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We consider stable solutions of a semilinear elliptic equation with homogeneous Neumann boundary conditions. A classical result of Casten, Holland and Matano states that all stable solutions are constant in convex bounded domains. In this paper, we examine whether this result extends to unbounded convex domains. We give a positive answer for stable non-degenerate solutions, and for stable solutions if the domain Ω further satisfies Ω ∩ {|x| ≤ R} = O(R 2 ), when R → +∞. If the domain is a straight cylinder, an additional natural assumption is needed. These results can be seen as an extension to more general domains of some results on De Giorgi's conjecture.

As an application, we establish asymptotic symmetries for stable solutions when the domain satisfies a geometric property asymptotically.

Introduction

Presentation of the problem

We study some symmetry properties of stable solutions of semilinear elliptic equations with Neumann boundary conditions. We consider the following problem:

     -∆u(x) = f (u(x)) ∀x ∈ Ω, ∂ ν u(x) = 0 ∀x ∈ ∂Ω, u ∈ C 3 Ω ; ∇u ∈ L ∞ (Ω), (1) 
where Ω ⊂ R n is a (possibly unbounded) smooth domain, ∂ ν is the outward normal derivative, and f is C 1 . A solution is said to be stable if the second variation of energy at u is nonnegative.

Definition 1.1 Let u be a solution of (1) and set

λ 1 := inf ψ∈C 1 0 (Ω) ψ L 2 =1 Ω |∇ψ| 2 -f (u)ψ 2 =: inf ψ∈C 1 0 (Ω) ψ L 2 =1 F(ψ), (2) 
where C 1 0 (Ω) is the space of continuously differentiable functions with compact support in Ω (which do not necessarily vanish on ∂Ω).

The solution u is said to be stable if λ 1 ≥ 0, and stable non-degenerate if λ 1 > 0.

A stable non-degenerate solution is then a (non-degenerate) minimum of the energy. On the other hand, any degenerate critical point of the energy is stable according to our definition. See Appendix B for more detailed on the link between this definition and the classical dynamical definition of stability. Note that if z ∈ R is a stable root of f , i.e., f (z) = 0 and f (z) ≤ 0, it is a (trivial) stable solution. We are interested in the existence/non-existence and symmetries of non-trivial stable solutions, called patterns in the sequel. Definition 1. [START_REF] Alberti | On a Long-Standing Conjecture of E. De Giorgi: Symmetry in 3D for General Nonlinearities and a Local Minimality Property[END_REF] We call pattern (resp. non-degenerate pattern) any non-constant stable (resp. stable nondegenerate) solution.

In two independent papers, Casten, Holland [START_REF] Casten | Instability results for reaction diffusion equations with Neumann boundary conditions[END_REF], and Matano [START_REF] Matano | Asymptotic behavior and stability of solutions of semilinear diffusion equations[END_REF] proved the following result.

Theorem 1.3 ( [20, 41])

If the domain Ω is bounded and convex, there exists no pattern to [START_REF] Agmon | On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds[END_REF].

We insist on the fact that this conclusion is valid for any f ∈ C 1 .

The main purpose of this paper is to examine whether the above theorem extends to unbounded convex domains. The classification of stable solutions in the particular case Ω = R n has already been widely investigated: this problem is intricate, and closely linked to De Giorgi's conjecture [START_REF] Wei | On De Giorgi's Conjecture: recent progress and open problems[END_REF]. However, it appears that the literature only deals, on the one hand, with bounded convex domains and, on the other hand, with the entire space R n . It does not deal, or only slightly, with general unbound convex domains.

In this paper, we establish the non-existence of non-degenerate patterns in any convex unbounded domain, and the 1-dimensional symmetry of (possibly degenerate) patterns if the domain Ω further satisfies lim sup R→+∞ |Ω∩{|x|≤R}| R 2

< +∞. In such domains, this latter result implies the non-existence of patterns if Ω is not a straight cylinder, or if f satisfies an additional natural assumption. One can see those results as extending some advances on De Giorgi's conjecture to a more general class of domains

As an application, we establish asymptotic symmetries for patterns when the domain satisfies a geometric property asymptotically. In particular, if the domain is a cylinder (with a varying section) that tends to be convex at infinity, we prove that a pattern must converge to a constant.

For the reader's convenience, we give a simple proof of Theorem 1.3 in section 2. We also recall further classical symmetry results in section 3.4, namely that stable solutions inherit from the domain's invariance with respect to translation or rotations. The appendix proposes a discussion on the notion of generalized principal eigenvalue, the different definitions of stability, and the isolation of stable solutions. In a forthcoming paper [START_REF] Nordmann | Non-existence of patterns and gradient estimates in semilinear elliptic equations with Neumann boundary conditions[END_REF], we will investigate to what extent one can relax the assumption that the domain is convex in Theorem 1.3.

Context, general remarks, and references

Consider the energy

E ε (u) = Ω ε 2 |∇u| 2 + F (u),
where Ω is bounded, ε > 0 is a parameter and F is a two-well potential, say, F (u) := 1 2 1 -u 2 2 . Any minimizer of E ε is a stable solution of the associated Euler-Lagrange equation:

-ε 2 ∆u ε = f (u ε ) in Ω, ∂ ν u ε = 0 on ∂Ω, (3) 
with Allen-Cahn's nonlinearity f (u) := u -u 3 . A series of seminal papers [START_REF] Caffarelli | Uniform convergence of a singular perturbation problem[END_REF][START_REF] Caffarelli | Phase transitions: Uniform regularity of the intermediate layers[END_REF][START_REF] Kohn | Local minimisers and singular perturbations[END_REF][START_REF] Modica | Convergence to minimal surfaces problem and global solutions of Delta u = 2(uˆ3-u)[END_REF] establishes that when ε → 0, the level sets of patterns of (3) converge to minimal surfaces in Ω. From a rescaling x ↔ εx, i.e., zooming around the origin, equation (3) at the limit ε → 0 reduces to equation [START_REF] Agmon | On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds[END_REF] in R n . According to the above, the level sets of stable solutions in R n should be minimal surfaces in R n . These are known to be necessarily hyperplanes if and only if n ≤ 7 [START_REF] Bombieri | Minimal cones and the Bernstein Problem[END_REF][START_REF] Simons | Minimal varieties in Riemannian Manifolds[END_REF]. Regarding a minimal surface which is also the graph of a function defined on R n-1 , we gain one dimension: such a surface is necessarily a hyperplane if and only if n ≤ 8 [START_REF] Bombieri | Minimal cones and the Bernstein Problem[END_REF][START_REF] Cabré | A Conjecture of De Giorgi on Symmetry for Elliptic Equations in R[END_REF][START_REF] Giorgi | Una estensione del teorema di Bernstein[END_REF][START_REF] Jerison | Towards a counter-example to a conjecture of De Giorgi in high dimensions[END_REF]. This brought De Giorgi to state the following conjecture.

Conjecture: (De

Giorgi) Let u be a solution of -∆u = u -u 3 in R n , such that |u| < 1 and ∂ xn u > 0.
The level sets of u are hyperplanes, at least if n ≤ 8.

The fact that the level sets of u are hyperplanes means that u is flat, i.e., u is 1-d symmetric. It should be noted that the assumption ∂ xn u > 0 implies that every level set of u is the graph of a function defined on R n-1 , which explains why the conjecture is stated for n ≤ 8 and not n ≤ 7.

A vast litterature is devoted to De Giorgi's conjecture (see [START_REF] Farina | The state of the art for a conjecture of De Giorgi and related problems[END_REF][START_REF] Wei | On De Giorgi's Conjecture: recent progress and open problems[END_REF] for a state of the art). The conjecture is proved by Ghoussoub and Gui [START_REF] Ghoussoub | On a conjecture of De Giorgi and some related problems[END_REF] in dimension n ≤ 2, by Ambrosio and Cabré [START_REF] Ambrosio | Entire solutions of semilinear elliptic equations in Rˆ3 and a conjecture of De Giorgi[END_REF] in dimension n = 3, and by Savin [START_REF] Savin | Phase transitions: Regularity of flat level sets[END_REF][START_REF] Savin | Phase transitions, minimal surfaces and a conjecture of De Giorgi[END_REF] in dimension 4 ≤ n ≤ 8 under the additional assumption

lim xn→±∞ u(x , x n ) = ±1. (4) 
A counter example is provided by del Pino, Kowalczyk and Wei [START_REF] Del Pino | A counterexample to a conjecture by De Giorgi in large dimensions[END_REF] in dimension n ≥ 9 (this counterexample satisfies (4)). The conjecture is still open for dimensions 4 ≤ n ≤ 8 without the additional assumption (4). Note that the proofs are, in general, valid for a rather large class of nonlinearities, and not only for Allen-Cahn's nonlinearity [START_REF] Alberti | On a Long-Standing Conjecture of E. De Giorgi: Symmetry in 3D for General Nonlinearities and a Local Minimality Property[END_REF][START_REF] Cabré | A Conjecture of De Giorgi on Symmetry for Elliptic Equations in R[END_REF][START_REF] Savin | Phase transitions, minimal surfaces and a conjecture of De Giorgi[END_REF]. Analogous results have also been obtained for non-compact Riemannian manifolds without boundary [START_REF] Farina | Splitting Theorems, Symmetry Results and Overdetermined Problems for Riemannian Manifolds[END_REF][START_REF] Farina | Stable Solutions of Elliptic Equations on Riemannian Manifolds[END_REF]..

