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Morse complexes and multiplicative structures

Hossein Abbaspour & François Laudenbach

Abstract. In this article we lay out the details of Fukaya’s A∞-structure of the Morse com-
plexe of a manifold possibily with boundary. We show that this A∞-structure is homotopically
independent of the made choices. We emphasize the transversality arguments that some fiber
product constructions make valid.
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1. Introduction

We are given an n-dimensional compact manifold M with boundary and a generic Morse
function f : M → R, generic meaning that f has no critical point on the boundary and that
the restriction f∂ of f to the boundary ∂M is a Morse function. For the purpose of the present
paper, it is useful to assume that M is orientable.

We recall that there are two types of critical points of f∂ , those of Neumann type and those
of Dirichlet type; a critical point x of f∂ has type Neumann (resp. Dirichlet) if < df(x), n(x) >
is negative (resp. positive) where n(x) is a vector in TxM pointing outwards. We shall denote
by critkf the set of critical points of f (in the interior of M) of index k and by critNk f∂ (resp.
critDk f∂) the set of critical points of f∂ of index k ∈ {0, . . . , n− 1} which are of Neumann type
(resp. Dirichlet type).

2000 Mathematics Subject Classification. 57R19.
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This setting was already considered in [15] where the main idea was to introduce so-called
adapted pseudo-gradients, defined as follows. Below, we use notation slightly different from the
cited paper.

A vector field XN is said to be N-adapted to f if the following conditions are fulfilled:
1) XN · f < 0 outside critf ∪ critNf∂ ;
2) XN is pointing inwards at every point of ∂M except in some neighborhood of critNf∂

where XN is tangent to the boundary; therefore, XN vanishes exactly at the points of
critf ∪ critNf∂ ;

3) near critf (resp. critNf∂) the vector field XN (resp. XN |∂M) is the descending gradient
of f (resp. f∂) with respect to the Euclidean metric of some (unspecifized) Morse chart.1

Since the flow of XN is positively complete, each x ∈ critf ∪ critNf∂ has an unstable manifold
W u(x) whose dimension is equal to the index of x and a local stable manifold W s

loc(x). Actually,
there is also a global stable manifold W s(x) by taking the union of the inverse images of W s

loc(x)
by the positive semi-flow of XN .

The vector field is said to be Morse-Smale when all these invariant manifolds intersect mutu-
ally transversely. Under this assumption, after choosing arbitrarily orientations of the unstable
manifolds, one defines a graded complex

C∗(f,X
N) = CN

∗ =

CN

n
∂N

−→ · · ·CN
k

∂N

−→ · · ·CN
0


.

Here, CN
k is the Z-module freely generated by critkf ∪critNk f∂ and the differential ∂N is defined

by counting with signs the connecting orbits from x to y when the index of x equals ind(y) + 1
(notice that the local stable manifolds are co-oriented).

Similarly, a vector field XD is said to be D-adapted to f when it is N -adapted to −f . Notice
that XD · f > 0 apart from critf ∪ critDf∂ . Choose such an XD which is Morse-Smale and
choose an orientation of its unstable manifolds; they exist globally since the flow of XD is still
positively complete. One defines a second complex

C∗(f,X
D) = CD

∗ =

CD

n
∂D

−→ · · ·CD
k

∂D

−→ · · ·CD
0


.

Here, CD
k is the Z-module freely generated by critkf ∪critDk−1f∂ . Notice the shift of the grading

which is justified by the equality:

CD
k (f) = CN

n−k(−f).

The differential ∂D is defined on a generator x ∈ CD
k by counting with signs the connecting

orbits of XD from y ∈ CD
k−1 to x. The main result in [15] is the following.

Theorem 1.1.
1) The homology of the complex C∗(f,X

N) is isomorphic to H∗(M ;Z).
2) The homology of the complex C∗(f,X

D) is isomorphic to H∗(M, ∂M ;Z).

The labelling, Neumann or Dirichlet, comes from similar results which have been obtained
previously in Witten’s theory of de Rham cohomology for manifolds with boundary (see [4, 10,
13]).

1In order to control the compactification of forthcoming moduli spaces, it is easier to reinforce the non-
degeneracy condition of the zeroes of XN (resp. XD) that was considered in [15].
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In the present article, we present an important complement to Theorem 1.1 which deals with
the multiplicative structures which exist on the considered complexes. Here we follow ideas
which have been developed by K. Fukaya for closed manifolds (see [8] and also [3],[23]). Indeed,
in [8] Fukaya has proposed the construction of an A∞-category whose objects are the smooth
functions on a given closed manifold M and the set of the morphisms Mor(f, g) is Z-module
generated by the critical points of g − f . He describes the A∞-operations

mn : Mor(f1, f2)⊗Mor(f1, f2) · · ·⊗Mor(fn−1, fn) → Mor(f1, fn)

by counting points with sign (orientation) on the zero-dimensional moduli space of flow lines
intersection according to the scheme provided by a generic (trivalent) rooted tree.

These operations are only partially defined, meaning that the operation mn is only defined
for generic function fi’s. In particular, by taking fi = if , where f ∈ C∞(M) is a generic Morse
function, he suggested the existence of an A∞-structure on the Morse complex of f . Note that
in this example Mor(if, (i+ 1)f)) is precisely the Morse complex of f . In this article, not only
we give an accurate construction of the hitherto described A∞-structure on the Morse complex
of a Morse function f , but also we prove that this A∞-structure is well-defined up to quasi-
isomorphism of A∞-algebras. It turns out that the construction of A∞-quasi-isomorphisms
requires to extend Fukaya’s A∞-structure to manifolds with boundary.

Theorem 1.2. Here, M is supposed to be orientable and oriented. Then, each of the complexes
CN

∗ and CD
∗ can be endowed with a structure of A∞-algebra A = {m1,m2, . . .} such that m1 is the

differential of the considered complex; here md denotes the d-fold product. This structure is well-
defined up to “homotopy” from the data of a coherent family of Morse-Smale approximations
of XN (resp. XD).

The approximations in question will be submitted to some transversality conditions for which
the possible choices are not at all unique. The coherence (Definition 4.1) will be a form of
naturality of these choices with respect to a certain group of diffeomorphisms of M .

The basic definitions about A∞-structures are recalled in Appendix A. As we shall see in
Section 8, the concept of homotopy of A∞-structures is the algebraic translation of the idea of
cobordism for the geometric objects we are going to introduce further.

The main example that we have in mind is 3-dimensional. Consider a link L in the 3-sphere
S3, equipped with the standard height function h : S3 → R. The manifold with boundary we
are interested in is M := S3U(L), where U(L) is the interior of a small tubular neighborhood
of L, built by means of an exponential map. In general position of L, the height function
induces a Morse function on L, and hence a generic Morse function f on M . Each maximum
of h|L gives rise to a pair of critical points of f∂ , one of Neumann type and index 2, and one of
Dirichlet type and index 1 (hence of degree 2 in CD

∗ ). Each minimum of h|L gives rise to a pair
of critical points of f∂ , one of Neumann type and index 1, and one of Dirichlet type and index
0 (hence of degree 1 in CD

∗ ). It is reasonable to expect that the Morse complexes of this pair
(M, f) informs a lot on the topology of L. We have not yet explored this topic systematically.
As an exercise only, by using the Massey product which is derived from the third product of the
A∞-structure on the Dirichlet type complex, one could prove à la Morse that the Borromean
link is not trivial.
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Sections 2 to 6 are devoted to topological preparation to multiplicative structures by means
of a large use of Thom’s transversality Theorem with constraints [22]. Here are some more
details:

-Section 2 makes a list of transversality conditions which will be used for defining products
of an A∞-structure. These conditions are generic.

-Section 3 deals with the compactification of the geometric objects introduced in Section 2.
The simple structure of the respective compactifications guarantees the preceding transversality
conditions to be open.

-Sections 5 and 4 treat refinements on transversality conditions allowing the products to
satisfy the A∞-relations. This is the hardest part.

-Section 6 with the orientation of the moduli spaces. - In Section 7 we introduce the A∞-
structure and prove A∞-relations.

- Section 8 explains why different choices in the previous constructions lead to concordant
multi-intersections. That is the topological ingredient for homotopy of A∞-structures.

The proof of Theorem 1.2 will be achieved in Sections 7 and 8. We should say that many
authors have addressed the A∞-structures of the Morse complex in various articles (see [9, 1, 2]
for instance). As far as we know, their construction amounts to a pre-∞ category/Algebra
and do not really propose a homotopy A∞-invariance of the construction. The other authors
have treated the transversality issues using more analytical methods, such as moduli space of
gradient trees, which are rather heavy when it comes to verifying the details. That is the reason
why we have made efforts to provide a more topological and standard method. In particular we
have tackled the difficulties relevant to the transversality issues by introducing a construction
based on iterated fiber products.

Acknowledgements. The second author is deeply grateful to Christian Blanchet who led him
to this topic many years ago.

2. Multi-intersections towards A∞-structures

In this article, we only consider the case of the boundary relative theory dealing with the
Dirichlet type critical points and adapted gradient XD. Similar results hold true for the Neu-
mann type complex. In contrast with [15] where critical points in critf ∪ critDf∂ are only
equipped with local stable manifolds, we shall here make use of global stable manifolds of criti-
cal points. Since the flow of XD, denoted by X̄D

t at time t, is positively complete, the following
definition makes sense:

Definition 2.1. For x ∈ critf ∪ critD(f∂), the global stable manifold of x with respect to XD

is defined as the union

W s(x,XD) =


t>0


X̄D

t

−1 
W s

loc(x,X
D)


.

Under mild assumptions, W s(x,XD) is a (non-proper) submanifold with boundary and its
closure is a stratified set. Here is such an assumption (Morse-Model-Transversality) which is
made in the rest of the paper.

(MMT) For every x ∈ critf ∪ critDf∂ and y ∈ critDf∂, the neighborhood Uy of y in ∂M where
XD is tangent to the boundary of M is mapped by the flow transversely to W s

loc(x,X
D).
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As XD is Morse-Smale, the transversality condition is satisfied along a small neighborhood
U of the local unstable manifold W u

loc(y,X
D). Then, after some small perturbation of XD

on Uy  U destroying partially the tangency of XD to ∂M , Condition (MMT) is fulfilled for
the pair (y, x). Thus, Condition (MMT) is generic among the D-adapted vector fields. The
following proposition can be proved easily.

Proposition 2.2.
1) Under Condition (MMT), the global stable manifold W s(x,XD) is a submanifold with bound-
ary (not closed in general).
2) If z belongs to the closure of W s(x,XD), then there exists a broken XD-orbit from z to x.
The number of breaks defines a stratification of this closure cl


W s(x,XD)


.

For the rest of this section, we consider a generic Morse function f : M → R and a pseudo-
gradient XD which is D-adapted to f . The transversality conditions Morse-Smale and (MMT)
are assumed.

We now turn to A∞-structures for which we refer to B. Keller [12]. In ([8, 9]), K. Fukaya
had proposed the construction of such structures on the Morse complexes of a closed manifold.
We adapt his ideas to the case of M , a manifold with non-empty boundary. The main point
is to parametrize multi-intersections by trees. First, we are going to define the trees under
consideration, that we call Fukaya trees.

Definition 2.3. Let d be a positive integer. A Fukaya tree of order d (or a d-tree) is a finite
rooted tree with d leaves which is properly C1-embedded in the unit closed disc D. The end
points (the root and the leaves) lie on the boundary ∂D. The rest of the tree lies in the interior
of D. By a vertex we mean an interior vertex; it is required to have a valency greater than 2.
An interior edge has its two end points in intD. Each edge is oriented from the root to the
leaves.

Let Td be the set of Fukaya d-trees. There is a natural C1 topology on this set. The ε-
neighborhood of T0 ∈ Td is the set of Fukaya trees T equipped with a simplicial map ρ : T → T0

such that each edge α of T is embedded C1-close to the embedding of ρ(α) (which is an edge or
a vertex). This topology is a topology of infinite-dimensional manifold (Stasheff). But, up to
isotopy (not ambient isotopy, due to moduli of angles), there are finitely many representatives
only. From this fact it is possible to derive a stratification of Td where the number of interior
vertices is fixed on each stratum. In a generic tree all vertices have valency 3 (codimension 0
stratum). A codimension-one stratum in Td is made of trees all of which vertices have valency
3 except one which has valency 4.

