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Morse complexes and multiplicative structures

Hossein Abbaspour & François Laudenbach

Abstract. In this article we lay out the details of Fukaya’s A∞-structure of the Morse com-
plexe of a manifold possibly with boundary. We show that this A∞-structure is homotopically
independent of the made choices. We emphasize the transversality arguments that make some
fiber products smooth.
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1. Introduction

In [8] Fukaya outlined the construction of an A∞-category whose objects are the smooth
functions on a given closed manifold M and the set of the morphisms Mor(f, g) is Z-module
generated by the critical points of g − f . He describes the A∞-operations

mn : Mor(f1, f2)⊗Mor(f1, f2) · · · ⊗Mor(fn−1, fn)→ Mor(f1, fn)

by counting points with sign (orientation) on the zero-dimensional moduli space of flow lines
intersection according to the scheme provided by a generic (trivalent) rooted tree.

As obvious as it is, these operations are only partially defined, meaning that each operation
mn is only defined for generic function fi’s. In particular, by taking fi = if , where f ∈ C∞(M)
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is a generic Morse function, the existence of an A∞-structure on the Morse complex of f is
suggested. Note that in this example Mor(if, (i+ 1)f)) is precisely the Morse complex of f .

In the present article, not only we give an accurate construction of the hitherto described A∞-
structure on the Morse complex of a Morse function f , but also we prove that this A∞-structure
is well-defined up to quasi-isomorphism of A∞-algebras. It turns out that the construction of
A∞-quasi-isomorphisms requires to extend Fukaya’s A∞-structure to manifolds with boundary.

The existence of the above-mentioned A∞-structure has been discussed by various authors
([1, 18] and more recently [17] ) for closed manifolds using the gradient-tree moduli space.
Since they use metric trees, the A∞-relations are the immediate consequence of breaking/gluing
properties of metric trees. Another approach (taken in more details in [4], for instance) is to
adapt Floer-Seidel’s idea ([7, 22]) for the construction of Lagrangian Fukaya category to the
special case of the graph of df in T ∗M as a Lagrangian submanifold, and then translate the
construction to obtain the desired structure on the Morse complex.

These methods, despite some advantages, rely on some sort of infinite dimension analysis for
a problem which should have a priori a finite dimensional solution. In this paper we propose
an alternative method which uses the standard method of intersection theory à la Thom for
submanifolds (with eventually conic singularities) in M . In order to prove that the structure is
well-defined up to A∞-quasi-isomorphisms, we are naturally led to consider the Morse theory
of the manifolds with boundary which has already been developed by the second author [15]
for which we give a summary.

For a given n-dimensional compact manifold M with boundary and a generic Morse function
f : M → R, generic meaning that f has no critical point on the boundary and that the
restriction f∂ of f to the boundary ∂M is a Morse function. For the purpose of the present
paper, it is useful to assume that M is orientable.

We recall that there are two types + and − of critical points of f∂. A critical point x of
f∂ is of type + (resp. −) if 〈df(x), n(x)〉 is positive (resp. negative); here n(x) is a vector
in TxM pointing outwards. We shall denote by critkf the set of critical points of f (in the
interior of M) of index k and by crit+k f∂ (resp. crit−k f∂) the set of critical points of f∂ of index
k ∈ {0, . . . , n− 1} which are of type + (resp. −).

This setting was already considered in [15] where the main idea was to introduce so-called
adapted pseudo-gradients, defined as follows.1

A vector field X+ is said to be positively adapted to f if the following conditions are fulfilled:

1) X+ · f > 0 apart from critf ∪ crit+f∂;
2) X+ points inwards at every point of ∂M except in some neighborhood of crit+f∂ where

X+ is tangent to the boundary;
3) near critf∪crit+f∂ the vector field X+ has a specific form with respect to the Euclidean

metric of some simple Morse coordinates (see Definition 2.2).

Since the flow of X+ is positively complete, each x ∈ critkf ∪ crit+k−1f∂ has a global unstable

manifold W u(x) diffeomorphic to Rn−k. It has also a local stable manifold W s
loc(x) diffeomorphic

to Rk if x ∈ critkf and to the half-space Rk
− if x ∈ crit+k−1f∂.

1In [15], the terminology is different: the critical points of f∂ of type + (resp. −) are said to be of Dirichlet
type (resp. Neumann type). The labelling, Neumann or Dirichlet, comes from similar results which have been
obtained previously in Witten’s theory of de Rham cohomology for manifolds with boundary (see [3, 10, 13]).
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The vector field is said to be Morse-Smale when all these (positively) invariant manifolds
intersect mutually transversely. Under this assumption, after choosing arbitrarily orientations
of the (local) stable manifolds, one defines a graded complex

C∗(f,X
+) = C+

∗ =
(
C+
n

∂+−→· · ·C+
k

∂+−→· · ·C+
0

)
.

Here, C+
k is the Z-module freely generated by critkf ∪ crit+k−1f∂; a generator x of C+

k is said
to be of degree k; the degree of x is noted |x|. The differential ∂+ is defined by choosing
orientations of the local stable manifolds and counting with signs the connecting orbits from y
to x when |x| = |y|+ 1 (note that the unstable manifolds are co-oriented.)

Similarly, a vector field X− is said to be negatively adapted to f when it is positively adapted
to −f . Notice that X− · f < 0 apart from critf ∪ crit−f∂. Choose such an X− which is Morse-
Smale and choose an orientation of its unstable manifolds; One defines a second complex

C∗(f,X
−) = C−∗ =

(
C−n

∂−−→· · ·C−k
∂−−→· · ·C−0

)
.

Here, C−k is the Z-module freely generated by critkf ∪ crit−k f∂. Notice the shift of the grading
which is justified by the equality:

C+
k (f) = C−n−k(−f).

The differential ∂− is defined on a generator x ∈ C−k by counting with signs the connecting
orbits of X− from x to y ∈ C−k−1. The main result in [15] is the following.

Theorem 1.1.
1) The homology of the complex C∗(f,X

−) is isomorphic to H∗(M ;Z).
2) The homology of the complex C∗(f,X

+) is isomorphic to H∗(M,∂M ;Z).

Now, we present an important complement to Theorem 1.1 dealing with the multiplicative
structures which exist on the considered complexes.

Theorem 1.2. Let M be a compact oriented manifold. Then, each of the complexes C+
∗ and

C−∗ can be endowed with a structure of A∞-algebra G = {m1,m2, . . .} such that m1 is the
differential of the considered complex; here md denotes the d-fold product.

This structure is well-defined up to “homotopy” from the data of a coherent family of Morse-
Smale approximations of X− (resp. X+).

The approximations in question will be subjected to some transversality conditions for which
the possible choices are not at all unique. The coherence (Definition 5.3) will be a form of
naturality of these choices with respect to a certain group of diffeomorphisms of M .

The basic definitions about A∞-structures are recalled in Appendix C. As we shall see in
Section 9, the concept of homotopy of A∞-structures is the algebraic translation of the idea of
cobordism for the geometric objects we are going to introduce further.

Sections 4 to 7 are devoted to topological preparation to multiplicative structures by means
of a large use of Thom’s transversality Theorem with constraints [25]. Here are some more
details:

– Section 2 recalls from [14] the compactification of the stable submanifolds and their C1-
conic singularities. Appendix A states some generalities on this type of singularity.
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– Section 3 presents the most important tool for perturbing the stable manifolds in a coherent
way in Section 5. This is the hardest part and it relies on a new concept in transversality theory
which we name immediate transversality (see also Appendix B.)

– Section 4 makes a list of transversality conditions which will be used for defining products
of an A∞-structure. These conditions are generic and open.

– Sections 5 and 6 treat refinements on transversality conditions allowing the products to
satisfy the A∞-relations.

– Section 7 deals with the orientation of the codimension-one strata in the compactified geo-
metric objects introduced in Section 4.

– In Section 8 we introduce the A∞-structure and prove A∞-relations.

– Section 9 explains why different choices in the previous constructions lead to concordant
multi-intersections. That is the topological ingredient for homotopy of A∞-structures.

The proof of Theorem 1.2 will be achieved in Sections 8 and 9.

The main example with non-empty boundary that we have in mind is 3-dimensional. Consider
a link L in the 3-sphere S3, equipped with the standard height function h : S3 → R. The
manifold with boundary we are interested in is M := S3 r U(L), where U(L) is the interior of
a small tubular neighborhood of L, built by means of an exponential map. In general position
of L, the height function induces a Morse function on L, and hence a generic Morse function
f on M . Each maximum of h|L gives rise to a pair of critical points of f∂, one of type − and
index 2, and one of type + and index 1 (hence of degree 2 in C+

∗ ). Each minimum of h|L gives
rise to a pair of critical points of f∂, one of type − and index 1, and one of type + and index
0 (hence of degree 1 in C+

∗ ). It is reasonable to expect that the Morse complexes of this pair
(M, f) informs a lot on the topology of L. We have not yet explored this topic systematically.
As an exercise only, by using the Massey product which is derived from the third product of
the A∞-structure on the negative complex, one could prove à la Morse that the Borromean
link is not trivial. And this link remains non-trivial if it takes place in a ball of any ambient
3-manifold.

More generally, one could distinguish two embeddings of a k-manifold into an n-manifold by
considering the complementary of their tubular neighborhoods and the A∞-structures of them.

Acknowledgements. We are deeply grateful to the anonymous referee who pointed out a
serious gap in a previous version. The second author very much thanks Christian Blanchet
who led him to this topic many years ago. We also thank Thibaut Mazuir, Gaël Meigniez and
and Tadayuki Watanabe for helpful conversations.
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2. Preliminaries on adapted gradients

In this paper, we will only consider the case of the theory relative to the boundary, dealing
with the critical points of positive type and positively adapted gradient X+. Similar results
hold true for a negative-type complex. This section of preliminaries is aimed at the following
topics:

(1) to define the global stable manifolds;
(2) to specify what are simple Morse coordinates;2

(3) to describe the closure of the invariant manifolds;
(4) to introduce the graph of a positive semi-flow and its compactification.

Let X+
t denote the flow at time t of the positively complete vector field X+. The following

definition makes sense.

Definition 2.1. For x ∈ critkf ∪ crit+k−1(f∂), the global stable manifold of x with respect to
X+ is defined as the union

W s(x,X+) =
⋃
t>0

(
X+
t

)−1
(W s

loc(x)) .

This manifold is diffeomorphic to a closed k-ball with punctures on the boundary correspond-
ing to all critical points which lie in its frontier; the points of its boundary are in ∂M .

Definition 2.2.
1) For p ∈ critkf , simple Morse coordinates3 about p are coordinates where f reads

f(x1, . . . , xn) = f(p)− x2
1 − · · · − x2

k + x2
k+1 + · · ·+ x2

n .

2) For p ∈ crit+k−1f∂, simple Morse coordinates about p are coordinates (x1, . . . , xn) such that{
xn = 0 at every point of ∂M and xn < 0 in the interior of M ;
f(x1, . . . , xn) = f(p)− x2

1 − · · · − x2
k−1 + x2

k + · · ·+ x2
n−1 + xn.

3) The vector field X+ is said to be adapted to such coordinates if, near p ∈ crit+k−1f∂, it reads

X+(x1, ..., xn) = −x1∂x1 − · · · − xk−1∂xk−1
+ xk∂xk + · · ·+ xn−1∂xn−1 − xn∂xn

Then, in some such simple coordinates X+ is radial on each of the local stable/unstable
manifolds.4 When M is closed, this implies that the closure of W s(p), noted cl(W s(p)), is a
stratified set with C1 conic singularities (or for short: with conic singularities): each stratum
Σ of cl(W s(p)) is a smooth submanifold of M and the way that W s(p) approaches Σ looks like
a cone sub-bundle—in a C1 sense—of the normal disc bundle ν to Σ in M . In each fiber νx,
x ∈ Σ, the trace of W s(p) is a cone based on a similar submanifold in the unit sphere of νx
[14].5 When the considered stratum Σ is of codimension one in cl(W s(p)), the local structure
of the closure of W s(p) is that of an open book with finitely many pages whose Σ is the binding
set (see Figure 1).

2When M is closed, Harvey-Lawson [9] named such coordinates f -tame.
3So as not to confuse the coordinates and the critical point, the latter is here noted very differently.
4Saying that X+ is a gradient is correct, but it is not a gradient of f since it vanishes at a point where df

does not vanish.
5As far as we know such a claim is unknown for more general gradients.



6

y1

y2

y3

Binding set

Figure 1. dimM = 3, ind(p) = 2, open book with 3 pages. The critical point
p is not the origin of coordinates (y1, y2, y3).

In particular, if S is a submanifold of M transverse to a stratum Σ of cl(W s(p)) then S is
transverse to W s(p) near S ∩ Σ (Whitney condition A).

This result extends to the case with non-empty boundary under some mild assumption. Here
is such an assumption (Morse-Model-Transversality) which will be made in the rest of the paper.

Definition 2.3. The gradient X+ is said to fulfil condition (MMT)6 if the following is satisfied:
For every x ∈ critf ∪ crit+f∂ and y ∈ crit+f∂ , the neighborhood Uy of y in ∂M where X+ is
tangent to the boundary of M is mapped by the flow of X+ transversely to W s(x).

Since X+ is Morse-Smale, the transversality condition is satisfied along a small neighborhood
U of the local unstable manifold W u

loc(y,X
+). Then, after some small perturbation of X+ on

Uy r U which destroyes the tangency of X+ to ∂M over there, condition (MMT) is fulfilled.
Thus, condition (MMT) is generic among the positively adapted vector fields. The following
proposition can be easily proved by the same method as in [14].

Proposition 2.4. It is assumed that X+ is Morse-Smale and fulfils condition (MMT). Then
the following holds.
1) The global stable manifold W s(x) is a submanifold with boundary (not closed in general).
2) If z ∈ M belongs to the closure of W s(x), then there exists a broken X+-orbit from z to x.
The number of breaking critical points defines a stratification of this closure cl(W s(x)).
3) This stratification has C1 conic singularities.

For the remainder of this paper, we consider a generic Morse function f : M → R and a
positively adapted gradient X+. The transversality conditions Morse-Smale and (MMT) are
assumed.

The end of this section is devoted to introduce the notion of graph of a positive semi-flow
X̄. This is aimed to by-pass the following difficulty: if S is a submanifold of M and X is a
gradient the set of points of M whose positive orbit reach S can be very singular. The graph
will be a tool of desingularization.

Definition 2.5. The graph Gr(X̄) of a positive semi-flow X̄ : [0,∞)×M →M is the part of
M ×M made of the pairs (x, y) such that y belongs to the positive half-orbit of x, that is, there
exists t ∈ [0,+∞) such that y = X̄(t, x). If X is a gradient (or has no non-constant closed
orbit), this time t is unique except when x is a zero of X.

6Acronym for Morse Model Transversality.
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The graph contains the diagonal of M ×M . For a gradient semi-flow, the graph is a non-
proper (n+ 1)-dimensional submanifold, except at the points (a, a) where a is a zero of X. Its
compactification will be discussed very soon.

The first projection M ×M → M induces σ : Gr(X̄) → M which is called the source map.
The second projection induces τ : Gr(X̄)→M which is called the target map. These two maps
have a maximal rank, except at points (a, a) with X(a) = 0.

