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A benchmark of DIBR Synthesized View Quality
Assessment Metrics on a new database for

Immersive Media Applications
Shishun Tian, Student Member, IEEE, Lu Zhang, Luce Morin, and Olivier Déforges

Abstract—Depth-Image-Based Rendering (DIBR) is a funda-
mental technology in several 3D-related applications, such as
Free viewpoint video (FVV), Virtual Reality (VR) and Augmented
Reality (AR). However, new challenges have also been brought in
assessing the quality of DIBR-synthesized views since this process
induces some new types of distortions, which are inherently
different from the distortion caused by video coding. In this
paper, we present a new DIBR-synthesized image database with
the associated subjective scores. We also test the performances
of the state-of-the-art objective quality metrics on this database.
This work focuses on the distortions only induced by different
DIBR synthesis methods. Seven state-of-the-art DIBR algorithms,
including inter-view synthesis and single view based synthesis
methods, are considered in this database. The quality of syn-
thesized views was assessed subjectively by 41 observers and
objectively using 14 state-of-the-art objective metrics. Subjective
test results show that the interview synthesis methods, having
more input information, significantly outperform the single view
based ones. Correlation results between the tested objective
metrics and the subjective scores on this database reveal that
further studies are still needed for a better objective quality
metric dedicated to the DIBR-synthesized views.

Index Terms—Depth-Image-Based-Rendering (DIBR), FVV,
view synthesis, QoE, quality assessment.

I. INTRODUCTION

NOWADAYS, 3D video applications, such as 3D-TV and
Free-viewpoint TV (FTV) [1], have received tremendous

public attention because they can create a more realistic and
immersive viewing experience. Especially, FTV allows the
users to view a 3D scene by freely changing their viewpoints.
For example, Canon announced on September 2017 its Free
Viewpoint Video System that gives the users a better quality
of experience (QoE) where they can view sporting events from
various different angles and viewpoints, cf. Fig. 1.

As one widely accepted data representation format for 3D
scenes, the Multiview Video plus Depth (MVD) format [2]
consists of multiple texture images and their corresponding
depth maps at some particular viewpoints. The other views are
then synthesized through the Depth-Image-Based-Rendering
(DIBR) technique [3]. The idea of DIBR is to synthesize the
virtual views by using the texture and depth information at
another viewpoint. Firstly, the image points at the original
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Fig. 1: Example of Canon’s Free Viewpoint Video Sys-
tem. This figure is from http://global.canon/en/news/2017/
20170921.html

viewpoint are reprojected into the 3D world by using its
associated depth data. Then, these 3D points are projected
into the image plane at the virtual target viewpoint. With
the MVD format and the DIBR technology, only a limited
number of original views and their corresponding depth maps
are needed to be captured, stored and transmitted. In this way,
the 3D multiview data compression and transmission can use
the existing framework.

Great efforts have been put into invertigating DIBR tech-
nology recently [5], [6], [7], [8], [9], DIBR is not only
useful in the FTV [10], but also a promising solution for
synthesizing virtual views in many other recent popular im-
mersive multimedia applications, such as Virtual Reality (VR)
[11], Augmented Reality (AR) [12] and light field multi-
view videos [13], etc. For example, the DIBR has already
been used in a light field compression scheme where only
very sparse samples (four views at the corners) of light field
views are transmitted while the others are synthesized (cf.
Fig. 2). This new scheme significantly outperformed HEVC
inter coding for the tested light field images [4]. Another
example concerns 360-degree and volumetric videos: two
developing areas pointing to how video will evolve as VR/AR
technology becomes the mainstream [14]. Current 360-degree
videos allow viewers to look around in all directions, but only
at the shooting location. They do not take into account the
translation (changes in position) of the head. To make the
QoE more immersive, some companies propose to use DIBR
to synthesize the non-captured views when users move from
the physical camera’s position, as proposed in Technicolor’s
volumetric video streaming demonstration [15]. One similar
approach can be found in Fig. 3, where typical DIBR arti-
facts appear (around the contours) if users try to look at an
object on the floor hidden behind the person. In the social
and embodiment VR media applications, where a VR media
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(a) A light field image captured by a camera at a corner (b) A light field image synthesized by the DIBR

Fig. 2: Example of light field image rendered by DIBR in [4]

Fig. 3: Augmented Reality Screen Capture. This figure is from
https://developer.att.com/blog/shape-future-of-video

designed for 360-degree videos mixed with real-time objects
for multiple users, an eye-contact technique based on the DIBR
[15] can provide the users the viewpoint according to their eye
positions, which gives the users a better interactive QoE.