Definition 2.4. Given the pair (f,XD), a decoration D of a Fukaya tree consists of the fol-
lowing: with each edge e of T , interior or not, one associates some approximation Xe of XD

which will be generic among the pseudo-gradients D-adapted to approximations2 of f .

Some mutual transversality conditions will be specified in Section 5. For the time being, we
just list the needed conditions. Since the successive manifolds we are going to construct have
natural compactification, all required transversality conditions will be not only dense but also
open.

2By abuse, sometimes one speaks of generic pseudo-gradients adapted to f though the zeroes have moved.



6

In the construction right below, we will use the positive semi-flow X̄e : [0,+∞) ×M → M
of Xe. But for compactification purposes, it is more convenient to consider the graph of the
semi-flow in the following sense.

Definition 2.5. The graph G(X̄e) of the positive semi-flow X̄e is the part of M×M made of the
pairs (x, y) such that y belongs to the positive half-orbit of x, that is: there exists t ∈ [0,+∞)
such that y = X̄e(t, x). Since Xe is a pseudo-gradient, this time t is unique if x is not a zero of
Xe.

The graph contains the diagonal of M ×M . For a pseudo-gradient semi-flow, the graph is
a non-proper (n + 1)-dimensional submanifold, except at the points (a, a) where a is a zero of
Xe. Its compactification will be discussed in Section 3 (in particular, Proposition 3.2).

The first projection M ×M → M induces σe : G(X̄e) → M which is called the source map.
The second projection induces τe : G(X̄e) → M which is called the target map. These two maps
have a maximal rank, except at the points (a, a) as above.

Example 2.6. Let Q : Rn → R be the quadratic form of Morse index k and rank n:

Q(x1, . . . , xn) = −x2
1 − . . .− x2

k + x2
k+1 + . . .+ x2

n .

After taking local closure, the graph of the semi-flow of ∇Q looks like, for k = 1, . . . , n, the
R-cone over an n-dimensional band (that is, ∼= Rn−1 × [0, 1]) bounded by two affine subspaces:
one is (−1,Rk−1, 0, . . . , 0)× (0, . . . , 0,Rn−k) ⊂ Rn×Rn and the other is the part of the diagonal
over {xk = −1}. For k = 0, it is similar (change Q to −Q). See Figure 1.

{x = �1}

n = 1, k = 1 n = 1, k = 0

Figure 1.

2.7. Multi-intersection modelled on T . A construction. We are given a generic Fukaya
d-tree T , with a decoration D, and d entries (x1, . . . , xd) where each xi belongs to critf∪critDf∂ .
The entries decorate the leaves of T clockwise.

With these data we want to associate a manifold

(2.1) I(T,D, x1, . . . xd) ⊂ M×n(T ) where n(T ) = d− 1.

Note that n(T )−1 = d−2 is equal to the number of interior edges. The reason of that dimension
will appear along the construction. This manifold, called the multi-intersection modelled on T
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or the T -intersection of the given entries, should be considered as a generalized intersection of
the stable manifolds prescribed by (x1, . . . xd) and the pseudo-gradients listed in D.

The intersection process works as follows. With each edge e of T we are going to associate
a generalized stable manifold W s(e) and with each interior vertex v we are going to associate a
multi-intersection I(v) by applying the next rules inductively.

Rule 1. The edge ei ending at the i-th leaf is given the entry xi and is decorated by the vector
field Xei . This data yields the stable manifold W s(x′

i, Xei) where x′
i is the unique zero of Xei

close to xi provided by the Implicit Function Theorem. One sets

W s(ei) := W s(x′
i, Xei).

Rule 2.
Let v be a vertex which is the starting point of ei and ei+1; there always exists such an i

except when T has no vertex. It is assumed that, whatever the entries are, the intersection

I(v) := W s(ei) ∩W s(ei+1)

is transverse. Since there are finitely many entries, this transversality condition is easily ful-
filled, at least when xi ∕= xi+1. The case xi = xi+1 raises some difficulty: the decoration of ei+1

has to differ from that of ei (compare Section 5).

The edge e ending at v is decorated by Xe. We consider the graph Ge := G(X̄e) of its positive
semi-flow X̄e, in the sense of definition 2.5. Let τe : Ge → M be its target map.

Rule 3. We define the generalized stable manifold W s(e) as the fiber product

W s(e) := lim

Ge

τe−→M
j←− I(v)


,

where j denotes the inclusion I(v) → M . We have W s(e) ⊂ M × M . It is endowed with a
source map which is induced by the source map σe of Ge. Note that σe is the restriction to
W s(e) of the first projection p1 : M ×M → M .

Generically on Xe, that vector field has no zero on I(v). Then, since τe has maximal rank,
W s(e) is a (non-proper) submanifold, whatever the entries are; it is said to be transversely
defined.

Nevertheless, the source map σe : W s(e) → M is not immersive in general (due to the
tangencies of Xe with I(v)). Generically on Xe, this is an immersion almost everywhere.
Hence, the question is: how to make further intersections?

Let v′ be the origin of the above-mentioned edge e. First, consider the particular case where
v′ is also the origin of ei−1. It is assumed that I(v) is transverse to W s(ei−1) (a new transver-
sality condition).

Rule 4. The multi-intersection I(v′) is defined as the fiber product

I(v′) := lim

W s(ei−1)

j−→M
σe←−W s(e)


,

where j stands for the inclusion W s(ei−1) → M .
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e1 e2

e0

v1 v2

v0
T (e2)

Figure 2.

It becomes natural to ask the following question: under which transversality condition this
fiber product is a manifold? Observe that I(v) is not moving when Xe is perturbed; as a
consequence, the requirement W s(ei−1) ⋔ I(v) is a necessary condition.

Assume that condition. Then, generically on Xe, the restriction σe|W s(e) of the source
map is transverse to W s(ei−1), whatever the entries are. Indeed, this follows from Thom’s
transversality theorem with constraints [22].

In that case, the fiber product is said to be transversely defined. It is a smooth submanifold
I(v′) in Ge ⊂ M × M endowed with the projection pv′ : I(v′) → M induced by σe. That
projection is again the restriction of the first projection p1 : M × M → M . This I(v′) is the
desired intersection, in our particular case. We introduce some notations and then we shall
ready for an inductive construction.

If e is an interior edge in T , we denote T (e) the subtree of T rooted at the origin of e and
containing e. Then, the integer n(e) is defined so that n(e)− 1 is equal to the total number of
interior edges of T lying in T (e). If e is not interior and ends in a leaf, one takes n(e) = 1.

If v0 is an interior vertex of T , the integer n(v0) is defined so that n(v0) − 1 is equal to the
total number of interior edges above v0 with respect to the orientation of the tree from the root
to the leaves. Let e1, e2 be the two edges starting from v0 clockwise. The part of T rooted at
v0 will be denoted as a bouquet T (e1) ∨ T (e2). One checks the formula

(2.2) n(v0) = n(e1) + n(e2)− 1

If e0 is the edge ending in v0 and e0 does not start from the root of T , we have

(2.3) n(e0) = n(v0) + 1

In what follows, we choose to denote the first projection of M×k → M by p1 whatever k is.

We now start with the inductive construction. Denote by v1 and v2 the respective end points
of e1 and e2 (see Figure 2). The inductive assumptions are those stated from (2.4) to (2.6):

(2.4) The multi-intersection I(vj) is transversely defined as a submanifold of M×n(vj).

(2.5) The generalized stable manifold W s(ej) is transversely defined as a submanifold of

M×n(ej).
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Each of these stable manifolds is endowed with a source map σj := σej to M which is again
the restriction of the first projection p1 : M

×n(ej) → M .
Assume also that the two following maps are transverse, that is:

(2.6) p1|W s(e1) ⋔ p1|I(v2),
meaning that their product is transverse to the diagonal of M ×M .

Be careful that the first projections p1 in the above formulas have not the same source in
general. Under these assumptions, Thom’s transversality theorem tells us that, generically on
the decoration Xe2 , the respective source maps σ1 and σ2 are mutually transverse. Thus, the
next rule holds:

Rule 5. The multi-intersection I(v0), denoted by I (T (e1) ∨ T (e2)), is transversely defined by
the fiber product

(2.7) I(v0) := lim

W s(e1)

σ1−→M
σ2←−W s(e2)


.

This is a submanifold of M×(n(e1)+n(e2)−1) = M×n(v0). It is endowed with a projection pv0 :
I(v0) → M , which is the common value of σ1 and σ2 on this intersection. By convention, the
base of a fiber product can always be put as the first factor of the product. Thus, this common
value is the restriction of p1 : M×(n(e1)+n(e2)−1) → M .

The edge e0 ending at v0 is decorated with a pseudo-gradient Xe0 . Let Ge0 be the graph of
its semi-flow and let τe0 : Ge0 → M be the target map. Generically on Xe0 , its zeroes are not
in the image pv0(I(v0)). Hence, τe0 is transverse to pv0 |I(v0). Thus, the next rule holds:

Rule 6. The generalized stable manifold W s(e0) is transversely defined by

(2.8) W s(e0) := lim

Ge0

τe0−→M
pv0←− I(v0)


.

This fiber product is a submanifold of M×n(e0). The first projection of the latter product
induces the projection σe0 : W

s(e0) → M .
For allowing us to pursue the construction inductively, it is necessary to assume some

transversality conditions similar to the one expressed in (2.6). This condition is, a priori,
generically satisfied by approximation of all previous decorations. More details will be given
later on (Proposition 4.2); actually, all generic choices may be done inductively (Section 5).

Finally, let eroot = eroot(T ) be the edge starting from the root of T and let v1root = v1root(T ) be
its interior vertex. Arguing inductively as above, we have a generalized intersection

(2.9) I(T ) := I(v1root) ⊂ M×n(v1root) = M×n(T ).

In this notation, the decoration and entries are missing. We define the T -intersection of the
entries (x1, . . . , xd) associated with the chosen decoration D by

I(T ) = I(T,D, x1, . . . xd) := I(v1root) ⊂ M×n(T ).

It is endowed with a projection proot : I(v
1
root) → M in the same way as I(v0) was endowed with

a projection pv0 in Rule 5. This is again the restriction of the first projection p1 : M
×n(T ) → M .
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Proposition 2.8. (Dimension formula)

(2.10) δ(T ) := dim I(T ) =


1≤i≤d

(dimW s(xi)− n) + d− 2 + n .

Proof. If we consider the Fukaya tree T0 where all interior edges are collapsed, formula (2.10)
where d− 2 is erased (as there is no interior edge) reduces to the usual dimension formula for
an intersection of d submanifolds: it is additive up to the shift by the dimension. Each time
an interior edge is created, the dimension increases by 1 since some flow is used and generates
a stable manifold. □

All the above-described manifolds are oriented. The orientations will be specified in Section
6. They will play an important rôle in the A∞-structures with integral coefficients.

2.9. Multi-intersection as a chain. In order to see the above multi-intersection I(T )
as a chain of degree δ(T ) in the Morse complex CD

∗ (f), we have to define the coefficient
< I(T ), xroot > for every test data xroot ∈ critf ∪ critDf∂ of degree δ(T ). We insist to decorate
the edge eroot with the vector field XD itself. Of course, this choice requires the following
condition:

(2.11)


The projection proot is transverse to the unstable manifold W u(xroot, X

D)

for every xroot.

Here proot : I(T ) → M is induced by the first projection p1 : M
×n(T ) → M .

Lemma 2.10. Given a Fukaya tree T , a generic decoration of T yields a multi-intersection
I(T ) which fulfills (2.11).