Example 2.6. Let Q : Rn → R be the quadratic form of Morse index k and rank n:

Q(x1, . . . , xn) = −x2
1 − . . .− x2

k + x2
k+1 + . . .+ x2

n .

After taking local closure, the graph of the semi-flow of ∇Q looks like, for k = 1, . . . , n, the
R-cone over an n-dimensional band (that is, ∼= Rn−1 × [0, 1]) bounded by two affine subspaces:
one is (−1,Rk−1, 0, . . . , 0)× (0, . . . , 0,Rn−k) ⊂ Rn×Rn and the other is the part of the diagonal
over {xk = −1}. For k = 0, it is similar (change Q to −Q)—see Figure 2.

{x = −1}

n = 1, k = 1 n = 1, k = 0

Figure 2.

Definition 2.7. Let S be a submanifold of M , let j : S → M denote the injection and let X
be a gradient without zeroes on S, One defines the stable manifold of S with respect to X as
the fiber product 7

W s(S,X) := lim
(
Gr(X̄)

τ−→M
j←−S

)
,

In general, W s(S,X) is a singular object. But as a consequence of what we said about the
rank of τ , we have the following.

Proposition 2.8. In the above setting, assume X fulfils the generic propety that no zero of X
lies on j(S). Then, the stable manifold W s(S,X) is a genuine submanifold of Gr(X̄) ⊂M×M .

Finally, still with the same assumptions, we state something about the compactification of
the graph Gr(X̄+) ⊂M×M . First, the diagonal of M×M and ∂M×M give rise to (singular)
boundary components of Gr(X̄+. The rest of the closure cl(Gr) := clGr(X̄+) is described in
the next proposition.

7The notation as a limit in the categorical sense has the advantage to denote the involved maps though it is
nothing but a fiber product.
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Proposition 2.9. 1) The closure cl(Gr) of Gr in M ×M is made of all pairs of points (x, y)
where y belongs to the positive orbit of x or any broken positive orbit starting from x.
2) This cl(Gr) is a stratified set. Apart from the diagonal and ∂M ×M , the strata of positive
codimension are made of pairs of points (x, y) where x is connected to y by a broken orbit
passing through a non-empty sequence of critical points in critf ∪ crit+f∂.
3) Among these strata, the codimension-one strata are made of pairs of distinct points (x, y)
where x belongs to the stable manifold W s(p) for some p ∈ critf ∪ crit+f∂ and y belongs to the
unstable manifold W u(p).8

4) The singularities of cl(Gr) are C1-conic.

Proof. The proof of this proposition is very similar to the one made in [14] concerning the
compactification of the stable/unstable manifolds of an adapted gradient. It consists—under
the Morse-Smale assumption—of looking at how the closure of a manifold with conic singu-
larities varies when it is pushed by the flow across a Morse model. The proof is the same in
the case of a closed manifold, a manifold with non-empty boundary or the graph of a positive
semi-flow. In the latter case, one starts from the diagonal at any point (x, x) and the second x
is left to follow the positive semi-flow until tending to a critical point p. So, (p, p) is a singular
point of cl(Gr) next to which two other singular strata are visible, namely (W s

loc(p)\{p})×{p}
and {p} × (W s

loc(p) \ {p}). �

3. Needed transversality

We start Section 3 recalling the not very standard notion of transversality of a finite family
of smooth maps in the setup of sources with conic singularities. Then, we specialize to the
case of the pair {Σ∗,Σ} respectively built with the unstable and stable manifolds of positive
codimension of the gradient X+. We construct smooth flows on M with useful properties of
transversality with respect to this pair (Proposition 3.8). And we end up this section with the
so much desired skip property in an infinite sequence of diffeomorphisms of M close to IdM .
This will be the main tool for getting A∞-relations from multi-intersecting invariant manifolds.

Definition 3.1. Let fj : Nj →M , j ∈ J , be a finite set of smooth maps from manifolds to M .
The family {fj}j∈J is said to be transverse if, for every subset K ⊂ J , the product map

(3.1)
∏
j∈K

fj :
∏
j∈K

Nj →M |K|

is transverse to the small diagonal of the target.
In that case, the fiber product limj∈J fj is said to be transversely defined.9 This is a smooth

submanifold of the product
∏

j∈J Nj.

Note that in the usual definition one takes K = J . In what follows, without special mention,
all spaces of smooth maps will be endowed with the C∞ topology. The same definition applies
to a family of submanifolds of M ; the maps to M are then meant to be the inclusions. We

8Observe that the index of p has no effect on the codimension of the stratum.
9Here and systematically in this paper, we use the notation lim in the categorical sense; it has the advantage,

in comparison with the fiber product notation, of noting the involved maps.



9

apply this notion to submanifolds with C1 conic singularities—See Appendix A for useful
complements.

Let G = Diff0(M) denote the connected component of IdM in the group of C∞ diffeomor-
phisms of M , equipped with the C∞ topology. Obviously, the action of G keeps ∂M invariant
but not pointwise fixed. We begin with an exercise of transversality with constraint ; we solve
it by following Thom’s idea.10

Proposition 3.2. In the setting of Definition 3.1, assume that Nj is compact with C1 conic
singularities for every j ∈ J . Let j0 ∈ J and J0 := J r j0. The family {fj}j∈J0 is assumed to
be transverse. Then, for a generic g ∈ G, more precisely for g in some open dense subset of G,
the entire family is transverse if fj0 is replaced with g ◦ fj0.

Proof. Since transversality is an open property in C1 topology and Nj0 is compact the set of
g fulfilling the transversality requirements is open in G. We then focus on denseness.

We give only a sketch of proof since the argument is classical in transversality theory. Let
K ⊂ J0; set LK := limj∈K fj and denote pK : LK →M the canonical map from the fiber product
to M . Given g0 ∈ G, we have to show that the fiber product lim(pK , g ◦ fj0) is transversely
defined for some g arbitrarily close to g0; actually, it is enough to consider g0 = IdM . After
this reduction, for short we set f := fj0 and N := Nj0 .

As usual for proving a transversality theorem with constraints, it is sufficient to prove that
the statement holds when replacing IdM with a smooth finite dimensional family in G passing
through IdM . Indeed, Sard’s theorem says that, if the statement holds for a smooth family in
the whole, it holds for almost every element in this family.

Consider the compact set A := pK(LK) ∩ f(N). One covers A by finitely many closed balls
{Bi}qi=1 of M equipped with Euclidean coordinates; and let B′i a larger ball concentric to Bi.
For a vector vi in Rn, n = dimM , small enough so that the translated ball Bi + vi remains in
the interior of B′i, one defines gvi ∈ G by the formulas

(3.2) gvi(x) =

 x+ vi if x ∈ Bi,
x if x lies outside of B′i,
and some smooth interpolation in the remaining region.

Denote by (Rn, 0) an arbitrarily small neighborhood of the origin in Rn. Define Γ : (Rn, 0)×q ×
M →M by

Γ(v1, ..., vq, x) =
(
gv1 ◦ gv2 ◦ · · · ◦ gvq

)
(x).

Its value is equal to gvi(x) when vk = 0 for every k 6= i.
For every x in A, there exists some i ∈ {1, ..., q} so that x lies in Bi; here, the partial

derivative (∂viΓ) (0, ..., 0, x) is of maximal rank n. Therefore, since {pt} ×M is transverse to
the diagonal in M ×M , one derives that the product map(

pK ,Γ ◦ (Id|(Rn,0)q , f)
)

: LK ×
[
(Rn, 0)×q ×N

]
→M ×M

is transverse to the diagonal of M × M (due to the n-dimensional parameters). By Sard’s
theorem, for almost every (v1, ..., vq) ∈ (Rn, 0)×q, the map (pK ,Γ(v1, . . . , vq, f)) is transverse to
the diagonal. This proves the denseness part of the statement. The genericity follows as said

10In the case of no constraint, Thom gave the proof of the Transversality Theorem in [24]. Then he discovered
that the same proof applies to sections of jet spaces despite the integrability constraint [25].
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at the beginning of the proof. �

We now left generalities and focus on the concrete situation we are interested in.

Notation 3.3. Denote by Σ (resp. Σ∗) the union of the stable (rep. unstable) manifolds of the
adapted gradient X+ which have a positive codimension in M .

The reason for not taking into account the critical points whose stable (resp. unstable)
manifold is n-dimensional is that transversality to them is automatic; only transversality to
their (singular) boundary is relevant.

Since X+ is Morse-Smale, we know that Σ has conic singularities [14]. Moreover, Σ is
transverse to the boundary when condition (MMT) is fulfilled, just by looking at the local
model. Note that the 0-skeleton of Σ is the union of the following subsets: crit0f and, for every
x ∈ crit+0 f∂, the intersection of the one-manifold W s(x,X+) with ∂M .

Again, Σ∗ is a submanifold with conic singularities. But this time, Σ∗ is not transverse to ∂M .
More precisely, the manifold W u(x,X+) is tangent to ∂M near the critical point x from which
it is emanating. The 0-skeleton of Σ∗ is the union of the following subsets: critnf ∪ crit+n−1f∂ .

Observe that Σ[0] and Σ∗[0] are disjoint.
By the Morse-Smale property, Σ is transverse to Σ∗, and hence, the union Σ ∪ Σ∗ is a

submanifold with conic singularities (Lemma A.3). That Σ∗ is tangent to the boundary will
not create any problem if we declare that the considered ambient isotopies are neither applied
to Σ∗ nor ∂M ; only the transversality to them is preserved.

The next important definition is given in a more general setup than the pair {Σ∗,Σ}.
Definition 3.4. Let K ⊂ M be a submanifold wtih conic singularities transverse to Σ. A
positive semi-flow (vt), or its infinitesimal generator v, is said to be of immediate transversality
to Σ relative to K if there exists some ε > 0 such that vt(Σ) is transverse to the family {K,Σ}
(or equivalently to K ∪ Σ) for every t ∈ (0, ε).11

In contrast to smooth submanifolds, the existence of an immediate transversality flow is
not obvious in presence of conic singularities. Fortunately, the translation flows defined below
provide us with a large family in which immediate transversality is a generic property. We now
explain how to pass from an “absolute” flow of immediate transversality to a relative one.

3.5. Strata and tubes. The stratum Σk, k < n, is the union ∪xW s(x,X+) for all critical
points x ∈ critk f ∪ crit+k−1f∂. One chooses:

- A compact domain Σ k ⊂ Σk containing all critical points lying in Σk.
- A compact tubular neighborhood Tk of Σ k (it is a trivial (n − k)-bundle); one specifies

that the fiber of Tk over a critical point x ∈ Σk is the local unstable manifold W u(x,X+).
- A collar Uk of the sphere bundle STk.

Note that the Morse Model with its so-called simple coordinates and the flow of X+ endow
Tk with a canonical trivialization and each fiber with a canonical affine structure. These data
are subject to the following requirements:

(1) The union T k0 := T0 ∪ ... ∪ Tk is a neighborhood of the k-skeleton of Σ.12

11Rescaling the velocity allows us to take ε = 1.
12The k-skeleton of Σ is the union of the j-dimensional strata for j ≤ k (Definition A.1).
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(2) The boundary ∂Σ k is covered by T k−1
0 and if z ∈ ∂Σ k ∩ Tj, j < k, then z ∈ Uj and

z /∈ STj. Moreover, if Tj,y is the fiber of Tj passing through z, then the fiber Tk,z is
contained in an (n− k)-dimensional affine subspace of Tj,y.

(3) The intersection Σ∩Tk is a trivial cone sub-bundle of Tk for the canonical trivialization.

We now introduce a neighborhood of Σ more manageable than the union T n−1
0 (subsection

3.5) for extending vector fields to M as we have in mind.

Notation 3.6. The preferred neighborhood of Σ, noted V (Σ), is obtained from T n−1
0 by making

slits in the following way: one first removes a small open exterior collar of STn−1 from T n−1
0 ;

then a small exterior collar of STn−2 except when it crosses Tn−1, and so on until ST1. (see
Figure 3).

Note that any germ of vector fields defined along V (Σ) extends smoothly to M without
changing the behaviour of its flow near Σ.

T2

T1

x

Figure 3. For n = 3, a sectional view of V (Σ) transverse to Σ1; only one strata
of Σ2 adheres to Σ1; the sectional view of T2 is in gray.

Definition 3.7. A germ of diffeomorphism ϕ is said to be a quasi translation if, in the preferred
neighborhood V (Σ) and for each tube Tk, it is a translation in each fiber of Tk ∩ V (Σ) except
over a small collar of ∂Σ k, the boundary of the restricted k-stratum. Over there, namely on
the domain of reduction process (subsection B.6), ϕ is the time one-map of the vector field
yielded by the so-called balanced reduction formula from the fiberwise translations of the tubes
Tj, j < k, defining ϕ.

Note that, by construction, a quasi translation is the time-one map of a vector field (which we
term alike.) Moreover, there are sufficiently many quasi translations so that the transversality
theorem to submanifolds with C1 conic singularities holds.

Proposition 3.8. Let K ⊂M be a compact submanifold with C1 conic singularities transverse
to Σ. Then the following holds for some real numbers δ > ε′ > ε > 0:

(1) There exists a quasi translation flow (ut) which is of immediate transversality to Σ: for
every t ∈ (0, δ), ut(Σ) is transverse to Σ.



12

(2) The generator u of such a flow may be generically C1 approximated13 by v generating
a quasi translation flow of immediate transversality to the pair {K,Σ}, or equivalently,
for every t ∈ (0, ε′) the image vt(Σ) is transverse to K ∪ Σ.

(3) (transversality-to-path) Given such a flow (vt) and any 0 < t1 < t2 < ε, the submanifold
vt2(Σ) is transverse to the pair {K, vt(Σ)} for every t ∈ [0, t1], that equivalently reads
vt2(Σ) t (K ∪ vt(Σ)).

It is worth noting that transversality-to-path is a very rare property. Indeed, an isotopy of
(Σt)t∈[0,1] being given, in general there is no image of Σ0 transverse to every Σt, t ∈ [0, 1]. The
third item is aimed for an iterative version of the present one (see Proposition 3.9.)

Proof.
(1) We are going to prove this statement by constructing translation flows vk on each tube Tk
inductively on k from k = 0 to k = n − 1. Then, we will discuss the gluing near the sphere
bundle STk, more precisely inside the collar Uk (notation from subsection 3.5.)

case k = 0. The intersection Σ ∩ ST0 is a compact submanifold with C1 conic singularities.
Let C := Σ ∩ T0 be the cone based on it (in each arcwise component of T0.) By Corollary B.2,

almost every vector u ∈ ~Rn generates a translation flow of immediate transversality to C.
Let u be such a vector. We are going to apply the reducing process which is explained in

subsection B.6 in order to make u fit all k-dimensional strata of Σ entering T0. Let Σk be
the k-dimensional stratum of Σ and Σ k be its selected compact sub-domain. By choice of the
fibered structure of Tk, for x ∈ Σ k ∩ T0 the fiber Tk,x with its canonical affine structure is an
affine subspace of T0. Moreover, for ` > k and y ∈ Σ` ∩ Tk,x, the fiber T`,y is an affine subspace
in Tk,x. For every x ∈ Σ k ∩ T0 one decomposes

(3.3) u = ukh(x) + ukv(x)

into its horizontal component ukh(x) tangent to Σk and its vertical component tangent to the
fiber over x. The same decomposition is carried to each point y in Tk,x ∩ T0 by parallelism of
the affine structure of T0. This is the connection induced on Tk by the affine structure of T0.

