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1. Introduction: 

Polymorphism denotes a substance ability to form different crystalline structures (polymorphs) 

characterized by different unit cells 1. Polymorphs have the same chemical composition but 

different physical properties (solubility, density, crystal habit, hardness, optical properties, 

melting point etc.) 2 and are then considered as different materials 1. At a given temperature and 

pressure, for monotropic systems, only one polymorph is thermodynamically stable, however a 

less stable polymorph, i.e. a metastable form, may crystallize preferentially 3. Hence, the ability 

to characterize all the polymorphs, and discover the stable phase, in particular, is of crucial 

importance, especially with pharmaceuticals 4. Producing a metastable phase of an active 

ingredient can lead to huge financial losses: the emergence of a more stable polymorph may 

inhibit the formation of the less stable one which was initially manufactured 5. However, why 

does the metastable form crystallize first?  

To explain the preferential (sometimes exclusive) crystallization of the metastable form, two 

reasons may be retained: first  of all, the inhibition of the stable phase formation due to the 

solvent nature or the presence of foreign particles, acting as template 6; secondly, the kinetic 

advantage of the metastable form which is expressed through the Ostwald rule of stages7. 

According to this rule, the metastable phase appears first, then undergoes a polymorphic 

transition toward the stable phase once this latter nucleates. Modeling the spontaneous nucleation 

of the metastable polymorph followed by the spontaneous nucleation of the stable polymorph 

using a population balance equation (PBE) is rather difficult. PBE models usually take into 

account nucleation, growth, agglomeration and breakage 8,9. Such models will show the 

nucleation of both phases (stable and metastable) from the beginning, not only the metastable 
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phase. To overcome this problem, we suggest to take into account another phenomenon: the 

Ostwald ripening.   

The Ostwald ripening is a process of particle coarsening that occurs due to the solubility 

difference between small and large particles: in a solution that contains particles of the same 

phase and of different sizes, the larger particles tend to grow at the expense of the smaller ones10. 

Ostwald ripening influences the number of remaining nuclei, since it affects particles of size 

lower than 1µm11. Vetter et al.12 have suggested two models that took into account the Ostwald 

ripening in crystallization processes. The first model was based on PBE, the second one used the 

kinetic equations 13–15 (KE). They mentioned that PBE model is not suitable for describing 

nucleation and Ostwald Ripening simultaneously.  On the contrary, the KE model is able to 

describe simultaneously nucleation, growth and Ostwald ripening 12,14. Rempel et al. 16 used the 

discrete kinetic equation to describe the combined nucleation and growth of semiconductor 

nanocrystals.  Madras et al. 17 modeled the crystallization of polymorphs by taking into account 

Ostwald ripening by means of “the governing population dynamics equations”.  The authors 

showed that, due to Ostwald ripening, the most stable form grew at the expense of the metastable 

one. Ozkan et al. 18 also considered the Ostwald ripening in Lifshitz–Slyozov, Wagner (LSW) 

equation in order to model the evolution of silica polymorphs through years. 

Thus, until now, the effect of Ostwald ripening on the first steps of polymorph crystallization 

was never considered to explain the Ostwald rule of stages. At the beginning of the 

crystallization process, several polymorphic phases are likely to nucleate, including the stable 

form. However, depending on the respective growth rates of each phase, the nuclei of the 

polymorph of higher growth rate will then grow faster than the others and will consume the 

supersaturation. In the same time, the nuclei of the slow growing phases will find themselves 
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under the critical size and will be doomed to dissolve. Consequently, the ripening mechanism 

could drive the dissolution of the stable phase clusters in favor of the metastable phase, leading 

to the absence of stable phase crystals, in agreement with the Ostwald rule of stages. Let us note 

that, since this ripening mechanism does not only occur between particles of the same phase, it 

does not rigorously correspond to the so-called Ostwald ripening mechanism, which, in 

principle, concerns only crystals of one single phase. But, it is very similar to Ostwald ripening 

and can be assimilated to it, since it is also the consequence of the Gibbs-Thomson effect. Thus, 

for the sake of simplicity, we have chosen to designate this ripening mechanism by the term 

“Ostwald ripening” in this study although it also affects polymorphs. This work is focused on the 

modelling of the first steps of polymorph crystallization. For the first time, the discrete KE are 

used to model nucleation, growth and Ostwald ripening for a dimorphic system with taking into 

account supersaturation decrease 19. The polymorphic system chosen was L-Glutamic acid 

(LGlu). 

