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TAUTOLOGICAL RINGS ON JACOBIAN VARIETIES OF CURVES WITH
AUTOMORPHISMS

THOMAS RICHEZ

ABSTRACT. Let J be the Jacobian of a smooth projective complex curve C' which admits non-trivial
automorphisms, and let A(J) be the ring of algebraic cycles on J with rational coefficients modulo
algebraic equivalence. We present new tautological rings in A(J) which extend in a natural way the
tautological ring studied by Beauville in [5]. We then show there exist tautological rings induced on
special complementary abelian subvarieties of J.
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1. INTRODUCTION

In this paper we consider varieties over C. Let X be an abelian variety of dimension g > 1. We
denote by m its group law and by X the dual variety. We consider the ring A" (X) of algebraic cycles
on X with rational coefficients modulo algebraic equivalence. Beauville showed in [4] that there exists
a bigraduation on A(X). Specifically, we have

X = @ AP

S=p—9g

where p refers to the codimension grading and s refers to eigenspaces of the operators k, and k*
induced by the homotheties & = kx on X for any k € Z. These eigenspaces are characterized by
x € AP(X)(y) if and only if for all k € Z, k*z = k*'~z (or equivalently k.o = k*~?'*z). Note that this
bigraduation is compatible with the intersection and Pontryagin products on X denoted respectively
by col Ap(X)(S) X Aq(X)(t) - Ap+q(X)(S+t) and * : Ap(X)(S) X Aq(X)(t) — Ap-i-q—g(X)(S_i_t)‘ An
important tool to study this structure on A(X) which will play a major role in the sequel is the Fourier

transform Fx : A(X) — A(X) on X. This map is defined as follows. Consider the Poincaré line bundle

Pyyg on X x X and its cycle class Ly, g = c1(Py, 5) in AN(X x X). For any cycle z € A(X), we

put Fx(x) := pax(piz - elXx??) where p; and po are the natural projections of X x X to X and X
respectively. Recall the following important facts (see [3]):

(1) Identifying X with its bidual variety X (as we will always do), we get a Fourier transform

FeA(X) = A(X) on X. It satisfies the relation

FeoFx = (—1)9(—1x)*.
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(2) For all cycles x,y on X, we have
Fx(z-y) = (-1)?Fx(z) = Fx(y)  and  Fx(z+y) = Fx(z) Fx(y).

The reader should refer to [3| for an overview of many other properties of the Fourier transform. In §2
we present slight generalizations of these properties. This section will be used in §5 and §6 when we
will work with non principal polarizations.

In §3 we consider a smooth projective curve C of genus ¢(C) = g = 1 with Jacobian J = J(C).
We fix a rational point P on C to embed the curve in its Jacobian via the usual map f¥ : C «— J
defined on points by @ — Lo(Q — P). This map allows us to consider the cycle class defined by C,
and still denoted by C, in A9=!(J). Note that this class does not depend on the choice of P since
we are working modulo algebraic equivalence. Let J < A(X) be a family of cycles on X. We denote
by Tautx(J) the tautological ring generated by 7, that is to say the smallest Q-vector subspace of
A(X) containing J and closed under natural operations on A(X); namely intersection and Pontryagin
products, and operators k., k* for all k € Z.

We assume that the reader is familiar with paper [5] in which Beauville studied the tautological
ring R(C;J) := Taut;({C}). He proved that the Q-algebra R(C;J) is generated for the intersection

product by the classes
1

w' = = i)!c*@ Ve Al(), iel0,q]

of the subvarieties W,_; parametrizing effective divisors on C of degree g — i. Another system of
generators is given by Newton polynomials in the w?, denoted by N*(w) € Ai(J)(i,l). When R(C;J)
is endowed with its structure of algebra for the Pontryagin product, a set of generators is given by the
Fourier transforms of the N*(w), which are (up to a sign) the components Cu € AIL(J )(i) appearing
in Beauville’s decomposition of C' € A971(J). The aim of §3 is to clarify the functorial behaviour
of this tautological ring R(C;J). In Section 3 we consider a finite morphism of curves f : C' — C’
and we explain the action of the induced morphism f* : J(C") — J(C) and the Albanese morphism
Ny : J(C) — J(C") on R(C;J(C)) and R(C';J(C")). For a morphism of curves f, the abelian
subvariety Y := Im(f*) of J(C) with canonical embedding ¢y : Y < J(C) plays a crucial role. Indeed
Y is isogenous to J(C") via the corestriction map j = f* : J(C') — Y. We will also associate to YV’
(as we will do for any abelian subvariety of J(C)) its norm-endomorphism Ny : J(C) — J(C) and the
map 1y € Hom(J(C),Y) defined by Ny = 1y oty (see [6, §5.3]). When [ : C — C' ~ C/{o) is a
cyclic Galois covering for some o € Aut(C) of finite order, one highlights naturally in A(J(C)) some
cycle classes of the form P(0),C where P(o) € Z[o] is a polynomial in the automorphism o or more
accurately a polynomial in the Albanese morphism still denoted by o = N, € Aut(J(C)).

This leads us to §4 where we consider a curve C' with a finite automorphism group G' < Aut(C).
We will prove the following main result:

Theorem 1. Let C be a smooth projective complex curve of genus g = 1 and G a finite group of
automorphisms of C'. Then the tautological ring

Re(C; J) := Tauty ({ﬂ*c e A(J) | TeZ[G] ¢ End(J)})

is generated as Q-subalgebra of A(J)
(1) for the intersection product by all 7 N*(w),

(2) for the Pontryagin product by all m.C(;_y)
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with m € Z[G] and i € [1,g — 1].

In case of a cyclic automorphism group G = (o), we will put R, (C;J) := Ry (C; J). Furthermore,
each subgroup K of G determines a subtautological ring Rx(C;J) € Rg(C;J). For example, with
K = {Id} we get R(C;J) < Ra(C;J). Actually, the tautological ring Rz(C; J) is the smallest Q-algebra
extension of R(C; J) which is stable under intersection product, Pontryagin product and pull-backs and
push-forwards by elements in Z|G]| < End(J). This is a very natural characterization which may have
been chosen at first to define these tautological rings:

Corollary 1. The tautological ring Rg(C;J) is the smallest Q-algebra extension of R(C;J) for the
intersection product (resp. Pontryagin product) which is stable under pull-backs (resp. push-forwards)
by polynomials in Z|G] < End(J).

Now let us stress why the adjective tautological is still appropriate to such rings Rg(C;J). If
one considers a curve without non-trivial automorphism, we are interested in the smallest Q-vector
subspace of A(J) which contains the cycle class C, and closed under both products, pull-backs and
push-forwards by scalars in Z < End(J) (that is constant polynomials). This ring is precisely Beauville’s
tautological ring R(C;J). But if C' has a non-trivial automorphism group G, the same natural idea
leads us to study the smallest Q-vector subspace of A(J) which contains the class C, and closed under
both products, pull-backs and push-forwards by elements in Z[G]; that is Rg(C;J). Besides, having
all these tautological and subtautological rings associated to groups and subgroups of automorphisms
strengthens the following idea: for a Jacobian variety with non-trivial automorphisms, the ring A(J)
carries a much richer structure than that of a generic Jacobian; which is already an interesting fact in
itself.

In the next section, that is §5, we will explore the link between tautological rings of J(C/{c)) and
J(C). These rings are closely related as pointed out in

Theorem 2. Let f : C — C' ~ C/{c) be a n-cyclic Galois covering associated to an automorphism
o € Aut(C) of order n € N*. We consider a finite group of automorphisms G < Aut(C) and we suppose
that each g € G commutes with o so that there is an automorphism g € Aut(C") satisfying the relation
fog=gof. We denote by G the image of G in Aut(C"). Then the tautological ring

Rg($y+C;Y) i= Tauty ({matrysC € A(Y) | 7€ Z[G]})

is generated as Q-subalgebra of A(Y)
(1) for the intersection product by all 7*u% N*H (w) = (5 m* Nt (w),
(2) for the Pontryagin product by all T4py«Ciy = Yy «msCy)

with m € Z[G] and i € [0,9(C") — 1]. Therefore, the isogeny j induces an isomorphism (as Q-vector
spaces)
Re(C'5J(C')) = juRg(C'; J(C')) = Tauty (juRg(C'; J(C')))
=1y Ra(C; J(0)) = ¥y« Ra(C; J(C)) = Ra(¢y«C;Y).
The last part of this article, that is §6, is dedicated to tautological rings induced on the natural

abelian subvariety Z of J(C'), the complementary abelian variety to Y with respect to the Theta
polarization on J(C') (see [6, Section 5.3]). We will prove
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Theorem 3. Let f : C — C" ~ C/{o) be a n-cyclic Galois covering associated to an automorphism
o € Aut(C) of order n € N*. We consider a finite group of automorphisms H < Aut(C) and we suppose
that 0 € H is central in H. Then the tautological ring

Ry (174C; Z) 1= Tauty ({muthzuC € A(Z) | 7w € Z[H]})

is generated as Q-subalgebra of A(Z)
(1) for the intersection product by all T* iy N*(w) = thm* N (w),
(2) for the Pontryagin product by all msp7+C;i_1) = V74T Cli_1)
with w € Z|H]| and all i € [1,dim Z — 1]. In other words,

RYy(Yz+C; Z) = 1z Ry (C; J(C)) = ¥z:. R (C; J(C)).

