

Structural organization of casein micelles concentrated layer during cross-flow ultrafiltration

Floriane Doudiès

M. Loginov, N. Hengl, F. Pignon, N. Leconte, F. Garnier-Lambrouin, J. Pérez, L. Sharpnack, M. Granger-Delacroix, M. Belna, G. Gésan-Guiziou

Milk filtration

Skimmed milk:

Casein micelles are large globular aggregates of caseins with calcium phosphate, they are porous, deformable, compressible and dynamic particles (50-500nm) Skimmed milk contains 26 g/L of casein micelles or 3%wt

Micro- and ultrafiltration of skimmed milk are largely used in the dairy sector (≈ 40% of the membrane area installed in food sector)

ultrafiltration \rightarrow proteins concentration (cheese manufacture, standardization) microfiltration \rightarrow proteins fractionation (high added value ingredients)

Membrane fouling by casein micelles

Formation of fouling gel layer:

- limitation of the filtration performance

reduces permeate flux, decreases permeate quality (low transmission of soluble proteins)

- difficulties of cleaning operation

large consumption of water, detergents and energy...

Objective & Strategy

Understand the structural organization and behaviour of concentrated casein micelles accumulated at the membrane surface during cross-flow ultrafiltration

- Analyse fouling layer development during filtration step and redispersion during pressure relaxation step
- Focus on the effect of temperature (12-45°C)

Organic spiral membranes 8-12°C

Mineral membranes 50-53°C

In-situ SAXS cross-flow filtration

SAXS analysis of fouling layer

Quantification of fouling layer

Filtration protocol

Flux decrease over time linked to casein micelles accumulation

Impact of temperature on casein micelles accumulation

Temperature impacts filtration performances: At 42°C:

- Flux is high
- Because of a lower filtrate viscosity
- And a high accumulation of casein micelles
- Concentration of casein micelles at membrane surface is high
- Gel thickness is high

Relaxation step allows to remove a part of accumulated casein micelles without using chemical products But, relaxation time is same order of magnitude with accumulation time

Impact of temperature on pressure relaxation

TMP = 0.1 barv = 3cm/s

Removed mass rises with temperature:

likely due to the lower viscosity of accumulated casein micelles layers at high temperature

Impact of temperature on gel relaxation

TMP = 0.1 barv = 3cm/s

Distance, z (µm) 15

300

42°C

200

100

0

Pressure relaxation: impact of temperature

Cohesion of gel (repulsive gel or attractive gel) depends on temperature

- In-situ SAXS cross-flow filtration allowed analysis of casein micelles fouling layer with an unique resolution of 20μm during filtration step and relaxation step
- During filtration of casein micelles, temperature has a significative effect on filtration performances:
 - Increasing temperature implies:
 - flux decrease because filtrate viscosity decrease
 - casein micelles accumulation at membrane surface

- But during pressure relaxation, an easily removal of casein micelles and a gel that is less cohesive

Future work:

- 1) rheological characterization of gels at different temperatures
- 2) local strength force of fouling layer at different temperatures

Thank you for your attention!

Mohamed KARROUCH

Michael Sztucki

Calibration

1) Zero membrane placement

Calibration at different scattering vectors q (nm^{-1})

21