The cooling crystallization of LGlu polymorphs in water were already investigated 20. This 

amino acid has two well-known polymorphs: a stable form β shaped as needles 21 or as lozenge 

slabs 20 (newly reported) and a metastable form α shaped as prisms. At the metastable zone limit, 

the β form was found to nucleate predominantly at 40°C, the α form nucleates predominantly at 

5°C, while both polymorphic forms were observed almost evenly at 20°C 20.  The results of the 

KE model were compared qualitatively to these experimental data. By taking into account the 

Ostwald ripening, this study aimed at checking whether the KE model can reflect the 

competition between polymorphic phases. 
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2. Model 

2.1. Kinetic equations: 

The kinetic equations take into account nucleation, growth and Ostwald ripening 14.In the case 

of a polymorphic system, the kinetic equations can be expressed  by 19 : 

 
ୢ୊౟

ಒሺ୲ሻ

ୢ୲
ൌ A୧ିଵ

ச ∗ F୧ିଵ
ச െ ሺA୧

ச ൅ D୧
சሻ ∗ F୧

ச ൅ D୧ାଵ
ச ∗ F୧ାଵ

ச ൌ J୧ିଵ
ச െ J୧

ச      for  i ൐ 1  (1) 

Where:  

 J୧
ச ൌ A୧

சF୧
ச െ D୧ାଵ

ச  F୧ାଵ
ச    (2) 

While κ=α for the polymorph α and κ=β for the polymorph β, i is the cluster size (i.e. the 

number of monomers forming the cluster), i goes from 2 1 to M with M the maximum cluster 

size, F୧
சሺtሻ is the number density of the clusters of size i, i.e. the number of nuclei formed by i 

monomers in unit mass at time t (kg-1), A୧
ச and D୧

ச are respectively the attachment and the 

detachment frequencies of monomers for a cluster of size i (s-1). J୧
ச corresponds to the rate of 

formation of an i-sized cluster, i.e. the number of i-sized nuclei formed per unit mass and per 

second (kg-1 s-1). In standard nucleation theory, J୧
ச is named nucleation rate only for critical size 

(i ൌ iୡ
ச). For the sake of simplicity, the term “nucleation rate” will be abusively used to denote J୧

ச, 

whatever the size i. 

2.2. Attachment and detachment frequencies:  

The attachment frequency, in the case of homogeneous nucleation from solution, can be 

expressed  as follows 13,15,22,23: 

 A୧
ச ൌ X୬

ச Nୱ
ச ቀ

୩ా୘

୦
ቁ exp ቀെ

୉ಒ

୩ా୘
ቁ exp ቀെ

୯ಒ൫୛౟శభ
ಒ ି୛౟

ಒ൯

୩ా୘
ቁ (3) 

Where 23: 

 qச ൌ 1    for      i ൏ iୡ
ச (4) 
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qச ൌ 0    for      i ൒ iୡ
ச 

X୬
ச is the molar fraction of LGlu in solution (-), Nୱ

ச is the number of nucleation sites on the 

cluster surface (-), k୆ is the Boltzmann constant (J K-1), T is the crystallization temperature (K), 

h is the Planck constant (J s), Eச is the kinetic barrier of nucleation (J), and W୧
ச is the work of 

formation of an i-sized cluster (J), iୡ
ச is the critical size. Within the capillarity approximation 14, 

in the case of homogeneous nucleation, the work of formation can be expressed by: 

 W୧
ச ൌ െi ∗ ∆µச ൅ γசi

మ
య σச (5) 

Where ∆µச is the difference in chemical potential (J). For ideal solution, or real solution with 

reasonable supersaturation ∆µச ൌ k୆TlnሺSசሻ where S is the supersaturation ratio (-). γச is the 

surface shape factor (m2) and σச is the interfacial energy (J m-2). The critical size iୡ
ச can be 

deduced from equation (5) and is given by the following equation: 

 iୡ
ச ൌ ቀ

ଶ∗ஓಒ ஢ಒ

ଷ ∆µಒ ቁ
ଷ
 (6) 

The detachment frequency is usually  determined from the principle of local thermodynamic 

equilibrium 15. This method is one of the indirect methods that determines detachment frequency 

using attachment frequency (see section 10.2 in reference 14) and was originally introduced by 

Zeldovich 24. The idea behind is that when the system is in thermodynamic equilibrium, the 

equilibrium is maintained by the detailed balance (i.e. the balance holding at any cluster size i) 

between the number of attachments to all i-sized clusters in the system and the number of 

detachments from all (i+1)-sized clusters in it. The cluster population, which is needed 

kinetically to ensure this microscopic reversibility or detailed balance, is represented by the 

equilibrium cluster size distribution. Thus, the condition for this reversibility is given by 14,15,24:  

 A୧
ச F୧

ச,଴ ൌ  D୧ାଵ
ச  F୧ାଵ

ச,଴  (7) 
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Where F୧
ச,଴ is the equilibrium number density of clusters of size i, within context of self-

consistent model, F୧
ச,଴ can be written 25 as: 

 F୧
ச,଴ ൌ Nଵ exp ቀ

୛భ
ಒ

୩ా୘
ቁ exp ቀെ

୛౟
ಒ

୩ా୘
ቁ (8) 

Where Nଵ is the initial number of monomers within the liquid phase (kg-1) and does not depend 

on the polymorphic phases. 