In particular, considering the case of a cyclic automorphism group H = (o) leads to:
Theorem 4. Let f : C — C' ~ C/{c) be a n-cyclic Galois covering associated to an automorphism
o € Aut(C) of order n € N*. Then the tautological ring
Ro(24C; Z) i= Taut; ({P(0)st22C € A(2) | P e Z[X]})

is generated as Q-subalgebra of A(Z)
(1) for the intersection product by all P(c)*15Nt(w) = 15 P(c)* N (w),
(2) for the Pontryagin product by all P(0)sz+C(i—1) = ¥z+P(0)«C(i_1)
with P € Z|X] and all i € [1,dim Z — 1]. In particular,
Re(Y2:C; Z) = 17 Ro(C3 J(C)) = Y24 Ro(C; J(O)).

This theorem 4 yields a generalization of a theorem proved by Arap [1] who gave the analogue in
A(Z) of Beauville’s tautological ring R(C; J(C)) in the special case where Z is a Prym variety. That
is essentially when f : C' — C’ is of degree 2 and either étale or ramified in exactly two points (see [6,
Theorem 12.3.3]). We finish with a few examples which provide a full explicit structure for the algebra
R;(vz+C; Z) < A(Z) when o is of order 2 and C' is a k-gonal curve with k € {2, 3,4, 5}.

2. PRELIMINARIES

The Fourier transform on abelian varieties will be central in almost all following results. Therefore we
start with some properties of this map. The following proposition is a slight but useful generalization
of Beauville’s result (|3, Proposition 3.(iii)] or [6, Proposition 16.3.4]). It will help us to work with
Fourier transform and pull-backs or push-forwards by arbitrary morphisms of abelian varieties.

Remark 1. By definition a morphism of abelian varieties respects the group structure.

Proposition 1. Let X,Y be two abelian varieties and « : Y — X a morphism of abelian varieties.
Then
Fxoay=a"oFy and Fyoa™ = (—1)d1mX—dle&*ofX,

In particular, if o is an isogeny or if X =Y, we also have Fy o a* = Q. o Fx.
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Proof. The proof of the first equality is analogous to |6, Proposition 16.3.4 (a)|] which works without
the isogeny hypothesis in the statement. The proof of the second equality is similar to [6, Proposition
16.3.4 (b)] with the particularity that the exponent of (—1) is due to the difference of the dimensions
of the abelian varieties involved. It appears with the inversion formulas for the Fourier transforms on
X and Y. (]

The different results presented in this paper involve polarized (but not necessarily principally po-
larized) abelian varieties (X, &). For such a polarization, we consider the isogeny

pe: X — Pic%(X) ~ X

given on points by
Pe(x) == 12Lx (§) @ Lx ()7

where Lx (€)Y denotes (the class of) the dual invertible sheaf associated to (the class of) the ample
divisor . It is known that there exists an inverse isogeny up to scalar, denoted by ¢ € Hom()A( , X).
These morphisms satisfy relations ¢ o ¢ = nx and ¢¢ 0 1) = ng for some n € N*. Recall that the
dual map of ¢ satisfies pz = ¢ ([6, Corollary 2.4.6]) and thus @ = ¢ too. Having said that, we will
often consider the maps ¢fFx : A(X) — A(X) or ¢ Fx : A(X) — A(X) instead of Fx.

The following proposition give us some properties of the operator w%“}" x as in [, §2.4 — 2.7]. It
allows us to link (more deeply) the Fourier transform on X and the Pontryagin product.

Proposition 2. Keeping above notations, we consider the operator F := @Z}"X. It satisfies the follow-
ing properties:
(1) Inversion formula: F o F = deg(p¢)(—1)4mX (—1x)*.

. (_1)dimX

(2) We have for all z,y € A(X), F(z*xy) = F(z) - F(y) and F(z-y) = W}'(:c) x F(y).

(3) F(AP(X)(5)) = AdmX=pts(X) .

(4) Let x € A(X). We put T := (—1)*z. Then F(z) =e ¢ - ((T-e7¢) xef) e A(X).

Proof. Because this proposition is similar to [5, §2.4 — 2.7] we only prove the first statement in order
to emphasize how the operator ¢f effects the results. It is known that Fg o Fx = (—1)dm X (—1x)*.
Therefore, using that gog*gog = deg(pe), ¢ = @¢ and the compatibility between Fx and isogenies
(Proposition 1), we get F o F = @i Fxpi Fx = Fgpextpp Fx = deg(pe)(—1)HmX (—1x)*. O
Remark 2. In his paper [5, §2.3] Beauville uses the relation lxxx = p*¢ + ¢*¢ — m*¢ for the class of
the Poincaré line bundle on X x X. This equality is given by a different choice in the definition of the

isogeny ¢ associated to . Namely, he uses the polarization —¢¢. This explains the difference between
the last statement of Proposition 2 and [5, §2.7].

We use this proposition to deduce the following corollary (inspired by [3, Lemme 1] or [3, Proposition
5]). It will be used only once, to prove Proposition 3.

Corollary 2. Let £ € Al(X)(O) be a polarization on an abelian variety X. Then

Vi Fx(et) = x(§e*
where x denotes the Euler characteristic. Accordingly,
(_1)dimX

et = W(pgfx(e%).
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Proof. Thanks to Proposition 2 (4) and since (—1)*¢ = £, we have
@?fx(eg) —e¢. ((e(—l)*é . 6—6) " e&) —e 6. ((eé . 6—6) " e&) —e 6. ([X] = eé)_

Thus, for codimension reasons and by using the Riemann-Roch theorem for abelian varieties (see |11,
p150]), we obtain

pee(e) = € (IX] €™ ) = x(@e S (X4 o) = x(Oe €+ [X] = x(©)e ¢

where [0] denotes the class of a point in X. Hence the first part of the corollary. Moreover, using the
inversion formula (see Proposition 2 (1)), we get

deg(pe) (1) X (—1)*e* = G Fxpf Fx(e°) = x (€)@ Fx(e™0).

Since deg(p¢) = x(€)? (see [11, p150]) and (—1)*e* = e (because £ is symmetric), we obtain the second
part of this corollary. O

Proposition 3. Let T be a bigraded Q-subalgebra (for the intersection product) of A(X). We suppose
that T contains the class of the polarization & on X. The following statements are equivalent:

(1) T+TcT.
(2) peFx(T) < T.
(3) ¥ ]:XS%]:X( ) < @i Fx(T).
(4) &0 Fx(T) © i Fx(T).

Proof. Let us note F := @i Fx : A(X) — A(X).

(1) & (2). If we assume that T is stable under Pontryagin product, it is then clear according to
Proposition 2, statement 4, that for all x € T', F(z) € T. Indeed, since T is bigraded and & € T, we
have

4

f(x)ze—f-((f-e—f)*ef)eT-((T-T)*T)cT-(T*T)cT-TcT.

Conversely, if F(T') < T, then statements 1 and 2 of Proposition 2 allow us to prove that T is stable
under Pontryagin product.

(2) & (3). If F(T') < T, then we immediately get FF(T') < F(T) by applying F. Conversely, let us
assume that FF(T) < F(T). By the inversion formula for F, this actually means T' < F(T'). Applying
F to this inclusion, we get the reversed one, that is statement (2). In particular, we have (2) if and
only if we have (3) if and only if F(T) =

(3) « (4). Now we assume that FF(T) < F(T) or equivalently F(T) = T. Therefore, since £ € T
and T is stable by intersection by hypothesis, we have assertion (4) as claimed. Conversely, assume
that ¢ - F(T') < F(T). We want to show that FF(T) < F(T'). So let us consider a cycle x € F(T')
and let us use Proposition 2, statements 2 and 4, together with Corollary 2. These results prove that
F(x) =e ¢ ((T-e7¢) # ef) belongs to

e €. ((]—"(T)-e_f) *F(T)) cet. (f(T) *]-'(T)) c e_é-]-'(T-T) c e_g-]-'(T) c F(T).

Hence the claimed inclusion FF(T) < F(T'); which completes the proof of this proposition. O
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Remark 3. Note that it is essential in this proof that the polarization £ belongs to T

The two next results will be used several times to exchange pull-backs and push-forwards by isoge-
nies. Indeed it will be very convenient to work with pull-backs (resp. push-forwards) when subalgebras
of A(X) are endowed with the intersection product (resp. Pontryagin product).

Lemma 1. Let a : X — Y be an isogeny between two abelian varieties X and Y. There exists an
isogeny B :Y — X and an integer n € N* such that ao 8 =ny and foa =nx. Then for ally e A(Y)
we have

1

*
nxQ" Y.
(@) "

Bry = 7deg o

Therefore, if y € Ai(Y)(s) for some indices i and s, then Byy € Ai(X)(s) is proportional to o*y (and is
nonzero if y # 0).

Proof. Let y € A(Y). Since foa =nyx and « is a finite flat morphism of degree deg(a) # 0, we have

nxx"y = fraxa®y = By(deg(a)y) = deg(a) By,
which means that

1 *
Bxy = mnx*a Y.