Let Wk ⊂ Σk be a collar neighborhood of ∂Σ k and Ek be the part of Tk over Wk. Let
µ : Wk → [0, 1] be a smooth function, named the balancing function, equal to 1 near ∂Σ k and
equal to 0 near the opposite side; it is lifted to Ek by the projection Ek → Wk. The balanced
reduction of u to Tk is defined as follows for every y ∈ Ek ∩ T0:

(3.4) ukµ(y) = µ(y)ukh(y) + ukv(y).

By Proposition B.8, the vector field ukv generates a translation flow of immediate transversality
to Σ ∩ Tk. By subsection B.7 and the slits which have been made for getting the preferred

neighborhood V (Σ) from ∪(n−1)
0 Tj, the different balanced reductions appearing in T0 yield to-

gether a well defined vector field in T0∩V (Σ) once u is chosen. It generates a quasi translation
flow of immediate transversality to Σ if u does (Proposition B.8.)

13 Here, “generically” means that these approximations form a countable intersection of dense open subsets
in every neighborhood of u.
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Induction step. By abuse, we neglect the domains of balanced reduction. One considers the
tube Tk ⊂M trivially fibered over Σ k and endowed with the trivial cone subbundle Σ ∩ Tk.

By induction assumption, we are given a section uk∂ of the vector bundle underlying Tk,
defined near ∂Σ k, and seen as generating a translation flow in each fiber. It is assumed to
generate a flow of immediate transversality to Σ ∩ Tk. By Proposition B.4, there is a dense
open set of sections of Tk over the whole Σ k which generate a flow of immediate transversality
to Σ ∩ Tk; the openness guaranties that some of them extend the germ of uk∂.

To complete the induction argument, we have to apply a reduction process to every T`, ` > k.
This can be done by applying the reduction process, as explained when k = 0, in each (n− k)-
disc fiber of Tk. Here, one should specify that for getting the desired immediate transversality
around a fiber which shows the coplanarity phenomenon (see Corollary B.2) one has to use a
slight generalization of Proposition B.8 which takes into account the derivatives with respect
to the base of the bundle Tk (see Condition (3.5) below.)

Note also that the balancing function attached to ` is already defined on the occasion of the
necessary passage of ∂Σ ` in T0. So, it only depends on the chosen section uk of Tk.

(2) Since transversality of ut(Σ) to K holds for every t in some open time interval containing
0, what is missing after item (1) is the transversality of ut(Σ) to K ∩ Σ in some small interval
(0, ε′). One looks at this question successively in each tube Tk while first neglecting the reduction
processes.

In T0, the issue consists of adding some more non-coplanarity conditions, namely those
involving strata of Σ and K ∩ Σ. Here, it should be noted that since K is transverse to Σ
surely K ∩ T0 is not a cone (due to the vertex of Σ in each connected component of T0.) But
a fortiori, the desired requirement will be fulfilled if K ∩ (Σ ∩ T0) is replaced with its cone in
each component of T0. So, by Corollary B.2 the desired transversality holds for an open dense
set of translations, in particular it holds for an approximation of (ut).

In Tk, k > 0, one applies the same trick in each fiber: K ∩ (Σ∩Tk,x) will be replaced with its
cone at x, noted cxK for short. By compactness of K∩Tk, for x ∈ Σ k the cone cxK varies upper
semi-continuously. Therefore, Proposition B.4 may be sligthly generalized even if the family
{cxK}x∈Σ k

is not a product. For completeness, we make explicit what replaces condition (B.5),
that is the condition for a family of translations {uθ(x)}x∈Σ k

to generate a flow of immediate

transversality of Σ to ∪x
(
cxK

)
. One of the following two conditions has to be fulfilled.

(3.5)


– The translation uθ(x) maps (Σ ∩ Tk,x) transversely to cxK in {x} × Bn−k.
– For every hyperplane H in Bn−k bitangent to Σ at y and to cxK at y + uθ(x),

the operator ∂Σku
θ|x maps the tangent space TxΣk × {0} transversely to the

codimension-one space TxΣk ×H.

As in Proposition B.4, the set of translations in Tk fulfilling condition (3.5) is open and dense
in the set of all translations in Tk. So, after exhausting all tubes, the flow of (ut) from item (1)
may be approximate to satisfy the new requirement dealing with K.
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Over the domains of reduction process, one needs a version of Proposition B.8 relative to K
and its fibered version based on condition (3.5). Its proof is similar.14

(3) If K = ∅, the statement follows directly from the one-parameter group formula of flows;
indeed, for every t ∈ [0, t1] the diffeomorphism ut maps Σ to ut(Σ) and ut2−t(Σ) to ut2(Σ) while
carrying mutual transversality.

If K 6= ∅, this is more subtle since the isotopy of t 7→ vt(Σ) ∩K is a priori not defined by
an autonomous flow. We are going to use the following elementary fact: when vt(Σ) is both
transverse to Σ and K one has vt(Σ) t (Σ ∩K)⇔ (vt(Σ) ∩ Σ) t K.

The non-coplanarity conditions involving K, namely conditions (3.5), are open in the C1

topology. Then, a quasi translation flow (vt) being chosen which satisfies (3.5) at t = 0 (that
is, for vt(Σ) = Σ) still satisfies it for a while. More precisely, we are knowing by item (2) that
vt
′
(Σ) ∩ Σ is transverse to K for every 0 < t′ < ε′. By the above-mentioned openness there

exists a positive ε < ε′ such that for every 0 < t < t+ t′ < ε we have vt(Σ)∩ vt+t′(Σ) transverse
to K. 15 Item (3) follows. . �

We now give an iterative version of Proposition 3.8. It will serve for the forthcoming skip
property which is the key point to get a proof of the A∞ relations.

Proposition 3.9. We set Σ−1 := Σ∗, Σ0 := Σ. Then there are an infinite sequence v0, v1, v2, ...
of vector fields which generate quasi translation flows (vtk), k = 0, 1, 2..., and an infinite sequence
of times 0 = t0 < t1 < t2 < ..., fulfilling the next inductive conditions where we set Σk+1 :=
v
tk+1−tk
k (Σk) when k ≥ 0:

(1)k For k > 0, the vector field vk is a generic C1 approximation of vk−1.
(2)k For every integer 0 ≤ j < k and every t ∈ [tj, tj+1], the unions Σj−1

−1 := Σ−1 ∪ Σ0 ∪
... ∪ Σj−1 and Σk+1

j+2 := Σj+2 ∪ ... ∪ Σk+1 are both transverse unions,16 and the family

{Σj−1
−1 , v

t−tj
j (Σj),Σk+1

j+2} is transverse.

(3)k For every k ≥ 0 and every t ∈ [tk, tk+1], we have vt−tkk (Σk) t Σk−1
−1 . Moreover Σk+1 is

transverse to Σk
−1.

Proof. The vector field v0 is just the v from Proposition 3.8 which generates a flow of immediate
transversality to Σ0 relative to Σ−1. For t1 positive and small enough, Σ1 := vt10 (Σ1) is transverse
to Σ−1 ∪Σ0 by item (2) in Proposition 3.8. Let us explain how the vector field v1 and the time
t2 are chosen; then the same process will be applied repeatedly.

We try to continue with v0 and choose a time t2 so that vt−t10 (Σ1) is still transverse to Σ−1∪Σ0

for every t ∈ [t1, t2]. Such a time t2 exists since this property holds at time t1 and transversality
to a fixed compact submanifold with conic singularities is open in the C1 topology. Moreover,
the same holds for every vector field in a small C1 neighborhood of v0.

14Introduce the quantitative transversality of TyC to Ty+tu(cone(K ∩ C)); and the reasoning may be led
similarly.

15In case (vt) is a translation flow the upper bound for t+ t′ has the form ε′ minus a positive linear function

of the upper bound ε of t (the first time where vt(Σ) ∩ vt+t′(Σ) is not transverse to K.) Then it holds with a
common upper bound of t and t + t′. For a quasi translation flow, it is similar.

16“transverse union” means the family of the entries of the union is a transverse family.



15

By the transversality-to-path property that v0 fulfills, Σ′2 := vt20 (Σ0) is transverse to the
family {Σ−1, vt0(Σ0)} for every t ∈ [t0, t1]. Observe that this property of Σ′2 is also C1 open
since [t0, t1] is compact. So, it is shared by all elements in some open ball B2 centered at Σ′2 in
the space of submanifolds of M with conic singularities.

Choose v1 close enough to v0 so that vt2−t11 maps Σ1 to an element in B2. By the choice of
t2, we still have vt−t11 (Σ1) transverse to Σ−1 ∪ Σ0 for every t ∈ [t1, t2]; and Σ2 := vt2−t11 (Σ1)
transverse to {Σ−1 ∪ vt0(Σ0)} for every t ∈ [t0, t1]

The new requirement, not satisfied by v0, is that Σ2 is transverse to the triple {Σ−1,Σ0,Σ1},
or equivalently, Σ2 t (Σ−1 ∪ Σ0 ∪ Σ1). This generically holds among the approximations of v0

by Proposition 3.8 (2)—the latter being applied with K = Σ−1∪Σ0 and Σ1 in place of Σ. This
completes the proof of the present proposition for k = 1.

For the induction, one notes that the properties stated in items (2)k and (3)k are open with
respect to all data entering them. Assume (1)j – (3)j are valid up to j = k−1. To the induction
assumptions we add the existence of a decreasing sequence of open balls B2 ⊃ B3 ⊃ ... ⊃ Bk,
with Σj ∈ Bj, where every element of Bk (in place of Σk) fulfills (2)k−1.

So, vk−1, tk, Σk and Bk are known; we have Σk = v
tk−tk−1

k−1 (Σk−1) which belongs to Bk. One

extends this flow up to a time tk+1 > tk such that Σ′k+1 := v
tk+1−tk
k−1 (Σk) still belongs to Bk. The

ball Bk+1 is centered at Σ′k+1, small enough for being included in Bk and such that each of its
elements—in place of Σ′k+1—fulfills the transversality conditions (2)k.

As we did when k = 1, by Proposition 3.8 one may choose a generic C1 approximation vk of
vk−1 so that it generates a flow immediately transverse to Σk relative to Σk−1

−1 . In particular,
Σk+1 is transverse to Σk

−1. One checks conditions (1)k − (3)k are valid, and hence, the proposi-
tion holds recursively. �

Definition 3.10. Let gk := (g1, . . . , gk) be a finite sequence of k elements in group G :=
Diff0(M). This sequence is said to be transverse if the family {Σ∗,Σ, g1(Σ), . . . , gk(Σ)} is
transverse in the sense of Definition 3.1. This property will be noted Pk ⊂ G×k.17 An infinite
sequence in G is said to be transverse if every finite subsequence is transverse.

By iteration of Lemma A.2, Pk is a C1 generic property. This is also an open property by
the compactness of Σ and Σ∗.

Definition 3.11. A sequence (g1, . . . , gk) ∈ Pk is said to have the skip property if for every
1 ≤ j ≤ k there is given a path (gtj)t∈[0,1] from g0

j = gj to g1
j = gj−1 such that for every t ∈ [0, 1]

the sequence (g1, . . . , gj−2, g
t
j, gj+1, . . . , gk) is transverse, that is, it lies in Pk−1. Here, it is meant

that gj−1 = IdM when j = 1.

One should say that the skip property is a subset P skip
k in P

[0,1]
k . By the compactness of [0, 1],

the skip property is C1 open: it is preserved by perturbation in the C1 topology of the elements
in Pk and their associated paths.

If a sequence has the skip property any consecutive subsequence is so since the latter has less
transversality requirements. Therefore, by induction on r we get the following.

Corollary 3.12. If r terms are removed from a sequence (g1, . . . , gk) which has the skip property
then the resulting sequence is isotopic to (g1, . . . , gk−r) in Pk−r.

17We identify G×k with the set of sequences of k elements in G.
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The existence of sequences with the skip property is stated and proved below.

Proposition 3.13. There exists an infinite sequence (g0 = IdM , g1, g2, . . . , gk, . . .) in G which
has the skip property.

Proof. This is a direct application of Proposition 3.9. The latter provides us with sequences of
flows (v0)t, ..., (vk−1)t, ... and times t1, t2, .... Then we set g1 = vt10 , g2 = vt2−t11 vt10 and so forth.
The required isotopy gtj consists just to follow the flow (vtj−1) backwards from the time tj to
the time tj−1. �

4. Multi-intersections towards A∞-structures

We now turn to A∞-structures for which we refer to B. Keller [12]. In ([8]), K. Fukaya had
proposed the construction of such structures on the Morse complexes of a closed manifold. We
adapt his ideas to the case where M is a manifold with a non-empty boundary.

The main point is to describe multi-intersections by trees. First, we are going to define
the trees under consideration, that we name Fukaya trees.18 We emphasize that no length is
attached to the edges.

For us, a Fukaya tree T ∈ Td is just a combinatoric object which will be used to construct
some (non-proper) submanifolds in products of M by itself k times, noted M×k. These will be
transversely defined (in the sense of Definition 3.1) and their closure will have conic singulari-
ties. These manifolds will depend on the chosen decoration of T . Finally, if g∞ is a convenient
infinite sequence in G, a g∞-standard decoration of T will allow us to define (multi)-intersection
numbers.

Definition 4.1. Let d be a positive integer. A Fukaya tree T of order d is a finite rooted planar
tree with d leaves which are totally ordered.

This may be thought of as an isotopy class of proper embeddings into the closed unit disc
D. The end points of T (the root and the leaves) lie in ∂D; the leaves are ordered clockwise in
the complement of the root in ∂D. By a vertex we mean an interior vertex; it is required to
have a valency greater than 2. An edge is said to be interior if its two end points are vertices.

Each edge is oriented from the root to the leaves. If v is a vertex, the edges which have v
as origin are the branches of T at v. The edge starting from the root is named the trunk ; it is
noted eroot(T ). Its upper end point will be noted vroot(T ).

Let Td be the finite set of Fukaya d-trees. Though there is no topology on Td, a Fukaya tree
will be said to be generic if every vertex has valency 3; of codimension-one if all vertices have
valency 3 except one which has valency 4.

Definition 4.2.
1) The ordered set of leaves in a Fukaya tree T is denoted by L(T ). Let T0 and T1 be two Fukaya
trees. A Fukaya embedding j : T0 → T1 is an injective, non surjective, simplicial map which

18We name these trees Fukaya trees, instead of Morse trees, for two reasons. First one speaks today of the
Fukaya Morse theory and second we emphasize that the time of the considered flows is never involved in our
approach.
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sends L(T0) to a consecutive subset of L(T1) increasingly. The image j(T0) is called a Fukaya
subtree of T1.
2) If T0 is a Fukaya subtree of T1, the Fukaya tree obtained by erasing T0 except its trunk is
called the quotient tree of T1 by T0 and is denoted by T1/T0.