It is worth noting that the exact formula for the stationary nucleation rate (at constant 

temperature and supersaturation) is 14: 

 Jୱ
ச ൌ ൬∑ ଵ

୅౟
ಒ ୊౟

ಒ,బ
୑
୧ୀଵ ൰

ିଵ

   (9) 

The stationary nucleation rate is an upper limit for the nucleation rate for any cluster size i, 

because it corresponds to the rate of cluster formation in the case of constant supersaturation and 

temperature (open system). This rate is introduced just for comparison. 

2.3. Boundary conditions: 

The standard model of nucleation does not take into account the supersaturation decrease, i.e 

the number of monomers within the system does not change. However, in closed system, the 

number of monomers in the liquid phase decreases and the assumption of a constant 

supersaturation is no longer valid. In this latter case, and for the polymorphic system studied, the 

following initial and boundary conditions were used: 

 F୧
சሺt ൌ 0ሻ ൌ F୧

ச,଴ , for i ൑ i଴   (10) 

 F୧
சሺt ൌ 0ሻ ൌ 0, for i ൐ i଴ (11) 

 Fଵ
சሺtሻ ൌ N୘

ச െ ቀ∑ iF୧
஑ሺtሻ ൅  ∑ iF୧

ஒሺtሻ୧வଵ୧வଵ ቁ, ∀t (12) 

 F୑
ச ሺtሻ ൌ 0, ∀t (13) 
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At the initial time, the size distribution was taken equal to the equilibrium distribution up to the 

cluster size i଴ ൌ 10. This assumption takes into account the preexistence, in the suspension, of 

subcritical cluster formed of two monomers up to ten monomers. The equilibrium size 

distribution for small cluster sizes is a good approximation of the number of subcritical clusters 

formed due to fluctuation within system. In classical nucleation theory i଴=1 and decrease of 

monomers is not taken into account. Kožíšek and Demo 26 showed that the assumption i଴=1 

(only monomers are present within solution) leads in closed systems to fast decrease in 

supersaturation, which does not fit with experimental data. With increasing value of i଴, this 

effect decreased. It was recommended to take 5 ൏ i଴ ൏ 𝑖௖/2. Accordingly, i0 was taken equal to 

ten in this study because this value obeys to these conditions within the range of temperature and 

supersaturation considered.  𝑁்
఑ is the total number of LGlu monomers in the system (even those 

forming the crystals) : 

 𝑁்
఑ ൌ 𝑁ଵ ൅ ቀ∑ 𝑖 𝐹௜

ఈ,଴ሺ𝑡 ൌ 0ሻ௜బ
௜ୀଶ ൅ ∑ 𝑖 𝐹௜

ఉ,଴ሺ𝑡 ൌ 0ሻ௜బ
௜ୀଶ ቁ   (14) 

𝑁்
఑ does not vary with time. 

2.4. Main differences between α and β LGlu: 

2.4.1. Shape: 

Both α LGlu and β LGlu have the same orthorhombic space group P212121 but the cell 

constants are different 27 (see Table 1).  

Table 1 : Unit cell constants for α and β LGlu 

 α form β form 

a0 (Å) 7.068 5.519 

b0 (Å) 10.277 17.30 

c0 (Å) 8.755 6.948 



 10

It was assumed that the crystals of both polymorphs will keep the same shape as their unit cell 

(see Figure.1) according to the following equation: 

 
௔

௔బ
ൌ

௕

௕బ
ൌ

௖

௖బ
 (15) 

Where a,b,c are the crystal dimensions (see Figure 1). 

 

Figure 1 : Crystal dimensions vs unit cell dimension for both LGlu polymorphs 

The characteristic size r of α and β crystals was taken equal to the larger length b. According to 

this assumption, r can be related to the number of monomers forming the clusters as follows: 

 𝑟 ൌ ቀ
௠భ

௩బ
ഉ ఘഉቁ

భ
య 𝑏଴

఑ 𝑖ଵ ଷ⁄ ൌ 𝜑఑ 𝑖ଵ ଷ⁄  (16) 

The surface shape factor introduced earlier in the equation (5) can be deduced: 

 𝛾఑ ൌ 2 ቀ
௔బ

ഉ

௕బ
ഉ ൅

௔బ
ഉ ௖బ

ഉ

ሺ௕బ
ഉሻమ 

൅
௖బ

ഉ

௕బ
ഉቁ ቆቀ

௠భ

௩బ
ഉ ఘഉቁ

భ
య 𝑏଴

఑ቇ
ଶ

 (17) 

Where 𝑣଴
఑ is the unit cell volume (m3), 𝑚ଵ is the monomer mass (kg) and 𝜌఑is the crystal 

density (kg m-3). 
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It is to note that, from shape assumption, it is possible to define the number of nucleation sites 

on the cluster surface (see equation (3)) as: 

 𝑁௦
఑ ൌ 6 ∗ ቀ

௥ഉ

௕బ
ഉቁ

ଶ
൅ 2  (18) 

The equation (18) derivation is explained in the Appendix A in the supporting information. 

