
this situation, the implementation of a Condition-Based 
Maintenance (CBM) seems to be an efficient strategy [1]-[5].  

The analysis of vibration signals are relevant in performing 
a CBM on bearings because they allow characterizing their 
most faults by extracting health indicators. These indicators 
are obtained through signal processing methods, which can be 
classified according to the vibration signal form: stationary or 
non-stationary. The stationary signals are analysed by using 
the well-known temporal and/or frequency methods [6]-[8], 
whereas the non-stationary signals are processed by using 
time-frequency methods [9]-[11]. The temporal analysis is 

historically the oldest method; it analyses the temporal 
characteristics of the acquired signal in order to extract 
statistical health indicators. Among these indicators, one can 
find the Root Mean Square (RMS) that measures the average 
energy of the signal, the peak to peak value which measures 
the maximum amplitude between the extreme values of the 
signal, the kurtosis that measures the impulsive nature of the 
signal, etc. The assumption behind the temporal analysis is 
that any fault occurrence causes significant change in the 
statistical features of the signal. This allows detecting and 
tracking the degradation of a bearing. However, the presence 
of noise in the signal makes difficult filtering the vibration 
signal. This drawback prevent early detection of faults. In this 
paper, a solution is proposed to solve this problem. The idea is 
to removes noised vibration signals that are not related to the 
failure of a bearing by using the empirical mode 
decomposition (EMD) and locating the contribution of the 
characteristic frequencies of bearing failures (inner race, outer 
race, balls) by computing the Hilbert Marginal Spectrum 
(HMS). The HMS, obtained by the Hilbert transform which is 
a time-frequency analysis method, is used as a health indicator 
to detect, diagnose and track the degradation of bearings. This 
approach removes noised signals that are not related to the 
failure of ball bearings and therefore allows extracting health 
indicators that maximize the chances of early detection of 
incipient faults. The combination of the empirical mode 
decomposition and the Hilbert transform is known as the 
Hilbert-Huang Transform [12], [13].  

This paper is organized as follows. After the introduction 
section, section II presents the main steps of the proposed 
approach. The purpose of section III is to introduce new 
health indicators for the health monitoring of bearings. These 
indicators are extracted from the analysis of vibration signals 
by using the Hilbert-Huang transform. Section V validates the 
proposed approach on real data taken from the PRONOSTIA 
experimental platform. Finally, section VI concludes the paper. 

II. FEATURE EXTRACTION BY HILBERT-HUANG TRANSFORM

The Hilbert-Huang transform is an emerging technique for 
the signal processing designed to analyse non-stationary 
signals [14]. This technique has been used in many 
applications, such as biomedical signal processing [15], 
geophysics [16], image processing [17], fault diagnostic [18], 
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etc. In order to facilitate the reading of this paper, the Hilbert-
Huang transform (HHT) is first presented followed by an 
introduction of the HMS. HHT is performed in two steps. The 
first step uses the EMD to identify the intrinsic oscillatory 
mode in each time location from a signal. This intrinsic 
oscillatory mode is called the intrinsic mode function (IMF). 
The second step apply the Hilbert transform on the IMF in 
order to extract the instantaneous frequencies and amplitudes 
of the signal, necessary to compute the HMS. 

A. Empirical mode decomposition 
The EMD decomposes a signal, denoted x(t), into a set of 

IMFs. Generally, the component with the shortest period (high 
frequency) is identified and decomposed in the first IMF. The 
components of long periods (low frequencies) are then order 
in the next IMFs. The advantage of this technique is that is 
possible to isolate the frequency bands of interest.  

The EMD decomposes the signal x(t) by following four 
steps: 
1- Identification of all local extrema, then connecting all local 

maxima by a cubic spline to form the upper envelope. 
2- Repeating the same procedure for the local minima in 

order to produce the lower envelope. 
3- The upper envelope xup(t) and the lower envelope xlow(t) 

allow calculating the mean envelope xmean(t) : 
( ) ( )

( )
2

x t x tup lowx tmean


 (1) 

The removing of the mean envelope from the signal x(t) 
allow us obtaining a first component denoted δ10(t) : 

( ) ( ) ( )10 t x t x tmean   (2) 

If δ10(t) has exactly one zero between any two consecutive 
local extrema or has zero “local mean”, then δ10 can be 
considered as the first IMF of x(t). 