Topologically, T1/T0 is really a quotient since all edges above the trunk of T0 are identified to
one point, namely vroot(T0). Moreover, T1/T0 is canonically a Fukaya tree. If T1 is represented
in D there is a unique way up to isotopy to put vroot(T0) on ∂D while keeping the other leaves
fixed.

4.3. Labelling vertices and edges.
Given a tree T ∈ Td, a vertex is labelled vi,j if the leftmost (resp. rightmost) ascending

monotone path starting from it in T reaches the i-th leaf (resp. the j-th leaf). If h is the
maximal number of edges in a path ascending from vi,j to a leaf, this vertex is said to be of
generation h.

An edge e ⊂ T with an origin v is labelled ejh(T ) (or ejh if no possible confusion) if the
following holds.

- The leftmost monotone ascending path containing e and starting from v terminates in
the j-th leaf.

- h is the maximal number of edges in every ascending path from v containing e. Then,
e is said to be of generation h.

Keeping only the edges of generation less than h+ 1 and duplicating if necessary the vertices
of generation h, we get a collection of disjoint Fukaya subtrees. This can be seen as embedded
in the upper half-plane, the roots being ranked in a precise order on the horizontal axis. These
trees form a forest of height h.

e11

e21

e31
e41

e51

e23

e32

e61

e52

Figure 4. A height-3 forest with 6 leaves

Definition 4.4. Let g∞ := (g1, g2, ...) be any infinite sequence in G. The g∞-standard dec-
oration Dg∞ of a Fukaya tree T with d leaves consists of a collection of d vector fields of the

form Xj := (gj−1)∗X
+, j = 1, . . . , d, with g0 = IdM . The vector field Xj decorates the edge ejh,

independently of h.

The vector field Xj is an adapted gradient of the function fj := f ◦ (gj−1)−1. The reason
for moving the critical points, and hence f , is this. If the dimension of W s(x) is smaller than
the half of dimM there is no approximation X ′ of X+ fixing the zero x and putting W s(x,X ′)
transverse to W s(x,X+).



18

4.5. Multi-intersection modelled on T : a set theoretical construction.
We are given a generic Fukaya d-tree T and d entries (x1, . . . , xd) where each xi belongs to

critf ∪ crit+f∂, with possible repetitions. The entries decorate the leaves of T clockwise. The
edges are decorated by the g∞-standard decoration Dg∞ . We aim to construct, by means of a
precise recipe, a smooth submanifold

(4.1) I(T,Dg∞ , x1, . . . xd) ⊂M×n(T ) where n(T ) = d− 1

This set will be called the multi-intersection modelled on T or the T -intersection of the given
entries with respect to the given decoration.

Note that n(T ) − 1 = d − 2 is equal to the number of interior edges. The reason for this
dimension will appear along the inductive construction. We first give the construction of the
T -intersection in the Set category; smoothness will be discussed later on.

Scheme of the induction. It consists of associating some subset (of a certain product
M×k) with each edge and each vertex of T in the order specified below—for brevity, neither
the decoration nor the entries are noted. Define inductively the following subsets (depending
on the chosen entries):

(1) W s(ej1) ⊂M for the edge ej1 which ends at the j-th leaf of T , j = 1, . . . , d.
(2) I(v) ⊂M for every generation-one vertex; such a vertex reads v = vj,j+1 for some j.

(3) W s(ej2) ⊂M ×M for every generation-2 edge ej2 of T .19

(4) The multi-intersection I(v) ⊂ M×n(v,T ) for every vertex of generation h > 1 where
n(v, T )− 1 is the number of interior edges of T above v.

(5) The stable set W s(e) ⊂ M×n(e,T ) for every edge of generation h + 1 where n(e, T ) =
n(v, T ) + 1 if v denotes the upper vertex of e. Finally, n(e, T ) − 1 is the number of
interior edges above the lower vertex of e.

These fomulas will hold whatever the valency of the vertices.

Step 1. The edge ej1 is decorated with the vector field Xj = (gj−1)∗X
+ from the decoration

g∞-standard decoration. The entry xj determines the zero x′j := gj−1(xj) of Xj. One defines:

(4.2) W s(ej1) := W s(x′j, Xj), that is, the stable manifold of x′j with respect to Xj.

Step 2. Such a vertex v ∈ T is the common vertex of edges ej1 and ej+1
1 . We set

(4.3) I(v) := W s(ej1) ∩W s(ej+1
1 ), a subset of M.

Here, n(v, T ) = 1 as announced in item (4).

Step 3. Let ej2 be any edge in T of generation 2, that is, ej2 is the trunk of a subtree of T with
two leaves which are numbered j and j + 1. Its upper vertex v is interior to T . By Step 2, we
have I(v) ⊂ M . The edge ej2 is decorated by Xj; its flow is X̄j. One takes the graph of this
flow Gr(X̄j) ⊂ M ×M and its two maps σj and τj, respectively the source and target map.

19This item is just for the comfort of the reader.
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e1 e2

e0

v1 v2

v0
T (e2)

Figure 5.

We define the stable set W s(ej2) as the following fiber product

(4.4) W s(ej2) = lim
{
Gr(X̄j)

τj−→M ←↩ I(v)
}
.

Here, n(e, T ) = 2 as announced.

Step 4. Let v0 be a vertex of generation h. It is the origin of two edges e1, e2 ending at v1

and v2 respectively (Figure 5); at least one of these edges is of generation h and the other one
is not of higher generation. Let Xj1

and Xj2
be their respective decorations.

For the induction, assume that for every interior edge e of generation less than h + 1, the
stable set W s(e) is already defined as a subset of M×n(e,T ). In particular, W s(e1) and W s(e2)
are subsets in their respective products M×n(e1,T ) and M×n(e2,T ). Then, we define the multi-
intersection I(v0) by the following fiber product

(4.5) I(v0) := lim
{
W s(e1)

σj1−→M
σj2←−W s(e2)

}
.

One checks that this fiber product is contained in the product of a number of factors of M
equal to the total number of interior edges above v0. This is the announced formula.

For the next step, note that the first projection p1 : M×n(v0,T ) → M restricted to I(v0) is
just the common value of σj1 and σj2 .

Step 5. Now, consider the edge e0 ending at v0 from Figure 5. It is decorated with Xj1
by

definition of a g∞-standard decoration. Actually, this is an arbitrary edge of generation h+ 1.
As in Step (3), its stable set is defined by the following fiber product

(4.6) W s(e0) = lim
{
Gr(X̄j1

)
τj1−→M

p1←− I(v0)
}
.

Again, the ambient product of M by itself has the announced number of factors, namely n(e0) =
n(v0) + 1. This completes the induction argument and the set theoretical construction.

In particular, we can define the T -intersection by

(4.7) I(T,Dg∞ , x1, . . . xd) = I(vroot) ⊂M×n(T )

That solves the problem raised in the beginning of subsection 4.5, at least in the Set category.
�
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Remark 4.6. What we have just explained works as well for every Fukaya trees, not only the
generic trees. Only the fiber product diagrams have more arrows.

4.7. Smoothness of multi-intersections and stable sets.
Recall Σ is the union of stable manifolds W s(x,X+) where x ranges over crit∗f ∪ crit+∗−1f∂

with ∗ < n. And Σ∗ is the union of unstable manifolds W u(x,X+) where x ranges over
crit∗f ∪ crit+∗−1f∂ with ∗ > 0. In both cases, every stratum is of positive codimension.

Definition 4.8. A sequence gd of d elements in G is said to be admissible if it satisfies the
following.

(1) The family {Σ∗,Σ, g1(Σ), . . . , gd(Σ)} is a transverse family.
(2) For every Fukaya tree T with d + 1 leaves, decorated with the gd-standard decoration,

and for every family of edges {ei}i∈1,...,k in T where no pair of edges lies on a monotone
arc of T the corresponding source maps σi : W s(eih) → M form a transverse family
which is transverse to Σ∗.

In that case, Dgd is said to be an admisible decoration of T . The set of admissible sequences
of length d is noted Ad. For gd−1 ∈ Ad−1, one defines Ad(gd−1) := {g ∈ G | (g1, . . . , gd−1, g) ∈
Ad}.

If such a sequence exists, which will be discussed in the next proposition, then by following
the induction from subsection 4.5, one inductively proves that all multi-intersections I(v) and
stable sets W s(e) in T are transversely defined in the sense of Definition 3.1. Moreover, they
all are transverse to Σ∗. This is summarized in Corollary 4.10.

About their compactification, the same induction, by applying the lemmas from Appendix
A about fiber product of manifolds with conic singularities, tells us that these non-proper
submanifolds compactify with conic singularities.

Proposition 4.9. For every positive integer d and every gd−1 ∈ Ad−1, the set Ad(gd−1) is open
and dense in G.20

Proof. We are going to prove this statement by induction on d. Let us begin with d = 1. It
deals with the unique tree with two leaves. Here, there is no multi-intersection other than the
usual intersection of the family {Σ∗,Σ, g1(Σ)}. In other words, item (2) from Definition 4.8
reduces to item (1). And A1 is an open dense subset of G (for instance by Proposition 3.2).

Assume the statement is true for every d′ < d and let us prove it for d; this deals with the
trees having d+ 1 leaves. Since there are only finitely many of them, it is sufficient to give the
proof for a fixed tree T . There is a filtration of T by a decreasing sequence of Fukaya subtrees
T ⊃ Tj1 ⊃ Tj2 ⊃ · · · ⊃ Tjr ⊃ ed+1

1 ; here, j` is the label of the leftmost leaf of Tj
`
.

Let L be the monotone path from the root to the (d + 1)-th leaf of T . We have a col-
lection of disjoint of subtrees T ′1, T

′
j1
, . . . , T ′jr , rooted on the successive vertices of L; they

are labelled with the label of their leftmost leaf. So, their roots are the successive vertices
v1,d+1, vj1 ,d+1, . . . , vjr ,d+1. We do not care of the height of T ′j

`
; so, we label its trunk only with

its upper script ej` . If gd−1 is the sequence obtained from gd by erasing the last term, then the
gd−1-standard decoration decorates all edges of T except ed+1

1 .

20In Section 5, we will prove Proposition 5.4 which is stronger than the present one.



21

T ′1 T ′j1
ed+1

1

1 j1 jrjr−1j2

root(T )

v1,d+1

vj2 ,d+1

vj
r−1

,d+1 = v̌j
r−1

e1
ej1

ej2

ějr

Figure 6. The thick black line represents L ⊂ T .

Possibly, L contains only one vertex, namely v1,d+1. This case immediately reduces to the
case d = 1 of a tree with two leaves. We do not discuss it anymore. If d > 1, by collapsing the
edge ed+1

1 to its root and ignoring this point as a vertex one gets a new tree Ť with d leaves. By
assumption, its gd−1-standard decoration fulfills all transversality requirements. The vertices
v1,d+1, vj1 ,d+1, . . . , vjr−1,d+1 are still there, with a different right label that we are going to neglect;

as vertices of Ť we denote them v̌1, v̌j1 , . . . , v̌jr−1
. The right branch issued from v̌jr−1

in Ť is a

new branch whose label is ějr .
We have to understand how the graft of the last branch ed+1

1 affects the multi-intersections
at these vertices, that is, how we derive I(vj

`
,d+1) from I(v̌j

`
) for every ` = 0, . . . , r − 1 (with

the convention j0 = 1). And what about I(vjr,d+1)—which does not exist in Ť—and the
transversality to Σ∗? The other multi-intersections and stable manifolds coming from Ť are
kept without any change.

The manifolds W s(ej`), ` = 0, . . . , r−1, including W s(ějr), and their source maps σj
`

valued
in M (noted σ for short) are transversely defined by the decoration gd−1-standard, whatever
the decoration of the last branch. This family of maps is transverse. Then the question is
to find g ∈ G so that this family remains transverse when adding one particular more map,
namely the inclusion of g(Σ).

First, we prove that I(vj`,d+1) is transversely defined for a generic g ∈ G. We consider the
diagram ∆(j`) whose limit (or iterated fiber product) lim ∆(j`) is exactly the definition of the
multi-intersection I(v̌j`).

W s(ej`)

σ

��

W s(ej`+1)

σ

��

· · · W s(ejr−1)

σ

��

W s(ějr)

σ

��
Gr(X̄j`+1

)

σvv τ ))

Gr(X̄j`+2
)

σuu τ &&

· · · Gr(X̄jr)

τ ((σvv
M M M · · · M M

Figure 7. Diagram ∆(j`)
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Note that the rightmost fiber product just produces W s(ějr). Indeed, the graph of the flow
and the stable manifold use the same vector field Xjr .

21 This is a trick that allows us to graft
W s(ed+1

1 ) on W s(ějr). The limit of ∆(j`) is equipped with a map f` : lim ∆(j`) → M to the
rightmost M in the bottom line of the diagram. In this language, the requirement we want is
the following.

(4.8) The inclusion g ·W s(ed+1
1 , X+) ↪→M is transverse to f`.

By Proposition 3.2 this property is generic in G. The same holds if one requires the transversal-
ity to the family of all maps f`, ` = 0, . . . , r. Of course, one has also to add all the requirements
of item (2) in Definition 4.8 involving edges which do not meet the line L—all of them state
transversality of family of source maps. The induction argument holds. �

Corollary 4.10. For every admissible sequence gd, every Fukaya tree T with d + 1 leaves,
and entries (x1, ..., xd+1), then the multi-intersection I(T,Dgd , x1, ..., xd+1) ⊂ M×n(T ) is trans-
versely defined. Its compactification has conical singularities. Moreover, this multi-intersection
is mapped transversely to Σ∗ through the first projecton p1 : M×n(T ) →M . �

Proposition 4.11. (Dimension formula) Given a generic Fukaya tree T with d leaves en-
dowed with an admissible decoration and given entries (x1, . . . , xd), we have

(4.9) dim I(T, x1, . . . , xd)− n =
∑

1≤i≤d

(dimW s(xi)− n) + d− 2.

Proof. If we consider the Fukaya tree T0 where all interior edges are collapsed, formula (4.9)
where d− 2 is erased (as there is no interior edge) reduces to the usual dimension formula for
an intersection of d submanifolds: it is additive up to the shift by the ambient dimension. Each
time an interior edge is created, the dimension increases by 1 since some flow is needed which
generates a stable set. �

4.12. Multi-intersection as a chain.
In order to see the above multi-intersection I(T, x1, . . . , xd) as a chain in the Morse complex

C+
∗ (f) whose degree is dim I(T ), we have to define the coefficient < I(T, x1, . . . , xd), xroot > for

every test data xroot ∈ critf ∪ crit+f∂ of degree equal to dim I(T ).22

We recall the edge eroot is decorated with the vector field X+. Moreover, by Corollary
4.10 the projection p1 : I(T ) → M to the first factor of M×n(T ) is transverse to Σ∗, and
hence, to W u(xroot, X

+). By the choice of the degree of test data, the codimension of the
unstable manifold W u(xroot, X

+) is equal to dim I(T, x1, ..., xd). Transversality implies the
intersection I(T, xroot) := p−1

1 (W u(xroot, X
+)) is 0-dimensional. Since its compact closure has

conic singularities, this intersection is a finite set.
Being transversely defined in an oriented manifold, I(T ) is oriented, once an orientation

has been chosen for every stable manifold of critical point. In the same time, the unstable

21Of course, this construction of I(v̌j`) has an extra useless factor M .
22Here, the decoration is implicit and the entries are mentioned only when it seems useful for understanding.
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manifolds are co-oriented. Therefore, each point in I(T, xroot) has a sign which allows us to
define < I(T ), xroot > as the algebraic counting of elements in this finite set.