2.4.2. Solubility: 

Solubility data of both polymorphs have been determined previously 20. The dependence of the 

equilibrium molar fraction on the temperature is given by: 

 𝑙𝑛ሺ𝑋௘
ఈሻ ൌ െ

ଷସ଼ହ.଻

்
൅ 5.10 (19) 

 𝑙𝑛ቀ𝑋௘
ఉቁ ൌ െ

ଷସଽସ.ସ

்
൅ 4.85 (20) 

2.4.3. Interfacial energy: 

The interfacial energy is a very important parameter in our computations and the values that 

can be deduced from literature can be very different from one reference to the other (see section 

below). As a first step, we thus tried to estimate an upper limit for the interfacial energy of both 

polymorphs.   

Evaluating the maximum interfacial energy: 

The maximum threshold of the interfacial energy of each polymorph is the value that allows 

simulating the nucleation of at least one nucleus per cm3 of solvent (i.e. 1000 nuclei per kg of 

solvent). One nucleus per cubic centimeter corresponds to the nucleation detection limit 

according to the work of Boistelle and Astier 11. Below this limit, nucleation can be considered 

negligible. Thus, the stationary number density of nuclei (the stationary number density is an 

upper limit for the number density) should be: 
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𝐹௜௖
఑,௦ ൌ 1000 ሺ𝑘𝑔ିଵሻ 

This stationary number density can be approximated (see equation 13.23 in reference 14) by: 

 𝐹௜೎

఑,௦ ൌ
ଵ

ଶ
𝐹௜೎

఑,଴ (21) 

Where 𝐹௜೎

఑,଴ is the equilibrium number density at the critical size ic (kg-1). Thus, the maximum 

value of interfacial energy can be deduced from the following equation: 

 
ଵ

ଶ
𝐹௜೎

఑,଴ ൌ 1000 (22) 

That leads to (for more details, see Appendix B in the supporting information): 

 
ఊഉఙ೘ೌೣ

ഉ

௞ಳ்
ቀ

ଶସ

଻

ሺఊഉఙ೘ೌೣ
ഉ ሻమ

ሺ௞ಳ୘ሻమ

ଵ

௟௡మ ௌഉ െ 1ቁ ൅ 𝑙𝑛 ቀ
ଶ଴଴଴

ேೌ஼೐
ഉሺ்ሻ 

ቁ ൌ 0 (23) 

Where 𝐶௘
఑ሺ𝑇ሻ denotes the solubility of the polymorph κ (mol kg-1 of solvent).   

Thereby, the maximum value of the interfacial energy, at the temperature T and the 

supersaturation S, can be deduced by solving equation (23). 

At the temperatures T=5, 20 and 40°C , the maximum supersaturation ratios that can be 

reached are respectively 4.22, 3.18 and 2.05, according to the α solubility and 5.59, 4.21 and 2.71 

according to the β solubility (these supersaturations correspond to the metastable zone limit in 

the case of cooling crystallization with a quick cooling rate 20). 

In order to avoid a very high nucleation barrier, the maximum values of interfacial energy for α 

and β, at T=5, 20 and 40°C and at the corresponding maximum supersaturations, are shown in 

Table 2. 
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Table 2: Maximum values of interfacial energy at different temperatures and supersaturations 

Temperature 
(°C) 

Supersaturation 
ratio according 
to α solubility (-

) 

Supersaturation 
ratio according 

to β solubility (-)

maximum value 
of interfacial 
energy for α 

(J/m2) 

maximum value 
of interfacial 
energy for β 

(J/m2) 

5 4.22 5.59 0.0194 0.0205 

20 3.18 4.21 0.0176 0.0191 

40 2.05 2.71 0.0136 0.0159 

 

Comparing the interfacial energies of α and β deduced from litterature and selecting the 

values for the computations: 

According to the work of Deij et al. 28, at 20°C and for the crystal shape used in this study, the 

interfacial energies for α and β are respectively 0.023 and 0.020 (J m-2)  

The interfacial energy can also be deduced from the nucleation data 29. The homogeneous 

nucleation rate can be expressed as: 

 𝐽 ൌ 𝐴௛௢௠ ∗ 𝑒𝑥𝑝 ሺെ
஻೓೚೘ 

௟௡మሺௌሻ
ሻ (24) 

With: 