The assumption ∂ xn u > 0 in De Giorgi's conjecture implies in particular that u is stable (it is a pattern). Indeed, setting v := ∂ xn u, and differentiating (1), we get -∆v -f (u)v = 0 in R n . Multiplying this equation by ψ 2 v (for a test function ψ with compact support), integrating on R n , and using the divergence theorem, we obtain

0 = R n ∇v • ∇ ψ 2 v -f (u)ψ 2 = R n 2 ψ v ∇v • ∇ψ - ψ 2 v 2 |∇v| 2 -f (u)ψ 2 ≤ R n |∇ψ| 2 -f (u)ψ 2 ,
where we use Young's inequality 2ab ≤ a 2 + b 2 in the last step. We deduce λ 1 ≥ 0, i.e., u is a pattern.

It is therefore natural to consider a variant of De Giorgi's conjecture, replacing the assumption ∂ xn u > 0 with the assumption that u is a pattern.

Conjecture: (De

Giorgi's variant) Let u be a pattern of -∆u = u -u 3 in R n , such that |u| < 1. The level sets of u are hyperplanes, at least if n ≤ 7.
Note that with the stability assumption (instead of ∂ xn u > 0), we cannot guarantee that every level set of u is the graph of a function defined on R n-1 . This explains why this conjecture is stated for n ≤ 7 (unlike De Giorgi's conjecture, stated for n ≤ 8).

This variant is proved by Ghoussoub and Gui [START_REF] Ghoussoub | On a conjecture of De Giorgi and some related problems[END_REF] for n ≤ 2, and a counterexample is known to exists in dimension n = 8 1 , proving that the condition n ≤ 7 is optimal. The intermediate dimensions 3 ≤ n ≤ 7 are open. Nevertheless, Dancer [START_REF] Dancer | Stable and Finite Morse Index solutions on Rˆn or on bounded domains with small diffusion[END_REF] proves the non-existence of non-degenerate patterns in R n in any dimension.

Let us also mention the results of [START_REF] Cabré | On the stability of radial solutions of semilinear elliptic equations in all of Rˆn[END_REF] (refined in [START_REF] Villegas | Asymptotic behavior of stable radial solutions of semilinear elliptic equations in RˆN[END_REF]) which establish that radial patterns exist in R n if and only if n ≥ 11. Many further results (including regularity of weak stable solutions) are available under stronger assumptions on f , for example, if f is increasing, convex, positive, see [START_REF] Cabre | Stable solutions to semilinear elliptic equations are smooth up to dimension 9[END_REF][START_REF] Dupaigne | Stable Solutions of Elliptic Partial Differential Equations[END_REF] and references therein.

Main results

Our first result establishes the non-existence of non-degenerate patterns in any unbounded convex domain.

Theorem 1.4 There exists no non-degenerate pattern to (1) in convex (possibly unbounded) domains.

This theorem has been proved by Dancer [START_REF] Dancer | Stable and Finite Morse Index solutions on Rˆn or on bounded domains with small diffusion[END_REF] when Ω = R n . In this case, the result can be formally justified as follows: the stability of a given pattern in R n can be nothing but degenerate, since a continuum of patterns is given by translations of this same pattern. This argument is no longer valid if Ω is not invariant by translation.

Note that it is assumed in (1) that the solution has a bounded gradient. If we drop this assumption, then Theorem 1.4 do no longer apply, since u(x) := e x is a non-degenerate pattern of -u = -u in R.

The following result gives a classification of possibly degenerate patterns when the domain is convex and satisfies a growth condition at infinity.

Theorem 1.5 Assume that Ω is convex and satisfies

lim sup R→+∞ |Ω ∩ {|x| ≤ R}| R 2 < +∞. ( 5 
)
Let u be a stable solution of (1).

1. If Ω is not a straight cylinder (i.e., Ω is not of the form R × ω, ω ⊂ R n-1 ), then u is constant.

2.

If Ω is a straight cylinder, then u is either constant or a monotonic flat solution. If, in addition, u is bounded then it connects two stable roots (z -, z + ) of f such that

z + z -f = 0.
If Ω satisfies (5), the above result ensures the non-existence of patterns if either Ω is not a straight cylinder, or

z2 z1 f = 0 for all z 1 = z 2 in {z ∈ R : f (z) = 0 and f (z) ≤ 0}.
Note that, in the special case of a straight cylinder Ω = R × ω, the convexity of the domain is degenerate in one direction. Planar patterns may indeed exist in such domains. For example, the Allen-Cahn equation in R, -u = u(1 -u 2 ) admits the explicit solution u : x → tanh x √ 2 which is stable (degenerate). This solution can be seen as a traveling wave connecting the two stable roots ±1, with speed c = 1 -1 f = 0. Condition ( 5) is usual in our context. It echoes with the celebrated Liouville type property of Berestycki, Caffarelli and Nirenberg (Theorem 1.7 in [START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains[END_REF]), of which a refined version is presented in Lemma 3.1. Under this assumption, we allow for instance convex domains that are subdomains of R 2 , or of the form R i × ω with ω bounded and i ∈ {1, 2}, or of the form

Ω = (x 1 , x ) ∈ R × R n-1 : x ∈ ω(x 1 ) ,
where for all x 1 ∈ R, ω(x 1 ) ⊂ R n-1 with lim sup According to De Giorgi's conjecture, it is reasonable to think that condition (5) can be substantially weakened, but not completely dropped since non-planar patterns may exist in R 8 . This problem has been widely investigated but many questions remain open, see section 3.2 for more details. Note, however, that straight cylinders (or the entire space) are domains for which convexity is degenerate. Up to the author's knowledge, not much is known about the classification of patterns in strictly convex domains.

Question 1 Can we relax assumption [START_REF] Bandle | Existence and nonexistence of patterns on Riemannian manifolds[END_REF] under the assumption that the domain is strictly convex?

The conclusions, assumptions, and the proof of Theorem 1.5 are closely related to the work of Farina, Mari and Valdinoci [START_REF] Farina | Splitting Theorems, Symmetry Results and Overdetermined Problems for Riemannian Manifolds[END_REF]. In Theorem 1 there, the authors suppose the existence of a non-constant stable solutions of -∆u = f (u) with bounded gradient on a Riemannian manifold M without boundary and with nonnegative Ricci curvature. Without further assumptions on u, it is also assumed either that the manifold is parabolic (i.e. it does not admit any Green function) or that the domain satisfies a growth condition similar to (5) but replacing R 2 by R 2 log R (we prove that Theorem 1.5 actually holds under this weaker condition if the domain can be written as a cylinder with varying cross section, see the end of Section 3.2). Then, the authors in [START_REF] Farina | Splitting Theorems, Symmetry Results and Overdetermined Problems for Riemannian Manifolds[END_REF] prove that the manifold can be written M = R × N and that u only depends on the first variable. These two conclusions correspond respectively to the two conclusions of Theorem 1.5. Note that, since M is assumed to have no boundary, the only instance of M which is also a euclidian domain is the whole space R n . In section 3.4, we give further symmetry properties of patterns in unbounded domains, namely that patterns inherit the domain's invariance with respect to translations and planar rotations. As an application of our results, we propose to establish an asymptotic variant of Theorem 1.3. We consider a cylindrical domain which is asymptotically convex (see Figure 1), and show that any pattern converges to a constant. The following result deals with non-degenerate patterns.

Theorem 1. [START_REF] Barlow | On the Liouville Property for divergence form operators[END_REF] Let Ω ⊂ R N be a uniformly smooth cylindrical domain (with varying section) on the x 1 axis, which converges to a straight cylinder Ω ∞ := R × ω ∞ when x 1 → +∞ (Definition 4.2). Suppose that ω ∞ is convex, and let u be a bounded non-degenerate pattern of (1). Then, u(x 1 , •) converges C 2 loc to a stable root of f when x 1 → +∞.

The case of possibly degenerate patterns is treated in Theorem 4.1. Section 4.2 contains other symmetry results, if the limiting domain Ω ∞ is invariant under a translation or a rotation. In particular, we prove the following.

Corollary 1.7

Let Ω ⊂ R N be a cylindrical domain (with a variable section) on the x 1 axis, which converges to a straight cylinder Ω ∞ := R × ω ∞ , with w ∞ ⊂ R n-1 bounded, when x 1 → +∞ (Definition 4.2). Let u be a bounded stable non-degenerate solution of (1). Then, when

x 1 → +∞, u(x 1 , •) converges C 2 loc to u ∞ (•), which is a stable solution in the section ω ∞ : -∆ x u ∞ = f (u ∞ ) in ω ∞ , ∂ ν u ∞ = 0 on ∂ω ∞ . ( 6 
)
The asymptotic symmetry results presented in Section 4.2 actually hold when the stability of the solution is only assumed to hold outside a compact set, see Remark 4.6.

Outline of the paper

Section 2 is devoted to some preliminaries and the classical proof of Theorem 1.3. We study the nonexistence of patterns in unbounded domains in section 3, that is, we prove Theorem 1.4, Theorem 1.5, and also recall classical further symmetry properties for patterns when the domain is invariant under translations or rotations.

In section 4 we establish asymptotic symmetries for patterns when the domain satisfies a geometrical property asymptotically. We prove Theorem 1.6 and give further properties.

In the Appendix A, we define and study the notion of generalized principal eigenvalue in unbounded domains. We also discuss the different definitions of stability in Appendix B, and the isolation of stable solutions in Appendix C.

Preliminaries: the classical case of bounded convex domains

To give an overview of the method and the difficulties arising when dealing with unbounded domains, we recall the classical proof of Theorem 1.3 which deals with bounded domains. It also allows us to introduce a key lemma. Let Ω be a smooth, convex, bounded domain, u a stable solution of (1) and set v i := ∂ xi u, for all i ∈ {1, . . . , n}.