Although DIBR has a great potential to give users a better
QoE in many immersive multimedia broadcasting applications,
current DIBR algorithms may introduce some new types of
distortions which are quite different from those caused by
image compression. Most compression methods can cause
specific distortions [16], eg. blur [17], blockiness [18] and
ringing [19]. These distortions are often scattered over the
whole image, while the DIBR-synthesized artifacts (caused
by distorted depth map and imperfect view synthesis method)
mostly occur in the disoccluded areas. Since most of the
commonly used 2D objective quality metrics are initially
designed to assess common coding distortions, they may fail in
assessing the quality of DIBR-synthesized images [20], [21].
Towards new and better quality metrics for 3D synthesized
view assessment, several publicly accessible databases have
been developed, as shown in Table I.

Bosc et al. proposed the IRCCyN/IVC DIBR image
database [22], [23] and IRCCyN/IVC DIBR video database
[24]. The source content of these two database is extracted
from 3 different MVD sequences: BookArrival, Lovebird1

and Newspaper. For each sequence, four virtual views are
synthesized by seven DIBR view synthesis algorithms [3],
[25], [26], [27], [28], [29], [30]. That is to say, there are
84 synthesized images or videos in each database. Besides,
the IVC DIBR video database also provided three H.264
coded videos with three different quantization levels for each
sequence. For each synthesized virtual image or video, the
image/video captured by a real camera on the same viewpoint
is used as reference. One big issue is that several DIBR algo-
rithms tested in this database introduce some “old-fashioned”
artifacts (such as “black holes”) which no longer exist when
the state-of-the-art DIBR algorithms are used.

Song et al. proposed a publicly accessable stereoscopic
3D Database (MCL-3D database) for the quality assessment
of DIBR-synthesized stereoscopic images in [31]. The DIBR
technology is used to generate the left and the right views
by using the 2D-image-plus-depth source. Many types of
distortions are considered in this database, such as Gaussian
blur, additive white noise, down-sampling blur, JPEG and
JPEG-2000 (JP2K) compression and transmission error. These
distortions are applied on either the original texture images or
the depth images before the view synthesis. In addition, the
distortion caused by imperfect DIBR algorithms are also con-
sidered in this database. Nine MVD sequences are collected,
among which Kendo, Lovebird1, Balloons, PoznanStreet
and PoznanHall2 are natural images; Shark, Microworld,
GTFly and Undodancer are Computer Graphics images.
Four DIBR view synthesis algorithms ([3], [25], [32] plus
DIBR without hole filling) were used. This database contains
various types of distortions, but distortion types directly re-
lated to DIBR algorithms are very limited. The tested DIBR
algorithms also produce some “old-fashioned” artifacts.

The SIAT Synthesized Video Quality Database [33] pro-
posed by Liu et al. focused on the distortions introduced by
compressed texture and depth images. For each of the ten
different MVD sequences, 14 different texture/depth quantiza-
tion combinations were used to generate the texture/depth view
pairs with compression distortions. Then, the virtual videos are
synthesized using the VSRS-1D-Fast software implemented
in the 3D-HEVC [34] reference software HTM. Here, only
compression distortions are evaluated.
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TABLE I: Summary of existing DIBR related database

Name No. seq. No. DIBR algos DIBR algos other distortions size Reference display Observer
Name Year

IVC DIBR-image 3 7

Fehn’s 2004

No 84 original images from MVD seq. 2D 43

Telea’s 2003
VSRS 2009
Mller 2008

Ndjiki-Nya 2010
Kppel 2010

Black hole —
IVC DIBR-video 3 7 idem H.264 84 original images from MVD seq. 2D 32

MCL-3D 9 4

Fehn’s 2004 Additive White Noise

693 images synthesized by VSRS Stereo. 270

Telea’s 2003 Blur
HHF 2012 Down sampling

Black hole — JPEG
JPEG2k

Translation Loss
SIAT video 10 1 VSRS 2009 3DV-ATM coding 140 original videos from MVD seq. 2D 56

IVY 7 4

Criminisi 2004

No 84 original images from MVD seq. Stereo. 20Ahn’s 2013
VSRS 2009
Yoon 2014

Proposed 10 7

Criminisi 2004

No 140 original images from MVD seq. 2D 42

VSRS 2009
LDI 2011
HHF 2012
Ahn’s 2013
Luo’s 2016
Zhu’s 2016

Later, Jung et al. proposed another IVY stereoscopic
3D image database to assess the quality of DIBR syn-
thesized stereoscopic images [35]. A total of 7 sequences
are selected from four Middlebury datasets [36] (Aloe,
Dolls, Reindeer, and Laundry) and three MVD sequences
(Lovebird1, Newspaper and Bookarrival). 84 stereo image
pairs are synthesized by four DIBR algorithms [37], [38], [39],
[40] in this database. Note that in this database, virtual views
were only generated by view extrapolation.