The map < I(T, x1, . . . , xd),− > from test data of the right degree to Z will be called the
T -evaluation map. It depends on the admissible finite sequence gd−1 chosen in the group G.

5. Coherence

The A∞-structure that we want to reach requires to consider all Fukaya trees, generic or
not, and to decorate them in a coherent way. We give the precise definition right below.
The present section consists of mixing the skip property from Section 3 and the admissibility
condition (Definition 4.8.) More precisely, the issue is to prove an analogue of Proposition 3.9
in the setting of trees with admissible decorations.

We first fix the setup for coherence. Given an infinite sequence g∞ in the group G =
Diff0(M), a Fukaya tree T and a subtree T0 (Definition 4.2), then the g∞-standard decoration
of T induces on T0 a decoration DT (T0) which, in general, differs from its own g∞-standard
decoration Dg∞(T0); the labelling of this latter is consecutive and begins at 1. Similarly, the
quotient T/T0 has also a decoration D(T/T0) inherited from T which in general is not g∞-
standard; the shrinking of T0 makes some gap in the decorating sequence.

Definition 5.1. (provisional) 1) Two admissible decorations of T are said to be isotopic if
both lie in the same arcwise connected component of admissible decorations.

2) A sequence gd is said to be coherent if it is admissible (that is, gd ∈ Ad in the sense
of Definition 4.8) and, for every Fukaya tree T with d + 1 leaves and every subtree T0, the
decorations DT (T0) and D(T/T0) inherited from Dgd(T ) are both isotopic to their respective
own gd-standard decoration.

An infinite sequence g∞ is said to be coherent if its finite subsequences gd are coherent for
every d.

These two examples, DT (T0) and D(T/T0), are examples of pruned trees in the sense of the
next definition.

Definition 5.2. A pruned tree is a tree with k leaves and whose rightmost leaf is labelled ` > k;
that is, the labelling is not consecutive from 1 to k. It is said to be a pruned tree with ` leaves.

From this point of view, if T0 is a Fukaya subtree of T with no leaf labelled 1, then DT (T0)
looks as a particular case where the pruning reads [1, r). In contrast, if 1 is the label of the
leftmost leaf of T0 the pruning is entirely made on the right of T and has no effect on the
decoration of T0; it will be said to be a useless pruning. The notion of admissibility extends to
the pruned trees.

Definition 5.3. A sequence gd of diffeomorphisms of M isotopic to IdM is said to be coherent
if the following two conditions are fulfilled:

(1) for every tree with d + 1 leaves, pruned or not, the (induced) gd-standard decoration is
admissible;

(2) if such a tree is pruned, its induced decoration is isotopic to its own gd-standard deco-
ration among the admissible decorations.

An infinite sequence g∞ is said to be coherent if its finite subsequences gd, consecutive from
1, are coherent for every d.
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Proposition 5.4. There exists a coherent infinite sequence of diffeomorphisms of M whose
restriction to the preferred neighborhood V (Σ) of Σ in M is made of quasi translations.

Proof. This will be proved by an induction on d starting at d = 1. It is somehow a combination
of Proposition 3.13 about the skip property and Proposition 4.9 about admissibility. For d = 1,
there is no pruning; so, the statement reduces to transverse intersection.

As for Proposition 3.13 we use quasi translation flows which are provided to us by Proposition
3.8. Assume we have a sequence gd−1 whose elements are quasi translations g1 = vt10 , . . . , gd−1 =

v
(td−1−td−2)
d−2 which form a coherent sequence of length d−1. Since the transversality requirements

are open conditions some time td > td−1 is available.
But increasing by 1 the number of leaves imposes to satisfy new transversality requirements

which make necessary to approximate the flow vd−2 by a suitable vd−1 (compare to the proof
of item (2) from Proposition 3.8.) The new requirements in question are essentially those
resulting from diagrams like ∆(j`) (see Figure 7). Here, it should be noted that the family of
quasi translations is reach enough for providing us with finite dimensional families which are
submersive onto the preferred neighborhood V (Σ). Therefore, the transversality theorem to a
singular map is available among quasi translations.

At this point, we have a new proof of Proposition 3.8). But working with flows provides
us with the so-called transversality-to-path (item (3) from Proposition 3.8.) Therefore we get
the skip property in the context of Fukaya tree admissibility, which is the same as coherence
for pruned trees with gap of length one. As in Corollary 3.12, coherence for general prunings
follows. �

6. Transition

Proving A∞-relations in Section 8 requires to analyse the transition phenomenon from I(T ′)
to I(T ′′), where T ′ and T ′′ are two “generic” Fukaya trees with d leaves on each side of a
“codimension-one stratum”23 in the space Td of Fukaya trees with d leaves (cf. just after Defi-
nition 4.1).

6.1. Setting of transition. We consider two Fukaya trees T ′ and T ′′ which differ only in the
star of v (see Figure 8). The intermediate Fukaya tree T has exactly one vertex v whose valency
is 4. Up to isotopy, T ′ and T ′′ are the only two possible deformations from T to a generic tree.
The edge e′ (resp. e′′) is collapsed in T ′ → T (resp. T ′′ → T ). The counting of interior edges
gives n(T ′) = n(T ′′) = n(T ) + 1.

Since Proposition 5.4 applies to trees, generic or not, if g∞ = g1, g2, . . . is an infinite coherent
sequence in the group G then the sequence of vector fields

X+, g1∗X
+, . . . , g(d−1)∗X

+

is a sequence of coherent gd−1-standard decorations common to T ′, T and T ′′ where gd−1 is
the beginning subsequence of length d in g∞. In the next proposition I(T ′), I(T ), I(T ′′) will
denote the respective multi-intersections at the vertex vroot, right above their common root:

23This is somehow abusive since no topology has been defined on Td; but it could have been defined.
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the above decorations are implicit and the entries are arbitrary critical points in critf ∪ crit+f∂
with possible repetition.

e1

e2

e3

v

v0v0

T ′ T

v

v0

T ′′

ve′
v′

v1 v2

v′′

e′′

v3

Figure 8.

Proposition 6.2. In this setting, the multi-intersection I(T ) has a natural smooth embedding
j′ : I(T ) → I(T ′), respectively j′′ : I(T ) → I(T ′′)), as a boundary stratum. These embeddings
extend to the closure cl

(
I(T )

)
in a way compatible with the stratifications. Then, I(T ′) ∪

I(T )
I(T ′′)

is a (piecewise smooth) manifold which is equipped with a natural stratified compactification.

Note this amalgamation is not contained in M×(n(T )+1). It can only be piecewise immersed
into that, with a fold along I(T ).

Proof. It is sufficient to focus on the subtrees T (v0), T ′(v0) and T ′′(v0) rooted at v0 (Figure
8). Since T ′ and T ′′ play the same role with respect to T , we look only at T (v0) and T ′(v0).

On the one hand, the multi-intersection I(v, T ) is contained in M×n(v,T ) where n(v, T )− 1 is
equal to the number of interior edges of T lying above v. We have

(6.1) I(v, T ) =

(
W s(e1)×

M
W s(e2)

)
×
M
W s(e3) ,

where the fiber product is associative. On the other hand, I(v, T ′) is contained in M×n(v,T ′) and
the graph Ge′ of the semi-flow associated with the decoration of e′ is contained in the product
of the first two factors of M×n(v,T ′). Thus, there is a—partially—diagonal map

(6.2)

{
J : M×n(v,T ) → M×n(v,T ′)

(x, y, z, . . .) 7→ (x, x, y, z, . . .)

Observe that I(v′, T ′) is canonically isomorphic to W s(e1)×
M
W s(e2) the amalgamation being

made through the source map σ of the respective factors—actually the projection to the first
factor. Therefore, we have:

(6.3) I(v, T ) = J−1

((
Ge′ ×

M
I(v′, T ′)

)
×
M
W s(e3)

)
.
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As a consequence, J induces the desired embedding j′, which is a boundary because the diag-
onal is a boundary of Ge′ . �

7. Orientations

The matter of orientation is a question of Linear Algebra. Some conventions have to be
chosen.

7.1. Orientation, co-orientation and boundary.
1) Let E be a vector subspace of an oriented vector space V . Let ν(E, V ) be a complement to
E in V . Then, the orientation and the co-oriention of E will be related as follows:

(7.1) or
(
ν(E, V )

)
∧ or(E) = or(V ).

2) Let E be a half-space with boundary B. Let ε be a vector in ν(B,E) pointing outwards, where
ν(B,E) is a complement to B in span(E). Then, the orientations of B and E will be related
as follows:

(7.2) ε ∧ or(B) = or(E).

When E is oriented, this orientation of B is called the boundary orientation; it is denoted by
or∂(B,E); one also says that B is the oriented boundary of E. Notice that, when E ⊂ V , the
choices 1) and 2) are compatible if we choose ν(B, V ) = ν(E, V )⊕ εR.

7.2. Orientation and fiber product. Let E1, E2, V be three oriented vector spaces and, for
i = 1, 2, let fi : Ei → V be a linear map. Assume that f1× f2 : E1×E2 → V × V is transverse
to the diagonal ∆. Then the fiber product E12 := E1×

V
E2 is well-defined as the inverse image

of ∆ by f1 × f2.
The first factor of V × V is seen as a complement to ∆ in V × V . So, the orientation of V

defines a co-orientation of the diagonal. Transversality to ∆ yields a canonical isomorphism
ν(E12, E1 ×E2) ∼= ν(∆, V × V ). Thus, E12 is co-oriented in E1 ×E2. Eventually, it is oriented
according to (7.1).

Proposition 7.3. In the case when a fiber product with three factors is defined, the orientation

is associative, that is:

(
E1×

V
E2

)
×
V
E3 and E1×

V

(
E2×

V
E3

)
have the same orientation.

Proof. It is sufficient to look at the small diagonal δ3 in V × V × V . In the first case it is seen
as the diagonal of ∆×V and in the second case it is seen as the diagonal V ×∆. In both cases,
its co-orientation is induced by the orientation of the first V × V . �

In the setting of subsection 7.2, we have the following formulas.

Proposition 7.4. 1) Let E1 be an oriented linear half-space with oriented boundary B1 and let
E2 be an oriented vector space. Assume that the restriction f1 × f2|(B1 × E2) is transverse to
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∆. Then, the fiber product B12 := B1×
V
E2 is the boundary of E12 and its orientation coincides

with the boundary orientation, that is:

(7.3) or∂ (B12, E12) = or

(
B1×

V
E2

)
.

2) Let E2 be now an oriented linear half-space with an oriented boundary B2 and let E1 be an
oriented vector space. Assume that the restriction f1 × f2|(E1 ×B2) is transverse to ∆. Then,
the fiber product B12 := E1×

V
B2 is the boundary of E12. The orientations are related as follows:

(7.4) or∂ (B12, E12) = (−1)dimE1or

(
E1×

V
B2

)
.

Proof. In both cases the co-orientation of B12 in the boundary ∂ (E1 × E2) is induced by the
co-orientation of the diagonal ∆. So, the only difference depends on the boundary orientation of
∂ (E1 × E2). In the first case, the boundary orientation is the product orientation or∂(B1, E1)∧
or(E2). In the second case, we have:

or∂ (∂(E1 × E2), E1 × E2) = (−1)dimE1or(E1) ∧ or∂(B2, E2) .

�

Of course, all of that was previously said in the linear case applies word to word in the
non-linear case to fiber products of manifolds with boundary when they are defined, that is,
under some transversality assumptions. The intersection of two transverse submanifolds is a
particular case of the previous discussion.

Orientation and graph of a semi-flow. Let e be an edge (interior or not) in a decorated
Fukaya tree (T,D) and let Xe be the gradient decorating e. Let Ge be the graph of its positive
semi-flow X̄e. The source map σe makes Ge a [0,+∞)-bundle over M . By convention, Ge will
be oriented like or([0,∞)) ∧ or(M). Recall also the target map τe : Ge →M, (t, x) 7→ X̄ t

e(x).

Proposition 7.5. Let z ∈ critf ∪ crit+f∂ and let H be the codimension-one stratum in the
closure of Ge ⊂ M ×M made of orbits that are broken at z.24 Denote by Ẇ s(z) the stable
manifold punctured at z; and similarly for the unstable manifold Ẇ u(z). Then we have

(7.5) H = Ẇ s(z)× Ẇ u(z)

as oriented manifolds where H is oriented as a boundary component of Ge. Moreover, the right
handside of (7.5) is a sub-product of M ×M .

Proof. First, recall that W u(z) is oriented arbitrarily; it is also co-oriented so that
co-or(W u(z)) ∧ or(W u(z)) = or(M). By convention the stable manifold is oriented by the
co-orientation of the unstable manifold. Thus, the right hand side of (7.5) has the orientation
of M .

Now, take a pair (x, y) ∈ Ẇ s(z) × Ẇ u(z) and a small ε > 0. Set a = x + ε ~zy in the affine
structure of the Morse model about z. The orbit of a intersects the affine line y+R ~zx in exactly

24See Proposition 2.9 item 3).
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one point a′ at some time t′; we have X̄ t′
e (a) = a′. So, for some small enough δ and 0 < ε < δ,

we have a collar map

C : (0, δ)× Ẇ s(z)× Ẇ u(z) −→ Ge

(ε, x, y) 7→ (a, a′)

which extends to a diffeomorphism {0} × Ẇ s(z) × Ẇ u(z) ∼= H. By a computation in the
Morse model, it is seen that, fixing ε, the map τe ◦ Cε : (x, y) 7→ a′ is orientation preserving.
Moreover, making ε decrease (which is the outgoing direction along the boundary) makes t′

increase. Altogether, we have the desired isomorphism of orientations. �

Orientation and multi-intersection.
Let T be a generic tree with d leaves, an admissible decoration D and entries x1, ..., xd.

Here we consider the case where e is the trunk of T (see right after Definition 4.1). Suppose
z ∈ crit∗f ∪ crit+∗−1f∂ has a degree (that is its value of ∗ = dimW s(z)) which is equal to
dim I(T,D, x1, ..., xd). Let σe : Ge →M be the source map.

Then z determines a codimension-one stratum H (possibly empty), made of orbits broken at
z, in the closure of W s(e) ⊂M×n(e). This H is mapped by σe transversely to the unstable man-
ifold W u(z) since the decoration is admissible. By the dimension assumption, the intersection
σ−1
e (W u(z)) ∩H is made of a finitely many signed points.

Definition 7.6. The sum µ(z) of the above signs is named the (algebraic) multiplicity of H
as a boundary component of W s(e). It is also the coefficient of z in the chain represented by
I(T, x1, ..., xd) (an admissible decoration being implicit—see subsection 4.12).