Proof. In the recursive construction of a decoration of T , we are allowed to add some new
transversality condition at each stage. Namely, for every vertex v (resp. edge e) of T and every
data xroot we demand I(v) (resp. W s(Xe)) to be transversely defined and, in addition, to be
transverse to W u(xroot, X

D). This new requirement can be easily satisfied. □

2.11. T -evaluation map. By choice of the degree of the test data, the codimension of the
unstable manifold W u(xroot, X

D) is equal to δ(T ). Then, the following multi-intersection

< I(T ), xroot) >:= lim

I(v1root)

proot−→M
j←−W u(xroot, X

D)

,

is 0-dimensional, where j stands for the inclusion W u(xroot, X
D) ↩→ M . As it will be explained

in Section 3, it is a compact set, and hence finite, with an orientation. Here, it is important to
specify the orientation convention: for every critical point z

(2.12) or

W s(z)


∧ or


W u(z)


= or(M) .

Therefore, it makes sense to define < I(T ), xroot > as the algebraic counting of elements in
this finite set. The map < I(T ),− > from the right degree test data to Z will be called the
T -evaluation map; it depends on the choice of the decoration of T .
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Definition 2.12. Given a generic Fukaya tree T , a decoration D is said to be admissible if,
whatever the entries and the test data are, all the multi-intersections (resp. stable manifolds)
associated with vertices (resp. edges) are transversely defined as submanifolds of M×k for some
integer k, as well as the T -evaluation.

Admissibilty is easily seen to be a generic property. But it is useful that this property be open.
This requires to compactify the various objects that we just introduced (multi-intersections and
their stable manifolds). This will be done in the next section.

The end of the present section is devoted to extend the description of multi-intersection to
the case of non-generic Fukaya trees. First, we specifiy what is a subtree.

Definition 2.13.
1) The ordered set of leaves in a Fukaya tree T is denoted by L(T ). Let T0 and T1 be two Fukaya
trees. A Fukaya embedding j : T0 → T1 is an injective, non surjective, simplicial map which
sends L(T0) to a consecutive subset of L(T1) increasingly. The image j(T0) is called a Fukaya
subtree of T1.
2) An edge e in a Fukaya tree T is said to be of generation k if the maximal number of edges
in a monotone path of T linking the origin of e to a leaf is equal to k.
3) A vertex which is the origin of a generation-k edge and not the origin of an edge of higher
generation is said to be of generation k.

Note that the generation-k edges are ordered from the left. Indeed, there is a first leaf of T
which is the terminating point of a monotone path P ⊂ T with k edges. The first edge of P
will be the first generation-k edge. Then, erase the subtree which is rooted at the origin of P
and contains P , and start again.

If v0 is a generation-k vertex in T , it is the origin of edges e1, . . . , em, where m > 1 (at least
one ej is of generation k). Let v1, . . . , vm denote the respective end points of e1, . . . , em and
let T1, . . . , Tm be the subtrees rooted at v0 containing v1, . . . , vm respectively. As before, the
integer n(vj) is defined such that n(vj) − 1 is equal to the number of interior edges above vj.
The integer n(ej) := n(vj) + 1 is equal to the number of interior edges in T lying in Tj.

Definition 2.14. Let fj : Nj → M , j ∈ J , be a finite set of smooth maps from manifolds to
M . They are said to be transverse if, for every subset K ⊂ J , the product map



j∈K

fj :


j∈K

Nj → M |K|

is transverse to the small diagonal of the target.
In that case, the fiber product limj∈J fj is said to be transversely defined. This is a smooth

submanifold of the product


j∈J Nj.

Note that in the usual definition one takes K = J .

Let us again consider a Fukaya tree T , not necessarily generic, with a decoration DT , that
is, the data of an approximation Xe of XD for each edge e in T . We are going to repeat the
inductive definition of multi-intersection for each vertex of T . For that, we look at the vertex
v0 in the setting previously described.

Assume that the multi-intersections I(vj), j = 1, . . . ,m, are transversely defined and are
submanifolds of M×n(vj). Generically on Xej , its zeroes do not lie on the image p1(I(vj)) where
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p1 is again the first projection p1 : M×n(vj) → M . Thus, the generalized stable manifold
W s(ej,DT ) is transversely defined as the fiber product

(2.13) W s(ej,DT ) := lim

Gej

τej−→M
p1←− I(vj)



Therefore, this stable manifold is a submanifold of M×n(ej) and the restriction of the source map
σej to this fiber product is nothing but the restriction of the first projection p1 : M

×n(ej) → M .

Proposition 2.15. In the above setting, the extra following assumptions are made:

(2.14) The family of maps

p1 : I(vj) → M


j∈{1,...,m} is transverse.

Then, without changing the decoration DT above the vertices vj, generically on the decorating
vector fields Xej , j = 1, . . . ,m, the multi-intersection I(v0,DT ) is transversely defined as the
fiber product

(2.15) I(v0,DT ) := lim
j


W s(ej,DT )

p1−→M

.

Moreover, I(v0,DT ) is a submanifold of M×n(v0), where n(v0) − 1 is equal to the number of
interior edges in T1 ∨ . . .∨ Tm, and its projection to M is the restriction of the first projection.

Proof. First, thanks to assumption (2.14), for each j = 1, . . . ,m, generically on the gradient
field Xej , the family 

p1|I(v1), . . . , p1|I(vj−1), p1|W s(ej, Xej)


is transverse. Once, this is done, it is available to put successively p1|W s(ej, Xej) transverse
to the preceding family


p1|W s(e1, Xe1), . . . , p1|W s(ej−1, Xej−1

)


by generic approximation. In
all cases, Thom’s transversality theorem with constraints applies. The rest of the statement
is clear by counting the dimensions and applying the definition of the integers n(vj) and n(ej). □

Remark 2.16. Due to the compactness which will be proved in Section 3, each genericity
condition in question in the previous statement is fulfilled in an open dense subset of the space
of gradient vector fields.

3. Compactification

In general, the stable manifolds W s(xi, X
D) are not compact and the graphs Ge are never

compact. In this section, we analyse their individual compactification and how they contribute
to the compactification of the multi-intersection I(T ). All these closures will be stratified. The
codimension-one strata are of particular interest. This is explained in the subsequent proposi-
tions.

Proposition 3.1. Let x be a critical point in critkf ∪ critDk−1f∂ and XD be a Morse-Smale
pseudo-gradient D-adapted to f . Then, the closure in M of the stable manifold W s(x,XD)
is made of all points which are linked to x by an orbit or a broken orbit of XD. It is a
stratified set whose strata of positive codimension are stable manifolds of some critical points
y ∈ critℓf ∪ critDℓ−1f∂ with ℓ < k. The codimenion-one strata are obtained for ℓ = k − 1.
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This is well known for closed manifolds [14]. The same proof gives the case of manifold with
non-empty boundary. The proof of the following proposition is very similar by considering the
flow in the Morse model near a critical point. In what follows, we omit to note the pseudo-
gradient.
Proposition 3.2. Let G ⊂ M ×M be the graph of the positive semi-flow X̄D of the pseudo-
gradient XD. Then:
1) The closure cl(G) of G in M ×M is made of all pairs of points (x, y) where y belongs to the
positive orbit of x or any broken positive orbit starting from x.
2) This cl(G) is a stratified set whose strata of positive codimension are made of pairs of points
(x, y) where x is connected to y by a broken orbit passing through a non-empty sequence of
critical points in critf ∪ critDf∂.
3) The codimension-one strata are made of pairs of distinct points (x, y) where x belongs to
the stable manifold W s(z) for some z ∈ critf ∪ critDf∂ and y belongs to the unstable manifold
W u(z).

From Example 2.6 (or Proposition 6.6), we know that the strata considered in 3) above
are (non-closed) boundary component of G. Observe that the index of z has no effect on the
codimension of the stratum.

Notice also that G is already a manifold with boundary and corners due to the fact that
M × M is such a manifold (if ∂M ∕= ∅). Moreover, the diagonal of M × M lies in G as a
boundary (except over the zeroes of XD). The list of strata described in the items 2) and 3)
does not include them. Under the transversality assumption (MMT) introduced in Definition
2.1, the stratification of stable manifolds and graphs behave nicely with respect to ∂M and all
together form a stratification with conical singularities in the sense of [14].

These partial results are made more precise in the following proposition.
Proposition 3.3. Let T be a Fukaya tree with d leaves and let D be an admissible decoration
(in the sense of Definiton 2.12). Then:
1) The closure of IT (D, x1, . . . xd) in M×n(T ) has a natural stratification whose singularities are
conical for every system of entries.
2) A codimension-one stratum H other than those coming from ∂M or the diagonal of M ×M
has the following form:

There exist j ∈ {0, . . . , d− 1} and a sub-tree T0 in T , with k leaves, a root v0 and an initial
edge e ending at the vertex v1, and there is a zero z of the pseudo-gradient Xe ∈ D decorating
e such that:

- (i) the dimension of IT0(D, xj+1, . . . , xj+k) is equal to the Morse index of z;
- (ii) the stratum H and its transverse conical structure are generated in I(T ) by iterated

fiber products from the pair

W s(z)× c


W u(z)×

M
I(T0)


, W s(z)× {z}


, where c(−)

stands for the cone of (−).
Remark 3.4. Note that by (i) the fiber product W u(z)×

M
I(T0) is a finite set S. When taking

the orientations into account, S is a signed finite set and the sum of these signs is an algebraic
multiplicity, say µ. Therefore, H can be seen with a boundary component of the closure of
I(T ) with mutiplicity µ.
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Proof. We limit ourselves to the case of generic trees. In order to determine the closure of
I(T ) one follows the recursive construction 2.7 . As a result, the closure of I(T ) is itself the
iterated fiber product of the closures of the factors. Thus, we have to check that, at each step
the projection maps, restricted to strata in factors, are mutually transverse. That follows from
the fact that the transversality conditions for multi-intersections are required to be fulfilled for
every system of entries.

Concretely, when looking at the step mentioned on Figure 2 and assuming that the closures
of W s(e1),W

s(e2) are stratified with conical singularities, the following is required: for each
pair of strata (A1, A2) where Ai is a stratum of the closure of W s(ei), i = 1, 2, the restricted
source maps σ1|A1 and σ2|A2 are transverse. By fiber product diagram chasing, we get that
B := A1 ×

M
A2 is a stratum of codimension k1 + k2 in the closure of IT (v0) where ki is the

codimension of Ai in cl

W s(ei)


. The singularities are conical by products and intersection

with the diagonal of M ×M .
For looking at what happens through the stable manifold W s(e0), we limit ourselves to the

case of a stratum of codimension one neither generated by ∂M nor by the diagonal ∆M . If B
from above is of codimension one in cl


IT (v0)


one can pursue the process of fiber products

and B generates a codimension-one stratum in IT .
For having a new phenomenon, we need to start with I(v0) itself and consider, in the closure of

W s(v0), a stratum of broken orbits generated by a zero z of the vector field Xe. By admissibility
of the decoration, the embedding of W u(z) into M is transverse to the projection pv0 : IT (v0) →
M . Then the part of IT (v0) over W u(z) is a submanifold S whose codimension is equal to the
Morse index of z.

If the dimension condition (i) is fulfilled, S is a finite set. Taking the pull-back to the graph
Ge of the semi-flow X̄e and then the closure produces a bundle over W s(z) which contains
W s(z) × {z} and whose fiber is c(S) (adapt [14, Lemma 4] to the fiber product setting).
Therefore, W s(z)× {z} appears as a boundary component of the closure of W s(e) in M ×M
with multiplicity and (ii) is fulfilled.

If S were not zero-dimensional, the top of the above-mentioned cone would be of codimension
larger than one in c(S), and hence, H would not be of codimension one in cl


I(T )


. □

Corollary 3.5. The admissible decorations of a given Fukaya tree form a dense open set among
all decorations.

Proof. Let D be an admissible decoration of the generic Fukaya tree T . At each step of the
construction 2.7, one looks at the strata of highest codimension first. They are closed, hence
compact. Transversality along a compact set is an open property. As the singularities of the
stratification are conical, transversality along a stratum S implies the following local transver-
sality in a neighborhood N(S) of S in the ambiant manifold (which is some product M×k). For
each stratum S ′ having S in the closure, transversality along S ′ ∩ N(S) holds true. But the
complement in S ′ of an open neighborhood of the frontier cl(S ′)S ′ is compact. We use again
that transversality along a compact is an open property and the proof of the openness goes on. □
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4. Coherence

In this section, all Fukaya trees will be generic or not. The A∞-structure that we want to
reach requires to consider all Fukaya trees and to decorate them in a coherent way. We give
the precise definition right below.