Therefore if y € AY(Y)(,) it is known that a*y € A’(X) ) is still homogeneous (because o commutes
with the multiplication by n on X and Y') and so
n2dim X —2i+s

_ *
is proportional to a*y. Finally, as 8, and a* are isomorphisms between A(X) et A(Y) (because a and
B are isogenies and we work with algebraic cycles with rational coefficients), S,y is nonzero when y # 0

(and vice versa). O

Corollary 3. Let a: X — Y be an isogeny between two abelian varieties X and Y. There exists an
isogeny 8 :Y — X and an integer n € N* such that o S =ny and Boa =nx. Let T (resp. T') be a
bigraded Q-vector subspace of A (Y) (resp. of A(X)). Then o*T = B, T and B*T' = o, T".

Proof. We only prove the first equality o1 = 5,1 as the second one can be obtained in a similar way.
By hypothesis T" is bigraded which means that every y € T' can be (uniquely) written as y = >, . ¥is

for some y; ; € T(is) =Tn A"(Y)(s). The result then follows on from Lemma 1 applied to each y; s

a*y = Za*yi,s = Z Ai,sﬁ*yi,s = s (Z Ai,syi,s) € BT
,5

%,8 1,8
for some nonzero \; s € Q (if y; s = 0 we can assume that \; ; = 1). Note that we have used here in an

essential way that each component y; s € Ai(Y)( s) defines a class which already belongs to T'. So we have
proven that o*T < B,T. The reverse inclusion can be obtained similarly because if y = >}, ;455 € T

for some y; s € T(is), then we have

ﬂ*y = Z %a*yi,s =" (Z ;yi,s> € a*T.

is 0 is 0

This shows that o*T = 5,T. O
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Combining Proposition 3 and Corollary 3 with the relation f Fx (T') = ¢ Fx (T), we immediately
get

Proposition 4. Let T be a bigraded Q-subalgebra (for the intersection product) of A(X). We suppose
that T contains the class of the polarization & on X. The following statements are equivalent:

1

(1) T«TcT.

(2) YeuFx(T) = T.
(3)

(4)

3) VexFxesFx(T) < e Fx (T).
4 fi/)g*]:)((T) c ¢§*fx(T).
3. FUNCTORIALITY OF TAUTOLOGICAL RINGS R(C; J)

3.1. Notations. In this subsection we present all notations and previous results useful for our work.
A more detailed approach of the following notions can be found in [6, Sections 5.3, 12.1, 12.3]. Let C'
and C’ be two smooth projective complex curves of genus g = g(C') > 1 and ¢’ = g(C’") = 1. We put as
always J = J(C) and J' = J(C") for their Jacobians endowed with usual principal polarizations © and
©'. We avoid the case ¢’ = 0 (that is C' ~ P!) to spare us some case distinctions when A(J’) = {0}.
We suppose that we have a finite morphism f : C' — C’ of degree n € N*. This morphism induces
morphisms of abelian varieties:

Ny:J— J Lo (271sz> — Lev (anf(Pz))
f=f:J >J: L~ fL.

Note that Ny : J — J' is the Albanese morphism induced by f which makes commute the following
diagram:

where P is any fixed rational point on C' and P’ := f(P) € C’. In particular, as C and C’ generate .J
and J’ respectively (as abelian varieties), the surjectivity of f implies the surjectivity of Ny.

Denote by Y := Im(f) = J (see [6]). The map f factors through an isogeny j : J' — Y followed
by the canonical embedding ty : Y — J. Also consider the polarization Pxe ON Y (a priori non
principal) induced by ©. Denote also by e(Y') the exponent of Y, that is the exponent of the finite
group Ker ¢,x g. It is known (see for example [6, Proposition 1.2.6]) that the map

Yxg = e(Y)goLE,;l@ Y >ve Hom(f/,Y) ®Q

is a morphism (that is it belongs to Hom(f’, Y)) and even an isogeny. Consider the following elements

Ny = wyiselvpe € End(J)  and ey := Lnge@(p@ € End®(J) := End(J) ® Q.

By definition, we have Ny = e(Y)ey. Denote by R : End’(J) — End®(J) the Rosati involution on .J
with respect to the Theta polarization and defined by R(f) := cpél o fowpg. According to [6, Lemma
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5.3.1] we have R(Ny) = Ny and N2 = e(Y)Ny. This implies immediately that R(ey) = ey and
€2 = ecy. In other words, Ny is symmetric and ey is a symmetric idempotent element of End®(J).
Note that these morphisms are (in particular) linked by the following facts:

(1) ]@ = f after identifying Jacobians and duals [6, Equation (2) p331],
(2) Nyf =n-1dy by definition of Ny and f,

(3) [Ny = %Ny [6, Proposition 12.3.2] and in particular, since ﬁNy = ney € End(J), we
deduce that e(Y") divides n thanks to [6, Proposition 12.1.1],

(4) Nypy =e(Y)-Idy [6, p125],

(5) Y =Im(f) = Im(fNy) = Im(Ny) is isogenous to J'.

Besides, the map Y — ey defines a bijection between the set of abelian subvarieties of J and
symmetric idempotents in End®(.J) [6, Theorem 5.3.2]. This yields a natural subvariety of .J, denoted
by Z, which is complementary to Y (with respect to the Theta polarization on J). This subvariety is
associated to the symmetric idempotent element 1 — ey and satisfies

Z = Im(Nz) = Ker(Ny)° = Ker(N;)° = Ker(iy) ~ J/Y
where Nz is the norm-endomorphism of J associated to Z. It is defined similarly to Ny.

Since (J, ©) is principally polarized, the complementary subvarieties Y and Z have same exponent
[6, Corollary 12.1.2]. Finally, let us recall the following relations [6, p125]

Nyjz=0 —and NyNz=0 and Ny +Nz=¢e(Y)-1d;.
This provides an isogeny p =ty +tz : Y x Z — J |6, Corollary 5.3.6].

At this point, it is useful to look at the commutative diagram

=l

|

Note that commutativity is justified by the identities (1) — (5) recalled above and following relations:

(6) Pro = ly poty. This can be checked immediately on points y € Y
eirely) = G Li(O)®FLO) = i (1) Ls(O) @ Ls(0)") =t thpoliv(y).

(7) In the same way, Prrg = foof.
(8) Lemma 12.3.1 of [6] states that Prre = Pner = NPer.
We now have all necessary tools to study the functoriality of tautological rings R(C’; J).
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3.2. Functoriality of tautological rings R(C;J). Let us start with a very simple proposition which
is the key to all following results in this section.

Proposition 5. Let f: C — C' be a finite morphism of degree n. We have

— 1 n 1
(Ng):C = nC’ and f.C' = - (e(Y)NY)* C = gay*n*C.

Proof. The first formula is clear and by combining it with relation (3) we can derive the second one as
follow:

01 = FuNDC = (187 = (80 ) €

This proposition immediately implies:

Corollary 4. Let f : C — C' be a finite morphism of degree n. For all i € [0,g9 — 1] we have
(Nf)*C(l) = anz) € Aglil(J,)(i).

Proof. Decomposing C' = C(g) + ...+ Cy_1y and C" = CEO) +...+ CEg,_l), the equality (Ny)«C = nC’
gives

g—1 g -1
=0 1=0

Since (Ny)«C(; € Agl_l(J ! )(#) [4, Proposition 2.c|, we have by uniqueness in Beauville’s decomposition
(N§)«Cliy = nClyy € AY=H(T') i) O

Now we can easily deduce results concerning tautological rings since the cycles C(;) and C{i) are
generators of algebras R(C;J) and R(C’; J') for the Pontryagin product.

Corollary 5. Let f : C'— C’ be a finite morphism. The map (Ny)sx induces a surjective morphism
(Np)s 2 R(C5 ) —» R(C; ).
In particular, R(C'; J') is a quotient of R(C;J).

Proof. Since push-forwards are ring morphisms when we consider A(J) and A(J’) endowed with the
Pontryagin product, and since the C’EZ.) € Im((Ny)«) generate R(C'; J') as Q-subalgebra of A(J’) for
the Pontryagin product, the claim follows from Corollary 4. O

Remark 4. (Ny)s is a surjective morphism as Q-linear map and is also a morphism of Q-algebra when
we endow A(J) and A(J’) with the Pontryagin product. Similarly, the next corollary gives a surjective
morphism as Q-linear map and also as morphism of QQ-algebra for the intersection product.

By Fourier duality we get the equivalent corollary:

Corollary 6. Let f: C — C' be a finite morphism. The map 7* induces a surjective morphism

?* :R(C;J) — R(C; J").