4- If δ10(t) does not satisfy the previous constraints, then the 
signal x(t) is replaced by δ10(t) and the steps 1 to 3 are 
repeated. A second component denoted δ11(t) is obtained: 

( ) ( ) ( )t t x t11 10 mean   (3) 

This process is called sifting process and is repeated 
successively (k times) on δik(t) until the value between the 
upper and lower envelope is close to zero at each point. The ith 
component δik(t) is formulated as follows 

( ) ( ) ( )( )t t x tik i k 1 mean   (4) 

xmean(t) is the mean of the upper and lower envelope of δi(k-1). 
The first IMF, denoted Ω1(t) with Ω1(t) = δ1k(t), represents the  
component of the shortest period (high frequencies) of the 
signal x(t). 

Extracting Ω1(t) from x(t) gives a first residual denoted r2(t): 

( ) ( ) ( )2 1 1r t r t t  (5) 

with  r1(t) = x(t). 
This provides the n IMFs of the signal x(t) by using the 

following expression: 

   ( ) ( ) ( )1 1r t r t tn n n    (6) 

When the signal rn(t) becomes a monotonic function, the 
decomposition process can be stopped.  

The extraction process of IMFs is summarized in fig.1. The 
IMFs Ω1, Ω 2, ..., Ω n include different frequency bands 
ranging from the top to bottom. The frequency band contained 
in each component is different from a component to another, 
and these frequencies change according to the signal x(t). 

Fig.1.  Flowchart of the empirical mode decomposition process. 

B. Hilbert transform 
The Hilbert transform can be considered to be a filter which 

simply shifts phases of all frequency components of its input 
by -π/2 radians. An analytic x(t) can be constructed from a 

real-valued input signal x(t):  ( ) ( ) ( )A hx t x t j x t   where,
xA(t) is the analytic signal constructed from x(t) and its Hilbert 
transform. x(t) is the input signal and xh(t) is the Hilbert 
transform of the input signal. The angle of the complex signal 
gives the instantaneous phase, and its derivative, the 
instantaneous frequency. The aim is to extract the 
instantaneous frequency and amplitude of each IMF in order 
to identify their corresponding frequency band. The analytic 
form of an IMF, denoted ( )A ti , is defined as:

( )( ) ( ) ( ) ( ) , 1j tA H it t j t a t e i ni ii i
         (7) 

where n is the number of IMFs and ( )H ti is the Hilbert
transform of Ωi(t), given by: 

( )1( )
sH it P dsi t s


 

 (8) 

where P is the Cauchy principal value. 
From (7) and (8), the instantaneous amplitude ai(t) and 

phase θi(t) are given as follows: 

  Start 

If 
δik(t)= IMF 

k= k+1 

i=i+1; k=1 

If ri+1(t) 
monotonic 

ri+1(t)=ri(t)- Ωi(t) 
 

Ωi(t)  = Ωik(t) 

End

No 
 

Yes 
 

Yes 
 

No 
 

Input: ri(t) = x(t), i=1; k=1 

δi(k-1)(t)=ri(t) 

Calculation of  xup(t) and 
xlow(t) from δi(k-1)(t) 

Calculation of xmean (t) 

δik(t)=δi(k-1)(t)- xmean (t) 
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2 2( ) Ha ti i i   (9) 

1( ) tan
H
iti i


     
 

(10) 

From the instantaneous phase θi(t), the instantaneous 
frequency fi(t) can be obtained by using the following formula: 

( )1( )
2

d tif ti dt



 (11) 

C. The Hilbert Marginal spectrum (HMS) 
As said in the abstract section, the first step of the proposed 

approach uses the EMD to decompose the signal x(t) into 
several IMFs. The second step extracts instantaneous 
amplitudes and frequencies for each IMF to identify their 
corresponding frequency band and the third step calculates the 
energy density at specific frequencies to select the IMFs of 
interest and extract the health indicators.  

The Hilbert energy density is defined as the square of the 
amplitude: 

  2, ( , )H f t a f ti ii (12) 

where Hi(f,t) represents a time-frequency distribution obtained 
from the ith IMF of the signal x(t) and ai(fi,t) combines the 
amplitude ai(t) and the instantaneous frequency fi(t) of the 
signal. 

H(f, t) gives a local value of energy in a time-frequency 
representation. This allows extracting the joint probability 
density p(f, t) of the frequency and amplitude from the whole 
original series ai(t) and fi(t) for all IMFs, i = 1, ..., n. Then, the 
HMS can be estimated as follows: 

2( ) ( , ) ( , )h f H f t dt a f t dti i ii   (13) 

III. SIMULATION RESULT

To show the effectiveness of the EMD and the HMS to 
isolate the frequency bands of interest, consider the signal of 
fig.2: 

0 0.02 0.04 0.06 0.08 0.1
-4

-2

0

2

4

Time (sec)
Fig.2. Temporal representation of the non-stationary signal x(t). 