Definition 4.1. 1) Two admissible decorations of T are said to be isotopic if they lie in the
same arcwise connected component of admissible decorations.
2) Assume that T0 and T1 are given admissible decorations D0 and D1 respectively. The two
decorations are said to be coherent if, for any Fukaya embedding j : T0 → T1 (in the sense of
Definition 2.13), the induced decoration j∗D1 is isotopic to D0.
3) A system of admissible decorations {D(T )}T for all generic Fukaya trees is said to be coherent
if for any pair (T0, T1) of Fukaya trees the corresponding decorations D(T0) and D(T1) are
coherent.

We consider the group G = Diff0(M) of smooth diffeomorphisms of M isotopic to IdM . We
have chosen from the beginning a Morse-Smale vector field XD thanks to which some Morse
complex was built which calculates the relative homology H∗(M, ∂M ;Z).

Notation 4.2. Denote by Σ the union of unstable manifolds W u(x,XD) of positive codimen-
sion, x ∈ critf ∪ critDf∂ . And similarly, Σ∗ denote the union of stable manifolds W s(x,XD)
of positive codimension. Both Σ and Σ∗ are stratified submanifolds of M with conical singu-
larities. Let GΣ denote the connected component of Id in the subgroup of G which consists of
diffeomorphisms preserving the stratified set Σ. Recall that T1 (resp. T2) denotes the unique
tree with one leaf (resp. two leaves).

Proposition 4.3. Let d be a fixed positive integer. Then, for every g in some open and dense
subset of GΣ, the sequence S = (Dk

1)
d
k=1 of decorations T1 defined by

(4.1) D1
1 = XD,D2

1 = g∗X
D, . . . ,Dj

1 = g◦(j−1)
∗ XD, . . . ,Dd

1 = g◦(d−1)
∗ XD

has the following properties:
1) The family


W s(D1

1), . . . ,W
s(Dd

1)


is transverse whatever the entries are. Moreover, this
family is transverse to Σ, that is, to every unstable manifold contained in Σ.
2) For every integer j, 1 ≤ j < d, the decoration of T2 with Dj(T2) := (Dj

1,D
j+1
1 , g

◦(j−1)
∗ XD),

for the left branch, the right branch and the trunk respectively, is admissible. The decoration
Dj(T2) is isotopic to D1(T2) in the space of admissible decorations of T2. In particular, the
family {Dj(T2)}j≤d−1 is coherent.

First, we need some lemma involving a more simple setup.

Lemma 4.4. Let N ′ (possibly empty) and N be two transverse compact submanifolds of M of
positive codimension. Let GN ′ denote the subgroup of G made of diffeomorphisms leaving N ′

invariant. Then, the following property is generic for g ∈ GN ′:
âĂŤ for every positive integer d, the family of embeddings {g◦j : N → M}d−1

j=0 is transverse
(in the sense of Definition 2.14);

âĂŤ this family is transverse to N ′.
Moreover, for a given d, the corresponding property is open and dense.
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Proof. We recall the following classical fact wich is a part of the so-called Kupka-Smale The-
orem (see J. Palis & W. de Melo’s book [18, Chap. 3]): For a generic g ∈ GN ′ , all periodic
points of g whose periods are less than d are non-degenerate. In particular, they are isolated.
Therefore, generically, they do not lie in N .

First, we assume N ′ is empty; in that case GN ′ = G. As usual for proving a transversality
theorem with constraints, it is sufficient to prove that the statement holds when replacing g
with a smooth finite dimensional family in G passing though g. Indeed, Sard’s theorem says
that, if the statement holds for a family, it holds for almost every element in that family. We
do it when d = 3; the general case is similar with more complicated notations. We have to
prove that generically the following intersections are transverse:

(i) The triple intersection Θg := N ∩ g(N) ∩ g◦2(N) is transverse;
(ii) The intersections N ∩ g(N) and N ∩ g◦2(N) are transverse.

We limit ourselves to prove the first item. The desired transversality condition is the following:
The map

(4.2) g̃ : N ×N ×N −→ M ×M ×M
(x, y, z) → (x, g(y), g◦2(z))

is transverse to the so-called small diagonal δ ⊂ M × M × M . This property is open by
compactness of N . We have only to prove that it is satisfied on a dense set of G. We start
with an element g ∈ G having its periodic points apart from N . We search for a family Γ ⊂ G
passing through g and having the triple transversality condition (4.2). We first need to find a
set of parameters.

If x0 ∈ Θg, there exists (y0, z0) ∈ N × N such that x0 = g(y0) and x0 = g◦2(z0). By
assumption on g, these three points are mutually distinct. Then, there is a finite coverings of
Θg by Euclidean closed balls {Bj}qj=1 with the following property: denote by B′

j and B′′
j the

respective preimages of Bj by g and g◦2; if Bj is small enough, Bj, B′
j and B′′

j are mutually
disjoint. Each of these balls and their preimages are thought of as contained in an open chart.
Our space of parameters will be (Rn, 0)q × (Rn, 0)q, where n = dimM and (Rn, 0) stands for a
small neighborhood of the origin in Rn.

For sj a small vector in the coordinates around Bj, the deformation gsj of g is defined by
gsj(y) = g(y) + sj when y ∈ B′

j and gsj(y) = g(y) when y lies outside some small neighborhood
of B′

j given in advance.
Similarily, for tj a small vector in the coordinates around B′

j, the deformation gtj is defined
by gtj(z) = g(z) + tj when z ∈ B′′

j and gtj(z) = g(z) when z lies outside some small given
neighborhood of B′′

j . Notice that, for z ∈ B′′
j ,

(gtj)
◦2(z) = g(g(z) + tj).

If s = (s1, ..., sq) and t = (t1, ..., tq) are two q-tuples of small vectors in Rn, the announced
family Γ = gs,t is any family in G which coincides with gsj (resp. gtj) on the sj-axis (resp. on
the tj-axis). As a map, Γ reads as the following:

(4.3) Γ : N ×N ×N × (Rn, 0)q × (Rn, 0)q −→ M ×M ×M
(x, y, z, s, t) −→


x, gs,t(y), (gs,t)

◦2(z)




17

We are going to show that this map is transverse to the small diagonal δ. More precisely, we
are going to check that, for every triple (x, y, z) such that x = g(y) = g◦2(z), the restricted map

(s, t) ∈ (Rn, 0)q × (Rn, 0)q −→

gs,t(y), (gs,t)

◦2(z)


is a submersion valued in M×M . The triple (x, y, z) belongs to some triple of balls (Bj, B
′
j, B

′′
j ).

Thus, we restrict to s = sj and t = tj, the other translation coordinates being equal to 0. The
jacobian matrix J at (x, y, z, 0, 0) reads:

J =


IdTxM 0

0 dg(g(z))



where dg(g(z)) : TyM → TxM is the tangent map to g at the point y = g(z). Finally, J is
an epimorphism. That finishes the proof that Γ is transverse to the small diagonal in the case
when N ′ is empty; if N ′ ∩N = ∅, the proof is the same. We are left with the case N ′ ⋔ N ∕= ∅.

Let K denote the transverse intersection N ′ ∩N . We first have to put the triple intersection
K ∩ g(K) ∩ g◦2(K) in transverse position in N ′. This can be done according to the preceding
proof by replacing (N,M) with (K,N ′). Just observe that the restriction GN ′ → Diff0(N

′) is
a fibration. Automatically, the transversality we get along N ′ extends to transversality in some
neighborhood of N ′.

Now, we are reduced to put in transverse position the triple intersections which do not ap-
proach N ′. Notice that, when x = g(y) = g◦2(z) /∈ N ′, then y and z are not in N ′ since g
preserves N ′. For such triple points, the preceding proof works as if N ′ were empty. This
finishes the proof of Lemma 4.4. □

We notice that the statement of Lemma 4.4 extends to the case where N and N ′ are subman-
ifolds with conical singularities. We briefly indicate how the proof has to be changed. First, we
consider the case when N ′ = ∅. The domain of the map Γ in formula (4.3) is a stratified set.
Thus we have to check that when A and B are two submanifolds with conical singularities of
M , then A×B is a submanifold with conical singularities in M ×M . Namely, if some stratum
S ⊂ A (resp. S ′ ⊂ B) has a link 3 L (resp. L′), the link of the product S ×S ′ is the join L ∗L′.
Now, if the domain of Γ is stratified with conical singularities, if σ is one of the strata and if Γ|σ
is transverse to the small diagonal of the target, then the same holds near σ for each stratum
τ having σ in its closure. Therefore, we are allowed to argue on each stratum of the domain of
Γ inductively on the increasing dimension.

In the case where N ⋔ N ′ ∕= ∅, we look at each smooth stratum σ of N ′. Considering
K := N ⋔ σ as a submanifold with conical singularities in σ, we are able to realize the required
transversality if it is already realized along every stratum in the frontier σ̄ σ. Again, arguing
inductively, we are done with the stratified extension of Lemma 4.4.

Proof of Proposition 4.3.
1) The Morse-Smale property of the vector field XD implies that Σ∗ and Σ are two trans-

verse submanifolds with conical singularities. Then, we are allowed to apply Lemma 4.4 in its
generalized form by taking N = Σ∗ and N ′ = Σ. It tells us that for a generic g ∈ GΣ and for

3 For x ∈ S, the intersection of A with a neighborhood of x in M reads S × cL where L is a submanifold
with conical singularities in the r-sphere, r = dimM − dimS− 1, and where cL stands for the cone on L in the
(r + 1)-ball.
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any entries, the intersection W s(g
◦(j−1)
∗ XD)∩W s(g◦j∗ XD) =: W s(Dj

1)∩W s(Dj+1
1 ) is transverse.

Moreover, by 2) of Lemma 4.4, this intersection is transverse to Σ. This proves the first item.
2) Let us prove first the admissibility of D1(T2). Set I11 := W s(D1

1) ⋔ W s(D2
1). Consider

the intersection W u(XD) ⋔ I11 . Its transversality follows from the first item. Thus, the inverse
image p−1

2 (I11 ) by the target map p2 is transverse to p−1
1 (W u(XD)) in M ×M at any point of

the diagonal.
The intersection G(X̄D) ∩ p−1

2 (I11 ) is transverse since there are no zeroes of XD in I11 (the
stable manifold associated with the trunk is transversely defined). We have to check that
p−1
1 (W u(XD)) intersects transversely G(X̄D) ∩ p−1

2 (I11 ). A point (x, y) in that intersection
satifies: x ∈ W u(XD), y ∈ I11 and y = X̄D

t (x) for some t ≥ 0. As W u(XD) is positively
invariant by the flow, we have y ∈ W u(XD), that is, y ∈ W u(XD) ∩ I11 .

The lifted flow X̄D × IdM to M × M preserves the three submanifolds the intersection of
which we are looking at. As said above, their mutual transversality holds in (y, y), and hence
it holds in (x, y). This is the desired admissibility of D1(T2). The admissibility of Dj(T2) will
follow from the isotopy argument which is given right below.

For the second part of 2), observe that g◦(j−1) is a common factor in the three decorations
which appear in Dj(T2). Recall g is isotopic to IdM by an isotopy (gt)t∈[0,1] which keeps Σ

invariant. Decompose g◦j = g◦(j−1) ◦ g, apply the isotopy to the left factor, namely g
◦(j−1)
t , and

keep the right factor g unchanged. Along the isotopy, all the required transversality conditions
are preserved since the triple of decorations are moved by an ambient isotopy. Therefore, this
is an isotopy of admissible decorations, which is the statement of the second item. □

We are going to generalize Proposition 4.3 to any forest in the following sense.