Step 1. On the one hand, differentiating (1) with respect to x i , we find that v i := ∂ xi u satisfies the linearized equation

-∆v i -f (u)v i = 0 in Ω.
From an integration by part, we obtain

F(v i ) = ∂Ω v i ∂ ν v i = 1 2 ∂Ω ∂ ν v 2 i ,
with F from (2). On the other hand, as u is stable, we have F(•) ≥ 0 and

0 ≤ F(v i ) ≤ n k=1 F(v k ) = 1 2 ∂Ω ∂ ν |∇u| 2 . ( 7 
)
(If Ω is unbounded, the computations are not licit and need to be adapted, see section 3.1.)

Step 2. When the domain is convex, the above integral turns out to be nonpositive, as stated in the following key lemma. This is where the convexity of the domain comes into play. It can be found in [START_REF] Casten | Instability results for reaction diffusion equations with Neumann boundary conditions[END_REF][START_REF] Matano | Asymptotic behavior and stability of solutions of semilinear diffusion equations[END_REF], but a simple proof is presented at the end of the section for completeness. Note that the lemma remains valid if the domain is unbounded.

Lemma 2.1 ( [20, 42])

Let Ω be a smooth convex domain. If u is a C 2 function such that

∂ ν u = 0 on ∂Ω, ( 8 
)
then ∂ ν |∇u| 2 ≤ 0 on ∂Ω.
From the above lemma and the inequality (7), we conclude that for all i ∈ {1, . . . , n}, we have F(v i ) = 0. At this step, if u is not constant (i.e. v i ≡ 0 for some i), then we get λ 1 = 0, i.e., u is stable degenerate.

Step 3. Since F(v i ) = 0 and λ 1 ≥ 0, we deduce that v i minimizes F. It is then classical that v i is a multiple of the eigenfunction associated to λ 1 , denoted ϕ, which is unique (up to a multiplicative constant) and positive in Ω.

(This conclusion may fail in unbounded domains, see section 3.2.)

Step 4. From ∂ ν u = 0 on the closed surface ∂Ω, we deduce that v i vanishes on some point of the boundary. But as v i is colinear to ϕ, we conclude v i ≡ 0, which completes the proof.

(If Ω is a straight cylinder, the above conclusion fails and v i may be a nonzero multiple of ϕ.)

Before proving Lemma 2.1, we need the following definition.

Definition 2.2 Let Ω ⊂ R n . A "representation of the boundary" is a pair (ρ, U ) where ρ is a C 2 function defined on U a neighborhood of ∂Ω such that ρ(x)      < 0 if x ∈ Ω ∩ U = 0 if x ∈ ∂Ω > 0 if x ∈ U \Ω and ∇ρ(x) = ν(x) ∀x ∈ ∂Ω,
where ν(x) is the outer normal unit vector of ∂Ω at x.

It is classical that such a representation of the boundary always exists for C 2,1 domains, see e.g. section 6.2 of [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF].

Proof (of Lemma 2.1) Let us consider (ρ, U ) a representation of the boundary for Ω. Equation ( 8) becomes ∇u • ∇ρ = 0 on ∂Ω.

As ∇u is tangential to ∂Ω, we can differentiate the above equality with respect to the vector field ∇u. It gives, on ∂Ω,

0 = ∇ (∇u • ∇ρ) • ∇u = ∇u • ∇ 2 u • ∇ρ + ∇u • ∇ 2 ρ • ∇u.
From this, we infer

∂ ν |∇u| 2 = ∇ |∇u| 2 • ∇ρ = 2∇u • ∇ 2 u • ∇ρ = -2∇u • ∇ 2 ρ • ∇u,
Since Ω is convex, for all x 0 ∈ ∂Ω, we have that ∇ 2 ρ(x 0 ) is a nonnegative quadratic form in the tangent space of ∂Ω at x 0 . As ∇u is tangential to ∂Ω, we deduce from the above equation that ∂ ν |∇u| 2 is nonpositive.

In [START_REF] Casten | Instability results for reaction diffusion equations with Neumann boundary conditions[END_REF], the authors give the following remarkable geometrical interpretation of the above lemma. Consider a bounded convex domain Ω ⊂ R 2 . As u satisfies Neumann boundary conditions, its level set cross the border ∂Ω orthogonally. Since the domain is convex, these level sets go apart one from each other as we move outward ∂Ω. As |∇u| corresponds to the inverse of the distance of two level sets, it implies that |∇u| decreases as we move outward Ω, hence the result.

3 Patterns in unbounded domains

Non-degenerate patterns -proof of Theorem 1.4

The proof follows the same lines as the first two steps of section 2. But since Ω is unbounded, the computations which lead to "F(v i ) = 0" are not licit. We shall instead perform the computations on truncated functions. We denote v i := ∂ xi u for i ∈ {1, . . . , n}. Differentiating (1), we find that all the v i satisfy

v i (∆v i + f (u)v i ) ≥ 0 in Ω. ( 9 
)
We consider a cut-off function: for R > 0, set

χ R (x) := χ |x| R , ∀x ∈ R n , ( 10 
)
with χ a smooth nonnegative function such that

χ(z) = 1 if 0 ≤ z ≤ 1 0 if z ≥ 2 , |χ | ≤ 2.
Multiplying (9) by χ 2 R , integrating on Ω, using the divergence theorem and ( 15) we obtain

0 ≤ ∂Ω χ 2 R v i ∂ ν v - Ω ∇ χ 2 R v i • ∇v i + Ω f (u)χ 2 R v 2 i . Using the identity |∇ [χ R v i ]| 2 = ∇ χ 2 R v i • ∇v i + |∇χ R | 2 v 2
i and rearranging the terms, we deduce

λ 1 Ω χ 2 R v 2 i ≤ F (χ R v i ) ≤ 1 2 ∂Ω χ 2 R ∂ ν v 2 i + Ω |∇χ R | 2 v 2 i . ( 11 
) Setting v = |∇u|, we have v 2 = v 2 1 + • • • + v n
and therefore summing the above inequality over i ∈ {1, . . . , n} gives

λ 1 Ω χ 2 R v 2 ≤ 1 2 ∂Ω χ 2 R ∂ ν v 2 + Ω |∇χ R | 2 v 2 .
Since Ω is convex, Lemma 2.1 implies that ∂ ν v 2 = ∂ ν |∇u| 2 ≤ 0 on ∂Ω. We deduce

λ 1 ≤ Ω |∇χ R | 2 v 2 Ω χ 2 R v 2 ≤ 4 R 2 Ω∩{|x|<2R} v 2 Ω∩{|x|<R} v 2 =: 4α R .
We claim that lim inf

R→+∞ α R ≤ 0. ( 12 
)
If ( 12) holds, then λ 1 ≤ 0, which completes the proof. By contradiction, let us assume α R ≥ δ > 0. We use the notation C(R) := Ω∩{|x|<R} v 2 so that we can write α R = C(2R) R 2 C(R) . The contradictory assumptions now reads C(2R) ≥ δR 2 C(R). Iterating this inequality for a fixed R > 0, we find

C(2 j R) ≥ K δR 2 j for all integer j ≥ 1,
where, here and later, positive constants are generically denoted K. In addition, v is bounded, hence

C(R) ≤ KR n . We have K 2 j R n ≥ δR 2 j .
If R is large enough, we reach a contradiction as j goes to +∞. Thereby, we have proved [START_REF] Berestycki | Reaction-diffusion equations for population dynamics with forced speed II -Cylindrical-type domains[END_REF], and the proof of Theorem 1.4 is complete.

A Liouville type result, or the simplicity of the principal eigenvalue

In this section, we adapt the step 3 of section 2 to unbounded domains. Let us first introduce the principal eigenfunction ϕ, associated to λ 1 . The Euler-Lagrange equation associated with the functional F is obtained as a linearization of (1) at u:

-∆ψ -f (u)ψ = 0, in Ω, ∂ ν ψ = 0 on ∂Ω. ( 13 
)
If the domain Ω is bounded, then λ 1 is an eigenvalue of the linearized operator [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF], called the principal eigenvalue. When the domain is unbounded, we will refer to λ 1 as the generalized principal eigenvalue. It is associated with an eigenfunction ϕ (Proposition A.2) which is positive on Ω and satisfies

-∆ϕ -f (u)ϕ = λ 1 ϕ in Ω, ∂ ν ϕ = 0 on ∂Ω.
The term generalized comes from the fact that ϕ may not belong to H 1 (Ω). See Appendix A for more details.

If the domain is bounded, then λ 1 is simple. This may no longer hold in unbounded domains. However, the following lemma claims that, if the domain satisfies [START_REF] Bandle | Existence and nonexistence of patterns on Riemannian manifolds[END_REF], any bounded minimizer of F is a multiple of ϕ.

It is a refinement of Theorem 1.7 in [START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains[END_REF]. [START_REF] Bandle | Existence and nonexistence of patterns on Riemannian manifolds[END_REF] and let u be a stable solution of [START_REF] Agmon | On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds[END_REF].

Lemma 3.1 Let Ω ⊂ R n satisfy
Let v be a C 1 (Ω) ∩ L ∞ (Ω) satisfy v(∆v + f (u)v) ≥ 0 in Ω. ( 14 
)
Consider the cut-off function introduced in (10) and assume that there exists a sequence of real positive numbers

(R n ) n≥1 diverging to +∞ such that ∂Ω χ 2 Rn ∂ ν v 2 ≤ 0, ∀n = 1, 2 . . . ( 15 
)
Then v ≡ Cϕ for some constant C ∈ R, where ϕ is a principal eigenfunction associated with λ 1 .

Proof (Lemma 3.1) We follow the method of [START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains[END_REF]. Let us set σ = v ϕ and show that σ is constant. From ( 14), we deduce σϕ (ϕ∆σ + 2∇ϕ • ∇σ + σ (∆ϕ + f (u)ϕ)) ≥ 0, a.e. in Ω.