Figure 2 shows a signal x(t) oscillating at the frequencies 
600, 1000, 2600 and 3200 Hz. The EMD is used to extract the 
IMFs of x(t) (see fig.3.a and c) and the corresponding HMS 
are used to locate the high frequencies and the low frequencies 
components (see fig.3.b and d). From the fig.3.b, one can see 
that the HMS applied to the first IMF identifies the high 
frequency components 2600 Hz and 3200 Hz. The HMS 
applied on the second IMF (see fig.3.d) identifies the medium 

and low frequencies components: 600 Hz and 1000 Hz. These 
results are very interesting because if we consider the medium 
and low frequency components as the characteristic 
frequencies of a fault, then one just needs to monitor the HMS 
of the second IMF to locate and track the degradation of the 
bearing. 
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(b)  Hilbert marginal spectrum of the first IMF 
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(d)  Hilbert marginal spectrum of the second IMF 
Fig.3. Hilbert marginal of a non-stationary signal 

IV. EXTRACTION OF HEALTH INDICATORS

Once the HMS is defined, it is possible to select the IMFs 
gathering the characteristic frequencies of a given fault. This 
step can be assimilated as a step of IMF selection and health 
indicators extraction. To select the IMFs and extract the health 
indicators, it is necessary to know the characteristic 
frequencies of each fault. In the case of ball bearings, these 
frequencies can be calculated according to the number of balls, 
the rotation speed, the ball and the pitch diameters. From these 

x(
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geometric and operating data, three frequencies can be 
identified: 

- Inner race frequency (fir): 

1 cos
2

n DBbf fir r DP
       

(14) 

- Outer race frequency (for): 

1 cos
2

n DBbf for r DP
       

(15) 

- Ball frequency (fb): 

2 21 cos
2

DP DBf fb rDB DP


 
     
  

(16) 

where fr is the rotation frequency, Ψ the contact angle, nb 
the number of balls, DB the ball diameter and DP the pitch 
diameter of the bearing. 

The IMF selection consists of selecting a set of IMFs Ωi(t) 
1≤i≤n which has a HMS maximum around one, two or three of 
the characteristic frequencies. This can be formulated as 
follow:  

      
1
max  , ,i i or ir bi n

t h f f f
 

     (17) 

where n is the number of IMFs that makes up the signal. 
Note that in the case of bearings, the number of fault 

frequencies is equal to three and therefore the number of 
selected IMFs can vary from 1 to 3. For example, if we have 
only one selected IMF, this means that the HMS around the 
faults characteristic frequencies is maximal for only one IMF. 

Each of the selected IMFs maximizes at least one HMS 
around one of the faults characteristic frequencies. Therefore, 
in the health indicators extraction, the HMS: hj(for), hj(fir) and 
hj(fb) are considered as health indicators, where 1≤ j≤ n is the 
index of the selected IMF which maximizes the HMS of one 
of the following frequencies: for, fir and fb. 

V.  EXPERIMENTAL RESULT 

A. The experimental test bed PRONOSTIA 
The proposed approach is verified on experimental 

vibration signals taken from the test bed PRONOSTIA, 
designed and realized within FEMTO-ST institute [19]. The 
test bed is composed of a ball bearing (NSK 6804RS) installed 
on a shaft, as shown in fig.4. The characteristics of this 
bearing are given in table I. 

The rotation speed of the shaft is fixed at 1800 rpm by an 
assembly of two pulleys and a toothed belt. A radial force of 
4200 N is applied to the shaft and the bearing by a 
proportional pneumatic jack. Two accelerometers of type 
3035B DYTRAN, spaced by 90°, are placed on the bearing. 
The first accelerometer is placed on the vertical axis and the 
second on the horizontal axis. The vibration signals are 
composed of 2560 samples recorded every 10 seconds with a 
sampling frequency equal to 25.6 khz. 

Fig.4. Test bed PRONOSTIA. 

TABLE I 
Characteristics of the studied bearing 

Diameter of rolling elements  (mm) 3.5 
Number of  rolling element 13 

Diameter of the outer race (mm) 29.1 
Diameter of the inner race (mm) 22.1 

Bearing mean diameter (mm) 25.6 

B. IMF selection 
The analysed vibration signal corresponds to a defective 

bearing. The operating conditions (speed) applied to this 
bearing and its dimension allows calculating the three 
characteristic frequencies of faults: 

Inner race frequency (fir): 221 hz 
Outer race frequency (for): 168hz 
Ball frequency (fb): 215.48 hz 
A set of IMFs are extracted from the vibration signal of the 

faulty bearing thanks to the EMD. These IMFs correspond to 
a decomposition of the vibration signal in specific frequency 
bands. The next step is the selection of the IMF of interest. 
This is done by calculating the HMS of each IMF. The 
comparison of the frequencies of the bearing fault (for, fir, fb) 
with those identified in each IMF allows to select the IMFs 
corresponding to the faults. Thus, it is possible to detect the 
presence of a fault by monitoring the HMS around the 
frequencies (for, fir, fb) in the selected IMFs. This methodology 
is illustrated in fig.5. 