In this work, the proposed image database focuses on
the distortions only caused by DIBR algorithms (like the
IRCCyN/IVC DIBR database), but with state-of-the-art DIBR
algorithms. The “view” or stimuli in this subjective test
indicates an individual synthesized image. In total, we tested
seven DIBR algorithms, including both the interview synthesis
and the single view synthesis methods. We selected those
DIBR algorithms which produce no longer “old-fashioned”
artifacts and of which the code sources were provided by their
authors. Note that the SIAT database focuses on the effect of
texture and depth compression on the synthesized views and it
contains only one DIBR algorithm. Compared to the MCL-3D
and the IVY databases, the proposed new database (1) includes
not only virtual views generated by view extrapolation, but
also by view interpolation; (2) tests more and newer DIBR
algorithms; (3) shows the views on a 2D display to avoid
the 3D display settings and configurations influences (same
approach was used in the IRCCyN/IVC DIBR database). The
IRCCyN/IVC DIBR database also focuses on the comparison
of different DIBR algorithms, but it contains some “old-
fashioned” DIBR artifacts (eg. black holes) and it contains
less source images than ours. The proposed database can be
used along with the IRCCyN/IVC database for this type of
usage. The main contributions of this paper are: (1) a new

publicly accessible DIBR synthesized image quality database
with more recent DIBR algorithms; (2) a relatively complete
bench marking of the state-of-the-art objective metrics for
DIBR synthesized image quality assessment.

The rest of this paper is organized as follows. Section II
briefly introduces the seven DIBR algorithms used in this
database. The subjective experiments and the objective metrics
performance study are described in Section III and Section IV
respectively. In the end, the conclusions are drawn in Sec-
tion V.

II. TESTED DIBR ALGORITHMS

In this section, the tested DIBR algorithms are introduced.
The DIBR is a process of generating novel views of a scene
from original texture images and associated depth information,
which can be divided into two steps: firstly, the original texture
image is re-projected into 3D world aided by the associated
per-pixel depth data; then these 3D space points are projected
into the image plane of a new virtual view position. This
concatenation of 2D-to-3D reprojection and the subsequent
3D-to-2D projection is usually called 3D image warping in the
Computer Graphics (CG) literature. In this work, both inter-
view interpolation and single view based synthesis methods are
taken into consideration. The interview DIBR algorithm uses
the two neighboring views to synthesize the virtual viewpoint,
while the single view based synthesis methods only use one
neighboring view to extrapolate the synthesized view.

The major problem of the DIBR method is the disocclusion:
regions which are occluded in the captured views become
visible in the virtual ones. Due to the lack of original texture
information, a synthesized image often contains disocclusion
holes which significantly degrades the quality. The processing
of these disocclusion holes plays an important role in gener-
ating a synthesized view of high quality. The method to fill
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them is known as the disocclusion inpainting, which is a
special case of image inpainting. Thus, inpainting methods
are part of the DIBR algorithms.

A. Criminisi’s Examplar based inpainting

Criminisi et al. proposed a new algorithm for image
inpainting. As shown in Fig. 4, it employs an exemplar-
based texture synthesis technique [37]. A confidence is used
to compute patch priorities, and to optimize the fill order of
the target regions according to their priorities. The actual color
values are computed using exemplar-based synthesis. After the
target patch has been filled with new values, the confidence in
this patch is updated. The confidence in the synthesized pixel
values is propagated in a manner similar to the propagation
of information in inpainting. As filling proceeds, confidence
values decay, which indicates that the pixel color values are
less reliable near the center of the target region.

B. LDI

Jantet et al. proposed an object-based Layered Depth Im-
age (LDI) representation to improve the quality of virtual
synthesized views [41]. As shown in Fig. 5, they firstly
segment the foreground and background based on a region
growing algorithm, which allows organising LDI pixels into
two object-based layers. Once the extracted foreground is
obtained, an inpainting method is used to reconstruct the
complete background image on both depth and texture images.
Several inpainting method can be chosen, for example, Navier-
Stoke based method [42], Telea method [25] and Gautier
method [43]. In this work, the Gautier inpainting method is
used in the LDI.

C. Ahn’s method

Ahn et al. proposed a depth based disocclusion filling
method using patch-based texture synthesis [38]. Firstly, a
median filtering is applied to texture and depth images to
remove the small cracks caused by rounding errors in the 3D
warping process. In order to handle the ghost effect due to
mismatch of the boundaries of the foreground objects in the
texture and depth image, a ghost effect removal method is
added in the 3D warping process. During the disocclusion
inpainting procedure, the Criminisi’s method is improved by
optimizing the filling priority and the patch-matching measure.
The new priority term uses the Hessian matrix structure tensor
which is robust to noise and reflects the overall structure of an
image area. The optimized matched patch is selected through
the data term on the background regions which were extracted
using warped depth map. The filling of disoccluded holes in
a depth map is conducted simultaneously with filling holes in
the texture image. The block diagram of Ahn’s view synthesis
method is shown in Fig. 6.