 𝐵௛௢௠ ൌ
ସ

ଶ଻
∗ ቀ

ఙ ఊ

௞್்
ቁ

ଷ
 (25) 

Lindenberg et al. 30 determined nucleation kinetics of α LGlu at different temperatures using 

the induction time method. Then, it is possible to deduce the interfacial energy from the kinetic 

law they established with their experimental data. It is worth noting that we used the data at the 

high supersaturation regime 30, because they are more likely to correspond to homogeneous 

nucleation. It is also important to note that Lindeberg et al. made the assumption of spherical 

crystals. 
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Another way to determine the interfacial energy is to use the solubility data. Mersmann 31 

proposed the following equation, relating the interfacial energy to the solubility: 

 𝜎 ൌ 0.414 ∗ 𝑘௕ 𝑇 ቀ
ఘேೌ

ெ೙
ቁ

మ
య ∗ 𝑙𝑛 ቀ

ఘ

ெ೙∗஼೐ሺ்ሻ
ቁ (26) 

Where 𝑁௔ is Avogadro number (mol-1), 𝑀௡ is the molar mass and 𝐶௘ሺ𝑇ሻ is the solubility at the 

temperature T.  

Bennema et al. 32 also related the interfacial energy to the solubility as follows: 

 𝜎 ൌ 𝑘௕ 𝑇 ቆ𝑉௠
ି

మ
యቇ ∗ 0.25 ∗ ሺ0.7 െ 𝑙𝑛ሺ𝑋௘ሻሻ (27) 

Where 𝑉௠is the molecular volume (m3) and 𝑋௘ is the solubility expressed in molar fraction (-). 

By choosing suitable standard states at the solubility equilibrium, Christoffersen et al. 33 

suggested the following expression for the interfacial energy: 

 𝜎 ൌ ௞್ ்

గ ௗమ  𝑙𝑛 ቀ
஼ೣ

஼೐ሺ்ሻ
ቁ (28) 

with 𝐶௫ ൌ
ఘ

ெ౤
 and 𝑑 is the molecular diameter. 

The values of interfacial energy calculated from the above equations for each LGlu polymorph 

along with the maximum value taken from table 2 are shown in Figure 2-a and Figure 2-b. From 

these results, it can be deduced that the interfacial energy of α is lower than that of β. This is 

linked to their solubility values. Also, it seems reasonable to take the following interfacial 

energies all over the studied temperature range (see Figure 2-a and 2-b): 

𝜎ఈ ൌ 0.013  ሺ𝐽 𝑚ିଶሻ 

𝜎ఉ ൌ 0.014  ሺ𝐽 𝑚ିଶሻ 
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Figure 2: Estimations of interfacial energy of α and β LGlu at different temperatures: (a) α phase 

(b) β phase. ● Mersmann 31, + Bennema et al. 32, ■ Christoffersen 33 x Lindenberg et al. 30. 

Dashed line shows the maximum interfacial energy (see Table 2). Solid line corresponds to the 

interfacial energy in this work.  

 

2.4.4. The kinetic barrier of nucleation 

In the case study, since the growth rate of LGlu polymorphs is known to be controlled by 

surface integration 34, the kinetic barrier of nucleation 𝐸 mentioned in equation (3) is the 
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activation energy for interface transfer 14. The term 𝑒𝑥𝑝 ቀെ
ாഉ

௞ಳ்
ቁ can be deduced from the growth 

rate. 

 The growth rate 𝜗఑ of a nucleus 35 is given by: 

 𝜗఑ሺ𝑖ሻ ൌ
ௗ௥

ௗ௧
ൌ

ௗ௥

ௗ௜
∗

ௗ௜

ௗ௧
  (29) 

Where 
ௗ௜

ௗ௧
 can be determined in terms of attachment and detachment frequencies: 

 
ௗ௜

ௗ௧
ൌ 𝐴௜

఑ െ 𝐷௜ାଵ
఑ ൌ 𝐴௜

఑ ൤1 െ
ி೔

ഉ,బ

ி೔శభ
ഉ,బ൨ (30) 

The growth rate at the limit 𝑖 → ∞ can be written as: 

 𝜗఑ሺ𝑖 → ∞ሻ ൌ 𝐺఑ ൌ  2 ∗ 𝑋௡
఑ ∗ ሺ

௠భ ௕బ
ഉ

௩బ
ഉ∗ఘഉሻ ∗ ቀ

௞ಳ்

௛
ቁ 𝑒𝑥𝑝 ቀെ

ாഉ

௞ಳ்
ቁ ∗ ቀ

ௌഉିଵ

ௌഉ ቁ (31) 

The activation energy can be deduced from the growth rate since all the parameters in equation 

(28) are known. The growth rates of α and β correspond to birth and spread mechanisms 34 and 

were taken from Schöll et al 36 and Ochsenbein et al. 37 works, respectively: 