From λ 1 ≥ 0 and the equation satisfied by ϕ, we obtain σ∇ • (ϕ 2 ∇σ) ≥ 0, a.e. in Ω.

Multiplying by χ 2 R (defined in [START_REF] Berestycki | Nonlinear scalar field equations, I. Existence of a ground state[END_REF]), integrating on Ω and using the divergence theorem, we find

0 ≤ ∂Ω χ 2 R σϕ 2 ∂ ν σ - Ω ϕ 2 ∇ χ 2 R σ • ∇σ = ∂Ω χ 2 R σϕ 2 ∂ ν σ - Ω ϕ 2 χ 2 R |∇σ| 2 -2 Ω ϕ 2 χ R σ∇χ R • ∇σ.
Since ∂ ν ϕ = 0 on ∂Ω, the boundary term reads ∂Ω χ 2 R v∂ ν v, which is nonpositive from [START_REF] Cabré | A Conjecture of De Giorgi on Symmetry for Elliptic Equations in R[END_REF] when R = R n . From Cauchy-Schwarz inequality, we deduce

Ω χ 2 Rn ϕ 2 |∇σ| 2 ≤ 2 Ω 2Rn \Ω Rn χ 2 Rn ϕ 2 |∇σ| 2 Ω v 2 |∇χ Rn | 2 , ( 16 
)
where Ω R := Ω ∩ {|x| < R}.

Recalling that χ R (x) := χ |x| R with |χ | ≤ 2, assumption (5) implies Ω v 2 |∇χ R | 2 is bounded, uniformly in R ≥ 1. (17) 
From ( 16), we deduce that Ω χ 2 Rn ϕ 2 |∇σ| 2 is uniformly bounded. Using ( 16) again, we infer that it converges to 0 as R n → ∞. At the limit, we find Ω ϕ 2 |∇σ| 2 ≤ 0. Hence ∇σ = 0, which ends the proof.

The cornerstone of the proof is that σ∇ • (ϕ 2 ∇σ) ≥ 0 implies ∇σ = 0, where σ := v ϕ . The litterature refers to this property as a Liouville property. Originally introduced in [START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains[END_REF], it has been extensively discussed (see [START_REF] Ambrosio | Entire solutions of semilinear elliptic equations in Rˆ3 and a conjecture of De Giorgi[END_REF][START_REF] Barlow | The Liouville property and a conjecture of De Giorgi[END_REF][START_REF] Gazzola | The sharp exponent for a Liouville-type theorem for an elliptic inequality[END_REF][START_REF] Ghoussoub | On a conjecture of De Giorgi and some related problems[END_REF][START_REF] Moschini | New Liouville theorems for linear second order degenerate elliptic equations in divergence form[END_REF]) and used to derive numerous results (e.g. [START_REF] Alberti | On a Long-Standing Conjecture of E. De Giorgi: Symmetry in 3D for General Nonlinearities and a Local Minimality Property[END_REF][START_REF] Berestycki | One-dimensional symmetry of bounded entire solutions of some elliptic equations[END_REF][START_REF] Cabré | A Conjecture of De Giorgi on Symmetry for Elliptic Equations in R[END_REF][START_REF] Cabré | On the stability of radial solutions of semilinear elliptic equations in all of Rˆn[END_REF][START_REF] Dancer | Stable and Finite Morse Index solutions on Rˆn or on bounded domains with small diffusion[END_REF][START_REF] Dupaigne | Stable solutions of -\Delta u = f(u) in \Rˆn[END_REF]), in particular to prove the De Giorgi's conjecture in low dimensions. Lemma 3.1 is a refinement of this property for domains with a boundary, instead of Ω = R n . This is why we need the boundary condition [START_REF] Cabré | A Conjecture of De Giorgi on Symmetry for Elliptic Equations in R[END_REF]. This is the only step where (5) is needed, and it is thus a natural question to ask if this assumption can be relaxed. In the proof, ( 5) is used to derive [START_REF] Cabre | Stable solutions to semilinear elliptic equations are smooth up to dimension 9[END_REF], thus the choice of χ R seems crucial. However, in [START_REF] Ghoussoub | On a conjecture of De Giorgi and some related problems[END_REF], the authors consider the optimal χ R by taking the capacitary test function (see e.g. [START_REF] Helms | Introduction to potential theory[END_REF]), i.e., a solution of the minimization problem inf

χ∈H 1 (R 2 ) R≤|x|≤R |∇χ(x)| 2 dx, ξ(x) = 1 if |x| ≤ R 0 if |x| ≥ R . ( 18 
)
That, in fact, does not allow to substantially relax condition [START_REF] Bandle | Existence and nonexistence of patterns on Riemannian manifolds[END_REF]. In [START_REF] Barlow | On the Liouville Property for divergence form operators[END_REF], Barlow uses a probabilistic approach to establish that the aforementioned Liouville property (and consequently Lemma 3.1) does not hold in Ω = R n , n ≥ 3. It is thus reasonable to think that condition (5) cannot be relaxed, yet this is an open question. We also cite [START_REF] Gazzola | The sharp exponent for a Liouville-type theorem for an elliptic inequality[END_REF], in which ( 5) is proved to be sharp, however, we point out that, there, the condition v ∈ L ∞ is not satisfied. Note also that, in the present work, we only apply Lemma 3.1 to functions v, which are derivatives of u, which is a stronger condition than [START_REF] Bombieri | Minimal cones and the Bernstein Problem[END_REF]. In this context, not much is known about whether (5) could be relaxed. Indeed, up to the author's knowledge, the only available counterexample is for Ω = R n , n ≥ 7 [START_REF] Pacard | Stable solutions of the Allen-Cahn equation in dimension 8 and minimal cones[END_REF][START_REF] Pino | On De Giorgi's conjecture in dimension N\ge 9[END_REF]. However, we can sometimes relax (5) under further assumptions, either on Ω, f , v, or ϕ. From a remark in [START_REF] Dupaigne | Stable solutions of -\Delta u = f(u) in \Rˆn[END_REF], if f ≥ 0, we can relax [START_REF] Bandle | Existence and nonexistence of patterns on Riemannian manifolds[END_REF] 

to sup R→+∞ |Ω∩{|x|≤R}| R 4
< +∞. We can also adapt the arguments of [START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains[END_REF][START_REF] Cabré | On the stability of radial solutions of semilinear elliptic equations in all of Rˆn[END_REF][START_REF] Moschini | New Liouville theorems for linear second order degenerate elliptic equations in divergence form[END_REF] to show that assumption (5) can be replaced by v ∈ H 1 (Ω), or v = o(|x| 1-n 2 ), or inf Ω ϕ > 0. In addition, we point out that Lemma 3.1 holds for a large class of domains satisfying sup

R→+∞ |Ω ∩ {|x| ≤ R}| R 2 ln R < +∞.
Namely, let Ω be of the form

Ω := (x, x ) ∈ R 2 × R n : x ∈ ω(x) ,
where, ∀x ∈ R n , ω(x) ⊂ R n is bounded and

sup |x|→+∞ |ω(x)| ln |x| < +∞.
Then, to show [START_REF] Cabre | Stable solutions to semilinear elliptic equations are smooth up to dimension 9[END_REF], we use the cut-off

χ R (x) =          1 if |x| ≤ R, ln R 2 -ln |x| ln R 2 -ln R if R ≤ |x| ≤ R 2 , 0 if |x| ≥ R 2 .
This cut-off was first introduced in [START_REF] Ghoussoub | On a conjecture of De Giorgi and some related problems[END_REF] as a solution of [START_REF] Caffarelli | Uniform convergence of a singular perturbation problem[END_REF] for n = 2.

Non-existence of patterns -proof of Theorem 1.5

We prove Theorem 1.5. Let u be a stable solution of (1) and consider ϕ a principal eigenfunction associated with λ 1 . As a consequence of Lemma 3.1 and Lemma 2.1, we have the following intermediate result.

Lemma 3.2 For any

ξ ∈ R n , ∇u • ξ ≡ C ξ ϕ for some constant C ξ .
Proof We assume without loss of generality that |ξ| = 1, and that ξ coincide with e 1 for (e 1 , . . . , e n ) an orthonormal basis of R n . We set

v i := ∂ xi u for i ∈ {1, • • • , n}.
Differentiating (1), we find that v i satisfies [START_REF] Bombieri | Minimal cones and the Bernstein Problem[END_REF]. Moreover, we know by assumption that the v i are bounded. Now, we show that all the v i satisfy [START_REF] Cabré | A Conjecture of De Giorgi on Symmetry for Elliptic Equations in R[END_REF]. On the one hand, since Ω is convex, Lemma 2.1 implies

n i=1 ∂Ω χ 2 R ∂ ν v 2 i = ∂Ω χ 2 R ∂ ν |∇u| 2 ≤ 0.
On the other hand, Lemma 3.1 implies in particular that for any i ∈ {1, . . . , n} we have ∂Ω χ 2 R ∂ ν v 2 i ≥ 0 for all R 1, i.e., for R large enough, all the terms of the above sum are nonnegative. As the sum is nonpositive, all the terms must be zero. Then, we apply Lemma 3.1 to conclude. Let us complete the proof of Theorem 1.5. The mapping

R n → R ξ → C ξ
is linear and therefore vanishes on a hyperplane H. Setting e ∈ S n-1 the unit vector orthogonal to H, we have ∇u = |∇u|e, hence u varies only in the direction e (in other words, u is a function of only one scalar variable).

If Ω is not straight in the direction e, there exists a point x 0 ∈ ∂Ω on which the outer normal derivative is not colinear with e. From ∂ ν u = 0 on ∂Ω, we deduce ∂ e u(x 0 ) = 0. From ϕ > 0 on Ω, we deduce ∂ e u ≡ 0, thus u is constant.