D. Luo’s method

Luo et al proposed a hole filling approach for DIBR systems
based on background reconstruction [44]. As shown in Fig. 7,
in order to extract the foreground, the depth map is firstly

preprocessed by a cross-bilateral filter and morphological
operations. Then the Canny’s edge detection is employed to
extract the initial seeds for random walker, and the foreground
is finally extracted from the depth map by random walker
segmentation. After the removal of foreground, the temporal
correlation information in both the 2D video and its corre-
sponding depth map is exploited to construct a background
video based on motion compensation and modified Gaussian
Mixture model. Finally, the reconstructed background video is
warped to the virtual viewpoint to eliminate the disocclusion
holes.

E. HHF-Hierarchical hole-filling

Solh et al. proposed two pyramid-like approaches, namely
Hierarchical Hole-Filling (HHF) and Depth Adaptive Hier-
archical Hole-Filling, to eliminate the disoccluded holes in
DIBR synthesized views [32]. The block diagram of HHF is
shown in Fig. 8, which can be divided into four steps. Firstly,
a sequence of images R0,..., RN are low-pass filtered using
a pseudo Gaussian plus zero elimination filtering operation
(reduce), in which the original 3D warped image is marked as
R0. R1 is the reduced version of R0, and so on. The Gaussian
pyramid is generated by this reduce operation when the holes
do not influence the calculations. Secondly, they start from
the highest level of this pyramid RN , an Expand operation
is utilized to get an interpolated image EN−1, whose size
is equal to RN−1. Then, this interpolated image EN−1 is
used to fill the disoccluded holes in RN−1 to obtain the filled
image FN−1. Finally, the filled image in each scale, FN−1,
... , F0 can be obtained by repeating the operations upon, and
F0 is the final inpainted result. The DAHHF method adds a
depth adaptive preprocessing before the reduce and expand
operations. Since the disoccluded regions are more likely to
be the background regions, a depth map is employed to assign
higher weights to the pixels belonging to the background. The
following steps are similar to HHF except that the starting
image is the preprocessed image and the depth weight must
be considered during the Fill operations.

F. VSRS-View Synthesis Reference Software

Tanimoto et al. proposed a DIBR method [26] which has
been adopted by the MPEG 3D video Group, known as
View Synthesis Reference Software (VSRS) [39]. The depth
discontinuity artifacts are solved by performing a post-filter
on the projected depth map. Then, the inpainting method
proposed in [25] is used to fill the holes in the disoccluded
regions. This approach is primarily used in the inter-view
synthesis applications which have just small holes to be filled,
but it can also be used in single view based rendering cases.
In this paper, both the interview mode (VSRS2) and the single
view based mode (VSRS1) are used.

G. Zhu’s method

Zhu et al. proposed a novel depth-enhanced hole filling
approach for DIBR view interpolation [45]. Instead of in-
painting the warped images directly, they focus on the use of
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the occluded information to identify the relevant background
pixels around the holes. Firstly, the occluded background
information is registered in both texture and depth during the
3D warping process, and the background pixels around the
holes are found. Then, the unoccluded background information
around the holes is extracted based on the depth map. After
that, a virtual image is generated by integrating the occluded
background and unoccluded background information. The
disoccluded holes are filled based on this generated image with
the help of a depth-enhanced Criminisi’s inpainting method
and a simplified block-averaged filling method. Finally, the
pre-stored foreground information is recovered in the virtual
synthesized image.

Among the DIBR algorithms mentioned above, Zhu’s
method is an interview synthesis method, VSRS is used both
as interview synthesis and single view based synthesis (marked
as VSRS2 and VSRS1 recpectively in this paper), the others
are only single view based synthesis methods.

III. SUBJECTIVE EXPERIMENT

Ten MVD test sequences provided by MPEG for
the 3D video coding are used in this experiment. The
Balloons, BookArrival, Kendo, Lovebird1, Newspaper,
Poznan Street and PoznanHall sequences are natural
images while the Undo Dancer, Shark and Gt F ly are
computer animation images, as shown in Fig. 11. The charac-
teristics of the sequences are summarized in Table II.

For each single view based DIBR algorithm, a single virtual
viewpoint is extrapolated from the neighboring two views
separately. For the interview DIBR algorithms, the virtual
viewpoint is synthesized based on both the two neighboring
views, as shown in Table III. We consider thus for each
reference image, 2 virtual views synthesized by 2 interview
synthesis algorithms and 12 virtual views synthesized by 6
single view based DIBR algorithm, which leads to 14 degraded
images.