 𝐺ఈሺ𝑇, 𝑆ሻ ൌ 3.50 ∗ 10ିସ 𝑇 𝑒𝑥𝑝 ቀെ ଷ.଻ଶ∗ଵ଴య

்
ቁ ሺ𝑆ఈ െ 1ሻ

మ
య ሺ𝑙𝑛 𝑆ఈሻ

భ
ల 𝑒𝑥𝑝 ሺെ ହ.ସଶ ∗ଵ଴ర

்మ ௟௡ௌഀ ሻ (32) 

 𝐺ఉሺ𝑇, 𝑆ሻ ൌ 4.23 ∗ 10ିସ  𝑒𝑥𝑝 ቀെ
ଶ.଺ଶ∗ଵ଴య

்
ቁ ൫𝑆ఉ െ 1൯

మ
య ൫𝑙𝑛 𝑆ఉ൯

భ
ల 𝑒𝑥𝑝 ሺെ

ହ∗ଵ଴ర

்మ ௟௡ௌഁሻ (33) 

It is worth noting that the growth rate of α LGlu was multiplied by a corrective factor (see 

equation (27) in Schöll et al. article 36 ) to satisfy the shape assumption done in this work. Also, 

the β growth rate parameters were tuned to approach (for a supersaturation ratio S=2) the data 

given by Cornel et al. 38 at 45°C and to correspond to the data given by Kitamura et al. 34 at 

25°C. It is also to note that the growth rate of α is several times higher than that of β at all 

temperatures. 
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3. Results and discussion: 

Crystallization of both polymorphs of L-Glutamic acid at constant temperature was considered. 

For the sake of simplicity, only homogeneous nucleation was taken into account. The model 

parameters were fixed as follows: crystal density of α  𝜌ఈ ൌ 1533 𝑘𝑔 𝑚ିଷ, crystal density of 

β  𝜌ఉ ൌ 1590 𝑘𝑔 𝑚ିଷ. The kinetic equations were solved up to the size of 300 000 monomers 

for the α form (equivalent to a characteristic size of 43.4 nm) and up to 20 000 monomers for the 

β form (equivalent to a characteristic size of 28.8 nm) ሺ𝑀ఈ ൌ 300 000 ;  𝑀ఉ ൌ 20 000ሻ. It is to 

note that the difference between the maximum sizes of α and β are due to the shape assumptions 

made in section 2.4.1. The initial conditions are summarized in Table 3. 

Table.3: Initial conditions of the model 

Temperature 
(°C) 

initial 
concentration 

(mol/kg of 
solvent) 

Supersaturation 
ratio according 

to α solubility (-)

Supersaturation 
ratio according 

to β solubility (-) 

5 0.139 4.22 5.59 

20 0.199 3.18 4.21 

40 0.274 2.05 2.71 
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Figure 3: Evolutions of the supersaturation (according to the β solubility) with time at 5, 20 and 

40°C 

The evolution of the supersaturation ratio (according to β solubility) with time at different 

temperatures is depicted in Figure 3. It is worth noting that the supersaturation ratio is only 

related to the number of monomers within the solution (S=F1/Ne with Ne the number of 

monomers at the equilibrium concentration). At 40°C, the supersaturation decrease is negligible 

because the initial energy barrier of nucleation for both phases is high ( 𝑊௜೎
ఈ/ሺ𝐾஻ 𝑇ሻ ൌ 44.5  and  

W௜೎

ఉ/ሺ𝐾஻ 𝑇ሻ ൌ 35.65 ). This is due to the low initial supersaturation chosen. At 20°C and 5°C, 

since the initial supersaturations were high (see Table 3), the initial energy barrier of nucleation 

was found to be low for both phases (at 20°C:  𝑊௜೎
ఈ/ሺ𝐾஻ 𝑇ሻ ൌ 20.88 , 𝑊௜೎

ఉ/ሺ𝐾஻ 𝑇ሻ ൌ 20.90  and 

at 5°C: 𝑊௜೎
ఈ/ሺ𝐾஻ 𝑇ሻ ൌ 15.78  and  𝑊௜೎

ఉ/ሺ𝐾஻ 𝑇ሻ ൌ 17.07 ) and the monomers within the solution 

started quickly to be consumed by the crystallization process. The energy barrier of nucleation is 

influenced by two parameters: supersaturation and interfacial energy. At 40°C the difference in 

solubility between α and β is significant and gives the advantage to the β phase, so β nucleation 

has a lower energy barrier at this temperature. Conversely, at 5°C the solubility of α and β are 

very close, inducing very close supersaturations. The difference in energy barrier calculation 

comes then from the interfacial energies. In that case, α nucleation has the lowest energy barrier 

(see Tahri et al. article 20 for α and β solubility curves). 