If Ω is straight in the direction e, then ∂ e u may be a nonzero multiple of ϕ. To fix ideas, we assume that e corresponds to the x 1 direction. Since v 1 ≡ C 1 ϕ, it is of constant sign, hence u is flat and monotic.

Let us now assume that u is bounded. First, note that, since u is monotonic, it has a limit z + when x 1 → +∞. Setting u n (x 1 ) = u(x 1 + n) and using classical elliptic estimates, we can extract a subsequence that C 2 loc -converges to a stable solution u ∞ of (1) (See section 4 for more details. Note also that Ω is invariant under translation in the x 1 direction). From u ∞ ≡ z + , we deduce that z + must be a stable root of f . Identically, when x 1 → -∞, u converges to a stable root of f , denoted z -.

If z + = z -, then u is constant. Let us assume z -= z + , and fix M > 0. Multiplying -u = f (u) by u and integrating on

x 1 ∈ [-M, M ] gives 1 2 u (-M ) 2 -u (M ) 2 = u(M ) u(-M ) f.
As u (±∞) = 0 (indeed, u is integrable and u is bounded), when M goes to +∞ we obtain z + z -f = 0. The proof of Theorem 1.5 is thereby complete.

Further symmetries

In this section, we establish further symmetries for patterns in unbounded domains. Namely, we shall see that patterns inherit from the domain's invariance with respect to translations and planar rotations. The results of this section are mostly classical, except for some minor modifications. We provide some proofs for completeness.

The following proposition deals with cylinders, possibly not convex, which are straight in some directions. This result is somehow already contained in [START_REF] Dancer | Stable and Finite Morse Index solutions on Rˆn or on bounded domains with small diffusion[END_REF][START_REF] Farina | Splitting Theorems, Symmetry Results and Overdetermined Problems for Riemannian Manifolds[END_REF][START_REF] Farina | Stable Solutions of Elliptic Equations on Riemannian Manifolds[END_REF][START_REF] Ghoussoub | On a conjecture of De Giorgi and some related problems[END_REF].

Proposition 3.3 Let Ω = R n × ω with ω ⊂ R m bounded
and let u be a stable solution of (1). For x ∈ Ω, we generically denote x = (x 1 , . . . , x n , x 1 , . . . , x m ).

1. If u is stable non-degenerate, then u does not depend on (x 1 , . . . , x n ).

If u is stable and n

= 1, then u is monotonic with respect to x 1 .
3. If u is stable and n = 2, the dependance of u with respect to (x 1 , x 2 ) occurs through a single scalar variable x 0 ∈ R. Moreover, u is monotonic with respect to x 0 .

Proof (Proposition 3.3) We set v i := ∂ xi u for i ∈ {1, . . . , n}, which are bounded by assumption. Differentiating (1), we find that v i satisfies [START_REF] Berestycki | One-dimensional symmetry of bounded entire solutions of some elliptic equations[END_REF]. We can then proceed as in the proof of Theorem 1.4 to show that (11) holds, namely

λ 1 Ω χ 2 R v 2 i ≤ F (χ R v i ) ≤ 1 2 ∂Ω χ 2 R ∂ ν v 2 i + Ω |∇χ R | 2 v 2 i ,
where χ R is the cut-off function introducedin [START_REF] Berestycki | Nonlinear scalar field equations, I. Existence of a ground state[END_REF]. Since Ω is straight in the directions x i , we have ∂ ν v i = 0 on ∂Ω. Therefore we have

λ 1 Ω χ 2 R v 2 i ≤ Ω |∇χ R | 2 v 2 i
and we can conclude as in the proof of Theorem 1.4 (in particular using [START_REF] Berestycki | Reaction-diffusion equations for population dynamics with forced speed II -Cylindrical-type domains[END_REF]) that if v i ≡ 0 then λ 1 ≤ 0. It proves the first astatement. Next, if n ≤ 2 then the domain satisfies [START_REF] Bandle | Existence and nonexistence of patterns on Riemannian manifolds[END_REF]. Since v i satisfies ( 14) and ( 15), we deduce from Lemma 3.1 that v i is a multiple of ϕ. The second assertion follows from the fact that ϕ > 0. To prove the last statement, note that, as in the proof of Theorem 1.5, there exists a direction ξ ∈ S n-1 for which ∇u • ξ ≡ 0.

We are now interested in cylinders which are invariant with respect to a planar rotation and shall see that patterns inherit this symmetry. This property was initially stated in [START_REF] Matano | Asymptotic behavior and stability of solutions of semilinear diffusion equations[END_REF] for bounded domains, and has been extended to manifolds [START_REF] Bandle | Existence and nonexistence of patterns on Riemannian manifolds[END_REF][START_REF] Farina | Splitting Theorems, Symmetry Results and Overdetermined Problems for Riemannian Manifolds[END_REF][START_REF] Farina | Stable Solutions of Elliptic Equations on Riemannian Manifolds[END_REF][START_REF] Wolansky | Instability results for reaction diffusion equations over surfaces of revolutions[END_REF][START_REF] Jimbo | On a semilinear diffusion equation on a Riemannian manifold and its stable equilibrium solutions[END_REF][START_REF] Lopes | Radial symmetry of minimizers for some translation and -rotation invariant functionals[END_REF][START_REF] Punzo | The existence of patterns on surfaces of revolution without boundary[END_REF].

Definition 3.4 A domain Ω ⊂ R n+2 is said to be θ-invariant if Ω = Ω × [0, 2π), where Ω ⊂ R n × R + in some cylindrical coordinates (x, r, θ) ∈ R n × R + × [0, 2π).
When considering a θ-invariant domain Ω, we further assume that the radial section is uniformly bounded: sup

(x,r)∈Ω r < +∞. ( 19 
)
In particular, it guarantees that if u is a solution of (1) in Ω, then ∂ θ u is bounded. Note that this assumption is strictly needed, since planar patterns may exist in R 2 .

Lemma 4.3

We can extend u to a uniformly C |x -y| > 0.

The extended function, denoted ũ, satsfies an elliptic equation on U for which classical global C 2,α estimate hold (see e.g. Theorem 6.30 in [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]). This procedure is classical but technical, see for instance Appendix A in [START_REF] Berestycki | Reaction-diffusion equations for population dynamics with forced speed II -Cylindrical-type domains[END_REF]. From this, we infer global C 2,α estimates for ũ in Ω. Finally, choosing any open set Ũ such that Ω ⊂ Ũ ⊂ U , we can define ũ ∈ C 2,α (R n \Ω) which coincides with ũ in Ũ and is identically 0 in R N \U .

We consider the ω-limit set

Σ u := y∈R {u[y ] : y ≥ y} ⊂ L ∞ loc (R N ), ( 20 
)
where

u[y] : (x 1 , . . . , x N ) → u(x 1 + y, . . . , x N ), ∀y ∈ R.
The topological closure should be understood in the L ∞ loc sense. The key point is the following observation, which states that a solution is "more stable at infinity".

Lemma 4.4 Let u ∞ ∈ Σ u . It is a solution of (1) in Ω ∞ . Moreover, λ 1 (u, Ω) ≤ λ 1 (u ∞ , Ω ∞ ).
Proof Let u ∞ ∈ Σ u . There exists a sequence y n → +∞ such that u[y n ] → u ∞ . As a consequence of the locally uniform C 2,α estimates in Ω (see the proof of Lemma 4.3), we deduce that the convergence 

u[y n ] → u ∞ occurs in C 2 loc . Thus, u ∞ is a solution of (1) in Ω ∞ . Consider ϕ ∈ C 2 (Ω)
-∆ϕ n -f (u[y n ])ϕ n = λ 1 (u, Ω)ϕ n in Ω[y n ], ∂ ν ϕ n = 0 on ∂Ω[y n ].
We can extend by reflexion ϕ n on a neighborhood of Ω[y n ] on which it satisfies an elliptic equation, thus can apply the Harnack inequality in Ω ∞ to infer that ϕ n is locally bounded, uniformly in n (for more details, see the proof of Proposition 1 p.30 in [START_REF] Berestycki | Reaction-diffusion equations for population dynamics with forced speed II -Cylindrical-type domains[END_REF]). Thanks to classical elliptic estimates, we can extract a subsequence (still denoted n) such that ϕ n converges in

C 2 loc (Ω ∞ ) to some ϕ ∞ . Then, ϕ ∞ > 0 in Ω ∞ and (∆ + f (u ∞ ) + λ 1 (u, Ω))ϕ ∞ ≤ 0. From Corollary A.3, we deduce λ 1 (u ∞ , Ω ∞ ) ≥ λ 1 (u, Ω).
We also need the following general lemma, which is adapted from a classical result (see, for example, Theorem 2.9 in [START_REF] Matano | Asymptotic behavior and stability of solutions of semilinear diffusion equations[END_REF]).

Lemma 4.5 Σ u is a connected set in the L ∞ loc (R n ) topology.
Proof By contradiction, assume there exists

Y ⊂ Σ u both open and closed, Y = ∅ and Y = Σ u . Note that Σ u is a compact subset of L ∞ loc (R n ), thus Y is compact. As, in addition, Σ u \Y is a closed set, there exists a an open set V ⊂ L ∞ loc (R n ) and a closed set F ⊂ L ∞ loc (R n ) such that Y V F and Y = Σ u ∩ F . Since Y = ∅ and Y = Σ u ,
there exists a real sequence (y n ) n≥0 such that y n → +∞ and, for all integer n ≥ 0,

u[y 2n ] ∈ V, u[y 2n+1 ] ∈ F.
By continuity of the mapping y → u[y], we deduce that, for all n ≥ 0, there exists ỹn

∈ [y 2n , y 2n+1 ] such that u[ỹ n ] ∈ F \V.
As the sequence u[ỹ n ] is uniformly C 2,α , it converges up to an extraction to some u ∞ ∈ Σ u . But we also have u ∞ ∈ F \V , thus u ∞ ∈ Y and u ∞ ∈ Y : contradiction.