TAUTOLOGICAL RINGS ON JACOBIAN VARIETIES OF CURVES WITH AUTOMORPHISMS 11

Proof. Let x € R(C;J). According to relation (1), we have f = Ny (after identifying Jacobians with
their duals). Thus we deduce thanks to inversion formulas for the Fourier transforms on .J and J " and
thanks to Proposition 1 applied to the morphism f :J — J with X = J and Y = J' that

%

Fa= (=) (1) F5Fpf w = (1) (=1p)* F5(=1)9 [ Fy ().
Then keeping the identifications of J' ~ J'and J ~ j, we get
T = (=1)9(=1,)*F(Ny)uFs(z) € R(C'; J')

because on the one hand (Ny),R(C;J) < R(C’;J’) (see Corollary 5) and on the other both R(C;.J)
and R(C’;J') are Q-vector subspaces stable under Fourier transform and under operators k*. This
proves the existence of the map f : R(C;J) — R(C';J"). The surjectivity of 7 follows from the
surjectivity of (Ny)s (Corollary 5). Indeed if y € R(C"; J'), then there exists an z € R(C’; J') such that
y = Fy(z) (by stability of R(C’;J") under (—1)*, F and inversion formula). Consequently, for some
x € R(C; J) such that (Ny).z = z, we still have thanks to Proposition 1

y=Fp() = Fy((Np)ew) = Ny Fy(w) = T Falw) € T R(C; )
because R(C; J) is stable under F;. O

Now we would like to consider, roughly, R(C’; J") from the point of view of A(J). That is we are
interested in the rings f,R(C";J') = A(J) and (Nf)*R(C’; J’) = A(J). The intuition suggests that
cycles in f,R(C’;J') and (N¢)*R(C'; J') should be with support on Y (recall that Y is the subvariety
of J isogenous to J'). The next two results explain this fact.

Proposition 6. Let f:C — C" be a finite morphism. The isogeny j : J — Y, corestriction map of
f = f*, induces an isomorphism

jx s R(C';J') = jxR(C"; J') = 15 R(C; J) < A(Y).
Proof. The morphism j : J' — Y is an isogeny (in particular, it is finite and flat). Therefore
Jxg* = deg(j) - Iday) : A(Y) — A(Y).
So applying j. to the relation of the previous corollary, we deduce
JxR(C" ') = ju R(C;T) = juloy 0 j)*R(C; J) = juj* 3 R(C; J) = deg(j)ef R(C; T) = i R(C5 J).

Moreover, as j is an isogeny, there exists an isogeny h : Y — J’ such that hoj = dj and joh = dy for
some d € N*. In particular, j, (éh)* = Ida(y) and (éh)* Jx = Ida (), so that jy is an isomorphism. [J

Corollary 7. Let f : C — C' be a finite morphism. The map f : J' — J induces a surjective morphism
[e i RICHT) — oy R(C5 J) = [Y] - R(C3 J) < A(J).

By Fourier duality we obtain similarly a surjective morphism
N7 2 R(C"; ') — by R(C; J) = 9§ F5([Y]) * R(C; J)

with Yy =1z © ly o po € Hom(J,Y).
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Proof. The first assertion is a direct consequence of Proposition 6 because f, = ty4 o ji. See also [9,
Example 8.1.1]. The second statement can be deduced from the first one by using Proposition 1 and the
fact that Fourier transforms on J and J' respectively induce automorphisms of R(C; J) and R(C’; J").
Indeed, recall [5] that @&, F(R(C';J")) = R(C'; J') and similarly ¢&F(R(C;J)) = R(C;J). Then,
we have on the one hand

— % ~%
o F ([ R(C ) = 0§ Fr(R(C, ) = 0b wo'*0&Fr(R(C ) = NFR(C'; J').
And on the other hand,

EF1(tyst¥ R(C; ) = (—1)979 pi v i3 o F1(R(C; ) = 05 v s pou s Fr(R(C; J))
%~k —~
= poly lyspexR(C;J).

Besides, we have
PirexPirelysrexR(C; J) = deg(pz )iy xpex R(C; J) = Iy wpexR(C; J)
and using Corollary 3 twice, we get
wf;@%;@*f?we*f?(cs J) = L/;*SOG*R(CS J)-

Therefore we obtain

N?R(C/; J') ¢g®*¢f§@¢b§",®*@*¢®*R(C; J) = Y3y R(C; J).

Finally, the last assertion follows from the equalities (obtained thanks to Proposition 2)
eoF (Y] R(C;J)) = (=1)90a Fs([Y]) * o Fi(R(C; J)) = e Fs([Y]) + R(C; J).
O

3.3. The special case of n-cyclic Galois coverings. In this section we get more explicit results
when the covering f : C — (' is associated to an automorphism of the curve C. We start with
definitions.

Definition 1. A finite Galois covering is a finite morphism f : C' — C of smooth projective complex
curves C' and C’ such that there is an isomorphism C’ ~ C/ Aut(f) where

Aut(f) :=={peAut(C) | fou=f}

denotes the automorphism group of the Galois covering. This amounts to say that the function field
extension K(C)/K(C") is Galois.

The function field K(C”) is then given by the subfield of invariants K(C)A"(/) = K(C) according
to the Galois group Gal(K(C)/K(C")) ~ Aut(f).

Definition 2. Let f : C — C’ be a Galois covering of smooth projective complex curves. We say that
f is a n-cyclic Galois covering if Aut(f) ~ Z/nZ. In that case, we will usually consider a generator
o € Aut(f) so that C' ~ C/{o).

We start with a lemma which specifies general facts concerning the subvariety Y and the automor-
phism o defining a cyclic Galois covering f : C' — C/{o).
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Lemma 2. Let f : C — C' ~ C/{o) be an n-cyclic Galois covering associated to an automorphism
o € Aut(C) of order n e N* (with possibly g(C") =0). Then

(1) f:J" — J induces an isogeny j : J' — Y := Im(f) = J of degree dividing n. Furthermore
this isogeny is an isomorphism if and only if f does not factorize via a cyclic étale covering

fl:C" — " of degree = 2.

(2) TNy = ®,(0) with ®,(X) =1+ X + ...+ X"~L. Therefore Ny = o, (o).

(3) Y = Ker(o — 1)°.

(4) geNh?Pge the equality e(Y) = 1 if and only if Y = J(C) or'Y = {0} if and only if n = 1 or
Proof.

(1) According to [6, Proposition 11.4.3], j is an isomorphism (that is to say f is injective) if and

only if f does not factorize via a cyclic étale covering of degree > 2. More precisely (see [6,
Corollary 11.4.4]), when f is non injective, f factorizes via a cyclic étale covering f. : Ce — C’

of degree > 2 and such that deg(j) := # Ker(f) = # Ker(f*). Since f. is a cyclic étale covering,
we also have # Ker(f¥) = deg(fe), which divides n = deg(f) by multiplicativity of the degree
map.

(2) The fibres of f : C'— C' are cyclic orbits for the action of (o) on C' (because f is Galois). Then
for every point z € J represented by Lco(>,niP;), we have thanks to Relation (3) of Section 3.1:
n - _
NG = TN (Le(UmiP)) = T (Lo (X mif (P)
— Lo (N nilPi+ o(P) + ...+ 0" (R)))
=z+40(2)+...+0"(2) = B,(0)(2).

So 5Ny = @p(0) that is Ny = M, ().

(3) We now have to justify the equality Y := Im(f*) = Ker(c — 1)°. In order to do this, let us
begin by noting that a point € J (corresponding to a class of invertible sheaf £ € Pic?(C))
belongs to Ker(o — 1) if and only if 0*£ ~ £. Indeed, the Albanese morphism o : J — J is the
inverse map of @ = o* : Pic?(C) — Pic’(C) (thanks to relation 3.1 (2)). Then we have

olx) =2 <= ollx)=2r <= o' L=L

Moreover, f oo = f (by definition of the quotient C/{s)). Then each element £ := f*M €
Im(f*) is invariant under o*. Indeed, one has 0*L ~ o*f*M ~ f*M ~ L. Thus we have
proven that Im(f*) < Ker(o —1) and by the connectedness of Im(f*), we even obtain Im(f*) <
Ker(o — 1)°. This leads us to following inclusions (using assertion (2))

Y c Ker(o — 1)° c Ker(e(Y) — Ny)? = Ker(Nz)°.
But we know that Y = Ker(Nz)?, which can be proven by the following argument

dim Ker(N)? = dim J(C) — dimIm(Nz) = dim J(C) — dim Z
=g(C) — (dim J(C) —dimY) = g(C) — g(C) + dimY = dimY.



14

THOMAS RICHEZ

Hence the previous inclusions are in fact equalities:

Y = Ker(o — 1) = Ker(e(Y) — Ny)? = Ker(N)°.

As (J,0) is a principally polarized abelian variety, ¥ and Z = Im(e(Y) — Ny) have same
exponent e(Y) = e(Z) (see Subsection 3.1 or more directly [6, Corollary 12.1.2]). If this
exponent is equal to 1, then the polarizations induced by © on Y and Z, namely Yo and
P,x0, are principal polarizations. So Lemma 12.1.6 of [6] implies that the isogeny

pi=1y +iz: (Y x Z,p*0 = pj170 + p7150) — (J,0)

which is of degree #(Y n Z) = #Ker(gpbi& o) = 1 is an isomorphism of principally polarized
abelian varieties. Since © is irreducible, we have Y = {0} or Z = {0}. The first case means
that ¢’ ~ C/{o) ~ P! because Y is isogenous to J(C/{(c)). The second case means that
J =Y =Ker(c —1)? (according to assertion (3)); that is o = 1.

O

Remark 5. The dimension argument used to prove assertion (3) of this lemma can be replaced by the

construction of a section to the inclusion Y < Ker(c — 1)°. This can be achieved thanks to a descent
lemma (see [8, Théoréme 2.3]).

The next (easy) lemma will be widely used in the sequel. It is a special case of [6, Proposition

11.5.3] for the correspondence I', on C' x C, namely the graph of o.