Figure 5 shows the HMS of each IMF extracted from the 
vibration signal of the faulty bearing. It is possible from this 
figure to identify the frequency band of each IMF. For 
example, if the first IMF is considered, one can notice that its 
frequencies are between 2896 hz and 12400 hz. For the IMF2, 
they are between 800 Hz and 6587 Hz. The frequencies of the 
third and fourth IMFs are between 400 hz and 3000 hz. 

These four IMFs are considered as not informative. The 
HMS around the faulty frequencies of the IMF5 and IMF6 are 
high and can be therefore used for fault detection and 
identification. 

By comparing the HMS of these two IMFs, one can observe 
a significant increase in the IMF6 compared to the IMF5, and 

1- Test bearing 4- Pneumatic jack 7- Speed recorder 
2- Accelerometers 5-Pneumatic regulator 8- AC motor 
3- Force sensor 6- Pulleys 9- Acquisition system 

10- Coupling 
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is mainly around the frequencies of the inner ring fir = 221hz, 
the ball fb = 215.48hz and the outer ring  for = 168 hz. In this 
case, we can conclude that one IMF is sufficient to monitor 
the degradation of the tested bearing. However, the selection 
of IMF6 is not always valuable. This implies selecting for 
each new vibration signal the IMFs for which the HMS 
around the faults frequencies is high. 
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Fig.5. IMF selection according to the Hilbert marginal spectrum 

Extraction of health indicators 
The purpose of the previous sub-section is to show the 

applicability of the HMS to select the IMF of interest, 
extracted from a vibration signal collected on a bearing, 
according to the characteristic frequencies of faults. The 
proposed approach falls within the framework of diagnostic 
and therefore must provide an early detection of faults. 
Figures 6 (a, b, c) show the evolution of the HMS around the 
frequencies of the fault versus time.  

The evolution of the RMS versus time is also added in 
fig.6.d in order to compare it with our health indicators. As we 
can see, the detection of an incipient degradation is different 
from an indicator to another. In the RMS, the beginning of the 
degradation is detected after 138 minutes of test. However, by 
calculating the HMS around the fault frequencies, it is 
possible to obtain an earlier detection than the RMS. Indeed, if 
we monitor the evolution of the HMS around the ball 
frequency (fb), it is possible to detect a beginning of the 
degradation after only 118 minutes of test. This indication is 

then followed by two other detections given by the HMS data 
around the frequencies of the inner race (fir) and the outer race 
(for) after 122 and 125 minutes of test respectively. These 
results show the effectiveness of this approach to extract 
health indicators able to monitor separately the critical 
components of a ball bearing. 
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(a)  Hilbert marginal spectrum around the ball frequency 
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(c)  Hilbert marginal spectrum around the inner race frequency 
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Fig.6. Evolution of the health indicators. 

VI. CONCLUSION
Experimental study on bearings showed that their damages 

can be detected efficiently by means of time-dependent 
amplitudes and instantaneous frequencies resulting from the 
Hilbert transform. In this paper, the technique is extended by a 
process allowing automatic extraction of health indicators 
sensitive to the frequencies of faults in ball bearings. It is 
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based on the empirical mode decomposition and the Hilbert 
transform. The proposed approach consists of using the 
empirical mode decomposition to decompose the vibration 
signal into a sum of IMFs, where each IMF is located in a 
specific frequency band. The HMS, applied to the IMFs, can 
generate health indicators able to follow the progress of the 
degradation, but also to locate its origin. This approach was 
firstly applied on a synthetic non-stationary signal and then 
validated on experimental data. The results show the 
effectiveness of this approach for condition monitoring of 
bearings.  

To assess its computational efficiency in processing the 
vibration signals, the experiments were conducted on a laptop 
with a processor frequency equal to 2.6 GHz and 4 GBytes 
flash memory. For the whole processed signals, the 
calculation time varied from 0.2 to 1.5 seconds. This confirms 
the applicability of the HMS for online monitoring. 
Furthermore, the proposed health indicators can be applied to 
other critical components and systems such as gearboxes, 
electric drives and wind turbines. 
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