Definition 4.5. 1) The height of a tree is the generation of its root (see Definition 2.13). In
this subsection, the trees are drawn in the upper half-plane with roots in R×{0}. By definition,
the root of a tree T belongs to one edge only; this edge is called the trunk of T (denoted by
eroot(T ) in Subsection (2.7). The other edges of T are its branches.

2) A forest of height h is a finite union of pairwise disjoint trees of height ≤ h with at least one
tree of height h.

Any height-h forest F yields a height-(h−1) forest c(F ) just by erasing a small neighborhood
of all generation-h trunks and descending the newly created roots to R× {0}. This process can
be iterated and yields successively c2(F ), c3(F ) and so forth.

4.6. Labeling of the edges and g-standard decoration. Denote by F(d) the set of forests
with d leaves at most. For F ∈ F(d), the j-th leaf of F determines a unique maximal monotone
path P j(F ) in F ending to that leaf. If e is an edge of F , it will be labeled ejh(F ) (or ejh when no
possible confusion) if h is the generation of e and j labels the leftmost path P j(F ) containing
e (see Figure 3). Observe (e.g. on this example) that for a given h > 1, any j ∈ [1, d] cannot
appear as label of an edge of F .
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e32
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e52

Figure 3. A height-3 forest with 6 leaves

Recall the group GΣ of diffeomorphisms of M which are isotopic to IdM by an isotopy keeping
Σ invariant. For g ∈ GΣ, the g-standard decoration of F consists of decorating ejh(F ) with the
vector field g

◦(j−1)
∗ XD. The multi-intersection associated with the vertex (of generation h− 1)

which lies at the end of ejh(F ) will be denoted by Ijh(F ).

Remark 4.7. If T is a subtree of F , there are two natural decorations on T : the first one is
Dg(T ), the own g-standard decoration of T ; the second one is Dg(F )|T which is induced on
T from the g-standard decoration of F . The question of coherence amounts to compare these
two decorations on T . In this aim, what follows is helpful: if ej1(F ) is the leftmost edge of
generation 1 sitting in T , then g

◦(j−1)
∗ is a common factor to every edge decoration in Dg(F )|T .

The next lemma is the technical part for proving that, generically, the g-standard decoration
is admissible and coherent.

Lemma 4.8. Given the number d of leaves, for every generation h, 1 ≤ h ≤ d, there exists
an open dense subset Gh(d) ⊂ GΣ such that the following two properties hold for every height-h
forest F ∈ F(d) and for every g ∈ Gh(d):

(4.4)






For every possible j, the map p1|W s(ejh(F ), g◦(j−1)
∗ XD) is transverse to Σ and to

the family

p1|W s(eℓk(F ), g◦(ℓ−1)

∗ XD)

(k,ℓ)

where k < h and (k, ℓ) runs among

all labels of branches of F, except those in the tree whose trunk is ejh(F ).

(4.5)


The family of maps


p1|W s(ejh(F ), g◦(j−1)

∗ XD)

j
, j running among

all possible labels, is a transverse family and, in addition, transverse to Σ.

In particular, if g ∈ Gh(d) the g-standard decoration makes all multi-intersections of F trans-
versely defined; that is, this decoration is admissible.

Proof. We prove this statement inductively on h. For h = 1, this is the first item of Proposition
4.3; let G1(d) denote the open dense set in question in that proposition. As a finite intersection
of open dense sets is still so, we may fix h and F ∈ F(d) in what follows.

Let us prove the statement for h = 2. About genericity of the condition (4.4), we limit
ourselves to prove the genericity of transversality of p1|W s(ej2(F ), g

◦(j−1)
∗ XD) to one W s(Dk

1)
only, k ∕= j, j+1. As openness of the condition is clear, we focuse on denseness. Then, we start
with g1 ∈ G1(d) and we try to approximate it by g ∈ GΣ fulfilling the required transversality.
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Denote by Φj
t the positive semi-flow of g◦(j−1)

∗ XD and take the g-standard decoration of every
considered edge. In that setting, (4.4) amounts to say that the equation whose unknowns are
(x, t) ∈ W s(Dk

1)× R+:

(4.6) Φj
t(x) ∈ Ij2(F )

is regular. This equation depends on g ∈ GΣ which plays the role of a parameter; it is hidden
in the domain of x and the intersection Ij2(F ). By Proposition 4.3, for g close to g1 the
submanifolds W s(Dk

1) and I12 (F ) are mutually transverse and their intersection is transverse to
Σ. That allows us to search maximal rank for the equation (4.6) by slightly deforming g in GΣ.
Note: firstly, W s(Dk

1) can be thought of as being compact since all the entries of degree less
dimM are considered; and secondly, generically on g there are no zeroes of g◦(j−1)

∗ XD lying in
Ij2(F ). As a consequence, there are no solutions of (4.6) when t is large enough; (by reasoning
on each stratum of Σ∗ âĂŤ see Notation 4.2 âĂŤ by decreasing codimension yields a uniform
bound for a possible t when g varies near g1).

When the parameter g is incorporated to the unknowns, the equation (4.6) extended to all
g in a neighborhood of g1 is of maximal rank (already with respect to g) for (x, t) close to
some (x0, t0). By the above-noted compactness, we have only finitely many (x0, t0) to con-
sider. Therefore, we have a finite dimensional family G0 ⊂ GΣ passing through g1 such that
the equation (4.6) extended to G0 is of maximal rank. Then, by Sard’s Theorem, g1 can be
approximate by some g ∈ G0 where (4.6) has a maximal rank. Moreover, the transversality to
Σ of the considered family (with the g-standard decoration) is for free as the approximation of
g1 is made inside GΣ.

Regarding the condition (4.5), we limit ourselves to transversality of stable manifolds associ-
ated with two trunks of generation 2 only, say ej2(F ) and ek2(F ), k > j. For any i, let Φi

t denote
the flow of g◦(i−1)

∗ XD. For a given g ∈ GΣ, (4.5) reads:

(4.7) Φj
t1(x) ∈ Ij2(F ), Φk

t2
(x) ∈ Ik2 (F ),

the unknows being (x, t1, t2) ∈ M × (R+)
×2. The regularity of (4.7) could be discussed as we

did for (4.6). In particular, it is important to check there are no solution when one ti, i ∈ {1, 2}
approaches +∞. It is not needed to say more about that condition.

About the induction from generation h−1 to generation h, it is not different from the passage
from h = 1 to h = 2, except that having more complicated notation. More details seem not to
be needed. □

Proposition 4.9. Every forest F ∈ F(d) decorated with a g-standard decoration is admissible
and coherent if g belongs to Gd(d) from Lemma 4.8.

Proof. The admissibility of such a decoration holds by Lemma 4.8. Concerning the question
of coherence, suppose we are given F ∈ F(d) and a height-h sub-tree T ⊂ F . Let d′ < d the
number of leaves of T . Take any g ∈ Gd(d). This determines the g-standard decoration Dg(F )
of F , together with the induced decoration Dg(F )|T on T , and also a decoration Dg(T ) of T
as Gd(d) ⊂ Gh(d) for every h ≤ d. The question is to check that these two decorations of T are
isotopic in the space of admissible decorations (see Definition 4.1).
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Let ej1(F ) be the leftmost generation-1edge of T ⊂ F . As noted in Remark 4.7, g◦(j−1)
∗ is a

common factor in the g-standard decoration of all edges of T : if eℓq(F ) is an edge of T , then

the decoration of eℓq(F ) reads g
◦(ℓ−1)
∗ XD = g

◦(j−1)
∗


g
◦(ℓ−j)
∗ XD


.

Remember that g is isotopic to Id among the diffeomorphisms which preserve Σ. Let (gt)t∈[0,1]
such an isotopy, with g0 = g and g1 = IdM . Apply (gt)t to the factor g◦(j−1) while keeping
the other factors unchanged. This ambient isotopy of M carries decorations of all edges T
accordingly. Every multi-intersection remains transversely defined and transverse to Σ. Thus,
admissibility is kept throughout the isotopy.

Call D1(T ) the decoration of T at time t = 1 of the isotopy (g
◦(j−1)
t )t. By construction,

the generation-1 edges of T are decorated by XD, g∗X
D, ..., g

◦(d′−1)
∗ XD consecutively. Since the

monotone paths descending from the leaves to the root of T determined the decoration of T
at time t = 0, this remains true at time t = 1 of the isotopy. As a consequence, D1(T ) is the
g-standard decoration of T . The coherence property is proved. □

5. Transition

Proving A∞-relations in Section 7 requires analysing the transition phenomenon from I(T ′) to
I(T ′′), where T ′ and T ′′ are two generic Fukaya trees with d leaves on each side of a codimension-
one stratum in the space Td of Fukaya trees with d leaves (see Definition 2.3).

5.1. Setting of the transition. We consider two Fukaya trees T ′ and T ′′ which differ only in
the star of v (see Figure 4). The intermediate Fukaya tree T has codimension one since v has
valency 4. Up to isotopy, T ′ and T ′′ are the only two possible deformations from T to a generic
Fukaya tree. The edge e′ (resp. e′′) is collapsed in T ′ → T (resp. T ′′ → T ). The counting of
interior edges gives n(T ′) = n(T ′′) = n(T ) + 1.

The collapse e′ ↘ v carries any admissible decoration DT ′ to a unique admissible decoration
of T , just by forgetting the decoration of e′. It will be denoted by DT ′→T . One will say that
DT ′→T is induced by DT ′ through the collapse of e′. Note that the diagram

(5.1) W s(e′) → M ← W s(e3)

contains the diagram

(5.2) I(v′) → M ← W s(e3)

as a codimension-one subdiagram by intersecting W s(e′) with the diagonal of M ×M . Then,
the diagram (5.2) defines the generalized triple intersection I(v) transversely.

Lemma 5.2. Let e′ be an interior edge of a Fukaya tree T ′ and let T := T ′/e′ be the tree
resulting of the collapse of e′. Then, the induction map is a continuous. In particular, path
connected components of admissible decorations are sent to admissible path components.

Proof. This statement follows from the fact that all transversality conditions are open since
they are to be satisfied along compact sets which are the stratified compactifications of the
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involved multi-intersections. If T ′ reduces to T by collapsing an edge, the transversality condi-
tions for admissibility in T ′ are contained in those for admissiblity in T . □

Definition 5.3. Let T ′ and T ′′ be two trees reducing by collapse onto T . The two admissi-
ble decorations DT ′ and DT ′′ are said to be transition compatible if they induce two isotopic
admissible decorations on the codimension-one tree T .

Proposition 5.4. Let T ′ → T ← T ′′ be a transition of Fukaya trees in F(d). Let g be an
element of Gd(d) from Lemma 4.8. Then the g-standard decorations Dg(T

′) and Dg(T
′′) of T ′

and T ′′ respectively induce the same decorations on T , namely the g-standard decoration of T .

Proof. According to the definition of the g-standard decoration, the collapse of an edge only
changes the generation level of some edges, but not their upper indices. Therefore, the g-
standard decoration of any edge existing in T is the same as it was before the collapse. □

The following proposition will be useful in Section 6.

Proposition 5.5. In this setting, the multi-intersection I(T ) has a natural smooth embedding
j′ : I(T ) → I(T ′) (resp. j′′ : I(T ) → I(T ′′)) as a boundary. These embeddings extend to
the closure cl


I(T )


in a way compatible with the stratifications. Then, I(T ′) ∪

I(T )
I(T ′′) is a

(piecewise smooth) manifold which is equipped with a natural stratified compactification.

Notice that this amalgamation is not contained in M×(n(T )+1). It only can be immersed
thereto, with a fold along I(T ).

Proof. It is sufficient to focus on the subtrees T (v0), T ′(v0) and T ′′(v0) rooted at v0 (Figure
4). Since T ′ and T ′′ play the same rôle with respect to T , we look only at T (v0) and T ′(v0).
For short, v0 will named v.