We are now ready to prove the main results of this section.

Proof (Theorem 1.6 and Theorem 4.1) Let u ∞ ∈ Σ u . From Lemma 4.4, u ∞ is a stable solution of [START_REF] Agmon | On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds[END_REF] in Ω ∞ , which is convex. From Theorem 1.4 and Theorem 1.5, we deduce that u ∞ is constant. We have

Σ u ⊂ Z := {z ∈ R : f (z) = 0, f (z) ≤ 0} .
Assume f has only isolated zeros. Then Σ u is a discrete set, and is also connected (Lemma 4.5). Hence, it is a singleton, which achieves the proof.

Assume instead that u is stable non-degenerate, then we have

Σ u ⊂ Z := {z ∈ Z : f (z) < 0} ,
which is a discrete set, and we conclude as above.

Remark 4.6

The proof of Theorem 1.6 and Theorem 4.1 and also the proof of the other asymptotic symmetry properties presented in the next section can be adapted to the case where u is only assumed to be stable outside a compact K ⊂ Ω, i.e., when the condition on the sign of λ 1 is replaced by a condition on the sign of

λ 1,K = inf ψ∈C 1 0 (Ω\K) ψ L 2 =1 Ω\K |∇ψ| 2 -f (u)ψ 2 .
To adapt the proofs to this case, simply note that if Ω converges to Ω ∞ , then so does Ω \ K.

Further asymptotic symmetries

In this section, we establish further asymptotic symmetries for patterns when the domain is asymptotically straight in one direction or invariant with respect to a planar rotation. We define what we mean for a domain to satisfy a geometrical property asymptotically. Note that we allow the domain not to converge to a limiting domain (in the sense of Definition 4.2).

Definition 4.7

Let Ω ⊂ R n be a uniformly C 2,α domain. For any real sequence y n → +∞, Ω[y n ] converges (up to an extraction) to some Ω ∞ ⊂ R n (in the sense of Definition 4.2). We define the set of all possible limiting domains

Γ Ω := {Ω ∞ ⊂ R n : ∃y n → +∞, Ω[y n ] converges to Ω ∞ } .
We say that a domain Ω satisfies a geometrical property asymptotically if every Ω ∞ ∈ Γ Ω satisfies this property.

Proposition 4.8 Assume that Ω is asymptotically straight in a direction e ∈ S N . Let u be a stable solution of (1). If u is stable non-degenerate, then ∂ e u converges to 0, C 1 loc -uniformly when x 1 → +∞.

Proof Let y n → +∞. Up to an extraction (still denoted y n ), u[y n ] converges to some u ∞ ∈ Σ u in C 2,α loc and Ω[y n ] converges to some Ω ∞ ∈ Γ Ω . From Lemma 4.4, we deduce that u ∞ is a stable non-degenerate solution of (1) in Ω ∞ .
As Ω ∞ is straight in the direction e, using Proposition 3.3 we deduce that ∂ e u ∞ ≡ 0, hence the result.

Corollary 1.7 follows from the previous result in the particular case when the direction e coincides with that of x 1 .

Proof (Corollary 1.7) We apply the same method as in the proof of Theorem 1.6, using Proposition 3.3 and the fact that stable non-degenerate solutions are isolated among solutions (Lemma C.1).

Note that, if we assume that the set of stable solutions of ( 6) is discrete, then Corollary 1.7 extends to possibly degenerate patterns.

We now turn to the case of a domain which is asymptotically invariant with respect to a planar rotation. Let u be a stable solution of (1). Assume either that u is stable non-degenerate, or that Ω satisfies [START_REF] Bandle | Existence and nonexistence of patterns on Riemannian manifolds[END_REF]. Then ∂ θ u → 0, C 1 loc -uniformly when x 1 → +∞.

Proof We proceed as in the proof of Proposition 4.8 and we use Proposition 3.5 instead of Proposition 3.3.

A Generalized principal eigenvalue

This section is devoted to defining the generalized principal eigenvalue of a linear operator, and to state some properties. The term generalized is used when dealing with unbounded domains, in which there may not exist eigenfunctions in H 1 . Here, we focus on the essential aspects and omit the details: the content of this section will be developed in a forthcoming paper [START_REF] Nordmann | The Maximum Principle for general boundary conditions in unbounded domains[END_REF] A.

Definition

We generally consider a smooth domain Ω and a linear elliptic operator

Lu(x) := div (A(x) • ∇u(x)) + B(x) • ∇u(x) + c(x)u(x), ∀x ∈ Ω, (21) 
where, c : Ω → R, B : Ω →∈ R n , and

A : Ω → R n×n such that A(x) is positive-definite (uniformly in x ∈ Ω).
For simplicity, we assume that the coefficients are smooth. We associate the operator L with Neumann boundary conditions

Bu(x) := ∂ ν A u(x) = 0, ∀x ∈ ∂Ω,
with ν the outer normal derivative and ∂ ν A u := ν • A • ∇u the co-normal outer derivative of u associated with A. We focus here on Neumann boundary conditions, but we keep the notation B to emphasize that our statements can be adapted to other boundary conditions. We consider the following eigenproblem:

-Lψ = λψ in Ω,

Bψ = 0 on ∂Ω. ( 22 
)
If the domain is bounded, the Krein-Rutman theory gives the existence of an eigenvalue λ 1 to [START_REF] Giorgi | Una estensione del teorema di Bernstein[END_REF], called the principal eigenvalue. This eigenvalue is real and minimizes the real part of the spectrum. In addition, λ 1 is simple, and is the only eigenvalue associated with a positive eigenfunction (called principal eigenfunction).

We let the reader refer to [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF][START_REF] Protter | Maximum Principles in Differential Equations[END_REF] for more details. We point out that a fundamental property is that the validity of the Maximum Principle for the operator (L, B) is equivalent to the condition λ 1 > 0.

If the domain is unbounded, Krein-Rutman's theory cannot be applied because the elliptic operator does not have compact resolvents. However, we can still define the notion of principal eigenvalue. Following the approach of [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF][START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF][START_REF] Rossi | Stability analysis for semilinear parabolic problems in general unbounded domains[END_REF], we give the following definitions.

Definition A.1 • A function u ∈ C 2 (Ω) is said to be a subsolution (resp. supersolution) if -Lu ≤ 0 (resp. ≥ 0) in Ω,
Bu ≤ 0 (resp. ≥ 0) on ∂Ω.

• We define the generalized principal eigenvalue of (L, B) as

λ 1 := sup {λ ∈ R : (L + λ, B) admits a positive supersolution} . ( 23 
)
This definition coincides with the classical definition in the case of a bounded domain, and coincide with the definition (2) when L is self-adjoint. We are about to see that λ 1 admits a positive eigenfunction. However, λ 1 may not be simple.

A.2 Existence of a positive eigenfunction

A remarkable property is that, even in unbounded domains, λ 1 is associated with a positive eigenfunction.

Proposition A. [START_REF] Alberti | On a Long-Standing Conjecture of E. De Giorgi: Symmetry in 3D for General Nonlinearities and a Local Minimality Property[END_REF] Let Ω ⊂ R n be a smooth (possibly unbounded) domain and L an elliptic operator as in [START_REF] Dancer | Stable and Finite Morse Index solutions on Rˆn or on bounded domains with small diffusion[END_REF]. There exists ϕ ∈ C 2 (Ω) which is positive on Ω and satisfies

-Lϕ = λ 1 ϕ in Ω, Bϕ = 0 on ∂Ω. ( 24 
)
We refer to ϕ as a principal eigenfunction of (L, B).

Proof The proof follows closely [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF] (see the proofs of Theorem 3.1 and Proposition 1). For any R > 0, let

D R ⊂ R n be a smooth connected open set such that B R ⊂ D R ⊂ B 2R
, with B R the ball of radius R. We also choose D R to be increasing with R, and to be such that From the results of Liberman [START_REF] Lieberman | Mixed boundary value problems for elliptic and parabolic differential equations of second order[END_REF], we know that all classical results (Schauder estimate, Maximum Principle, solvability, etc.) hold from the mixed boundary value problem above. As Ω R is bounded, the weak Krein-Rutman theorem (e.g., Corollary 2.2 in [START_REF] Nussbaum | Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem[END_REF]) provides a pair of principal eigenelements (λ R 1 , ϕ R ), where ϕ R ∈ W 2,n . From Hopf's lemma, we have ϕ > 0 on Ω. We choose the normalization ϕ(0) = 1. Note that we impose Dirichlet boundary conditions on Ω ∩ ∂D R to ensure the decreasing monotonicity of R → λ R 1 . Hence, λ R 1 converge to some λ 1 when R → +∞. Now, fix a compact 0 ∈ K ⊂ Ω and assume that R is large enough so that K ⊂ Ω R \D R . From Theorem 3.3 in [START_REF] Lieberman | Local estimates for subsolutions and supersolutions of oblique derivative problems for general second order elliptic equations[END_REF] and Theorem 4.3 in [START_REF] Lieberman | Pointwise estimates for oblique derivative problems in nonsmooth domains[END_REF], we derive a Harnack estimate, that is,

∂D R ∩ ∂Ω is a C 2 (n -2)-dimensional manifold. Set Ω R := Ω ∩ D R
sup K ϕ R ≤ C inf K ϕ R
with a constant C independent of R. From ϕ(0) = 1, we deduce that ϕ R is bounded in K, uniformly in R. From classical Schauder estimates, we deduce that ϕ R is C 2,α (K), uniformly in R. Up to extraction of a subsequence, ϕ R converges to some ϕ in C 2 (K). From a diagonal argument, we are provided with ϕ ∈ C 2 (Ω) which satisfies

-Lϕ = λ 1 ϕ in Ω, Bϕ = 0 on ∂Ω,
and ϕ > 0 on Ω. Consequently λ 1 = λ 1 , which achieves the proof.