 The supersaturation depletion at 20°C caused an increase with time in the energy barrier of 

nucleation of α and β as shown in Figure 4. For the sake of simplicity, the results at 5°C and 

40°C were not added: at 5°C, similar behavior as that obtained at 20°C is observed, while at 
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40°C the initial work of formation of both phases remained constant with time due to constant 

supersaturation    

 

Figure 4: Dimensionless work of formation of α and β clusters as a function of size at various 

times and at 20°C  

At 5°C, the supersaturation decrease was very important. As a consequence the critical size of 

both α and β nuclei increased significantly with time: ic evolved from 22 monomers (equivalent 

to 1.8 nm) for α and 20 (equivalent to 2.9 nm) for β to more than 5000 for α (equivalent to 11.1 

nm) and more than 700 for β (equivalent to 9.4 nm) (see Figure 5). At 20°C, the critical size of 

both polymorphs slightly increased. Obviously, it remained constant with time at 40°C (see 

Figure 5). 
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Figure 5: The critical size ic of α and β phases as a function of time at 5, 20 and 40°C: (a) α 

phase (b) β phase  

The cluster size distribution at different times at 5°C are shown in Figure 6. The first thing to 

notice in this figure is the vanishing of the β nuclei with time: at 0.05s the number of 

supercritical clusters is more than 1015 per unit mass of suspension (critical size is about 2.9 nm 

at that time), while the number of supercritical clusters is zero at 0.95s (critical size is higher 

than 9.4nm at that time) (Figure 6-b). Even, the α phase nuclei slightly dissolve (Figure 6-a). The 

important dissolution of the β nuclei at 5°C is caused by “Ostwald ripening”, i.e. Gibbs-Thomson 

effect. At the beginning, when the supersaturation of both phases was high, α and β nucleated 

significantly. However, since the α phase nuclei grew several times faster than the β phase and 

consumed the supersaturation, the β nuclei became quickly smaller than the critical size and 
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dissolved. In addition to that, dissolution also affected some of α nuclei: when the 

supersaturation dropped, the α crystals that had nucleated earlier were large enough and kept on 

growing and consuming supersaturation, while the youngest α crystals became smaller than the 

critical size and dissolved. That latter case corresponds rigorously to the so called Ostwald 

ripening.   

 

Figure 6: The cluster size distribution of α and β at 5°C at various times: (a) α phase (b) β phase 

In Figure 7, the nucleation rate J of each polymorph is scaled by the initial value of the 

stationary nucleation rate,  𝐽௦
఑ሺ𝑡 ൌ 0ሻ, computed from equation (3). At 5°C, the nucleation rate of 

both phases for a size i=200 (supercritical at initial time) reached a maximum value then became 

negative. This result, that can seems rather surprising, is due to the supersaturation decrease and 
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the rise of the critical size; at t≈0.08s, the 200-sized clusters became subcritical, so their 

attachment frequency fell below their detachment frequency and thus, the nucleation rate became 

negative. These results confirmed our previous observations about clusters dissolution at 5°C. At 

20°C, the nucleation rate of α and β reached a maximum value then decreased due to 

supersaturation depletion. At 40°C, since the supersaturation remained constant, the system 

behave as an open system that follows the standard model of nucleation 19. It is worth noting that 

the dimensionless nucleation rate was depicted for i=200 just as an example, because this size is 

a supercritical size at all the initial conditions and it clearly allows showing the trends at all the 

studied temperatures. 

 

Figure 7: Dimensionless nucleation rate as a function of time at 5, 20 and 40°C for a size i=200: 

(a) α phase (b) β phase 
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To compare qualitatively our numerical results to experimental data, the following 

crystallization fractions of α and β forms were introduced: 

   X஑ ൌ
∑ ୧ ୊౟

ಉ౉ಉ 
౟సమ

୒౐
ಉ  (34) 

   Xஒ ൌ
∑ ୧ ୊౟

ಊ౉ಊ 
౟సమ

୒౐
ಊ  (35) 
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Figure 8: The crystallization fraction of α and β phases as a function of time at different 

temperatures: (a) 5°C, (b) 20 °C ,(C)40°C 

The evolution of the crystallization of both forms at 5, 20 and 40°C is shown in Figure 8. At 

5°C, the crystallization fraction of β fell down near zero because of the competition between the 

two polymorphs and the Gibbs-Thomson effect. It is to note that this fraction is not null because 

it takes into account subcritical clusters. At 20°C, the “Ostwald ripening” also affected the 

crystallization fraction of β but did not cause the total dissolution of this phase. At 40°C, the 

crystallization fractions of both polymorphs are constant with a slight advantage of α phase. 

These results are compared to experimental observations in Table 4. This table shows that the 

numerical results show trends that are rather in good agreement with the experimental data. 