A. Subjective Test Methodology
There are several subjective testing methods to obtain the

perceived quality scores, such as the subjective assessment

methodology for video quality (SAMVIQ) [46], the absolute
categorical rating (ACR), etc. In this test, we choose to follow
the SAMVIQ protocol because of its stability, reliability and
relatively higher discriminability. The SAMVIQ results have
a greater accuracy than the ACR scores for the same number
of observers (on average 30% fewer observers were required
for SAMVIQ than ACR for the same level of accuracy) [47].

In the SAMVIQ protocol, there is much more freedom for
the observers who can view each image several times and
correct the notation at any time they want. The observers can
compare the degraded versions with each other, as well as
with the explicit reference. In each trial, there is also a hidden
reference which helps to evaluate the intrinsic quality of the
reference when the perceived quality of the reference is not
perfect. A continuous quality rating scale ranging from 0 to
100 is used during the test. It can be categorized according to
the five quality levels: Bad, Poor, Fair, Good and Excellent.
(See Table IV)

The experiment was conducted on a NEC MultiSync
PA322UHD monitor with resolution 3840 × 2160. The en-
vironment of the subjective experiment was controlled as
recommended in the ITU-R Rec. BT.1788 [48].

Altogether, 42 naive observers (28 males and 14 females
with an age varying from 19 to 52 years old) participated in the
subjective assessment experiment. All the observers have no
prior knowledge of the view synthesis methodology domain.
Prior to the test, the observers were screened for normal visual
acuity on the Snellen chart, and for normal colour vision using
the Ishihara chart. A training session was conducted before
the test session. The observers could have a rest at any time
they want during the test. The total duration of the experiment
varied from 30 to 45 minutes for each observer.

B. Processing of Subjective Scores

The subjective scores were firstly processed using the
observer screening method recommended in the ITU-R Rec.
BT.1788 [48]. In this experiment, only one observer is elimi-
nated after the observer screening. That leads to 41 observers
finally for this database.
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(a) BookArrival (b) Lovebird1 (c) Newspaper (d) Balloons (e) Kendo

(f) Dancer (g) GT Fly (h) PoznanHall (i) Pozan Street (j) Shark

Fig. 11: The MVD sequences used in this paper

TABLE II: Introduction of the tested MVD sequences

Sequence Resolution Frame No. View ref. Position View sys. Position SI
BookArrival 1024 × 768 58 8, 10 9 60.2348
Lovebird1 1024 × 768 80 4, 8 6 64.9756
Newspaper 1024 × 768 56 2, 6 4 61.1012
Balloons 1024 × 768 6 1, 5 3 47.6410
Kendo 1024 × 768 10 1, 5 3 48.6635

Undo Dancer 1920 × 1088 66 1, 9 5 64.1033
GT Fly 1920 × 1088 150 1, 9 5 55.5549

Poznan street 1920 × 1088 26 3, 5 4 61.3494
Poznan Hall2 1920 × 1088 150 5, 7 6 23.5174

Shark 1920 × 1088 220 1, 9 5 48.6635

TABLE III: Type of DIBR method

DIBR method inter-view or single view (extrapolation)
VSRS2 inter-view
Zhu’s inter-view

Criminisi’s single view (extrapolation)
Luo’s single view (extrapolation)
HHF single view (extrapolation)
LDI single view (extrapolation)

VSRS1 single view (extrapolation)
Ahn’s single view (extrapolation)

TABLE IV: Comparison Scale for SAMVIQ

10 Bad
30 Poor
50 Fair
70 Good
90 Excellent

The primary quality scores of the tested image are obtained
as the difference between the score of the hidden reference
image and the score of the tested image as shown in Eq. (1):

Si,j = Scorehr,j − Scorei,j (1)

where Si,j denotes the primary quality score of the ith tested
synthesized image, Scorehr and Scorei denote the score of
the hidden reference and the ith tested synthesized image
respectively, and the subscript j denotes the jth observer.

Then, the primary quality scores are normalized to z-score
per person cf. Eq. 2.

Zscorei,j =
Si,j − µj

σj
(2)

where µj and σj denotes the mean value and variance value of
the jth observer respectively. To make the data more intuitive,
the normalized zscores are scaled to (0,1).

The final quality score differential mean opinion score
(DMOS) is calculated by averaging the normalized z-scores
of all the observers, as shown in Eq. 3:

DMOSi =

N∑
j=1

Zscorei,j/N (3)

where DMOSi denotes the final subjective quality score of
the ith tested synthesized image, Si,j is the obtain primary
quality score in Eq. (1), and N is the number of observers.