Lemma 3. Let 0 € Aut(C) be an automorphism of C. As before, we denote by o the Albanese

automorphism induced in End(J) and R the Rosati involution on End®(.J) (with respect to the Theta

polarization). Then R(c) = oL, Accordingly, we have for all P € Q[X]

R(P(c)) = P(o™h).

Proposition 7. Let f : C — C' ~ C/<g> be an n-cyclic Galois covering associated to an automorphism
o € Aut(C) of order n € N*. The map f induces a surjective morphism

fo i R(CH ) — @,(0)«R(C; J).

More precisely, the following equality holds

?*C/ - %(I)n(O')*C.

Likewise, Ny induces a surjective morphism

Nf: R(C';J") — ®u(0)*R(C; J).

Proof. Recall that fN; = ®,(c) by Lemma 2 (2). Consider a cycle y € R(C’;J'). By Corollary 5
(Np)s : R(C;J) — R(C"; J') is surjective so there exists # € R(C; J) such that (Ny).2 = y. Hence

?*y = ?*(Nf)*fv = (?Nf)*l" = ©,,(0)xz € Pp(0)R(C; J).

Conversely, for all z € R(C; J),

q)n(U)*x = ?* (Nf)*x = ?*y € ?*R(Ca J)
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where y 1= (Ny).2 € R(C';J'). Using C' = L1(Ny),C (Proposition 5), we obtain
S 1
O = *f*(Nf)*C = —®,(0)C.
n n
Then note that the Rosati involution fixes ®,,(c). Indeed, according to Lemma 3, we have
R(®,(0)) = ®,(c7 ') = ®,(0) € End(J).

To get the second statement about [NV }" and thus conclude the proof, it remains to use this fact, Propo-
sition 1, assertion (1) of Subsection 3.1 and the fact that Fourier transforms on J and J’ induce
automorphisms of R(C;J) and R(C’; J') respectively. O

We can derive from this proposition the following corollary (as we obtained Corollary 4).

Corollary 8. Let f : C — C" ~ C/{o) be an n-cyclic Galois covering associated to an automorphism
o € Aut(C) of order n € N*. For all indices i € [0,¢" — 1], we have

_ 1 B
f*Céz) = E@H(U)*C(l) € A9 1(J)(z)

At this point, we would like to stress that push-forwards by polynomials in the automorphism
appear naturally when considering tautological rings associated to curves with automorphisms. This
may be the main idea to keep in mind about this whole section on Galois coverings. It raises the

question to get a better understanding of cycle classes of the form P(0),C and motivates the study of
the tautological ring containing all of them. This is the purpose of the rest of this paper.

4. THE TAUTOLOGICAL RING Rg(C; J)

Let C be a smooth projective complex curve of genus g > 1. Until the end of this section we
assume that we have a finite automorphism group G < Aut(C). We use the same notation G for the
corresponding subgroup of Aut(.J) and we shall note by Z[G] the subring of (End(J), +, o) formed by
polynomials in elements of G, that is the image in End(J) of the group ring Z[G]. Note that if G
is an abelian group generated by automorphisms o1, ...,0, of finite order, then Z[G] identifies with
Z|oy,...,05] < End(J).

Remark 6. Recall that if g > 2, then any o € Aut(C) is finite.

Now we want to prove Theorem 1 which provides a set of generators for the tautological ring
Rg(C; J) := Tauty ({n*c eA() | me Z[G]}).

The main difficulty is to show that the algebra for the intersection product generated by cycles of
the form 7* N*(w) is stable under Pontryagin product too. Thus we first prove the following:

4.1. Key-theorem.

Theorem 5. Let Sg := Sq(C;J) < A(J) be the Q-subalgebra (for the intersection product) generated
by the ©* N (w) for m € Z[G] and i € [1,g — 1]. Then Sg is stable under the Pontryagin product.

To prove this theorem we will use Beauville’s strategy [5] which essentially consists in using the
Fourier transform on J and more specifically we will use implication (4) = (1) of Proposition 3. To
be brief, we will denote by F the automorphism p&F; : A(J) — A(J). We always identify J and J
via the principal polarization pg. In particular, we will consider the Poincaré line bundle on J x J,
namely Py := (1 x pg)*P,, 3, and its cycle class ljx; = m*0 — p*0 — q*0 € AT x J).
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Remark 7. As always we fix a rational point P on C to embed the curve C' in J = J(C). We then
recall some relations whose proofs can be found in [10] (see Summary 6.11).

(1) We put L' := L(Ac — P x C — C x P) € Pic(C?).

2) There is an invertible sheaf M € Pic(C x J) such that (1 x fF)*MP ~ P,
>~ (f7 x (=1))* (1 x we)* P, 5= (fF x (=1))*Pyxs =~ (fF x 1)*Py, ;.

~ (fP x fEYPy ;= (fF < fP)*(p*L1(0) ® ¢*L1(0) @ m*L;(O)").

5) There is a map fFY : J — J such that (f£ x 1)* P, 5= (1 x fPY)*MP. On points, f£v is
induced by f* : Pic(J) — Pic(C). We have fFv = goe )

3

(2)
(3) M
(4) £
(5)

Proof of Theorem 5. We decompose the proof of Theorem 5 in several steps.
Step 1. By definition S is generated as Q-algebra (for the intersection product) by classes 7* N*(w) with
i€ [l,g] and 7w € Z[G]. Since 7* N9(w) is a multiple of the class of a point and N!(w)J = §9 = g! - P,
it suffices to consider indices i € [[1,g9 — 1].

Moreover, thanks to Proposition 1 applied with X =Y = J and o = 7, we have

F(r*N'(w)) = R(m)«F(N*(w)) = (=1) " R(1)+C(; 1)
Thus F(S¢) is generated as Q-vector space by products of the form
(R<7T1)*C(i1—1)) * (R(WQ)*C(,Q_:[)) *..0.0% (R(ﬂ-'f’)*c(lr—l))
By Lemma 3, we get that each R(w) € Z[G]. Precisely, if 7 is a finite sum 7 = deg

coefficients ay € Z, then R(w) = }; 9eG Qg © g~!. In other words, the Rosati involution induces an
involution of Z[G]. Consequently, F(S¢) is generated as Q-vector space by products

ag o g with

(7T1*C(i1—1)) * (7’[‘2*0(1'2_1)) * ...k (Wr*c(ir_l))

for 7; € Z|G] and integers i; € [1, g —1]. We now obtain a more convenient set of generators for F(S¢)
thanks to the following lemma which is inspired by [5, Lemma 4.2] and is proven in the same way.

Lemma 4. F(Sg) is generated as Q-vector space by the classes of the form (k14m1:C) % ... % (kpym,C)
for all sequences (ki, ..., k) € (N*)" and all mj € Z[G]. Therefore it is generated as Q-vector space by
classes of the form (m1+C) * ... (m,.C) for m; € Z[G].

Step 2. According to Proposition 3 (that we can apply since § = N'(w) € Sg), it remains essentially to
prove that 0 - F(Sqg) < F(S¢). Actually we will show that for all nonzero w1, ..., 7w, € Z[G] the class
0 - [(m14C) * ... % (m5C)] belongs to F(Sq).

If r = 0, we have § = N'(w) € R(C;J) = F(R(C;J)) = F(Sg). Also note that if r =
0 - m1+C € AI(J) is a multiple of the class of a point. Therefore it is a multiple of F([J]) € F (S,
Thus we suppose from now on that » > 2 in which case we consider the following map:

1,
)

w:cr L g K g
with ® := fF x ... x f¥ (r times), K := 7 x ... x 7, and where m : J" — .J is induced by the
multiplication on J. Then the cycle 0 - [(m14C) * ... * (71,+C)] is a multiple of u,u*@ (by the projection
formula). We now introduce projections p; : J" — J and p;; : J" — J 2. In the same way we consider
projections ¢; : C" — C and ¢;; : C" — C?. A calculation similar to that in [5, Section 4.3| yields that
uxu*0 is a linear combination of classes of the form

u*q;"fp*wfﬁ and u*qu(fp X fP)*(m X 75)* Ly
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Step 3. The class f7*7%6 is a divisor class (modulo algebraic equivalence) on the curve C. Thus it is a
multiple of the class of a point. Therefore, ¢ f7*7¥6 is a multiple of the class C'x...xCx PxCx...xC
(where the factor P is in ith place). So we obtain that u.qf fF*m}0 is proportional to

(m15C) .. .# (1 C) % . ..x (m,.:.C) € F(Sq)

where the ™ means that we omit the emphasized factor.
Step 4. The main part of this proof rests in the study of classes (f x f0)*(m; x m;)*lyxs. Put
M= (fF x f2Y*(m; x mj)*Pyx s € Pic(C x C). In order to study this invertible sheaf, we are going to
study its fibres and then glue them. R
Let M be a point on C. Define jy; : N € C — (N, M) € C? and similarly ji : U € J — (U, V) € J?
where V is a given point on J. Then we easily check that
Mo = g (fF > f2) (m x m)* Py

~ TR ey (MFL1(O) @ L (0) ®q*L,(0)Y)

~ 1P (12 e £0(©) © £5(0) )
Therefore the isomorphism class of Mgy corresponds to the point

fratee(nif (M)) € Pic’(C).