Finally, let T0 be a strict sub-tree of T with k leaves, let e be the trunk of T0, an interior
edge of T . This time, z is assumed to generate a codimension-one stratum H in the closure of
W s(e, xj+1, ..., xj+k) where j is the label of the leaf which lies just to the left of the leaves of T0.

Proposition 7.7. Consider the above setting. Then H contributes to a boundary stratum in
the closure of the multi-intersection I(T ) with the multiplicity (−1)εjµ(z) where

(7.6) εj = n+ j − 1 +

j∑
i=1

(dimW s(xi)− n) .

Note the difference between Definition 7.6 and Proposition 7.7: the breaking of orbits takes
place just below (resp. above) the considered multi-intersection in the first (resp. second) case.
In the latter, H contributes to the differential ∂+ of the chain that I(T, x1, ..., xd) represents in
the complex C+

∗ .

Proof. It consists of a generalization to fiber products of the sign given in the case of a product
by Proposition 7.4. A codimension-one stratum remains so through fiber products of transverse
mappings and transverse intersections.

Note that the sign we are interested in is invariant by sliding the edges (see the transition
move on Figure 8) as long as the edges to the left of the leftmost complete path (that is, from
the root to a leaf) which contains e are not involved.
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After a well-chosen sequence of such transitions, T has the following form: T (v1) = Tα ∨
v1
Tβ.

Here, v1 is the first interior vertex above the root of T and T (v1) stands for the union of edges
above v1; the ∨ means the bouquet; Tα is a tree with j leaves and the edge root of Tβ is
e. In that case, the multi-intersection becomes a usual—not iterated—fiber product and its
left factor has a dimension equal to dim I(Tα, x1, ..., xj) + 1. The dimension formula (4.9) and
Proposition 7.4 yield the desired sign. �

Orientation and gluing. Here we go back to the setting of subsection 6.1. We will prove the
following statement:

Proposition 7.8. The two multi-intersections I(T ′) and I(T ′′), equipped with their natural
orientations, give I(T ) two opposite boundary orientations. In other words, the amalgamation
I(T ′) ∪

I(T )
I(T ′′) is made in the category of oriented manifolds.

Proof. First we observe that the decoration has no effect on orientation matter. So, without
loss of generality, we may assume Xe′ = Xe′′ (notation of Figure 8). We are now going to use
formulas (6.1) and (6.2) from the proof of Proposition 6.2. Each factors in the iterated fiber
product diagram (6.1) is contained in some M×q and the maps in the diagram of fiber product
are induced by the first coordinate in each factor. In coordinates, a point a ∈ I(v, T ) reads:

(7.7)
a = {(x1, . . . , xk)(y1, . . . , y`)(z1, . . . , zm)}

x1 = y1 = z1

where each coordinate xi, yi or zi denotes a point in M . Any point a′ in I(v, T ′) reads

(7.8)
a′ = {(s′, t′)(x1, . . . , xk)(y1, . . . , y`)(z1, . . . , zm)}

t′ = x1 = y1, s
′ = z1,

where the new coordinates (s′, t′) are those of Ge′ , source and target. Similarly, any point a′′

in I(v, T ′′) reads:

(7.9)
a′′ = {(x1, . . . , xk)(s

′′, t′′)(y1, . . . , y`)(z1, . . . , zm)}
s′′ = x1, t

′′ = y1 = z1,

where the coordinates (s′′, t′′) are those of Ge′ , source and target. When comparing formulas
(7.8) and (7.9) at a point of I(v, T ), we get s′′ = t′, t′′ = s′. This corresponds to reversing
the time of the flow of Xe′ = Xe′′ . Then, the time is the only variable whose orientation is
changed. This is the reason why the orientation of I(T ) changes depending on I(T ) is seen as
a boundary of I(T ′) or I(T ′′). The change of the place of the couple (source, target) has no
effect on the orientation since it is an equidimensional couple. �

8. A∞-structure

In this section, we exhibit how one can construct an A∞-structure on the Morse complex
A = C∗(f,X

+) whose first operation m1 coincide with the differential ∂+. The grading is now
defined by setting |x| := n− dimW s(x) for every critical point x ∈ critf ∪ crit+f∂. Note this
grading is cohomological, that is, the degree of the differential m1 = ∂+ is +1.

One fixes a coherent sequence g∞ in the group G. Every Fukaya tree T is endowed with
the g∞-standard decoration D(T ). So, for any tree T with d ≥ 2 leaves and any sequence of
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(d + 1) critical points x1, . . . xd, xd+1 (with possible repetition) we have the multi-intersection
I(T, x1, . . . xd;xd+1) defined by the following fiber product (compare to the T -evaluation map
defined at the end of subsection 4.12):

(8.1) I(T, x1, . . . , xd;xd+1) := lim
(
I(v1

root)
proot−→M

j←−W u(xd+1, X
+)
)

We recall that v1
root is the terminal vertex of the edge originating at the root and the associated

generalized intersection is defined inductively in Section 4. Since D(T ) is admissible, this set is
a manifold. Using the dimension formula of Proposition 4.11, we conclude that its dimension
is

(8.2) dim I(T, x1, . . . , xd;xd+1) = d− 2 + |xd+1| −
k∑
i=1

|xi|.

Therefore the dimension of I(T, x1, · · ·xd;xd+1) is zero if and only if

|xd+1| =
k∑
i=1

|xi|+ 2− d

In what follows, we denote by T 0 (resp. T 0
d ) the set of generic Fukaya trees (resp. with d

leaves). For d ≥ 2, we define the linear maps md : A⊗d → A by

(8.3)


md(x1, . . . , xd) :=

(−1)
∑d
s=1(d−s)|xs|

∑
T∈T 0

d

 ∑
|y|=2−d+

∑
|xi|

#I(T, x1, . . . , xd; y)y

 .
One should think of I(T, x1, . . . , xd; y) as an oriented zero-dimensional manifold and
#I(T, x1, . . . , xd; y) is the algebraic number of signed points in this manifold. It is clear from
the definition that the degree of md is 2− d.

8.1. Geometric definition of the first operation. So far, we have not considered trees with
just one leaf. Nevertheless, for x ∈ critf ∪ crit+f∂, one can define m1(x) geometrically in the
following way. From the compactification of W s(x,X+) one extracts the frontier F s(x) which
is the complement of W s(x,X+) in its closure.25 As X+ is Morse-Smale, F s(x) is transverse
to W u(y,X+) for every y ∈ critf ∪ crit+f∂. When |y| = |x|+ 1, one defines the 0-dimensional
intersection manifold I(x; y) := F s(x) ∩W u(y,X+). As it is oriented, it is made of a finite set
of signed points. Then one defines

(8.4) m1(x) =
∑

|y|=|x|+1

#I(x; y)y .

Theorem 8.2. (A,m1,m2, . . . ) is an A∞-algebra.

Proof. The A∞-relations read for every d > 0:

(8.5)
∑
j,k,l

(−1)j+k`mj+1+`(1
⊗j ⊗mk ⊗ 1⊗l) = 0

where the sum is taken over all non-negative integers j, k, l such that j + k + l = d.

25Here, X+ could be replaced with any C∞-approximation.
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When putting entries (x1, . . . , xd), new signs appear according to Koszul’s rule:

(1⊗j ⊗mk)(x1, . . . , xj, xj+1, . . . , xj+k) =

(−1)(|x1|+···+|xj |)|mk|
(
x1, . . . , xj,mk(xj+1, . . . , xj+k)

)
,

(8.6)

and Identity (8.5) becomes:

(8.7)
∑

j+k+l=d

(−1)εmj+1+l(x1, . . . , xj,mk(xj+1, . . . , xj+k), xj+k+1, . . . , xd) = 0,

where ε = j + kl + (2− k)(
∑j

i=1 |xi|).
By the very definition of the mk’s, the above A∞-relations are equivalent to the following

identities

(8.8)
∑

j,k,Tα,Tβ

∑
y

(−1)ε
′
#I(Tα, xj+1, . . . , xj+k; y) #I(Tβ, x1, . . . , xj, y, xj+k+1, . . . xd; z) = 0

for all d ≥ 1 and all sequence (x1, . . . , xd, y, z) of critical points with |y| = 2− k +
∑j+k

i=j+1 |xi|,
|z| = 3−d+

∑d
i=1 |xi| and ε′ = |x1|+· · · |xj|−j. In this sum, Tα is a generic tree with k leaves and

Tβ is a generic tree with d−k+1 leaves. By (8.2), the manifold I(Tβ, x1, . . . , xj, y, xj+k+1, . . . xd; z)
is 0-dimensional.

Note that, from |z| = 3 − d +
∑d

i=1 |xi|, it follows that for every generic tree T the multi-
intersection I(T, x1, . . . , xj+k+l; z) is one-dimensional.

The proof of (8.8) will follow from analysing the frontier of this oriented manifold in its
compactification (we know from Appendix A that the multi-intersections are compact manifolds
with C1 conic singularities.)

We fix a generic tree T with d leaves and consider the compact 1-dimensional submanifold
with conic singularities cl(I(T, x1, . . . , xd; z)) ⊂ M×(d−1). By blowing up the singular points,
such a manifold can be thought of as a manifold with boundary where some boundary points are
identified. Such a point P is equipped with a sign which is the sum of the boundary-orientation
signs of the inverse images of P in the above blowing up, which is itself oriented. Therefore,
we have:

(8.9)
∑

P ∈ ∂
(
cl(I(T,x1,...,xd;z))

) sign(P ) = 0

By iterating Proposition 7.5, the boundary components of the closure cl(I(T, x1, . . . , xd; z)
)

are divided into three types:

Type A: The boundary components coming from the broken orbits in the compactification of
the generalized stable manifold W s(e,Xe). Here, e is an interior edge in the tree T and Xe is
its decoration. Such a codimension-one stratum involves some critical point y and its invariant
manifolds with respect to Xe. Therefore, it is of the form

I(Tα, xj+1, . . . , xj+k; y)× I(Tβ, x1, . . . , xj, y, xj+k+1, . . . xd; z), 0 ≤ k ≤ d.
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The first (resp. second) factor in this product comes from the unstable (resp. stable) manifold
of y. The tree T is equal to the connected sum

T = Tα#j+1Tβ

where the root of Tα is glued to the (j + 1)-th leaf of Tβ.

Type B: The boundary components of the form I(T/e, x1, . . . , xd; z) where e is an interior
edge of T and T/e denotes the tree obtained from T by collapsing e to a point. They are in-
duced by the diagonal of M×M except over the zeroes of the vector field Xe which decorates e.

Type C: The boundary components which are induced by ∂M . In general, a stable man-
ifolds has orbits coming from ∂M . Actually, the type-C components are empty in the con-
sidered multi-intersection I(T, x1, . . . , xd; z). Indeed, by construction, the unstable manifold
W u(z,X+) lies in the interior of M except very near z if z ∈ crit+f∂. Thus, the multi-
intersection I(T, x1, . . . , xd; z), that is the evaluation < I(T, x1, . . . , xd), z >, has no type-C
boundary components.

Therefore the identity (8.9) splits into the sum of two terms

(8.10) SA + SB = 0

where SA (resp. SB) is the contribution of the type-A (resp. type-B) components. Note that SA
is exactly the left handside of Equation (8.8) since T , j and k determine Tα and Tβ. Therefore,
we are reduced to prove the nullity of SB.

By Proposition 6.2, a type B boundary component I(T/e, x1, · · · , xd; z) appears as a bound-
ary component of exactly one another one-dimensional intersection submanifold I(T ′, x1, · · · , xd; z)
where T ′ is the unique generic tree, distinct from T , obtained from T/e by an expansion at its
unique degree-4 vertex (see Figure 8). Moreover, by Proposition 7.8, the induced orientations
are opposite. Therefore, in the sum SB these two terms cancel each other out.

Checking of the signs. We apply Proposition 7.7 which gives us the following sum of chains
of geometric nature (without evaluating):
(8.11)

∂+I(T, x1, . . . , xd) =
∑
j,k,y

(−1)εj#I(Tα, xj+1, . . . , xj+k; y) ∂+I(Tβ, x1, . . . , y, xj+k+1, . . . , xd).

Here, j varies from 1 to d−1; k from 1 to d−j; y is a critical point such that |y| = 2−k+
∑ |xi|

and the geometric sign is the one given by formula 7.6, that is,

εj = n+ j − 1 +

j∑
i=1

(dimW s(xi)− n) = n+ j − 1−
j∑
i=1

|xj|.

�
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9. Morse concordance and homotopy of Ad -structures

We have seen that the operations m1,m2, . . . which define an A∞-structure on the complex
A := C∗(f,X

+) are determined by the choice of a family of coherent decorations for every
Fukaya tree T . Recall that a decoration of an edge e is a vector field Xe approximating X+.
In particular, it lies in the same connected component of Morse-Smale vector fields.

Assume we have two coherent sequences g∞ and g′∞ in the group G = Diff0(M) and their
associated standard decorations {D(T )}T and {D′(T )}T , decorating all Fukaya trees. In general,
these two families give rise to two distinct A∞-structures (m1,m2, . . . ) and (m′1,m

′
2, . . . ). We

are going to show that these two structures can be linked by a homotopy thanks to multi-
intersections over the product manifold M̂ := M × [0, 1] which is a manifold with boundary
and corners. Note that the complex C∗(f,X

+) is kept unchanged; in particular, m1 = m′1.

A multi-intersection Î(T ) over M̂ associated with a decoration D̂(T ) will be thought of as a
cobordism from its trace over M ×{0} to its trace over M ×{1}. Such a family of cobordisms
will be called a geometric homotopy. The expression Morse concordance from the section title
emphasizes the fact that the underlying manifold is a product M × [0, 1] equipped with a
function without critical points in its interior.

Here, we are inspired by Conley’s continuation map [5] that we have extended to the A∞-
case. The case of the Morse complex is discussed in [23] and [11] as a prelude to the (infinite
dimensional) case of Floer homology. In fact, Andreas Floer [7] had first evoked the idea for the
infinite dimensional Morse Theory. The invariance of the Morse homology was proved earlier
using other methods.

9.1. Construction of a Morse concordance.
For simplicity, we first restrict to the case where ∂M is empty. Then, M̂ := M × [0, 1] is a

manifold with boundary. The general case will be sketched in Remark 9.4. When ∂M = ∅, we
consider a Morse-Smale pseudo-gradient X adapted to the Morse function f .

We first build a Morse function f̂ on M̂ with no critical points in the interior of M̂ whose
restriction to Mi := M × {i}, i = 0, 1, reads f̂ |Mi

= f + ci where ci is some constant. More

precisely, one requires the critical points of f̂ |M0 to be of type + and those of f̂ |M1 to be of type

−. The pseudo-gradient vector fields adapted to f̂ are required to be tangent to the boundary.
This needs a slight modification with respect to the Morse theory we have considered so far.

Let h : R → R be the Morse function defined by h(t) = (2t − 1)3 − 3(2t − 1); its critical

points are t = 0, 1. For (x, t) ∈ M̂ , set f̂(x, t) = f(x) +h(t). If a is a critical point in M0 (resp.
in M1), we have:

(9.1) Ind(f̂ , a) = Ind(f, a) + 1 (resp. = Ind(f, a)) .