On the one hand, the multi-intersection IT (v) is contained in M×n(v,T ), where n(v, T )− 1 is
equal to the number of interior edges of T lying above v. We have

(5.3) IT (v) =


W s(e1)×

M
W s(e2)


×
M
W s(e3) ,
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where the fiber product is associative. On the other hand, IT ′(v) is contained in M×n(v,T ′) and
the graph Ge′ of the semi-flow associated with the decoration of e′ is contained in the product
of the first two factors. Thus, there is a diagonal map

(5.4)


J : M×n(v,T ) → M×n(v,T ′)

(x, y, z, . . .) → (x, x, y, z, . . .)

Observe that IT ′(v′) is canonically isomorphic to W s(e1)×
M
W s(e2). Therefore, we have:

(5.5) IT (v) = J∗


Ge′ ×
M
IT ′(v′)


×
M
W s(e3)


.

As a consequence, J induces the desired embedding j′, which is a boundary because the diagonal
is a boundary of Ge′ .

In the preceding formulas we neglected to mention the admissible decorations which is always
a g-standard decoration for a generic g in GΣ. But, by Proposition 5.4 we know that each edge
has the same decoration when it contributes to the multi-intersection (5.3) or to the multi-
intersection (5.5).

□

5.6. From d leaves to d+ 1 leaves.
So far, in Sections 4 and 5 we have worked with trees or forests having a bounded number

of leaves. We now explain how to decorate them without having any bound on the number of
leaves.

Proposition 4.9 and Proposition 5.4 state the existence of admissible decorations of Fukaya
trees with d leaves having the two properties: coherence and transition compatibility. Recall
the group GΣ defined in Notation 4.2. And recall from Lemma 4.8 the open dense subset Gh(d)
of GΣ. Since increasing the number of leaves increases the number of forests, and for each of
them the number of transversality requirements, the set Gh(d+ 1) is open and dense in Gh(d).
Therefore, Gd+1(d + 1) is open dense in Gd(d). As GΣ endowed with the C∞ topology is a
Baire space, the intersection G∞ :=

∞
d Gd(d) is non-empty, and even dense. One can choose to

decorate every Fukaya tree with its g-standard decoration where g belongs to this intersection.
It satisfies the conclusion of the two above-mentioned propositions for every d. Therefore, the
following proposition holds true.

Proposition 5.7. Let T be the collection of Fukaya trees. Every tree T ∈ T can be given
an admissible decoration DT such that the family D := {DT}T∈T is coherent and transition
compatible.

6. Orientations

The matter of orientation is a question of Linear Algebra. Some conventions have to be
chosen.

6.1. Orientation, co-orientation and boundary.
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1) Let E be a vector subspace of an oriented vector space V . Let ν(E, V ) be a complement to
E in V . Then, the orientation and the co-oriention of E will be related as follows:

(6.1) or

ν(E, V )


∧ or(E) = or(V ).

2) Let E be a half-space with boundary B. Let ε be a vector in ν(B,E) pointing outwards, where
ν(B,E) is a complement to B in span(E). Then, the orientations of B and E will be related
as follows:

(6.2) ε ∧ or(B) = or(E).

When E is oriented, this orientation of B is called the boundary orientation; it is denoted by
or∂(B,E); one also says that B is the oriented boundary of E. Notice that, when E ⊂ V , the
choices 1) and 2) are compatible if we choose ν(B, V ) = ν(E, V )⊕ εR.

6.2. Orientation and fiber product. Let E1, E2, V be three oriented vector spaces and, for
i = 1, 2, let fi : Ei → V be a linear map. Assume that f1 × f2 : E1 ×E2 → V × V is transverse
to the diagonal ∆. Then the fiber product E12 := E1 ×

V
E2 is well-defined as the preimage of ∆

by f1 × f2.
The first factor of V × V is seen as a complement to ∆ in V × V . So, the orientation of

V defines a co-orientation of the diagonal. The transversality yields a canonical isomorphism
ν(E12, E1 ×E2) ∼= ν(∆, V × V ). Thus, E12 is co-oriented in E1 ×E2. Eventually, it is oriented
according to (6.1).

Proposition 6.3. In the case when a fiber product with three factors is defined, the orientation

is associative, that is:

E1 ×

V
E2


×
V
E3 and E1 ×

V


E2 ×

V
E3


have the same orientation.

Proof. It is sufficient to look at the small diagonal δ3 in V × V × V . In the first case it is seen
as the diagonal of ∆×V and in the second case it is seen as the diagonal V ×∆. In both cases,
its co-orientation is induced by the orientation of the first V × V . □

In the setting of 6.2, we have the following formulas.
Proposition 6.4. 1) Let E1 be an oriented linear half-space with oriented boundary B1 and let
E2 be an oriented vector space. Assume that the restriction f1 × f2|(B1 × E2) is transverse to
∆. Then, the fiber product B12 := B1 ×

V
E2 is the boundary of E12 and its orientation coincides

with the boundary orientation, that is:

(6.3) or∂ (B12, E12) = or


B1 ×

V
E2


.

2) Let E2 be now an oriented linear half-space with an oriented boundary B2 and let E1 be an
oriented vector space. Assume that the restriction f1 × f2|(E1 ×B2) is transverse to ∆. Then,
the fiber product B12 := E1 ×

V
B2 is the boundary of E12. The orientations are related as follows:

(6.4) or∂ (B12, E12) = (−1)dimE1or


E1 ×

V
B2


.
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Proof. In both cases the co-orientation of B12 in the boundary ∂ (E1 × E2) is induced by the
co-orientation of the diagonal ∆. So, the only difference depends on the boundary orientation of
∂ (E1 × E2). In the first case, the boundary orientation is the product orientation or∂(B1, E1)∧
or(E2). In the second case, we have:

or∂ (∂(E1 × E2), E1 × E2) = (−1)dimE1or(E1) ∧ or∂(B2, E2) .

□

Remark 6.5. Of course, all of that was previously said in the linear case applies word to word
in the non-linear case to fiber products of manifolds with boundary when they are defined, that
is, under some transversality assumptions. The intersection of two transverse submanifolds is
a particular case of the previous discussion.

Orientation and graph of semi-flow. Let e be an interior edge in a decorated Fukaya tree
(T,D) and let Xe be the pseudo-gradient associated with e. Let Ge be the graph of its positive
semi-flow X̄e. The source map σe makes Ge a [0,+∞)-bundle over M . By convention, Ge will
be oriented like or([0,∞)) ∧ or(M). Recall also the target map τe : Ge → M, (t, x) → X̄ t

e(x).

Proposition 6.6. Let z ∈ critf ∪ critDf∂ and let H be the codimension-one stratum that z
generates in the closure of Ge in M×n(e). Denote by Ẇ s(z) the stable manifold punctured at z;
and similarly for Ẇ u(z). We have

(6.5) H ∼= Ẇ s(z)× Ẇ u(z)

as oriented manifolds if H is oriented as a boundary component of Ge. Moreover, the right
handside of (6.6) is a (punctured) sub-product of M ×M .

Proof. First, recall that W u(z) is oriented arbitrarily; it is also co-oriented so that
co-or(W u(z)) ∧ or(W u(z)) = or(M). By convention (2.12), the stable manifold is oriented
by the co-orientation of the unstable manifold. Thus, the right hand side of (6.5) has the
orientation of M .

Now, take a pair (x, y) ∈ Ẇ s(z) × Ẇ u(z) and a small ε > 0. Set a = x + ε zy in the affine
structure of the Morse model around z. The orbit of a intersects the affine line y + R zx in
exactly one point a′ at some time t′; we have X̄e(t

′, a) = a′. So, for some small enough δ and
0 < ε < δ, we have a collar map

C : (0, δ)× Ẇ s(z)× Ẇ u(z) −→ Ge

(ε, x, y) → (a, a′)

which extends to a diffeomorphism {0}× Ẇ s(z)× Ẇ u(z) ∼= H. By a computation in the Morse
model, it is seen that, fixing ε, the map τe ◦ Cε : (x, y) → a′ is direct. Moreover, making ε
decrease (which is the outgoing direction along the boundary) makes t′ increase. Altogether,
we have the desired isomorphism of orientations. □

Orientation and multi-intersection.
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Let T be a generic tree with d leaves, an admissible decoration D and entries x1, ..., xd. Let e
be an interior edge of T and let z be a zero of the pseudo-gradient Xe ∈ D. Assume the index
of z is convenient so that z generates a codimension-one stratum H in closure of the generalized
stable manifold W s(e) and think of H as a boundary component with algebraic multiplicity µ
(see Remark 3.4). Denote by j the rank of the leaf which lies just to the left of the set of leaves
above e.

Proposition 6.7. Consider the above data and orient H as a boundary component of W s(e)
with multiplicity µ. Then H contributes to a boundary component of the multi-intersection I(T )
with multipliciy µ and the sign (−1)εj given by

(6.6) εj = n+ j − 1 +

j

i=1

(dimW s(xi)− n) .

Proof. It consists of a generalization to fiber product of the sign given in the case of a product
by Proposition 6.4. Note that the sign we are interested in is invariant by sliding the edges
(compare the transition move on Figure 4) as long as they remain to the left of e.

After a well-chosen sequence of transitions, T has the following form: T (v1) = Tα∨Tβ. Here,
v1 is the first interior vertex above the root of T and T (v1) stands for the union of edges above
v1; the ∨ means the bouquet; Tα is a tree with j leaves and the edge root of Tβ is e. In that
case, the multi-intersection becomes a basic fiber product and its left factor has a dimension
equal to dim ITα + 1. By the dimension formula (2.10), this is the desired ε.

□

Orientation and gluing. We are in the setting of 5.1. We will prove the following statement:

Proposition 6.8. The two multi-intersections I(T ′) and I(T ′′), equipped with their natural
orientations, give I(T ) two opposite boundary orientations. In other words, the amalgamation
I(T ′) ∪

I(T )
I(T ′′) is made in the category of oriented manifolds.

Proof. First we observe that the decoration has no effect on orientation matter. So, without
loss of generality, we may assume Xe′ = Xe′′ (notation of Figure 4). We are now going to use
formulas (5.3) and (5.4) from the proof of Proposition 5.5. Each factors in the iterated fiber
product diagram (5.3) is contained in some M×q and the maps in the diagram of fiber product
are induced by the first coordinate in each factor. In coordinates, a point a ∈ I(v, T ) reads:

(6.7) a = {(x1, . . . , xk)(y1, . . . , yℓ)(z1, . . . , zm)}
x1 = y1 = z1

where each coordinate xi, yi or zi denotes a point in M . Any point a′ in I(v, T ′) reads

(6.8) a′ = {(s′, t′)(x1, . . . , xk)(y1, . . . , yℓ)(z1, . . . , zm)}
t′ = x1 = y1, s′ = z1,

where the new coordinates (s′, t′) are those of Ge′ , source and target. Similarly, any point a′′

in I(v, T ′′) reads:

(6.9) a′′ = {(x1, . . . , xk)(s
′′, t′′)(y1, . . . , yℓ)(z1, . . . , zm)}

s′′ = x1, t′′ = y1 = z1,
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where the coordinates (s′′, t′′) are those of Ge′ , source and target. When comparing formulas
(6.8) and (6.9) along I(v, T ), we have s′′ = t′, t′′ = s′. This corresponds to reversing the time
of the flow of Xe′ = Xe′′ . Then, the time is the only variable whose orientation is changed.
This is the reason for the change of orientation of I(T ) as boundary of I(T ′) or I(T ′′). The
change of the place of the couple (source, target) has no effect on the orientation since it is an
equidimensional couple. □

7. A∞-structure

In this section, we exhibit how one can construct an A∞-structure on the Morse complex
A = C∗(f,X

D) whose first operation m1 coincide with the differential ∂D. The grading is now
defined by setting |x| := n − dimW s(x) for every critical point x. Note that this grading is
cohomological, that is, the degree of the differential m1 = ∂D is +1.