Table.4: Experimental and numerical observations at various supersaturations and temperatures 

Temperature 
(°C) 

Supersaturation 
ratio according to 

β solubility (-) 

polymorphic phase 
observed in the 
experiments 20 

polymorphic 
phase observed in 

the simulations 

5 5.59 mostly α only α 

20 4.21 α and β α and β 

40 2.71 mostly β with α α and β  

 

Conclusion: 

The influence of the Ostwald ripening on the crystallization of L-Glutamic acid polymorphs 

was considered using the kinetic equation (KE) model. In order to reflect experimental data, the 

parameters of KE model were adjusted to take into account the main differences between α LGlu 

and β LGlu: shape, solubility, interfacial energy and growth rate. The simulations were done at 5, 

20 and 40°C. At the first moments of the crystallization process, the numerical results showed 
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that the α and β clusters smaller than 40nm were affected by ripening at 5°C. The ripening had a 

strong effect on the β phase nuclei and caused their total dissolution at 5°C. This result is in 

conformity with the Ostwald rule of stages. It was also found that, the competition between α 

and β phases was more affected by ripening mechanism at 5°C compared to 20 and 40°C. The 

simulations results at 5, 20 and 40°C and experimental observations were then compared 

qualitatively and were found to be in a good agreement. Accordingly, this work showed that the 

kinetic equations could be a very convenient way to model the competition between polymorphic 

phases and suggested that the Ostwald rule of stages could be explained by the Ostwald ripening 

mechanism. 

Funding Sources 

This work was supported by a STSM Grant from COST Action CM1402 Crystallize and by 

the Grant no. LD1504 (VES 15 COST CZ) from the Ministry of Education of the Czech 

Republic. 

Acknowledgment: 

The authors acknowledge gratefully The COST Action CM1402 and The Ministry of 

Education of the Czech Republic for funding. 

Supporting information: 

Derivation of equation (18), demonstration of equation (23) from equation (22). 

Symbols: 

A୧: Attachment frequency of monomers for a cluster of size i (s-1). 

A୦୭୫: Pre-exponential factor in the general expression of homogeneous nucleation rate (kg-1 s-1). 
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a, b , c : Crystal dimensions (m-3) 

a଴, b଴, c଴: Unit cell constants (Ǻ) 

B୦୭୫: Exponential factor in the general expression of homogeneous nucleation rate (-) 

Cୣ: Equilibrium concentration (mol kg-1 of solvent). 

D୧: Detachment frequency of monomers for a cluster of size i (s-1) 

d:  Molecular diameter (m-3) 

E: Kinetic barrier of nucleation (J) 

F୧ : Number density of the clusters of size i, i.e. Number of nuclei formed by i monomers (kg-1). 

F୧
଴: Equilibrium number density of clusters of size i (kg-1). 

G: Size independent growth rate (m s-1) 

h: Planck constant (J s). 

i:  Cluster size, i.e. number of monomers forming the cluster (-) 

iୡ: Critical size (-) 

i଴: determines initial size distribution of clusters (-) 

J୧: Nucleation rate, i.e. the number of i-sized nuclei formed in unit mass per second (kg-1s-1) 

Jୱ: Stationary nucleation rate (kg-1s-1) 

k୆: Boltzmann constant (J K-1) 
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M: Maximum cluster size (-) 

M୬: Molar mass (kg mol-1) 

mଵ: Monomer mass (kg) 

Nୟ: Avogadro number (mol-1) 

Nୣ: Number of monomers at the equilibrium concentration (-) 

Nୱ: Number of nucleation sites on the cluster surface (-) 

N୘: Total number of LGlu monomers in the system (kg-1) 

Nଵ: Initial number of monomers within the liquid is phase (kg-1) 

r: Characteristic size of the clusters (m) 

S: Supersaturation ratio (-) 

T: Temperature (K) 

V୫: Molecular volume (m3) 

v଴: Volume of the unit cell (m3) 

W୧: Work of formation of an i-sized cluster (J) 

Xୣ: Equilibrium molar fraction (-). 

X୬: Molar fraction of LGlu in solution (-) 

γ: Surface shape factor (m2) 
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Δµ: The difference in chemical potential (J) 

ϑ: Size dependent growth rate (m s-1) 

κ: Index that refers to α of β polymorph. κ=α for the polymorph α and κ=β for the polymorph β 

σ: Interfacial energy (J m-2).  

ρ: Crystal density (kg m-3). 
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Table of Contents Graphic and Synopsis: 

This paper investigates the effect of the Ostwald Ripening on the competition between 

polymorphic phases using a kinetic model. Numerical results and experimental data, at various 

temperatures, were compared qualitatively and were found to be in good agreement. The results 

emphasized the importance of considering the ripening mechanism when modelling polymorph 

crystallization.  
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