The obtained DMOS score distributions and their confi-
dence intervals are shown in Fig. 12. Generally, the interview
synthesis methods outperform the single view based synthesis
methods in most sequences. However in some sequences, such
as BoolArrival, the VSRS1 get better results than VSRS2
and Zhu’s methods, but not very significantly according to
the corresponding confidence intervals. One reason could be
that, owing to the inaccuracy of depth map, the same object in
the two base views are rendered to different positions which
results in a “ghost” effect in the synthesized view. However,
this situation does not happen in single view based synthesis
method VSRS1. As shown in Fig. 13, there exists a “ghost”
effect of the “chat flow” on the board marked by red blocks in
(c) and (d); but according to the synthesized content marked
by red circles, the interview synthesis methods (c), (d) works
better than the single view based methods (a), (b) in generating
the object texture.
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(g) Pozan Street
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Fig. 12: DMOS distribution and confidence intervals of the synthesized views of different MVD sequences and different view
synthesis methods. The x-labels are V SRS2, Zhu, CriminisiL, LuoL, HHFL, LDIL, V SRS1L, AhnL, CriminisiR,
LuoR, HHFR, LDIR, V SRS1R, AhnR ordinally. The subscript L means this virtual view is synthesized from the neighboring
left view, while the subscript R means from the right. V SRS2 denotes the view interpolation inter-view mode of VSRS. The
error bars indicates the corresponding confidence intervals of the tested images. The bars referring to interview synthesize
views are marked by red, the left-extrapolated views marked by green, and the right-extrapolated views marked by blue.
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(a) LDI (b) VSRS1 L

(c) Zhu’s method (d) VSRS2

Fig. 13: Examples of synthesized images

A statistical analysis (student T-test here) was also made
over the obtained DMOS scores, to show the statistical
equivalence information of the tested algorithms. The scores
of single view based methods are obtained by averaging the
scores of the two images synthesized from the viewpoints
at the two sides. As shown in Table V, the view inter-
polation methods (VSRS2 and Zhu’s), which use the two
neighboring views as reference views, perform much better
than the single view based methods. Among the single view
based approaches, VSRS1 and Ahn’s methods are significantly
superior to the others.

TABLE V: Student T-test with obtained DMOS scores, where
the symbol 1 indicates that the DIBR synthesis method in the
row is significantly superior to the one in the column, the
symbol -1 means the opposite, while 0 indicates that there is
no significant difference between the DIBR synthesis methods
in the row and in the column.

VSRS2 Zhu Cri. Luo HHF LDI VSRS1 Ahn
VSRS2 0 1 1 1 1 1 1 1

Zhu — 0 1 1 1 1 1 1
Cri. — — 0 0 -1 1 -1 -1
Luo — — — 0 -1 1 -1 -1
HHF — — — — 0 1 -1 -1
LDI — — — — — 0 -1 -1

VSRS1 — — — — — — 0 1
Ahn — — — — — — — 0

IV. OBJECTIVE MEASUREMENT

In this section, we compare the performances of several
existing objective image quality assessment metrics on the
proposed database.

A. Objective Metrics

The tested image quality assessment (IQA) metrics are
introduced below, where full-reference (FR) and no-reference
(NR) are introduced respectively:

The full-reference (FR) 2D metrics include:

• SSIM: Structure SIMilarity, a widely used objective FR
IQA metric calculating the structure similarity between
the tested image and the reference image proposed by
Wang et al. in [49].

• MS-SSIM: Multi-Scale Structure SIMilarity, a multi-scale
approach of SSIM proposed by Wang et al. in [50].

• PSNR: Peak Signal to Noise Ratio, a widely used pixel-
based metric.

• IW-PSNR, IW-SSIM: Information content Weighted FR
IQA Metric based on PSNR and SSIM separately, pro-
posed by Wang et al. in [51].

• UQI: Universal Quality Index proposed by Wang et al.
in [52], models the image distortions by integrating loss
correlation, luminance distortion and contrast distortion.

• PSNR-HVS: based on PSNR and UQI, takes the Human
Vision System (HVS) into account [53], [54].

The FR 3D/synthesized-view-dedicated metrics include:

• MP-PSNR: Morphological Pyramid Peak Signal-to-Noise
Ratio proposed by Sandic-Stankovic in [55], an FR IQA
metric for DIBR-synthesized image based on multi-scale
pyramid decomposition using morphological filters. The
geometric distortions in different scales are obtained by
comparing the differences between the reference and
synthesized views in the corresponding scale.

• MW-PSNR: Morphological Wavelet Peak Signal-to-
Noise Ratio by Sandic-Stankovic in [56], an FR IQA
metric for DIBR-synthesized image. It is similar to the
MP-PSNR except that the MW-PSNR uses morphological
wavelet decomposition.