Then note that we have by definition of the Rosati involution R the equality m; o po = pg o R(m;).
Thus we get by Remark 7, property 5

T pe(R(m)mifF (M) = fP*pe(rf!'(M)) = —n f¥'(M)

where 7 := R(m;) om; € Z[G]. Since 7 has integer coefficients and g is a morphism of abelian varieties,
it suffices essentially to study the case where 7 is a monomial, that is 7 = g € G.
Moreover, we know from relations of Remark 7 that

(fP x fOV*Pruy ~ (LP)Y := L2 (P x C 4+ C x P - Ag),
and therefore we have by Albanese property

—gfP (M) = —f9P)(g(M)) = ﬁf’éi)gv(M)-

It follows that for all points M in C'

o pr9(P)v % pg(P)v
Mo =~ ﬁ\ng(M) = ((1 xg)* L )|C><M

because jyar) = (1 x g) o jar. According to the Seesaw principle [11, Corollary 6 p54|, we deduce the
existence of a line bundle N on C such that

M ~ ((1 % g)*ﬁg(P)V) ®¢*N ~ ((1 X g)* L2 (g(P) xC+C xg(P)— Ac)) ®¢N

where g : C x C — C denotes the second projection. Therefore, passing to algebraic cycle classes, we
get that (f7 x fP)*(m; x 7j)*1yxs is a linear combination of classes of the form

(1) (1xg)*(g(P)xC) = P xC (because all points on the curve C are algebraically equivalent and
each g € G is still an automorphism),
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(2) 1 xg)*(C xg(P))=CxP,

(3) (I xg)*Ac,

(4) q*(deg(NV) - P) = deg(N)(C x P)
for some automorphisms g € G.

Remark 8. Note that there appear naturally cycle classes of the form (1 x ¢g)*A¢, that is essentially
graphs of automorphisms.

Finally, ql’-"j(fp x fP)*(m; x mj)*1 %7 is a linear combination of
( ) QZ](PXC)_q P

(2) ¢;;(C x P)=q;P,

(3) ¢i;(1 x g)*Ac

and SO g} (ff x fP)*(m; x m;)*1yxs is a linear combination of the following classes

(1) (m1:C) # ...# (M3 C) = .. (m:C) € F(Sq),

(2) (11C) % ... % (M;2C) % ... (m4C) € F(Sc),

(3) (m14C) 5 ... % (s C) % ... % (Fj,f) 5. (e C) % (m5 + g~ )uC € F(Sg).
[

= T4l
Conclusion. So we proved that each cycle class 6 - [(714C) * ... * (7,.C)] € F(Sq) defines an element
in F(S¢) as (rational) linear combination of classes all belonging to the Q-vector space F(S¢g). Thus
F(S¢q) is stable under intersection with the (principal) polarization 6, so stable under F. Therefore this
fact also holds for S¢g, which we know now that is stable under Pontryagin product. This completes
the proof of this key-theorem. O

4.2. Interpretation in terms of tautological rings. Theorem 5 yields all we need to prove Theorem
1. The hard part has already been done. It is now easy to conclude.

Proof of Theorem 1. By definition, tautological ring Rg(C'; J) is the smallest Q-vector subspace of A(.J)
containing every mC where 7 € Z[G] and stable under intersection product, Pontryagin product and
operators ki, k*. Therefore it contains the Q-algebra (for the Pontryagin product) generated by thes
classes mC. According to Theorem 5 and Lemma 4 this Q-algebra is none other than F(Sq(C;J)),
which equals Sg(C; J) thanks to Proposition 3. So we have

R (C5J) 2 Sa(C; J).

Also since Si(C;J) = F(Sq(C;J)) contains each 7,C and is closed under intersection product, Pon-
tryagin product and also under the operators k. and k* (because Si(C; J) is generated by homogeneous
classes 7 N'(w) in A"(J)(;_1)), one has

Ra(C;J) < 5a(C5 ).
So we get the equality Rg(C;J) = Sg(C; J). O

We now have a tautological ring on J associated to the group of automorphisms G < Aut(C'). This
ring is all the more natural if one considers Corollary 1. Let us prove it now.

Proof of Corollary 1. Here again we decompose the proof in several steps.
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Step 1. The algebra R(C;J) introduced by Beauville is generated (for the intersection product) by
Ni(w) = 0,..., N9(w) according to [5] (and even by N'(w),..., N9~ }(w)). So if S is an arbitrary
algebra extension of R(C;.J) stable under all pull-backs by polynomials in Z[G], then necessarily
Z[G]*R(C;J) = S and in particular, S contains each 7*N*(w) for all 7 € Z[G] and i € [1,g]. Thus,
Ra(C;J) c 8.
Step 2. Since Rg(C;J) contains each 7% N(w), it follows that Rg(C; J) contains each generator N(w)
of the algebra R(C;J). That is why we trivially have the inclusion R(C;J) < Ra(C;J).
Step 3. Now R¢(C; J) is generated as Q-vector space by classes of the form 7 N (w) - ... mf N (w).
Moreover, if we pull-back each one of these cycles by elements in Z[G], we still have a cycle in R (C; J)
of the same form. Indeed, for all 7 € Z[G] and all z,y € A(J), we have 7*(x-y) = n*x - 7m*y. Therefore,
R (C} J) is stable under all pull-backs by elements in Z[G].
Conclusion. In other words Rg(C; J) is an algebra extension of R(C;.J) (for the intersection product)
stable under all pull-backs by polynomials in Z[G] < End(J) and contained in every extension S of
R(C; J) with this property. Thus Rg(C;J) is the smallest Q-algebra extension of R(C;J) (for the
intersection product) which is stable under pull-backs by polynomials in Z[G].

Similarly we prove that the tautological ring R (C'’; J) is the smallest Q-algebra extension of R(C'; J)
(for the Pontryagin product) which is stable under push-forwards by polynomials in Z[G]. O

This proves the following interpretation of the tautological ring Rg(C;J). It is the smallest Q-
vector subspace of A(J) containing the cycle class C' and closed under intersection product, Pontryagin
product, pull-backs and push-forwards by polynomials in Z[G]. Actually, since the generators m* N*(w)
and 7. C(;_1) are homogeneous with respect to Beauville’s decomposition, the tautological ring Ra(C; J)
is even closed under pull-backs and push-forwards by polynomials in Q[G] = End®(.J).

4.3. Tautological divisors, Néron-Severi group and symmetric endomorphisms. Let ¢ €
Aut(C) and G = (o) < Aut(C). It is well-known that the Theta polarization induces an isomor-
phism between the rational Néron-Severi group of J and the set of symmetric endomorphisms of J (see

[11, p190]):
NSg(J) = End™)(J) = {f € End’(J) | R(f) = f}
D - cpél 0 Yp.
Under this bijection, for any 7 € Z[G] the divisor class 7*N'(w) = 7*0 € R,(C;J) corresponds to
the symmetric endomorphism R(7) o 7. Indeed, we easily check on points that ¢,+g = Topg om. In
particular, if 7 is symmetric, then 76 corresponds to 72 € End(s)(J ).
For example, for any integer i the divisor class 7; := (o +0~%)*# is associated to the endomorphism

(0 4+ 0792 = 0% + 072 + 2. Also, let T'; € A'(J) be the divisor class corresponding to o' + o~% €
End®)(.J). We then have the relation

vi = Tai + 20 € AL(J) N R,(C; J).

We leave it to the reader to verify that these cycle classes v; and I'; are both related to the graphs I'
and I',—; in A1(C?) of 0% and 0. For example, we can obtain some relations of the form

AT = k(C x P) + k(P xC) =T, — T, € AL(C?)

for some integer k where f2 := mo (ff x fF): C x C — J. This can be seen by using the proof
of Theorem 5, Step 4. More generally, any divisor class of the form 7*6 can be related to graphs of
elements in G. Here again, we see how natural this tautological ring R, (C;J) is.
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5. THE TAUTOLOGICAL RING Rg(¢y.C;Y)

From now on and until the end of this paper we consider a n-cyclic Galois covering f : C — C' ~
C/{o) associated to an automorphism o € Aut(C) of finite order n € N*. Moreover, we fix a finite
automorphism group G < Aut(C') and we suppose that each g € G commutes with o. Therefore, each
g € G determines an automorphism § € Aut(C”) fitting into the following commutative diagram

Also, let us denote by G the subgroup of Aut(C’) formed by all these automorphisms g with g € G.
The covering f : C' — C’ determines two complementary abelian subvarieties Y and Z of J = J(C) as
in §3. We recall that we denote by 7 the polarization on Y induced by © and

Yy =1, oly o pg € Hom(J,Y)

which is polynomial in o (according to Lemma 2 (2)). In this section we study the tautological ring
induced on Y by Rg(C;J). This is the aim of Theorem 2.

Proof of Theorem 2. In order to ease notations, put J' = J(C’). Since j : J' — Y is an isogeny, it
induces an isomorphism (of Q-vector spaces) between Ry (C’;J') < A(J') and its image j«Rx(C"; J')
in A(Y). Also, there exists an isogeny u : Y — J’ such that uoj = kj and jou = ky for some integer
k € N*. According to Corollary 3, we get

R&(C; ') ~ juR5(C; J') = u* Ry (C; J').