If X̂ is a pseudo-gradient on M̂ adapted to f̂ and tangent to M0 ∪M1, depending on a ∈ M0

(resp. a ∈ M1), the stable manifold W s(a, X̂) (resp. the unstable manifold W u(a, X̂)) meets

the interior of M̂ ; on the contrary, the unstable (resp. stable) manifold lies entirely in M0 (resp.
in M1).

The critical points of f̂ in M0 will serve as entries; those lying in M1 will be used as test
data. Consider now an edge e ⊂ T and its two decorations Xe ∈ D(T ) and X ′e ∈ D′(T ). Since
Xe and X ′e are approximations of the same Morse-Smale vector field X+ on M it is possible to
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join them by a path (X t
e)t∈[0,1] of Morse-Smale vector fields and form the vector field X̂e on M̂

defined by

(9.2) X̂e(x, t) := X t
e(x) +∇h(t).

This is a baby case of a method initiated by A. Floer.26 Assume moreover that the path (X t
e)t

is stationary for t close to 0 and 1 in order that Xe is adapted to f̂ near each critical point.
Generically on the collection of paths (X t

e)t∈[0,1] , e ⊂ T , some transversality conditions may be

fulfilled which allow us to construct recursively the following (see Section 4):

- the generalized stable manifolds Ŵ s(e) associated with the edges e of T ,

- the multi-intersections Î(v) of stable manifolds associated with the vertices v of T ,

both of them being transversely defined. In other words, the decoration D̂(T ) made of the

collection {X̂e}e⊂T is chosen admissible (Definition 4.8).

Then, for every vertex v in T the manifolds Î(v, D̂(T )) are transverse to p−1
1 (Mi), i = 0, 1,

where p1 denotes the first projection M̂×n(v) → M̂ . Thus, we have proved the following:

Proposition 9.2. For every vertex of T , the multi-intersections Î(v, D̂(T )) is a cobordism
from I(v,D(T )) to I(v,D′(T )). This cobordism extends to a stratified cobordism between their
respective compactifications.

For the definition of the A∞-operations, it is crucial that the family of chosen decorations is
coherent in the sense of Section 5.

Proposition 9.3. The set of decorations {D̂(T )}T , where T ranges over the Fukaya trees can

be chosen in order to be coherent over M̂ .

Proof. The problem of coherence can be solved by using the same method as in Section 5
and performing it “over M × [0, 1]”, that is, replacing the group G of diffeomorphisms of M ,

isotopic to IdM , by the group Ĝ of diffeomorphisms of M̂ isotopic to IdM̂ ; the elements ĝ ∈ Ĝ
are not required to preserve the level sets {t = cst}.

There are given two coherent sequences in G, namely g and g′ respectively attached to M0

and M1. The issue is to extend the pair (g,g′) to M̂ so that the extension ĝ is coherent in
the sense of Definition 5.3. This can be performed by the translation flow method introduced
in Proposition 3.8 and applied in Propositon 5.4. This method admits a relative version since
it proceeds in successive extensions of disc bundle sections over increasing dimension skeleta. �

Remark 9.4. When M has a non-empty boundary and we look (for instance) at the critical

points of type +, M̂ has corners modelled on Rn−1×Q where Q is a quadrant in the plane and
there are critical points of f̂ lying in the corners. The only issue is to define what is an adapted
pseudo-gradient, in order that the stable manifolds are well defined. One solution consists of
demanding the pseudo-gradient to point inwards along ∂M × [0, 1], except near the critical
points in the corners where it is tangent to ∂M × [0, 1]. The rest of the previous discussion is
similar.

26Floer [7] has introduced this method for finding the so-called continuation morphism which connects two
(Floer) complexes built from different data.
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We are going to see that the above geometric cobordisms lead to a quasi-morphism of the
A∞-structure defined thanks to the set of decorations {D(T )}T to the one defined by {D′(T )}T .
The required uniqueness up to homotopy will follow.

9.5. Construction of A∞-quasi-isomorphism.
We now construct a quasi-isomorphism {ϕd}d≥1 between the A∞-structures (md)d≥1 and

(m′d)d≥1 on A = C∗(f,X
+) corresponding to the decorations D(T ) and D′(T ) as they were

introduced in Section 8. In fact the construction of ϕd : A⊗d → A is very similar to that of the
mi’s.

For d + 1 critical points x1, . . . xd, y of f , we define the multi-intersection submanifold of
M̂×(d−1)

(9.3) Î(T, x1, . . . , xd; y) := lim
(
I(v1

root)
proot−→ M̂

j←−W u
(
(y, 1), X̂+)

))
which is defined using the decoration {D̂(T )}T∈T0 . Here, the inputs of Î(T ) are the (xi, 0)’s
and the output is (y, 1).

For d ≥ 1, we define ϕd : A⊗ → A by

(9.4)


ϕd(x1, . . . , xd) :=

(−1)
∑d
s=1(d−s)|xs|

∑
T∈T 0

d

 ∑
‖(y,1)‖=2−d+

∑
‖(xi,0)‖

#Î(T, x1, . . . , xd; y)y

 .
where degree ‖.‖ is defined with respect to f̂ as a Morse fonction on M̂ .

Note that condition ‖(y, 1)‖ = 2 − d +
∑ ‖(xi, 0)‖ is the necessary and sufficient condition

for zero dimensionality of Î(T, x1, . . . , xd; y). Moreover, by observing that

(9.5) ‖(y, 1)‖ = n+ 1− Ind(f̂ , (y, 1)) = n+ 1− Ind(f, y) = |y|+ 1

and

(9.6) ‖(xi, 0)‖ = n+ 1− Ind(f̂ , (xi, 0)) = n+ 1− (Ind(f, xi) + 1) = |xi|

we conclude that the degree of ϕd is 1− d, (i.e. one lower than md and m′d). Let us also recall
that when ∂M 6= ∅ and x ∈ crit+f∂, we have dimW s(x,X+) = Ind(f∂, x) + 1.

Proposition 9.6. The collection (ϕ1, . . . , ϕd, . . . ) defines a quasi-isomorphism of A∞-structures.

Proof. It is easily checked that ϕ1 : A → A is the identity. Then, as soon as the morphism
relations are fulfilled, we get a quasi-isomorphism. Let us recall these relations from Appendix
C:

(9.7)
∑

j+k+l=d

(−1)j+klϕj+l+1 (1⊗j ⊗mk ⊗ 1⊗l) =
d∑

k=1

∑
i1+···+ik=d

(−1)εi1,···ikm′k(ϕi1 ⊗ · · · ⊗ ϕik)
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where εi1,···ik =
∑k

j=1(k−j)(rj−1). These relations are implied by geometric information given

by the decoration family {D̂(T )}T , namely, for every d > 0,
(9.8)

∑
j,Tα,Tβ

∑
(y,0)

(−1)j−
∑j
i=1 |xj |#I0(Tα, xj+1, . . . , xj+k; y)#Î(Tβ, x1, . . . , xj, y, xj+k+1, . . . , xd; z)

=
d∑

k=1

∑
Tγ ∈ T 0

k
0 < i1 < · · · < ik < d

#I1(Tγ, y1, . . . , yk; z)
k+1∏
j = 1

Tj ∈ T 0
ij−ij−1

#Î(Tj, xij−1+1, . . . , xij ; yj)

 .

where i0 = 0, ik+1 = d . Here, I0(T,−) (resp. I1(T,−)) stands for the multi-intersection
computed with the decorations {D(T )}T on M0 (resp. {D′(T )}T on M1); the connected-sum
tree T = Tα#j+1Tβ is a generic tree with d leaves. Note that the ik’s in the identity (9.7)
correspond to the quantities ij − ij−1 in (9.8).

The proof of (9.8) is similar to the proof of (8.8) with some new phenomena. By degree

arguments, one knows that the multi-intersection Î(T, x1, . . . , xd; z) is one-dimensional. So,
we have to analyze its compactification. We already know that the collapse of an edge of T
contributes to zero because such a boundary component appears twice in the considered sum
with opposite orientations. The boundary component ∂M × [0, 1] contributes also to zero as

the vector field X̂ points inwards except in a very small neighbourhood of crit+f × {0, 1}.
The first new phenomenon is the following. The breaking of an orbit of X̂e involves in the

same time the boundary of M̂ : if it breaks in y ∈M0, the unstable manifold W u(y, X̂e) coincide
with W u(y,Xe). This explains the factor #I0(Tα, xj+1, . . . , xj+k; y) in the left handside of (9.8).

The second new phenomenon is that, if the breaking happens at y ∈ M1 and d > 1, then
the breaking cannot happen alone. Indeed, W s(y, X̂e) is contained in M1; therefore, it has an
empty intersection with any other stable manifold (or generalized stable manifold) which, by

construction, lies in int(M̂) ∪M0. Assume the root of e is not the root of T and let e′ be the
other edge of T having the same root as e. Then, we have proved that the generalized stable
manifold W s(e′, X̂e′) must also be contained M1 or (over M1 through p1 in the fiber product
construction.) By iterating this argument, one proves the following claim.

Claim. If d > 1, any non-empty connected component C of the frontier27 of Î(T, x1, . . . , xd)
which involves the breaking of an orbit at a zero in M1 and no breaking in M0 gives rise to the
following decomposition of T : there exist k > 0, some edges e1, . . . , ek in T separating the root of
T from all leaves and points y1, . . . , yk in M1 which are respectively zeroes of X ′ej , j = 1, . . . , k,

such that C is contained in the multi-intersection I(T 1, y1, . . . , yk).

In particular, except when some yj is of maximal Morse index (which has a neutral effect),

C is of codimension k in the compactification of Î(T, x1, . . . , xd). If k > 1, such a C does not
adhere to any smooth boundary component. This phenomenon is compatible with the fact

27The frontier of a multi-intersection consists of its compactification with the multi-intersection in question
removed.
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that the singularities of the compactification are conic. This claim gives the geometric signi-
fication of the right handside of (9.8) and finishes the proof up to sign. It explains that a

one-dimensional intersection of ÎT (x1, . . . , xd) with W u(z,X+) cannot generically avoid to have
singular points in such a stratum. All other configurations of orbit breaking are generically
avoidable, and hence, do not appear in the counting of (9.8). �

Appendix A. Complements on the submanifolds with C1 conic singularities

Definition A.1. Let K be a compact submanifold of M with C1 conic singularities. The k-
skeleton K [k] of K is the union of the strata of K which are of codimension at least n − k in
M .

Lemma A.2. Let A and B two compact submanifolds of M with C1 conic singularities. Then,
for a generic diffeomorphism g of M the image g(A) is transverse to B, meaning that each
stratum of g(A) is transverse to every stratum of B. Moreover, this transversality is fulfilled in
an open set of the C1 topology of Diff(M).

Proof. Thanks to the group action, it is enough to prove this statement near the Identity of
M . Assume the skeleton A[k] is already transverse to B. So, near any point x ∈ A[k], each
stratum of A is transverse to B. This fact directly follows from the conic transverse structure.

Let S be an open (k + 1)-stratum of A; it is transverse to B outside some compact set
C ⊂ S. By the very first transversality theorem of Thom [24], an arbitrarily small ambient
isotopy supported in a neighborhood of C makes S successively transverse to the 0-skeleton,
the 1-skeleton, and so on, until being transverse to B. Moreover, these smooth approximations
of IdM fulfilling the above requirement form a C1 open set. This double induction gives the
desired genericity, including the C1 openness of transversality. �

Lemma A.3. Let A and B be two submanifolds with conic singularities which are mutually
transverse. Then their union A∪B is a submanifold with C1 conic singularities. Its strata are
of one of the following forms where S is a stratum of A and Σ is a stratum of B: S ∩ Σ or
S r Σ or Σ r S.

Proof. The only matter is about the structure at points in A ∩ B. Set Λ = S ∩ Σ. For
x ∈ Λ, let ΘB,Σ,x be the transverse conique structure to Σ in M induced by B on the normal
fiber νx(Σ,M). By transversality, we have the equality νx(Σ,M) = νx(Λ, S). So, νx(Λ, S) is
equipped with ΘB,Σ,x. Similarly we have the transverse conic structure ΘA,S,x induced on the
normal fiber νx(Λ,Σ).

These two transverse structures can be trivialized over a small open neighborhood of x in
Λ. Since the two bundles ν(Λ, S) and ν(Λ,Σ) are complementary in ν(Λ,M), the two trivial-
izations are independent. Therefore, they can be realized by a same C1 diffeomorphism of M .
Hence, the conic structure induced by A ∪ B on the normal fiber νx(Λ,M) is the join (in the
sense of the piecewise linear topology) ΘA,S,x ∗ΘB,Σ,x. �

The next lemma and its corollary can be proved in the same way.

Lemma A.4. Let, for i = 1, 2, Ai ⊂ M×ki be a compact submanifold with C1 conic singulari-
ties. Then A1 × A2 ⊂M×(k1+k2) is so.
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Corollary A.5. In the same product setting as in Lemma A.4, let pi : M×ki → M be a
projection to one factor of the product. If the restrictions p1|A1 and p2|A2 are transverse, then
the fiber product over M of these two maps is a compact submanifold M×(k1+k2−1) with C1 conic
singularities.

Appendix B. Some applications of Sard’s theorem to immediate transversality

Let S1 and S2 be two smooth28 submanifolds of positive codimension in Rn, possibly equal.
One defines the space of secants from S1 to S2 by

(B.1) SecS1,S2 := {(u, x) ∈ ~Rn × Rn | x ∈ S1 and x+ u ∈ S2}
Let π : SecS1,S2 → ~Rn denote the projection (u, x) 7→ u.

If f1(x) = 0 (resp. f2(x) = 0) are two local systems of regular equations defining S1 (resp.
S2), the—potential—tangent space to SecS1,S2 at (u, x) is defined by the linearized system

(B.2)

{
Df1(x) · δx = 0
Df2(x+ u) · (δx+ δu) = 0.

This system is of maximal rank and hence SecS1,S2 is a smooth submanifold.

Proposition B.1. For almost every u ∈ ~Rnr{0} 29 and every x ∈ π−1(u), the two tangent vec-
tor spaces TxS1 and Tx+uS2 are not coplanar in the sense that there is no hyperplane containing
both of them.

Note that when codimS1 + codimS2 > n and π−1(u) 6= ∅ coplanarity is automatic.

Proof. Thanks to the smoothness assumption Sard’s Theorem is available. It tells us that
almost every u is a regular value of π (possibly with an empty inverse image). But an easy
argument shows that u is a critical value of π if and only if there exists x ∈ π−1(u) such that
the tangent spaces TxS1 and Tx+uS2 are coplanar.

Indeed, in case of coplanarity, there is a non-zero linear form L vanishing on kerDf1(x) and
kerDf2(x + u). For (δu, δx) solution of (B.2), we have L(δx) = 0 and L(δx + δu) = 0. Then
δu is forced to belong to kerL and hence Dπ(u, x) is not surjective.

Conversely, if for every x ∈ π−1(u) the tangent spaces TxS1 and Tx+uS2 are not coplanar

the matrix of

(
Df1(x)

Df2(x+ u)

)
is of maximal rank. Then, for every δu one can solve the linear

system

(B.3)

{
Df1(x) · δx = 0

Df2(x+ u) · δx = −Df2(x+ u) · δu,
and hence, u is a regular value of π. �

Here is the corollary we are interested in; non-coplanarity is a criterion for a translation flow
to be of immediate tranversality (Definition 3.4).