• MP-PSNRr, MW-PSNRr: the reduced version of MP-
PSNR and MW-PSNR using only detail images from
higher decomposition scales proposed by Sandic-
Stankovic in [57].

• VSQA: View Synthesis Quality Assessment (VSQA) pro-
posed by Conze et al. in [58], which uses three weighting
maps to characterize the image complexity in terms of
texture, diversity of gradient orientations and presence of
high contrast.

• Tian’s method: Tian et al. proposed a full-reference
quality assessment metric for DIBR synthesized views
[59], which uses an “affine” transform to compensate the
global shift in the synthesized view and a disocclusion
mask to weight the final distortions (considering that
the synthesis distortion mainly occurs in the disoccluded
regions).

The side view based full-reference (FR) metric:

• LOGS: Li et al. proposed a side view based FR metric for
DIBR-synthesized views by measuring local geometric
distortions in disoccluded regions and global sharpness
(LOGS) in [60]. It uses the image at the original view-
point instead of the image at the synthesized viewpoint
as the reference.

The no-reference (NR) 2D metrics include:

• BIQI: Blind Image Quality Index, a NR IQA metric
proposed by Moorthy et al. in [61].
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• BliindSII: BLind Image Interfrity Notaor using DCT
Statistics-II proposed by Saad et al. in [62].

• NIQE: Natural Image Quality Evaluator, a NR IQA
metric proposed by Mittal et al. in [63].

The NR 3D/synthesized-view-dedicated metrics include:
• APT: Autoregression Plus Thresholding (APT) proposed

by Gu et al. in [64]. They uses an autoregression based
local image descriptor to detect the geometric distortions,
followed by a saliency weighting and a thresholding to
obtain the final quality measurement.

• NIQSV: An NR Image Quality metric for Synthesized
views proposed by Tian et al. in [65]. They exploit
simple opening and closing operations to remove the
synthesis distortions, and then the quality is obtained
through the comparison between the synthesized image
and the processed synthesized image.

• NIQSV+: Improved NIQSV proposed by Tian et al. in
[66].

B. Correlation between the objective and subjective measure-
ments

The performance of objective metrics can be evaluated by
their correlation with the subjective quality scores. Normally,
three criteria, i.e., the Pearson Linear Correlation Coefficients
(PLCC), the Spearman’s Rank Order Correlation Coefficients
(SROCC) and the Root-Mean-Square-Error (RMSE), are used
to measure the prediction accuracy, monotonicity and residuals
respectively. Before the calculation of the three criteria above,
the obtained objective scores need to be fitted to the predicted
subjective score (DMOSp) by a non-linear regression func-
tion as suggested by the Video Quality Expert Group (VQEG)
Phase I FR-TV [67]:

DMOSp = a · score3 + b · score2 + c · score+ d (4)

where score is the score obtained by the objective metric
and a, b, c, d are the parameters of this cubic function. They
are obtained through a regression to minimize the difference
between DMOSp and DMOS.

The obtained PLCC, RMSE, SROCC values are given in
Table VI.It can be noticed at once that the performance of
these metrics on the presented database is quite bad (no PLCC
value more than 70%). Among which, Tian’s FR 3D metric
and the side view based FR metric LOGS perform the best in
terms of the PLCC on this database. Especially for NIQSV+,
NIQSV, NIQE and BliindS2 NR metrics, they show weak
correlations with the subjective results, one reason may be that
the NIQE and BliindS2 are trained and focus on the traditional
artifacts, such as blurry, additive white noise, jpeg etc. they
cannot well assess the quality of DIBR synthesized views.
While the NIQSV and NIQSV+ metrics tried to optimize their
performances on the IRCCyN/IVC DIBR database where “old-
fashioned” artifacts exist, then cannot get a good performance
when these artifacts are excluded.

In Table VII, we use the parameters provided by the authors,
which make the algorithms achieve their best performance
on IVC DIBR database. In Table VII, we investigate the
performance dependency of MWPSNR and MPPSNR on

TABLE VI: PLCC, RMSE and SROCC between DMOS and
objective metrics. Where “SV FR metric” indicates the side
view based FR metric