By Proposition 5.7, one can decorate all the Fukaya trees in a coherent and transition-
compatible manner. We fix one such a family of admissible decorations D = {DT}T∈T . So, for
any tree T with d ≥ 2 leaves and any sequence of (d + 1) critical points x1, . . . xd, xd+1 (with
possible repetition) we have the multi-intersection IT (x1, . . . xd; xd+1) defined by the following
fiber product (compare 2.11):

(7.1) IT (x1, . . . , xd; xd+1) := lim

I(v1root)

proot−→M
j←−W u(xd+1, X

D)


We recall that v1root is the terminal vertex of the edge originating from the root and the associated
generalized intersection is defined inductively in Section 2. Since DT is admissible, this set is a
manifold. Using the dimension formula, Proposition 2.8, we conclude that its dimension is

(7.2) dim IT (x1, . . . , xd; xd+1) = d− 2−
k

i=1

|xi|+ |xd+1|.

Therefore the dimension of IT (x1, · · · xd; xd+1) is zero if and only if

|xd+1| =
k

i=1

|xi|+ 2− d

In what follows, we denote by T 0 (resp. T 0
d ) the set of generic Fukaya trees (resp. with d

leaves). For d ≥ 2, we define the linear maps md : A
⊗d → A by

(7.3)






md(x1, . . . , xd) :=

(−1)(d−1)|xd|+(d−2)|xd−2|···+|xd−1|


T∈T 0
d






|y|=2−d+


|xi|

#IT (x1, . . . , xd; y)y



 .

One should think of IT (x1, . . . , xd; y) as an oriented zero-dimensional manifold and
#IT (x1, . . . , xd; y) is the algebraic number of signed points in this manifold. It is clear from the
definition that the degree of md is 2− d.

Remark 7.1. The coherence of the system of decorations we have used to define the mk’s
implies the following: for every tree T ′ ∈ T 0

k embedded in T and every critical point y of
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degree 2− k +
k

1 |xi|, the value #IT ′(x1, . . . , xk; y) is the same when it is calculated with the
decoration DT ′ or with the decoration induced by DT on T ′ (Compare Definition 4.1).

7.2. Geometric definition of the first operation. So far, we do not have considered trees
with only leaf. Nevertheless, for x ∈ critf ∪ critDf∂ , one can define m1(x) geometrically in the
following way. From the compactification of W s(x,XD) one extracts the frontier F s(x) which
is the complement of W s(x,XD) in its closure4. As XD is Morse-Smale, F s(x) is transverse to
W u(y,XD). When |y| = |x|+ 1, one defines the 0-dimensional intersection manifold I(x; y) :=
F s(x) ∩W u(y,XD). As it is oriented, it is made of a finite set of points with signs. Then we
define

(7.4) m1(x) =


|y|=|x|+1

#I(x; y)

Theorem 7.3. (A,m1,m2, . . . ) is an A∞-algebra.

Proof. The A∞-relations read for every d > 0:

(7.5)


j,k,l

(−1)j+kℓmj+1+ℓ(1
⊗j ⊗mk ⊗ 1⊗l) = 0

where the sum is taken over all non-negative integers j, k, l such that j + k + l = d.
When putting entries (x1, . . . , xd), new signs appear according to Koszul’s rule:

(1⊗j ⊗mk)(x1, . . . , xj, xj+1, . . . , xj+k) =

(−1)(|x1|+···+|xj |)|mk|

x1, . . . , xj,mk(xj+1, . . . , xj+k)


,

(7.6)

and Identity (7.5) becomes:

(7.7)


j+k+l=n

(−1)εmj+1+l(x1, . . . , xj,mk(xj+1, . . . , xj+k), xj+k+1, . . . , xd) = 0,

where ε = j + kl + (2− k)(
j

i=1 |xi|).
By the very definition of the mk’s and Remark 7.1, the above A∞-relations are equivalent to

the following identities

(7.8)


j,Tα,Tβ



y

(−1)ε
′
#ITα(xj+1, . . . , xj+k; y)#ITβ

(x1, . . . , xj, y, xj+k+1, . . . xd; z) = 0

for all d ≥ 1 and all sequence (x1, . . . , xd, y, z) of critical points with |y| = 2− k+
j+k

i=j+1 |xi| ,
|z| = 3−d+

d
i=1 |xi| and ε′ = |x1|+· · · |xj|−j. In this sum, Tα is a generic tree with k leaves and

Tβ is a generic tree with d−k+1 leaves. By (7.2), the manifold ITβ
(x1, . . . , xj, y, xj+k+1, . . . xd; z)

is 0-dimensional.
Note that, from |z| = 3 − d +

d
i=1 |xi|, it follows that for all generic tree T , the multi-

intersection IT (x1, . . . , xj+k+l; z) is one-dimensional. The proof of (7.10) will follow from the
analysis of frontier of this oriented manifold in its compactification.

We fix a generic tree T with d leaves and consider the compact 1-dimensional submanifold
with conical singularities cl(IT (x1, . . . , xd; z)) ⊂ M×d. By blowing up the singular points, such
a manifold can be thought of as a manifold with boundary where some boundary points are

4Here, XD could be replaced with any C1-approximation.
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identified. Such a point P is equipped with a sign which is the sum of the boundary-orientation
signs of the preimages of P in the above blowing up, which is oriented; the signs are calculated
at the blown-up level. Therefore, we have:

(7.9)


P∈∂

cl(IT (x1,...,xd;z))


sign(P ) = 0

By Proposition 3.3, the boundary components of the closure cl(IT (x1, . . . , xd; z)


are divided
in two types:

Type A: The boundary components coming from the broken orbits in the compactification of
the generalized stable manifold W s(e,DT ). Here, e is an interior edge in the tree T (see (2.8)).
Such a codimension-one stratum involves some critical point y and its stable/unstable invariant
manifolds with respect to the pseudo-gradient given by the decoration of e. Therefore, it is of
the form ITα(xj+1, . . . , xj+k; y) × ITβ

(x1, . . . , xj, y, xj+k+1, . . . xd; z), 0 ≤ k ≤ d. The first (resp.
second) factor in this product comes from the unstable (resp. stable) manifold of y. The tree
T is equal to the connected sum

T = Tα#j+1Tβ

where the root of Tα is glued to the (j + 1)-th leaf of Tβ.

Type B: The boundary components of the form IT/e(x1, . . . , xd; z) where e is an interior edge
of T . They are induced by the diagonal of M × M except over the zeroes of the vector field
DT (e) which decorates e.

Type C: The boundary components which are induced by the boundary of M . In general,
a stable manifolds has orbits coming from ∂M . Actually, the type-C components are empty
in the considered multi-intersection IT (x1, . . . , xd; z). Indeed, by construction, the unstable
manifold W u(z,XD) lies in the interior of M except very near z. Thus, the multi-intersection
IT (x1, . . . , xd; z), that is, the evaluation < IT (x1, . . . , xd), z > (compare Subsection 2.11), has
no type-C boundary components.

Therefore the identity (7.9) splits into two sums

(7.10) SA + SB = 0

where SA (resp. SB) is the contribution of the type-A (resp. type-B) components. Note that SA

is exactly the left handside of Equation (7.10) since T , j and k determine Tα and Tβ. Therefore,
we are reduced to prove the nullity of SB.

By Proposition 5.5, a type B boundary component IT/e(x1, · · · , xd; z) appears as a boundary
component of exactly one another one-dimensional intersection submanifold IT ′(x1, · · · , xd; z)
where T ′ is the unique generic tree, distinct from T , obtained from T/e by an expansion at its
unique degree-4 vertex (See Figure 4). Moreover, by Proposition 6.8, the induced orientations
are opposite. Therefore, in the sum SB these two terms cancel each other out.
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Checking of the signs. We apply Proposition 6.7 which gives us the following sum of chains
of geometric nature (without evaluating):

(7.11) ∂IT (x1, . . . , xd) =


j,k,y

(−1)εj#ITα(xj+1, . . . , xj+k; y)∂ITα(x1, . . . , y, xj+k+1, . . . , xd).

Here, j varies from 1 to d−1; k from 1 to d−j; y is a critical point such that |y| = 2−k+


|xi|
and the geometric sign is the one given by formula 6.6, that is,

εj = n+ j − 1 +

j

i=1

(dimW s(xi)− n) = n+ j − 1−
j

i=1

|xj|.

□

8. Morse concordance and homotopy of Ad -structures

We have seen that the operations m1,m2, . . . which define an A∞-structure on the complex
A := C∗(f,X

D) are determined by the choice of a family of coherent decorations for every
Fukaya tree T . Recall that a decoration of an edge e is a vector field Xe approximating XD.
In particular, it lies in the same connected component of Morse-Smale vector fields.

Assume we have two coherent and transition-compatible families {DT}T and {D′
T}T decorat-

ing all generic Fukaya trees. In general, these two families give rise to two distinct A∞-structures
(m1,m2, . . . ) and (m′

1,m
′
2, . . . ). We are going to show that these two structures can be linked

by a homotopy thanks to multi-intersections over the product manifold M̂ := M × [0, 1] which
is a manifold with boundary and corners. Note that the complex CD

∗ (f,XD) is kept unchanged;
in particular, m1 = m′

1. A multi-intersection ÎT over M̂ associated with a decoration D̂T will
be thought of as a cobordism from its trace over M × {0} to its trace over M × {1}. Such a
family of cobordisms will be called a geometric homotopy. The expression Morse concordance
emphasizes the fact that the underlying manifold is a product M × [0, 1] equipped with a func-
tion without critical points in its interior. Here, we are inspired by Conley’s continuation map
[5] that we have extended to A∞-case. The case of the Morse complex is discussed in [21] and
[11] as a prelude to the (infinite dimensional) case of Floer homology. In fact, Andreas Floer
[7] had first evoked the idea for the infinite dimensional Morse Theory. The invariance of the
Morse homology was proved earlier using other methods.

8.1. Construction of a Morse concordance.
For simplicity, we first restrict to the case where ∂M is empty. Then, M̂ := M × [0, 1] is a

manifold with boundary. The general case will be sketched in Remark 8.4. When ∂M = ∅, we
consider a Morse-Smale (positive) pseudo-gradient X adapted to the Morse function f .

We first build a Morse function f̂ on M̂ with no critical points in the interior of M̂ whose
restriction to Mi := M × {i}, i = 0, 1, reads f̂ |Mi

= f + ci where ci is a constant. More
precisely, one requires the critical points of f̂ |M0 to be of Dirichlet type and those of f̂ |M1 to be
of Neumann type. The pseudo-gradient vector fields adapted to f̂ are required to be tangent
to the boundary. This needs a slight modification with respect to the Morse theory we have
considered so far. This modification is also emphasized when speaking of Morse concordance;
that does not exactly deal with a Morse theory on a manifold with boundary.
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Let h : R → R be the Morse function defined by h(t) = (2t − 1)3 − 3(2t − 1); its critical
points are t = 0, 1. For (x, t) ∈ M̂ , set f̂(x, t) = f(x)+h(t). If a is a critical point in M0 (resp.
in M1), we have:

(8.1) Ind(f̂ , a) = Ind(f, a) + 1 (resp. = Ind(f, a)) .

If X̂ is a pseudo-gradient on M̂ adapted to f̂ and tangent to M0 ∪ M1, when a lies in M0

(resp. in M1), the stable manifold W s(a, X̂) (resp. the unstable manifold W u(a, X̂)) meets the
interior of M̂ ; on the contrary, the unstable (resp. stable) manifold lies entirely in M0 (resp.
in M1).

The critical points of f̂ in M0 will serve as entries; those lying in M1 will be used as test data.
Consider now an edge e ⊂ T and its two decorations Xe ∈ DT and X ′

e ∈ D′
T . It is possible to

join them by a path (X t
e)t∈[0,1] of Morse-Smale vector fields and form the vector field X̂e on M̂

defined by

(8.2) X̂e(x, t) := X t
e(x) +∇h(t).

This is a baby case of a method initiated by A. Floer5. Assume moreover that the path (X t
e)t

is stationary for t close to 0 and 1 in order that Xe is adapted to f̂ near each critical point.
Generically on the collection of paths (X t

e)t∈[0,1] , e ⊂ T , some transversality conditions are
fulfilled which allow us to construct recursively:

- generalized stable manifolds Ŵ s(e) associated with the edges e of T ,
- multi-intersections Î(v) of stable manifolds associated with the vertices v of T ,

both of them being transversely defined. In other words, the decoration D̂T made of the
collection {X̂e}e⊂T is admissible (cf. Definition 2.12).