As a direct consequence, Corollary A. [START_REF] Alikakos | On the singular limit in a phase field model of phase transitions[END_REF] There exists a positive supersolution of (L, B) in Ω if and only if λ 1 ≥ 0.

A.3 The Rayleigh-Ritz variational formula

In the self-adjoint case, i.e., if B ≡ 0 in [START_REF] Dancer | Stable and Finite Morse Index solutions on Rˆn or on bounded domains with small diffusion[END_REF], the principal eigenvalue can be expressed through the Rayleigh-Ritz variational formula. This result is classical in bounded domains.

Proposition A. [START_REF] Ambrosio | Entire solutions of semilinear elliptic equations in Rˆ3 and a conjecture of De Giorgi[END_REF] Assume Ω is smooth (possibly unbounded) and that L is a self-adjoint elliptic operator.

For λ 1 defined in [START_REF] Del Pino | A counterexample to a conjecture by De Giorgi in large dimensions[END_REF], we have

λ 1 = inf ψ∈H 1 (Ω) ψ L 2 =1 F(ψ) := inf ψ∈H 1 (Ω) ψ L 2 =1 Ω |∇ψ| 2 A -cψ 2 , ( 25 
)
with |∇ψ| 2 A := ∇ψ • A • ∇ψ.
Note that since the coefficient c is bounded, from the dominated convergence theorem we deduce that the infimum in ( 25) can be taken equivalently on test functions ψ ∈ C 1 0 (Ω).

Proof From the dominated convergence theorem and classical density results, it is equivalent to take the infimum on compactly supported smooth test functions in [START_REF] Dupaigne | Stable solutions of -\Delta u = f(u) in \Rˆn[END_REF], namely

λ 1 = inf ψ∈C 1 c (Ω) ψ L 2 =1 F(ψ),
where C 1 c (Ω) is the space of continuously differentiable functions with compact support in Ω. The remaining of the proof is classical and can be adapted from the proof of Proposition 2.2 (iv) in [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF] (which itself relies on [START_REF] Agmon | On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds[END_REF][START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF]).

A.4 The Maximum Principle

We give, as a complement, some results on the link between the sign of λ 1 and the validity of the Maximum Principle in unbounded domains. The proofs of the following statements are underlying in the content of the present article, and we leave the details to a forthcoming note [START_REF] Nordmann | The Maximum Principle for general boundary conditions in unbounded domains[END_REF]. Definition A. [START_REF] Bandle | Existence and nonexistence of patterns on Riemannian manifolds[END_REF] We say that (L, B) satisfies the Maximum Principle if any subsolution with finite supremum is nonpositive.

For simplicity, we focus on self-adjoint operators, that is, we assume B ≡ 0 in [START_REF] Dancer | Stable and Finite Morse Index solutions on Rˆn or on bounded domains with small diffusion[END_REF]. We can then express λ 1 through the Rayleigh-Ritz variational formula [START_REF] Dupaigne | Stable solutions of -\Delta u = f(u) in \Rˆn[END_REF].

The first result states that the (strict) sign of λ 1 is equivalent to the validity of the Maximum Principle.

Proposition A.6 Assume L is self-adjoint.

1. If λ 1 > 0, (L, B) satisfies the Maximum Principle.

2. If λ 1 < 0, (L, B) does not satisfy the Maximum Principle.

No general answer holds for the degenerate case λ 1 = 0. Nevertheless, the following proposition states the validity of what could be called a Critical Maximum Principle when λ 1 ≥ 0 if the domain satisfies a growth condition at infinity.

Proposition A.7 Suppose that L is self-adjoint and that the domain Ω satisfies [START_REF] Bandle | Existence and nonexistence of patterns on Riemannian manifolds[END_REF]. Let ϕ be an eigenfunction associated with λ 1 . If λ 1 ≥ 0, then a subsolution with finite supremum is either nonpositive or a multiple of ϕ.

A first consequence of this result is the simplicity of λ 1 if it admits a bounded eigenfunction.

Corollary A.8 Under the same conditions, if λ 1 admits a bounded eigenfunction, then λ 1 is simple.

The simplicity of λ 1 should be understood as follows: if ψ ∈ C 2 (Ω) is a solution of ( 24), then it is a scalar multiple of ϕ.

We also give the following necessary and sufficient condition for the validity of the Maximum Principle in the critical case λ 1 = 0. Corollary A.9 Under the same conditions, further assume λ 1 = 0, and let ϕ be an associated eigenfunction. Then, (L, B) satisfies the Maximum Principle if and only if ϕ is not bounded.

B On the different definitions of stability

When considering stability from a dynamical point of view, one can come up with the two following definitions.

Definition B.1

A solution u of (1) is said to be dynamically stable if, given any ε > 0, there exists δ 0 > 0 such that for any v 0

(x) with v 0 -u L ∞ ≤ δ 0 , we have v(t, •) -u(•) L ∞ ≤ ε, ∀t > 0,
where v(t, x) is the solution of the evolution problem

     ∂ t v(t, x) -∆v(t, x) = f (v(t, x)) ∀x ∈ Ω, ∀t > 0, ∂ ν v(t, x) = 0 ∀x ∈ ∂Ω, ∀t > 0, v(t = 0, x) = v 0 (x) ∀x ∈ Ω. ( 26 
)
Definition B.2 A solution u of (1) is said to be asymptotically stable if there exists δ 0 > 0 such that for any

v 0 (x) with v 0 -u L ∞ ≤ δ 0 , we have v(t, •) -u(•) L ∞ → 0, when t → +∞,
where v(t, x) is the solution of [START_REF] Farina | Splitting Theorems, Symmetry Results and Overdetermined Problems for Riemannian Manifolds[END_REF].

The following proposition clarifies the hierarchy of the different definitions of stability.

Proposition B.3

Let u be a solution of (1) and λ 1 from (2). The following implications hold u asymptotically stable ⇒ u dynamically stable ⇒ λ 1 ≥ 0.

Proof The first implication is trivial. Let us show the second implication by contradiction: assume λ 1 < 0 and that u is dynamically stable. For R > 0, define the truncated domain Ω R := Ω ∩ {|x| < R} and consider the following mixed-boundary eigenvalue problem:

find λ 1,R ∈ R and ϕ R ∈ C 2 (Ω R ) satisfying      -∆ϕ R -f (u)ϕ R = λ 1,R ϕ R in Ω R , ∂ ν ϕ R = 0 on ∂Ω ∩ {|x| < R}, ϕ R = 0 on Ω ∩ {|x| = R}. ( 27 
)
From a recent result of Rossi [52, Theorem 2.1], we know that, for almost every R > 0, the eigenproblem (27) admits a unique eigenpair (λ 1,R , ϕ R ) such that ϕ R > 0 on Ω ∩ {|x| < R}. Moreover, R → λ 1,R is strictly decreasing and lim R→+∞ λ 1,R = λ 1 . Let us fix R > 0 large enough such that λ 1,R < 0. We also choose the normalization ϕ R L ∞ = 1. Let us consider a parameter ε > 0 small enough such that

η ε := sup ũ∈[inf Ω R u,sup Ω R u] |h|≤ε f (ũ) - f (ũ + h) -f (ũ) h < -λ 1,R , (28) 
and δ 0 given by Definition B.1. Consider v the solution of the parabolic equation ( 26) with initial datum v 0 := u + δ 0 ϕ R , and set h(t, x) = v(t, x) -u(x). On the one hand, since v 0 -u L ∞ ≤ δ 0 , the stability assumption implies h(t, •) L ∞ ≤ ε for all time t ≥ 0. On the other hand, h satisfies

     ∂ t h(t, x) -∆h(t, x) ≥ (f (u(x)) -η ε ) h(t, x) in Ω R , ∂ ν h = 0 on ∂Ω ∩ {|x| < R}, h ≥ 0 on Ω ∩ {|x| = R}
From the parabolic comparison principle, we infer h(t, x) ≥ h(t, x) := e -(λ1+ηε)t δ 0 ϕ R (x) for all t ≥ 0 and x ∈ Ω R . Using that λ 1 + η δ < 0, we deduce that h(t, •) L ∞ diverges to +∞ when t becomes large: contradiction.

Remark B.4

Note that, in the proof, the perturbation δ 0 ϕ R has a compact support in Ω and an arbitrarily small L ∞ norm. Thus, if λ 1 < 0 then (26) drives u + h away from u for any h which is positive or negative on Ω R if R is large enough.

One can ask whether the following implication holds:

λ 1 > 0 ⇒ u asymptotically stable. ( 29 
)
This implication is classical when the domain is bounded (see Proposition 1.4.1 in [START_REF] Dupaigne | Stable Solutions of Elliptic Partial Differential Equations[END_REF]), but it is not clear whether it extends to unbounded domains.

Question 2 Does (29) hold in unbounded domains ?

We think that, in general, the answer is negative. Nevertheless, as a consequence of the results of the present paper, we give a positive answer for unbounded convex domains.

Proposition B. [START_REF] Bandle | Existence and nonexistence of patterns on Riemannian manifolds[END_REF] Let Ω ⊂ R n be a smooth convex domain (possibly unbounded) and u be a solution of [START_REF] Agmon | On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds[END_REF]. Then λ 1 > 0 ⇒ u asymptotically stable ⇒ u dynamically stable ⇒ λ 1 ≥ 0.