Metric PLCC RMSE SROCC

FR 2D metrics

PSNR 0.6012 0.1985 0.5356
SSIM 0.4016 0.2275 0.2395

MS-SSIM 0.6162 0.1957 0.5355
IW-PSNR 0.5827 0.2019 0.4973
IW-SSIM 0.6280 0.1933 0.5950

UQI 0.4346 0.2237 0.4113
PSNR-HVS 0.5982 0.1991 0.5195

FR 3D metrics

MP-PSNR 0.5753 0.2032 0.5507
MP-PSNRr 0.6061 0.1976 0.5873
MW-PSNR 0.5301 0.2106 0.4845
MW-PSNRr 0.5403 0.2090 0.4946

VSQA 0.5576 0.2062 0.4719
Tian’s 0.6685 0.1844 0.5903

SV FR metric LOGS 0.6687 0.1845 0.6683

NR 3D metrics
NIQSV 0.1759 0.2446 0.1473

NIQSV+ 0.2095 0.2429 0.2190
APT 0.4225 0.2252 0.4187

NR 2D metrics
NIQE 0.2244 0.2421 0.1360

BLiindS2 0.2225 0.2422 0.1329
BIQI 0.4348 0.2237 0.4328

decomposition level and structural element size. It shows that
these parameters can be fitted to achieve better performance
on the proposed database, but they still cannot get satisfactory
results. In addition, we think that a high degree of generality
is a desirable feature for a good quality metric. That means
a metrics performance cannot be judged only on its best
performance on a selected database. This is also why the cross-
validation is usually needed for the validation of a metric.

TABLE VII: Performance dependency of MP-PSNR and MW-
PSNR, where SE indicates Structural Element size

MW-PSNR MW-PSNRr
level SE PLCC RMSE SROCC PLCC RMSE SROCC

8 0.5500 0.2070 0.5199 0.5602 0.2054 0.5235
7 0.5389 0.2088 0.4875 0.5383 0.2089 0.4953
6 0.6132 0.1958 0.5598 0.6095 0.1965 0.5634
5 0.5981 0.1987 0.5353 0.6014 0.1981 0.5240

level SE MP-PSNR MP-PSNRr
6 7 0.6037 0.1976 0.5578 0.5659 0.2044 0.5402
6 5 0.6284 0.1929 0.5737 0.5889 0.2004 0.5794
6 3 0.6312 0.1923 0.5914 0.6023 0.1979 0.5745
6 2 0.6134 0.1958 0.5601 0.5945 0.1993 0.5443
5 7 0.6190 0.1947 0.5809 0.5841 0,2012 0.5570
5 5 0.6294 0.1927 0.5951 0.6160 0.1953 0.5870
5 3 0.6246 0.1936 0.5860 0.6314 0.1922 0.5855
5 2 0.6163 0.1952 0.5497 0.6009 0.1982 0.5313
4 7 0.6170 0.1951 0.5909 0,6023 0.1979 0.5569
4 5 0.6230 0.1939 0.5796 0,6247 0.1936 0.5678
4 3 0.6170 0.1951 0.5619 0.6106 0.1963 0.5470
4 2 0.5911 0.2000 0.5319 0.5571 0.2059 0.4928

The scatter plot of each IQA metric is shown in Fig. 14.
It seems that all methods are incapable of predicting worse
qualities (bigger DMOS value indicates worse quality), which
is however consistent with the results shown in Table VI where
no metric has a PLCC value higher than 0.7. While some
of the metrics do sometimes succeed in their prediction of
high qualities in Fig. 14 (consistent with their PLCC values
bigger thatn 0.5), the NR metrics NIQSV+, NIQSV, NIQE
and BliindS2 show little correction with the subjective results
(consistent with their PLCC values smaller than 0.3).
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Fig. 14: Scatter plots of DMOS versus DMOSp of each IQA method
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V. CONCLUSION AND PERSPECTIVE

DIBR is widely used in FVV, VR, AR, and other popular
topics considered as the next generation of 3D broadcasting
applications, in order to provide a better QoE to users. In this
paper, a new DIBR-synthesized image database which focuses
on the distortions induced by different state-of-the-art DIBR
view synthesis algorithms is presented. Ten MVD sequences
and seven state-of-the-art DIBR view synthesis algorithms are
selected to generate the virtual view images. The subjective
experiment is conducted following the SAMVIQ protocol in
a controlled environment as recommended by ITU-R Rec.
BT.1788 [48]. Results show that the inter-view synthesis meth-
ods, which have more input information, significantly outper-
form the single view based synthesis algorithms. Furthermore,
several objective measurements were used to assess the quality
of synthesized images on this database. Their performance
results indicate that further work has to be done to exploit
deeply the characteristics of these specific distortions, for new
objective metrics with a better correlation with subjective
scores. In current database, only the MPEG MVD source
images are included; in the future work, more source images,
such as the images from Middlebury database [36], will be
considered to make the experiment results more benchmark.

All the data of this presented database, including images, the
ground truth depth maps and their associated DMOS, is pub-
licly accessible (https://vaader-data.insa-rennes.fr/data/stian/
ieeetom/IETR DIBR Database.zip), for the improvement of
the QoE of DIBR related applications.
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