Then, for every vertex v in the considered Fukaya tree, the manifolds Î(v, D̂T ) are transverse
to p−1

1 (Mi), i = 0, 1, where p1 denotes the first projection M̂×n(v) → M̂ . Thus, we have proved
the following:

Proposition 8.2. For every vertex of T , the multi-intersections Î(v, D̂T ) is a cobordism from
I(v,DT ) to I(v,D′

T ). This cobordism extends to a stratified cobordism between their respective
compactifications.

For the definition of the A∞-operations, it was crucial that the family of chosen decorations
have two properties: coherence and transition compatibility.

Proposition 8.3. The set of decorations {D̂T}T , where T runs among the Fukaya trees can be
chosen in order to be:

1) coherent.
2) transition compatible;

Proof. 1) The problem of coherence can be solved by using the same method as in Section 4
and performing it “over M × [0, 1]”, that is, replacing the group G of diffeomorphisms of M ,
isotopic to IdM , by the groupoid of smooth paths in G (viewed as isotopies of M). The key
Lemma 4.4 of that section extends to this new setting.

5Floer [7] has introduced this method for finding the so-called continuation morphism which connects two
(Floer) complexes built from different data.
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2) The group theoretical approach of coherence has made transition compatibility “over M ”
automatically fulfilled (Proposition 5.4). The same is true over M × [0, 1] when coherence is
solved by a groupoidic approach, as it can be done. □

Remark 8.4. When M has a non-empty boundary and we look (for instance) at the Dirichlet
critical points, M̂ has corners modelled on Rn−1 × Q where Q is a quadrant in the plane and
there are critical points of f̂ lying in the corners. The only matter is to define what an adapted
pseudo-gradient is in order that the stable manifolds are well defined. One solution consits of
demanding the pseudo-gradient to be pointing inwards along ∂M×[0, 1], except near the critical
points in the corners where it is tangent to ∂M × [0, 1]. The rest of the previous discussion is
similar.

We are going to see that the above geometric cobordisms lead to a quasi-morphism of the
A∞-structure defined thanks to the set of decorations {DT}T to the one defined by {D′

T}T .
The required uniqueness up to homotopy will follow.

8.5. Construction of A∞-quasi-isomorphism.
We now construct a quasi-isomorphism {fd}d≥1 between the A∞-structures (mi)d≥1 and

(m′
d)d≥1 on A = C∗(f,X

D) corresponding to the decorations DT and D′
T as they were in-

troduced in Section 7. In fact the construction of fd : A⊗d → A is very similar to that of the
mi’s.

For d+1 critical points x1, . . . xd, y of f , we define the multi-intersection submanifold of M̂d

(8.3) ÎT (x1, . . . , xd; y) := lim

I(v1root)

proot−→ M̂
j←−W u


(y, 1), X̂D)



which is defined using the decoration {D̂T}T∈T0 . Here, the inputs of ÎT are the (xi, 0)’s and the
output is (y, 1).

For d ≥ 1, we define fd : A
⊗ → A by

(8.4)






fd(x1, . . . , xd) :=

(−1)(d−1)|xd|+(d−2)|xd−2|···+|xd−1|


T∈T 0
d






(y,1)=2−d+


(xi,0)

#ÎT (x1, . . . , xd; y)y



 .

where degree . is defined with respect to f̂ as a Morse fonction on M̂ .
Note that condition (y, 1) = 2 − d +


(xi, 0) is the necessary and sufficient condition

for zero dimensionality of #ÎT (x1, . . . , xd; y). Moreover, by observing that

(8.5) (y, 1) = n+ 1− Ind(f̂ , (y, 1)) = n+ 1− Ind(f, y) = |y|+ 1

and

(8.6) (xi, 0) = n+ 1− Ind(f̂ , (xi, 0)) = n+ 1− (Ind(f, xi) + 1) = |xi|
we conclude that the degree of fd is 1− d, (i.e. one lower than md and m′

d). Let us also recall
that when ∂M ∕= ∅ and x ∈ critD(f∂), we have dimW s(x,XD) = Ind(f∂ , x) + 1.

Proposition 8.6. The collection (f1, . . . , fd, . . . ) defines a quasi-isomorphism of A∞-structures.
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Proof. It is easily checked that f1 : A → A is the identity. Then, as soon as the mor-
phism relations are fulfilled, we get a quasi-isomorphism. Let us recall these relations from the
appendix:

(8.7)


j+k+l=d

(−1)l+jkfj+l+1 (1⊗j ⊗mk ⊗ 1⊗l) =
d

k=1



i1+···+ik=d

(−1)i1,···ikm′
k(fi1 ⊗ · · ·⊗ fik)

where i1,···ik =


j((1 − ij)


1≤k≤j ik). These relations are implied by geometric information
given by the decoration family {D̂T}T , namely, for every d > 0,

(8.8)








j,Tα,Tβ



(y,0)

(−1)j−
j

i=1 |xj |#I0Tα
(xj+1, . . . , xj+k; y)#ÎTβ

(x1, . . . , xj, y, xj+k+1, . . . , xd; z) =

d

k=1



Tγ ∈ T 0
k

i1 + · · ·+ ik = d


#I1Tγ

(y1, . . . , yk; z)
k

j=1

#Î(xij−1+1, . . . , xij ; yj)


, .

Here, I0T (−) (resp. I1T (−)) stands for the multi-intersection calculated with the family {DT}
on M0 (resp. {D′

T}T on M1); the connected-sum tree T = Tα#j+1Tβ is a generic tree with d
leaves. The proof of (8.8) is similar to the proof of (7.10) with some new phenomena.

By degree arguments, one knows that the multi-intersection ÎT (x1, . . . , xd; z) is one-dimensional.
So, we have to analyze its compactification. We already know that the collapse of an edge of T
contributes to zero because such a boundary component appears twice in the considered sum
with opposite orientations. The boundary component ∂M × [0, 1] contributes also to zero as
the vector field X̂ points inwards except in a very small neighbourhood of critDf × {0, 1}.

The first new phenomenon is the following. The breaking of an orbit of X̂e involves in the
same time the boundary of M̂ : if it breaks in y ∈ M0, the unstable manifold W u(y, X̂e) coincide
with W u(y,Xe). This explains the factor #I0Tα

(xj+1, . . . , xj+k; y) in the left handside of (8.8).
Moreover, a double breaking involving two critical points one of both lying in M0 is not generic
in the frontier of ÎT (x1, . . . , xd) because W s(y, X̂e)×W u(y,Xe) generates a smooth boundary
component of ÎT (x1, . . . , xd).

The second new phenomenon is that, if the breaking happens at y ∈ M1 and d > 1, then
the breaking cannot happen alone. Indeed, W s(y, X̂e) is contained in M1; therefore, it has an
empty intersection with any other stable manifold (or generalized stable manifold) which, by
construction, lies in int(M̂) ∪M0. Assume the root of e is not the root of T and let e′ be the
other edge of T having the same root as e. Then, we have proved that the generalized stable
manifold W s(e′, X̂e′) must also be contained M1 or (over M1 through p1 in the fiber product
construction). By iterating this argument, one proves the following claim.

Claim. If d > 1, any non-empty connected component C of the frontier6 of ÎT (x1, . . . , xd)
which involves the breaking of an orbit at a zero in M1 and no breaking in M0 gives rise to the
following decomposition of T : there exist k > 0, some edges e1, . . . , ek in T separating the root of
T from all leaves and points y1, . . . , yk in M1 which are respectively zeroes of X ′

ej
, j = 1, . . . , k,

6The frontier of a multi-intersection consists of its compactification with the multi-intersection in question
removed.
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such that C is contained in the multi-intersection I1T (y1, . . . , yk).

In particular, except when some yj is of maximal Morse index (which has a neutral effect), C
is of codimension k in the compactification of ÎT (x1, . . . , xd). If k > 1, such a C does not adhere
to any smooth boundary component. This phenomenon is compatible with the fact that the
singularities of the compactification are conical. This claim gives the geometric signification of
the right handside of (8.8) and finishes the proof up to sign. It explains that a one-dimensional
intersection of ÎT (x1, . . . , xd) with W u(z,XD) cannot generically avoid to have singular points
in such a stratum. All other configurations of orbit breaking are generically avoidable, and
hence, do not appear in the counting of (8.8). □

Appendix A. Basics on homotopical algebras

In this appendix we review the basic terminology and result of the theory of A∞-algebras.
We refer the reader to Kenji Lefèvre-Hasegawa’s thesis [24] for a comprehensive treatment.
However, here we use the sign convention introduced [12].

Here, k is a unitary ring.

Definition A.1. An Ap-algebra is a k-module equipped with a collection of k-module maps
mi : A

⊗i → A, 1 ≤ i ≤ p , of degree 2− i satisfying the identities

(A.1)


j+k+l=i

(−1)j+klmj+l+1(1
⊗j ⊗mk ⊗ 1⊗l) = 0

for all p ≥ i ≥ 1.

Similarly an A∞-algebra is a graded k-module A together with a collection of k-module maps
mi : A

⊗i → A, i ≥ 1 , of degree 2− i such for all p , (A, {mi}1≤i≤p) is an Ap-algebra.

Remark A.2. According to the sign convention in [24] one should put (−1)jk+l instead of
(−1)j+kl. It turns out that these two definitions are equivalent. Indeed if (m1,m2, · · · ) is an
A∞-structure according to the sign convention of [24], then (m1, (−1)(

2
2)m2, · · · (−1)(

i
2)mi, · · · )

is an A∞-structure by our sign convention. The sign conventions in [24] is justified by the cobar
construction. The signs in [12] correspond to that of the opposite algebra in [24].

Let (A, {mi}1≤i≤p) and (A′, {m′
i}1≤i≤p) be two Ap-algebras. An Ap-morphism from (A, {mi}1≤i≤p)

to (A′, {m′
i}1≤i≤p) consists of a collection of maps fi : A⊗i → A′, 1 ≤ i ≤ p, with the |fi| = 1− i

satisfying the conditions

(A.2)


j+k+l=i

(−1)l+jkfj+l+1 (1⊗j ⊗mk ⊗ 1⊗l) =
i

k=1



i1+···+ik=i

(−1)i1,···ikm′
k(fi1 ⊗ · · ·⊗ fik)

where i1,···ik =
r

j=1(r − j)(ij − 1).

Remark A.3. If we follow the sign convention of [24], then equation of A.2 transforms into

(A.3)


j+k+l=i

(−1)l+jkfj+l+1 (1⊗j ⊗mk ⊗ 1⊗l) =
i

k=1



i1+···+ik=i

(−1)i1,···ikm′
k(fi1 ⊗ · · ·⊗ fik)
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where i1,···ik =


j((1− ij)


1≤k≤j ik).

If (mi) and (fi) satisfy the equation (A.2), then (m1, (−1)(
2
2)m2, · · · (−1)(

i
2)mi, · · · ) and

(f1, (−1)(
2
2)f2, · · · (−1)(

i
2)fi, · · · )

satisfies (A.3).
A collection of k-module maps f = {fi}i≥1 : A⊗i → A′ is said to be a morphism of A∞-

algebras if for all p, {fi}1≤i≤p is a morphism of Ap-algebras.
An A∞-morphism f = {fi}i≥1 is said to be a quasi-isomorphism if the cochain complex map

f1 is a quasi-isomorphism.

Definition A.4. Let A and A′ be two A∞-algebras with the corresponding differentials D and
D′ on the bar constructions BA and BA′. Suppose that f = {fi}, g = {gi} : A → A′ are two
A∞-morphisms and F and G are the coalgebra morphisms corresponding to f and g. Then a
homotopy between f and g is a (F,G)-coderivation H : BA → BA′ such that

(A.4) F −G = D′H −HD.

Theorem A.5. (Prouté [19], see also [24])We suppose that k is a field.
(1) For connected A∞-algebras, homotopy is an equivalence relation (Theorem 4.27).
(2) A quasi-isomorphism of A∞-algebras is a homotopy equivalence (Theorem 4.24).
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