Proof From Proposition B.3, we only have to show the first implication. Assume λ 1 > 0. We deduce from Theorem 1.4 that u is constant. Thus λ 1 = -f (u) and ϕ is constant. We choose ε small enough such that η ε ∈ (0, λ1 2 ) with η ε defined in [START_REF] Farina | The state of the art for a conjecture of De Giorgi and related problems[END_REF]. Let v 0 be as in Definition B.2 (we use the same notations). We set T := sup{t > 0 : h(t, •) L ∞ ≤ ε}. By continuity and the choice of v 0 , we know that T > 0. We have ∂ t h(t, x) -∆h(t, x) ≤ (f (u) + η ε ) h(t, x) ∀t ∈ (0, T ), x ∈ Ω, ∂ ν h(t, x) = 0 ∀t ∈ (0, T ), x ∈ ∂Ω.

From f (u) + η ε ≤ -λ1 2 and the parabolic comparison principle, we obtain h(t, •) L ∞ ≤ εe -λ 1 2 t , for all t ∈ (0, T ). We deduce T = +∞ and h(t, •) L ∞ → 0 when t → +∞, thus u is asymptotically stable.

C Isolation of stable solutions

We give a brief discussion on the isolation of stable solutions of (1) in the set of all solutions. Note that this question is crucial in the proof of Theorem 1.6 and Theorem 4.1, since the key point is to show that Σ u is a discrete set. When considering the L ∞ topology, we have the following.

Lemma C.1

Let Ω ⊂ R n be a smooth domain (possibly unbounded), and denote S the set of solutions of (1) in Ω. Let u ∈ S be either stable non-degenerate, or unstable non-degenerate (i.e. λ 1 < 0). Then, u is isolated in S for the L ∞ (Ω) topology. This result is essentially classical, at least for bounded domains. We give a proof at the end of the section.

Note that, in general, this result fails for L ∞ loc topology. For example, consider the Allen-Cahn equation in R, -u = u(1 -u 2 ). This equation admits an explicit solution u : x → tanh x √ 2 which is stable (degenerate). On the one hand, the family of the translated solutions u a (•) = u(• -a) converges to 0 when a → +∞ in the L ∞ loc topology. On the other hand, 0 is a stable non-degenerate solution (because f (0) < 0). One could argue that the above counterexample relies on the fact that the nonlinearity is balanced, that is, 1 0 f = 0 with f (u) := u(1 -u)(u -1 /2). However, one can build similar counterexamples for unbalanced nonlinearities by considering a ground state (which has been proved to exist in most cases, see, e.g., [START_REF] Berestycki | Nonlinear scalar field equations, I. Existence of a ground state[END_REF]).

In an attempt to extend the results of section 4, we address the following question. Question 3 Is Σ u from (20) always a singleton when u is stable non-degenerate?

We think the answer is negative; yet, we are not able to provide a counterexample.

Proof (Lemma C.1) Assume that there exists u k ∈ S, u k+1 ≡ u k , a sequence which converges to u, and let us show that λ 1 = 0. We set v k := u k+1 -u k . For all k, u k is a solution of (1) in Ω, thus

-∆v k -c k (x)v k = 0 in Ω, ∂ ν v k = 0 on ∂Ω, ( 30 
)
where c k (x) := f (u k+1 (x)) -f (u k (x)) u k+1 (x) -u k (x) .

Since f is C 1,α and u k+1 -u k is bounded, c k (x) converges uniformly to f (u(x)) when k → +∞. Formally, we have

F v k v k L 2 ≤ f (u) -c k ∞ -→ k→0 0,
(with F from (2)) which contradicts the fact that u is stable non-degenerate. However, the former calculation is not licit when Ω is unbounded. To make it rigorous, we use the cut-off function χ R defined in [START_REF] Berestycki | Nonlinear scalar field equations, I. Existence of a ground state[END_REF]. Multiplying [START_REF] Ghoussoub | On a conjecture of De Giorgi and some related problems[END_REF] by v k χ 2 R , integrating on Ω, using the divergence theorem and the boundary condition in [START_REF] Ghoussoub | On a conjecture of De Giorgi and some related problems[END_REF] we find

F χ R v k χ R v k L 2 = Ω χ 2 R v 2 k (c k -f (u)) Ω χ 2 R v 2 k + Ω |∇χ R | 2 v 2 k Ω χ 2 R v 2 k ≤ c k -f (u) L ∞ (Ω R ) + 4 α k,R ,
where

C k (R) := Ω R v 2 k , α k,R := C k (2R) R 2 C k (R) .
On the one hand, in the proof of Theorem 1.4, we show that, for fixed k ≥ 0, lim inf R→+∞ α k,R ≤ 0. On the other hand, since c k -f (u) L ∞ (Ω R ) goes to 0 when k → +∞, uniformly in R, we deduce that F can be made arbitrarily small. It implies λ 1 ≤ 0. The reverse inequality λ 1 ≥ 0 can be proved with the same method, which achieves the proof.
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  and consider the eigenvalue problem with mixed boundary conditions -Lψ = λψ a.e. in Ω R , Bψ = 0 a.e. on ∂Ω ∩ D R , ψ = 0 a.e on Ω ∩ ∂D R .

  2,α function (still denoted u) which is defined in R n , coincides with u on Ω, and is identically 0 in R n \U , U being a neighborhood of Ω. Proof As u satisfies Neumann boundary conditions, we can extend it by reflexion on an open set U ⊃ Ω. Note that, since the domain is uniformly C 2,α , we can choose U such that

	inf
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If the variant of De Giorgi conjecture were to be true in dimension n = 8, the method of Ambrosio and Cabré[START_REF] Ambrosio | Entire solutions of semilinear elliptic equations in Rˆ3 and a conjecture of De Giorgi[END_REF] would imply that De Giorgi conjecture holds in dimension n = 9 which is impossible from the result of del Pino, Kowalczyk and Wei[START_REF] Del Pino | A counterexample to a conjecture by De Giorgi in large dimensions[END_REF]. See also[START_REF] Pacard | Stable solutions of the Allen-Cahn equation in dimension 8 and minimal cones[END_REF].
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Proposition 3. [START_REF] Bandle | Existence and nonexistence of patterns on Riemannian manifolds[END_REF] Let Ω be a θ-invariant domain which satisfies [START_REF] Caffarelli | Phase transitions: Uniform regularity of the intermediate layers[END_REF] and u be a stable solution of [START_REF] Agmon | On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds[END_REF]. Assume that [START_REF] Bandle | Existence and nonexistence of patterns on Riemannian manifolds[END_REF] holds or that u is stable non-degenerate. Then ∂ θ u = 0.

Proof We set v := ∂ θ u. Note that, in a Cartesian system of coordinates

We also know from [START_REF] Caffarelli | Phase transitions: Uniform regularity of the intermediate layers[END_REF] that v is bounded. Differentiating (1), we find that v satisfies [START_REF] Berestycki | One-dimensional symmetry of bounded entire solutions of some elliptic equations[END_REF]. Moreover, as Ω is θ-invariant, we have ∂ ν ∂ θ u = 0 on ∂Ω. We can therefore proceed as in the proof of Theorem 1.4 to prove that if v ≡ 0 then λ 1 ≤ 0. It completes the proof for the case where u is stable non-degenerate.

Assume now that (5) holds. Since v satisfies ( 14) and ( 15), Lemma 3.

Therefore v ≡ 0, which completes the proof. [START_REF] Matano | Asymptotic behavior and stability of solutions of semilinear diffusion equations[END_REF], since ∂ θ u = 0, then w := ∂ r u satisfies

Remark 3.6 As noticed by Matano

and w satisfies [START_REF] Bombieri | Minimal cones and the Bernstein Problem[END_REF]. Therefore, if we further assume that Ω is convex, then Theorem 1.4 and Theorem 1.5 apply. It proves the non-existence of patterns in some non-convex domains, such as rings or torus. Similar strategies and refined results can be found in the work of Alikakos and Bates [START_REF] Alikakos | On the singular limit in a phase field model of phase transitions[END_REF]. In this work, the authors investigate in particular the existence of patterns when the equation features a radial source term, the domain is a ball or an annulus, and the reaction term is multiplied by a large factor ε -1 with ε 1.

Asymptotic symmetries

In this section, we establish asymptotic symmetries for patterns. We prove Theorem 1.6 and also the following analogous result for possibly degenerate patterns.

Theorem 4.1 Under the same assumptions as in Theorem 1.6, but with u a bounded pattern which is possibly degenerate. Suppose that the stable roots of f , denoted (z i ), are isolated, and that zj zi f = 0, for i = j. Let us further assume that the limiting domain Ω ∞ satisfies [START_REF] Bandle | Existence and nonexistence of patterns on Riemannian manifolds[END_REF]. Then, u(x 1 , •) converges C 2 loc to a stable root of f when x 1 → +∞.

In section 4.2, we also adapt the symmetry results of 4.2 when the domain is asymptotically invariant under a translation or a rotation.

First, let us give a precise definition of the convergence of a domain.

Definition 4.2

Let Ω ⊂ R n be a uniformly smooth domain. For any y ∈ R, we define the translated domains (on the x 1 -axis)

We say that Ω converges to Ω ∞ ⊂ R n if the boundary of Ω[y] converges to that of Ω ∞ when y → +∞ in the C 2,α loc topology.

Convergence to a constant -proof of Theorem 1.6 and Theorem 4.1

Assume Ω ⊂ R n is uniformly smooth and converges to a convex domain Ω ∞ ⊂ R n . Let u be a solution of [START_REF] Agmon | On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds[END_REF]. For technical reasons, we need to extend u in all R n .