It follows that j.Rx(C';J') = u*Rx(C’; J') is stable under intersection product, Pontryagin product
but also under operators k, and k* (because Ré(C' :J') has these properties, j is a morphism of
abelian varieties, pull-backs commute with the intersection product and push-forwards commute with
the Pontryagin product). This proves that

Ra(C';J') ~ juRs(C'; J') = Tauty (j*Ré(C’; J/)).

~

According to Proposition 5, we have (Nf),C = nC’. Thus, we get for all 7 € Z[G]

But we have for all g € G, fog = go f so that more generally when considering Albanese morphisms,

we have for all m € Z[G], Nyom =7 o Ny where if 7 =}, s ag0y9, then ¥ = >, 5 aq0 g € Z[G] with
g the automorphism induced on C'/{c) (or its Jacobian). Consequently, we obtain

From this equality we deduce as in Corollary 4 that for each i, (Ny).mCp;) = n%*CE ) Then as in

i
Corollary 5, we get a surjection

(N¢)s : Rg(C; J) — Ré(C"; J).
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Similarly, we obtain by Fourier transform a surjective morphism (see Corollary 6)
F": Ra(C;. ) — Rs(C'; "),
We now repeat the argument used in Proposition 6:
G+ Ra(C ) = juf Ra(C5J) = ju(ty ©5)*Ra(Cs J) = juj* iy Ra(C; J) = 13 Ra(C5 J)
because j.j* = deg(j) - Ida(y). Accordingly,
Re(C'5J') = juRg(C'3 J') = 1 Ra(C3 J) = Tauty (juRg(C'3.J')).
It remains to show the following equalities:
Tauty (jsRe(C'sJ')) = YvsRa(C; J) = Ral(by+C5Y).

As the bigraded Q-algebra (- Rg(C;J) = j«Rx(C'; J') contains the induced polarization 7 = (i, and
is stable under both products, the assertions (2) and (3) of Proposition 4 prove that

G RG(CT) = G Fythys Fy <L;*;RG(C; J)) oo Vre (Lg*;RG(C; J)).

Let us get a more explicit description of the generators . Fy (L;;Rg(c; J )) Using Proposition 1,
Lemma 3 and the fact that ¢y commute with any 7 € Z[G], the following equalities are satisfied:

Uy Fy (P N (w))

(=19 Yy R F (N (w) = (=170 05, RuponClina)
(1) iy sporpor s 00xCli1) = (1) Yypuly w00 R(T)Cli1)
(1) (v e )« R(m):Cimry = (1) Yy R(m) Ci_

= (—1)i_g/R(7T)*”¢Y*C(i71)
where we recall that the Rosati involution R induces a surjection R : Z[G] — Z[G] (see the proof
of Theorem 5, Step 1). It follows that . Fy (L;;Rg(c; J )> is generated as Q-vector space by the
products of the form

(T1x0y«Cliy—1)) * -+« # (Trathy £ Ci, - 1))

Actually, using the argument of the proof of Lemma 4, we get that ), Fy (L%‘,Rg(C ) )) is the algebra

(for the Pontryagin product) generated by all 7,1y, C for polynomials 7 € Z[G]. Since the Pontryagin
product commutes with push-forwards and as we already noted that 1y (which is a polynomial in o)
commutes with each 7 € Z[G], we immediately get the equalities

Tauty (juRg(C'3 J')) = 65 Ra(C5J) = bnuFy (15 Ra(C3 ) ) = byuRa(C: ).
Moreover this shows not only that
Tauty (j*Ré(C’; J’)) > Tauty ({Wmc cA(Y)|me Z[G]}) —: Re(dysC;Y)
but also the reverse inclusion. Indeed,
Ra(iy+C;Y) i= Tauty ({metpyoC € A(Y) | 7 € Z[G]})

contains (by definition) the algebra for the Pontryagin product generated by all w1y, C, which equals
Tauty (j*R@(C’; J’)). This completes the proof of Theorem 2. O
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In fact, it is quite reasonable that we were able to deduce Theorem 2 from Theorem 1 since Y
is closely related to the Jacobian J(C”) ~ J(C/{c)) on which all technical issues have been solved
previously. Also note that if we denote by H < Aut(C) the group generated by ¢ and G (in such a
way that o is central in H), then we have

wRu(C;J) =1y Ra(C; J).

Indeed, we have Z[H] = Z[G] as subrings of End(Y') since Y = Ker(o — 1)° (according to Lemma 2).
This remark is not true in general in the next section in which we will work with cycles supported on
Z = Ker(Ny)°. Thus we will need to consider (in general) elements in Z[H| and not only in Z[G].

6. THE TAUTOLOGICAL RING R%,(¢7+C; Z)

We want to obtain a tautological ring in A(Z) as we just did in A(Y"). The basic strategy remains
identical to Theorem 5 except that we have to manage the fact that Z has no reason to be (isogenous to)
a Jacobian. Nevertheless, considering the induced polarization on Z, also denoted by 7 := 7,0 € AY(Z),
and noting that this polarization is closely related to canonical principal polarizations of J = J(C) and
J' = J(C") ~ J(C/{a)) (associated to § € AL(J) and &' € A(J")), we can solve this problem. As in the
previous section, put ¢z 1= 1, o iz 0 pg. We have Nz = 17 017 and these morphisms are polynomials
in 0. Also consider a finite automorphism group H < Aut(C') such that o € H is central.

6.1. Key-theorem.

Theorem 6. Let S, = S%(vz+C; Z) be the Q-subalgebra of A(Z) (for the intersection product) gen-
erated by the 7* 5N (w) for m € Z[H] and i € [1,dim Z — 1]. Then S¢ is stable under the Pontryagin
product.

Remark 9. Note here the particular role played by o because Z depends on ¢ and, in general, o is

non-trivial in Aut(Z2).

Proof. As for Theorem 5, we decompose the proof in several steps.

Step 1. According to Theorem 1, the algebra S¢, is none other than the restriction (3, Ry (C; J) of the
corresponding tautological ring on J. The strategy of the proof is again to use implication (4) = (1)
of Proposition 4 (note that Proposition 4 applies because 7 := 1560 = 13N (w) € S%). Thus we have to
show that

- Yy Fz(SE) < YyeFz(SH).

Using the same arguments as in the proof of Theorem 2, we get
I Fz(5m* N (w)) = (=1)7 "™ 7 R(m)sh 24 C i1y
It follows that 1, Fz(S%;) is generated as Q-vector space by products of the form
(125 Ciy 1)) * - - - * (Trsh 2 Clip—1y)

hence by products of the form (m14z+C) * ... * (741 2+C) with nonzero m; € Z[H].
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Step 2. For any nonzero element 7; € Z[H| we study the class of the cycle

U [(W1*¢Z*C) ¥k (Wr*wZ*(j)] .

The same argument as in the proof of Theorem 5 shows that this cycle is a linear combination of
elements of the form

uegl PR 05mEn and wegl(F7 < fE) (g x )  (mi x w) gz
where
(1) lzxz == (1 x @y)*l, 5 =m*n—p*n—qne AYZ x 2)
(2) the map u: C" — Z is defined by the composition

[ v
—

uw:Cm 2 gr zr K,gr ™, g

with @ := fPx...x fF (rtimes), ¥ := ¢z x...x ¢z, K := m; x...x 7, and where m : Z" — Z
is induced by the multiplication on Z.

Step 3. Using the same argument as in the proof of Theorem 5, Step 3, we immediately conclude that

U*ngfp*d)}ﬂ-;n € 1/)77*]:2(5}'{)-
Step 4. We now have to study the class (£ x f)*(vz x ¥2)*(m x 7j)*lzxz. Since o is central in H,
we have

(mi x mj) 0 (z x Yz) = (Yz x Pz) o (m x 7).
Thus we obtain

(fF x OV (g x z)* (mi x 7)) *lzxz = (fF x )5 (mi x 7)) * (b7 x ¥2)* 7% 2.

The key-argument is the following (see |6, Proposition 12.3.4|):

Y)_ *
e(Y)?0 = e(Y)*0 = N3:6 + N30 = (e(n>fo> 0+ (Lz02)*0
e(Y)? — " e(Y)? "
= OV N F 0w = D N g

These different equalities are justified by facts recalled in Section 3.1; namely:

Ny + Ny =e(Y)-1d;,  fNj = BLNY and 0 =nd e ALT).

(Y)
In other words, we have

wn = e(Y)*0 -

e(Y)?
N30
Vs

Thus,
(FF > fO) (mi x ) * (b7 % z)*lzx2

_ 2(¢P Pyx/, . D\ _6(Y)2 P Py D\ ¥ *
= e(Y) (f Xf)(ﬂ'ZXTr]) lJXJ n (f Xf)(?TZXTI']) (NfXNf) lJ/XJ/.
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Step 5. The cycle class (ff x f¥)*(m; x 7j)*l;xs has already been studied in the proof of Theorem
5. It is a linear combination of P x C, C' x P and (1 x h)*A¢ for h € H. Using similar arguments
as in the last part of the proof of Theorem 5, we show that u*q;"j(fp x fPY*(m; x m;)* 1y is a linear
combination of cycles in 9, Fz(S%).