28Smooth stands for C∞.
29In this section, “almost every” is meant in the Baire sense, that is, “in some residual subset.”
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Corollary B.2. (Non-coplanarity criterion) Let S ⊂ Sn−1 be a smooth compact submanifold
with C1 conic singularities 30 in the unit (n− 1)-sphere. Let C be the cone based on S with the

origin O as a vertex. Then, there exists some residual set R ⊂ ~Rn, actually an open and dense
subset, such that u belonging to R is equivalent to each of the following properties:

(1) The translated cone C + u is transverse to C.
(2) The translation flow generated by u is a flow of immediate transversality to C.

.

Proof. We first show the two items are equivalent. Let (S1, S2) be a pair of strata from the
cone C (that is, punctured cones based on strata in S.) If S1 + u is not transverse to S2

at a then S1 + tu is not transverse to S2 at ta; indeed, the tangent spaces to S1 and S2 are
constant along each generating line. Therefore, non-transversality is preserved along a positive
translation semi-flow.

In Proposition B.1, we have checked that the critical set of π : SecS1,S2 → ~Rn is the set of
pairs (u, x) displaying coplanarity of TxS1 and Tx+uS2. So, crit(π) is a cone; it is closed in

(~Rn \ {0})× S1 as usual for a critical set. One also controls its closure as we explain below.

It is easy to describe {0} × S1 as a part of the closure of crit(π) in ~Rn × S1. Indeed, for
(uj, xj) tending to (0, x0) with x0 ∈ S1, the ray R+xj goes to the ray R+x0. A pair (x, y) of
points staying on the same ray makes (y−x, x) ∈ crit(π). Therefore, the renormalized sequence
(uj/‖uj‖, xj/‖uj‖) is asymptotic to this part of crit(π) which is isomorphic to R+ × S1.

Let us now consider the case of (xj) going to x0 in another stratum S0 of C; this stratum
lies in the closure of S1. Up to a subsequence, the sequence of tangent spaces TxjS1 has a
limit which contains Tx0S0; this is Whitney’s condition A which holds since the singularities

are C1 conic. Let π̄ : ~Rn × S̄1 → ~Rn denote the extension of π to the closure of its domain. If
(uj, xj) ∈ crit(π) for every j—that is some coplanarity—this condition A implies limj(uj, xj)

in ~Rn × S0 is a critical point of π̄.
The cone crit(π̄) is a subcone of the cone based on S × S. Since S is compact crit(π̄) has

a compact base. The same holds for the set of critical values in ~Rn. Then the set RS1,S2 of
regular values of π̄ is open; moreover it is dense, as stated in Proposition B.1. The desired R
is the finite intersection of RS1,S2 over all pairs of strata. �

B.3. Product family of cones.31 This consists of the product V × (Bn−k, Q) where Q is
a cone in Bn−k as in the previous corollary and V is a compact k-dimensional manifold. A
translation flow (ut) is generated by a smooth section u : V → V × ~Rn−k, that is a translation
vector u(p) in each fiber {p}×Bn−k, depending smoothly on p. The flow acts on the fiber over
p by the formula

(B.4) ut(p, x) =
(
p, x+ tu(p)

)
.

The germ of this flow is said to be of immediate transversality to V ×Q if ut(V ×Q) is transverse
to V ×Q for every small positive t.

30The strata are C∞ but the local trivialization of the transverse conic structure is only C1 at the vertex of
the cone in each fiber.

31This generalizes to locally trivial bundles.
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Since Q is a cone and only translations are involved, the flow (ut) is of immediate transver-
sality if and only if uθ(V ×Q) is transverse to V ×Q for some θ > 0. Explicitely, this reads by
saying that for every p ∈ V one of the two following properties holds:

(B.5)


– The translation uθ(p) maps {p} ×Q transversely to itself in {p} × Bn−k.
– For every hyperplane H in Bn−k bitangent to Q at some points x and x+ uθ(p),

the operator ∂V u
θ|p maps the tangent space TpV × {0} transversely to the

codimension-one space TpV ×H.
Property (B.5) is open in the C1 topology of sections (see Corollary B.2). Using the same
idea as in Proposition 3.1, namely applying Sard’s theorem to a finite dimensional family of
sections of V × ~Rn−k which is submersive on each fiber, one gets that immediate transversality
is generic. More precisely, we have the following.

Proposition B.4. Regarding the smooth sections V → V × ~Rn−k as generators of (germs of)
fiberwise translation flows on V ×Bn−k, the set of those which generate immediate transversality
to V × Q is open and dense in the C1 topology of smooth sections. For short, these sections
are said to be generic. Moreover, the following relative version holds: every germ of generic
section along boundary ∂V extends to a generic section over V .

Proof. For the relative version, the given germ extends arbitrarily to σ̃ : V → V ×~Rn−k. Then,
σ̃ has a generic approximation σ which can be connected to σ̃|∂V among the generic germs
thanks to openness. �

The only remaining issue is to make coexist Proposition B.4 and Corollary B.2 when a
stratum of a manifold with conic singularities enters the n-ball about a 0-stratum. Here is the
main concept related to this question.

B.5. The reduced translation flow. In the setting of Corollary B.2, we consider a k-
dimensional stratum Sk of the cone C, k > 0, and a compact subdomain S k (Subsection 3.5
(2).) By definition of conic singularities, C induces a conic bundle over S k. Namely, there
exists a tube Nk, which is a trivial (n− k)-disc bundle over S k whose fibers Nk,x, x ∈ S k, are
planar in the unit ball Bn. The fibers C ∩Nk,x are conic and form a trivial cone subbundle of
Nk.

Let u be the generator of a (germ of) translation flow in Bn. For every x ∈ S k and every
y ∈ Nk,x one uses the splitting of the tangent space

(B.6) TyBn = TxS k ⊕ TyNk,x.

Here, the tangent space TxS k is carried to y by parallelism with respect to the ambient affine
structure of Bn and Nk,x is thought of as spanning an (n − k)-dimensional affine subspace in
Rn. The splitting decomposes the vector u into horizontal and vertical components at x, that
is:

(B.7) u = ukh(x)⊕ ukv(y)

with ukh(x) ∈ TxS k and ukv(y) ∈ TyNk,x. Note that this splitting is constant along the fiber

Nk,x, that is, independent of y. The vertical component x 7→ ukv(x) is a section of Nk which is
termed the reduction of u to Nk.
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B.6. Reducing process. Let ∂S k denote the frontier of S k in int(Bn). Fix also an interior
collar neighborhood Wk of ∂S k in S k and let Ek denote the part of Nk over Wk. Without loss
of generality we may assume Ek ⊂ Bn. Let µ : Wk → [0, 1] be a smooth function equal to 1
near ∂S k and 0 near the opposite face of Wk. This µ is lifted to Ek as a constant function in
each fiber Nk,x. The lifted µ is still noted µ and called a balancing function.

The balanced reducing process consists of replacing the constant vector field u on Ek by the
vector field

(B.8) ukµ(x) := µ(x)ukh(x) + ukv(x).

It is constant in each fiber Ek,x. Note that ukµ is equal to u in the part of Nk over a small
neighborhood of ∂S k. Such a vector field also reads

ukµ = µu+ (1− µ)ukv .

This vector field is termed the balanced reduction of u.

Sk

supp(µ(1− µ))

Sj
Nj

Nk

Sk

Sj
Nj Wj

supp(λ(1− λ))

∂Sj

Figure 9. Two sectional views of the tubes Nj and Nk in Bn.

B.7. Skew associativity formula. For j < k, let Sj and S j be a j-dimensional stratum of
the cone C ⊂ Bn and its compact subdomain; and let λ : S j → [0, 1] be a balancing function
for Sj. The position of S j with respect to S k is specified in subsection 3.5 (see Figure 9). If
Nj,x is a fiber of Nj, with x ∈ S j, and y is a point in Nj,x ∩Wk, the fiber Nk,y is an affine
subspace of Nj,x. Then, the reducing process with respect to stratum Sk ∩Nj,x may be applied

to the translation vector ujv in the (n − j)-ball Nj,x. One gets the next fomula along the fiber
Nk,y ⊂ Nj,x:

(B.9) ukv =
(
ujv
)k
v

and ukh = ujh +
(
ujh
)k
h

that is,

ukµ = µλujh + µ
(
ujh
)k
h

+
(
ujv
)k
v
.

Note these formulas hold regardless of the functions λ and µ. The subscript h has two different
meanings: one stands for parallelism to TxSj and the second one for parallelism in Nj,x to
Ty
(
Sk ∩Nj,x

)
.

There are analogous formulas associated with a sequence of strata Sj1 , Sj2 , ..., Sjr when each
is in the closure of the next one.
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Proposition B.8. In the setting of Corollary B.2 of a stratified cone C ∈ Bn, it is assumed
that the conic transverse structure to each stratum has a global trivialization.32 If u generates
a flow of immediate transversality to C then we have:

(1) The reduction ukv of u to Nk generates a flow of immediate transversality to C ∩Nk.
(2) The flow generated by the balanced reduction of u to Nk is of immediate transversality

to C ∩ Ek.

Proof. The matter deals with bi-1-jets of C (or pairs of tangent planes to C.) This allows one
to linearize the considered vector field at any desired point without changing the problem.

On the linear disc bundle Nk we have two linear connections h0 and h1 (seen as plane
distributions complementary to the fibers): h0 is parallel to TxSk along the fiber Nk,x for every
x ∈ Sk; and h1 is given by the assumed global trivialization of Nk. The difference between
them, seen as a vertical deviation, is measured by a 1-form ω on Sk valued in the vector space
of linear endomorphisms of the vector bundle spanned by Nk.

By assumption, the vector u generates a translation flow of immediate transversality to C.
Let α be the minimum angle between TyC and a hyperplane containing Ty+tuC for every y ∈ C
and small positive t. The lowest bound of this angle is positive by assumption on u; it is
independent of t since C is a cone and it is a minimum since C has a compact base.

Claim. If h0 = h1, then the statement holds.
Indeed, by the above assumption the distribution h0 is tangent to C. Then, transversality to

C translates to the vertical component of the flow of u. By an order-one Taylor expansion at
y ∈ C, an “infinitesimal contact”, namely coplanarity of Dy(u

k
v)(TyC) to TyC, implies at most

transversality to C with an arbitrarily small angle for some small t > 0, contradicting α > 0.
This proves (1) in this setting. If (2) fails, it should fail infinitesimally which is impossible by
(1). �

Let y ∈ Nk,x and let y + tukv(x) be the vertically displaced point for a small time t; suppose
both points belong to C. The planes h1(y) and h1(y+ tukv(x)) are both tangent to C but could
be not parallel anymore. Nevertheless, thanks to the 1-form ω which measures the “difference
h1 − h0”, one computes that the angle between h1(y) and h1(y + tukv(x)), the latter being
translated to y, is a O(t). Therefore, if t > 0 is sufficiently small, this angle is negligible with
respect to α. So, the reasoning for the claim still holds.

�

Appendix C. Basics on homotopical algebras

In this appendix we review the basic terminology and result of the theory of A∞-algebras.
We refer the reader to Kenji Lefèvre-Hasegawa’s thesis [16] for a comprehensive treatment.
However, here we use the sign convention introduced [12].

Here, k is a unitary ring.

32This condition is fulfilled in the case of simple Morse-Smale gradients of a Morse function (see Definition
2.2.)
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Definition C.1. An Ap-algebra is a k-module equipped with a collection of k-module maps
mi : A⊗i → A, 1 ≤ i ≤ p , of degree 2− i satisfying the identities

(C.1)
∑

j+k+l=i

(−1)j+klmj+l+1(1⊗j ⊗mk ⊗ 1⊗l) = 0

for all p ≥ i ≥ 1.

Similarly an A∞-algebra is a graded k-module A together with a collection of k-module maps
mi : A⊗i → A, i ≥ 1 , of degree 2− i such for all p , (A, {mi}1≤i≤p) is an Ap-algebra.

Remark C.2. According to the sign convention in [16] one should put (−1)jk+l instead of
(−1)j+kl. It turns out that these two definitions are equivalent. Indeed if (m1,m2, · · · ) is an

A∞-structure according to the sign convention of [16], then (m1, (−1)(
2
2)m2, · · · (−1)(

i
2)mi, · · · )

is an A∞-structure by our sign convention. The sign conventions in [16] is justified by the cobar
construction. The signs in [12] correspond to that of the opposite algebra in [16].

Let (A, {mi}1≤i≤p) and (A′, {m′i}1≤i≤p) be twoAp-algebras. AnAp-morphism from (A, {mi}1≤i≤p)
to (A′, {m′i}1≤i≤p) consists of a collection of maps fi : A⊗i → A′, 1 ≤ i ≤ p, with the |fi| = 1− i
satisfying the conditions

(C.2)
∑

j+k+l=i

(−1)j+klfj+l+1 (1⊗j ⊗mk ⊗ 1⊗l) =
i∑

k=1

∑
i1+···+ik=i

(−1)εi1,···ikm′k(fi1 ⊗ · · · ⊗ fik)

where εi1,···ik =
∑k

j=1(k − j)(ij − 1).

Remark C.3. If we follow the sign convention of [16], then equation of C.2 transforms into

(C.3)
∑

j+k+l=i

(−1)l+jkfj+l+1 (1⊗j ⊗mk ⊗ 1⊗l) =
i∑

k=1

∑
i1+···+ik=i

(−1)εi1,···ikm′k(fi1 ⊗ · · · ⊗ fik)

where εi1,···ik =
∑

j((1− ij)
∑

1≤k≤j ik).

If (mi) and (fi) satisfy the equation (C.2), then (m1, (−1)(
2
2)m2, · · · (−1)(

i
2)mi, · · · ) and

(f1, (−1)(
2
2)f2, · · · (−1)(

i
2)fi, · · · )

satisfies (C.3).
A collection of k-module maps f = {fi}i≥1 : A⊗i → A′ is said to be a morphism of A∞-

algebras if for all p, {fi}1≤i≤p is a morphism of Ap-algebras.
An A∞-morphism f = {fi}i≥1 is said to be a quasi-isomorphism if the cochain complex map

f1 is a quasi-isomorphism.

Definition C.4. Let A and A′ be two A∞-algebras with the corresponding differentials D and
D′ on the bar constructions BA and BA′. Suppose that f = {fi}, g = {gi} : A → A′ are two
A∞-morphisms and F and G are the coalgebra morphisms corresponding to f and g. Then a
homotopy between f and g is a (F,G)-coderivation H : BA→ BA′ such that

(C.4) F −G = D′H −HD.
Theorem C.5. (Prouté [21], see also [16].) We suppose that k is a field. Then we have:
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(1) For connected A∞-algebras, homotopy is an equivalence relation (Theorem 4.27).
(2) A quasi-isomorphism of A∞-algebras is a homotopy equivalence (Theorem 4.24).
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Laboratoire de mathématiques Jean Leray, UMR 6629 du CNRS, Faculté des Sciences et
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