Step 6. It remains to study the class (f7 x f2)*(m; x m;)*(Ny x N§)*l . Asin [1], we use the equality
Nyo fP = fIP) o f Nevertheless, we first have to commute the map Ny with polynomials in Z[H].
To be more precise, since by hypothems o is central in H, there exist for all A € H an automorphism
he Aut(C”) such that foh = ho f. These automorphisms h extend to automorphisms of J (C") which
we still denote by h. We consider the group H formed by these automorphisms.

Remark 10. Note that we have & = 1.

As in Section 5, each 7 € Z[H] induces an clement % € Z[H] and for all k, we have the relation
Ny omy, =7 o Ny. Thus we have

(P x O (i < ) (Ny x Np) g = (fF x fEV*(Np x Np)*(Fi % 75) Ly e
= (f < PP > FIPNH (@ % 7).
Now the same argument as in Step 5 shows that this cycle class is a linear combination of

(1) (f x /)*(f(P) x C") = n(P x C) (because all points on C are algebraically equivalent and
because f: C' — C' is of degree n),

(2) (f x /)*(C" x f(P)) =n(C x P) for the same reason,

(3) and finally, since each h € H < Aut(C”) is induced by some h € H < Aut(C), we also have
cycles of the form

(f x (1 x B)*Acr = (1 x B)*(f x f)*Acr
= (1 xh)*(Ac+ (1 x 0)*Ac + ... + (1 x ") *Ag)

for some elements h € H.

So far, we proved that u*q;’;(fp x fEY*(m; x mj)*(Ny x N¢)*1 iy is a linear combination of cycles all
in 9y« Fz(S%). To be precise, the classes we obtain are on the one hand of the form

(M50 75 C) % .5 (Misth 25 C) 5 oo (TP 24C)

and on the other, we get for k € [0,n — 1] classes of the form:

(M1 z:C) % oo (M 24C) % . ow (Tjsthz4C) % o (Tt 22 C) (15 + th_la_k)*wz*(}’

Conclusion. All this implies that 7 - [(T1497+C) * ... % (T4 2+C)] € Ve Fz(SF) as (rational) linear
combination of cycles which all belong to ¥, Fz(S%). In other words, ¢, Fz(S%) is stable by inter-
section with 7 so that Proposition 4 shows that S is stable under Pontryagin product. This completes
the proof. O
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6.2. Interpretation in terms of tautological rings. Theorem 6 immediately implies Theorem 3,
just as we deduced Theorem 1 from Theorem 5. At the same time, we obtain Theorem 4. (]

We now consider some special cases of Theorem 3. We first consider the case where o is of order 2.
In that case
Z = Ker(Ny)? = Ker(®5(0))? = Ker(1 4 o)°

and thus 0|z = —1z. This implies that the image of Z[H] in End(Z) does not depend on o. Therefore,
as in Section 5, o does not need to belong to H : we just have to assume that each automorphism of
H commutes with o. That being said, Theorem 3 leads to

Theorem 7. Let f : C — C' ~ C/{o) be a double covering. In particular, this implies that Z =
Ker(1+0)° and 0|z = —1z. We consider a finite group of automorphisms G = Aut(C) and we suppose

that each g € G commutes with o. Then the tautological ring R% (V2 C; Z) is generated as Q-subalgebra
of A(Z)

(1) for the intersection product by all T* iy N*(w) = thm* N (w),
(2) for the Pontryagin product by all T4 z+C;_1) = VY z:mC(i_1)
with m € Z|G] and i € [1,dim Z — 1] odd. As a result, we get the tautological ring:
RG(V2:C; Z) = 1z Ra(C3 J) = ¥z:Ra(C; ).
Note that in this theorem we can restrict to consider odd indices i because of

Lemma 5. With the above notations and assumptions of Theorem 7, the cycle class of 1 z.C € A(Z)
is symmetric. Therefore, each 1 7:C2i41) = 0 in Adim Z_I(Z)(QHI).

Proof. The following diagram is commutative

fr Yz

C—J—Z7
O’l lo ll
C——J——Z.
po® g
Indeed commutativity of the left square follows from the definition of Albanese morphism. Whereas
commutativity of the right hand square is justified by o), = —1z (because Z = Ker(1 + o). A

diagram chase gives (—1)4tz4fLC = Q,Z)Z*f:(P)J*C. Since (—1)* = (=1)x : A(Z) — A(Z) and
0+C = C (because o € Aut(C)), we have (—1)*z. fLC = wz*f:(P)C. But we are working modulo

algebraic equivalence so that we can translate cycles without changing the cycle class fy Pro = fFCin
A9=1(J(C)). Thus we have (—1)*¢z4 fFC = ¢z, fFC, which means that 1z, fC (which we denoted
by ¥7+C) is symmetric. Therefore (see [3, Corollary 1|)

¢Z*ffc € @Adimz_l(z)(m)

and we have proven our lemma. O

Also, if one only considers the automorphism o of order 2 (that is if we are interested in the
restriction of Beauville’s tautological ring R(C; J) to the subvariety Z = Ker(1 + o)), we immediately
deduce:
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Corollary 9. Let f : C — C' ~ C/{o) be a double covering. Then the tautological ring
Ry(24C; Z) i= Taut; ({P(0)st27.C € A(2) | P e ZIX]})

is generated as Q-subalgebra of A(Z)
(1) for the intersection product by all 15 N*(w),
(2) for the Pontryagin product by all 17+C(;_y)
for all odd indices i € [1,dim Z — 1]. Consequently, we get the tautological ring
Ro(1pz+C; Z) = 17 R(C5 J) = ¥z R(C; J).

This corollary provides a generalization of Arap’s theorem [1, Theorem 4|. His result deals with
double coverings which are étale or ramified in exactly two points so that Z is in fact a Prym variety
(and in particular principally polarized which simplifies the proofs of Propositions 3 and 4).

6.3. Some remarks about relations between generators in A(Y) and A(Z). Until now we
studied tautological rings on J, Y and Z. These rings on Y and Z are obtained as restrictions of
analogous tautological rings on J. In particular, we can deduce relations between generators in A(Y")
or A(Z) by projecting known relations in A(J). By projecting we essentially mean applying ¢§- or ¢},
(resp. ¥y« or ¥zy) if one considers relations for the intersection product (resp. Pontryagin product).

We recall a theorem of Colombo and van Geemen [7] which states that if C'is a k-gonal curve, then
Ci = 0 for all ¢ > k£ — 1. This is equivalent to Ni(w) = 0 for all i > k. Therefore in all previous
results involving classes N*(w) we could restrict ourself to indices i € [1,gon(C) — 1] where gon(C) is
the smallest positive integer d such that there exists a finite morphism of degree d from C to P!.

Thus we can obtain two corollaries as in [5] for tautological ring R(C;J) for hyperelliptic and
trigonal curves. These corollaries explain the Q-algebra structure (for the intersection product) of
tautological rings R, (¥ z+C; Z) < A(Z) whence o is of order 2 for k-gonal curves with k € {2, 3,4, 5}.

Corollary 10. Let f : C — C" ~ C/{o) be a double covering. We suppose that C is hyperelliptic or
trigonal and we denote by n := 150 the induced polarization on Z. Also put d :== dim Z. Then

R, (¥2+C; Z) = Q[n]/(n™*).

Proof. If C is hyperelliptic, then the only nonzero N*(w) is N!(w) = . Thus R, (¢z+C; Z) is generated
by 150 = n. If C is trigonal, the only nonzero generators are N*(w) = 6 and N?(w). However,
projections 5 N*(w) of N*(w) in A(Z) are 0 in A(Z) (because the projection 1z+C = 1z:Cg) +
17+C(1y is symmetric according to Lemma 5). O

The next corollary can be proven by closely following the strategy used by Beauville in [5, Corollary
5.3].

Corollary 11. Let f : C — C' ~ C/{o) be a double covering. We suppose that C' is 4-gonal or 5-gonal.
We put 1 := 150 € AY(Z) o) and p := 15N*(w) € A3(Z)(5). We continue to write d := dim Z. Then
Ry(0z+C; Z) < A(Z) is the algebra generated by n and p (for the intersection product). Moreover,
there exists a positive integer k < g such that

Ry(Y2+C; Z) = Q[ p) /(T @ g, oo @R R gk,

Remark 11. Since on any curve of genus g there exists a g} with d < [%J (see |2, Chapter 5, Theorem

1.1]), Corollary 10 applies (in particular) to curves of genus < 4. Similarly, Corollary 11 applies to
curves of genus g < 8.
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6.4. Outlooks. In general, finding a (complete) system of non-trivial relations between the m* N*(w)
is a hard task. Actually, it is already tough to study relations between the N*(w) (or the C(s)) as shown
by papers by Polishchuk, Colombo and van Geemen, and Herbaut. Also it would be interesting to lift
these tautological rings modulo rational equivalence as it has been done for R(C;.J) by Polishchuk.
Furthermore, there is another important matter which would deserve to be studied. We know that
different automorphism groups may determine the same tautological ring (e.g. on a hyperelliptic curve
C endowed with its hyperelliptic involution ¢, consider the trivial group {Id} and G = {Id,¢}). However,
we can wonder whether non-isomorphic group algebras Z[G1] and Z[G2] (seen as subrings of End(J))
always determine non-isomorphic tautological rings R, (C;J) and Re,(C;J).
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