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Abstract—In some applications, blind source separation can be
performed by computing an approximate block-term tensor de-
composition (BTD), under much milder constraints than matrix-
based techniques. However, choosing the BTD model structure
(i.e., the number of blocks and their ranks) is a difficult problem,
and the standard least-squares formulation can be ill-posed.
This paper proposes an alternating group lasso algorithm to
compute approximate low-rank BTDs. It solves, in a provably
convergent manner, a well-posed mixed-norm regularized tensor
approximation problem which allows jointly estimating the model
parameters and its structure. A variant is also put forward
for dealing with linearly constrained blocks, motivated by the
problem of blind separation of sums of complex exponentials,
which can be cast as a low-rank Hankel-structured block-term
tensor approximation problem. An experimental comparison with
a standard nonlinear least-squares algorithm on synthetic tensor
data indicates that the proposed algorithm is much more robust
with respect to initialization. We also apply the constrained
variant to the extraction of atrial activity from semi-synthetic and
real-world electrocardiogram recordings during atrial fibrillation
episodes. Our results show its ability to consistently select an
adequate structure and to extract multiple signals which can be
physiologically interpreted as atrial fibrillation patterns.

Index Terms—Tensors, block term decomposition, group lasso,
structured low-rank approximation, atrial fibrillation.

I. INTRODUCTION

RECORDED signals in biomedical applications, such as
electroencephalography [1] and electrocardiography [2],

[3], [4], [5] can be modeled as instantaneous unknown linear
mixtures of R sources. To separate them, the unknown sources
are assumed to be statistically independent and orthogonal,
in independent component analysis (ICA) and principal com-
ponent analysis (PCA), respectively. Although this renders
the underlying blind source separation (BSS) well-posed,
such stringent assumptions may lack physiological grounds,
hindering results interpretation. A less constraining approach
is to assume that sources can be approximated by sums of
complex exponentials (SCE), which can model narrowband
and transient signals that can be linked to specific clinical
conditions. This leads to an identifiable low-rank matrix fac-
torization involving a Vandermonde matrix [6], but the total
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number of exponentials that can be identified by this matrix
approach is bounded by the number of sensors.

Alternatively, by forming a matrix with shifted versions
of each observed signal (e.g., each channel output) and by
stacking these matrices in a third-order tensor, a process
called “Hankelization,” BSS of SCE signals can be cast
as an approximate block-term tensor decomposition (BTD)
problem with Hankel-structured blocks [7]. Each SCE source
contributes in the decomposition with a structured term given
by a tensor product of a rank-Lr Hankel matrix containing its
samples with a vector containing its spatial signature (i.e., its
weights for each channel), where Lr is the number of complex
exponentials (poles) in the SCE source. The main benefit
of this approach is that identifiability of the decomposition
is guaranteed under mild conditions which do not involve
stringent constraints such as orthogonality or independence
and can hold even when the sum of the block ranks exceeds the
number of sensors and the dimensions of the Hankel matrices
as well [8], [7].

When implementing this approach, however, two problems
arise. The first one refers to the computation of the ap-
proximate BTD. Some methods have been made available
for this task, such as the nonlinear least-squares methods
implemented in Tensorlab [9] or the alternating least squares
method with enhanced line search (ALS-ELS) [10]. However,
the performance of such techniques depends considerably on
the choice of structural parameters (R and Lr), which is
difficult to make in practice. Furthermore, they usually exhibit
strong sensitivity with respect to the initialization and address
an optimization problem which may lack a global minimizer
[11]; this can lead to the estimation of almost collinear blocks
with no physical interpretation, a phenomenon often termed
model degeneracy. The second problem refers to the low-rank
Hankel structure constraint, which is hard to enforce for real-
valued data. To our knowledge, no existing BTD algorithm
can reliably impose Hankel constraints in this case.

In [12], a functional promoting group sparsity of the decom-
position factor columns was minimized to estimate appropriate
structural parameters of an (unconstrained) BTD model, but
not the model itself. Moreover, the authors only considered
the case where all Lr are equal. In this work, we show that (i)
the same principle can be used to jointly estimate the model
structure and its parameters, and that (ii) the general case with
different block ranks can also be addressed.

To achieve this goal, we formulate the approximate BTD
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computation as the minimization of a (least-squares) fitting
term plus a regularization term given by the sum of the
`2,1-norms of the matrices containing the model parameters.
The latter enforces (column-wise) group sparsity of the factor
matrices, thus penalizing models with high R and Lr. In
this way, we are able to find an approximate BTD without
assumptions on R and Lr, effectively achieving a trade-off
between data fitting and model complexity. Furthermore, the
regularization renders the BTD approximation problem well-
posed.

To solve this problem, we propose an algorithm called
alternating group lasso (AGL), which is simpler than the
algorithm of [12] and provably convergent. We also devise
a variant termed constrained AGL (CAGL) to deal with linear
(subspace) constraints over block matrices. For this purpose,
a structured low-rank approximation method is applied on the
block matrices at each iteration to ensure that they have low
rank and belong to the specified subspace.

As an application of CAGL, we consider the problem
of extracting the atrial activity (AA) in electrocardiograms
(ECGs) of atrial fibrillation (AF). AF is the most common
sustained cardiac arrhythmia encountered in clinical practice, a
major public health and economical concern. The importance
given to this challenging cardiac condition has increased in
the past few years, since its mechanisms are not completely
understood. Accurate analysis of the fibrillatory waves (f-
waves) is then necessary for better understanding the arrhyth-
mia. Noninvasive AA extraction from ECG recordings is,
therefore, a key problem that motivates the development of
signal processing techniques such as the one we propose in
this paper.

Other BSS techniques such as PCA and ICA have been
applied to noninvasive AA extraction [13]–[14] and provided
satisfactory results. However, as previously stated, results are
difficult to interpret due to the imposed constraints. Moti-
vated by identifiability and interpretability requirements, BTD
modeling using “Hankelization” for AA extraction has been
recently proposed and studied in [2], [15], [3], [4], [5]. Ex-
perimental results in synthetic and real AF ECG data showed
that BTD can outperform the matrix-based techniques for AA
extraction in short and long segments of AF ECG recordings.
The application in this work follows the same line of [2],
[15], [3], [4], [5], but differs from [2], [15], [4], [5], since we
do not impose the structural parameters of the model. It also
differs from [3], where structural parameters are chosen fitting
different BTD models and selecting the best one with respect
to an information-theoretical criterion.

The outline of the paper is as follows: in Section II we
present the problem of SCE source separation using the BTD
with Hankel structure. Section III formulates a regularized
BTD approximation problem and the AGL and CAGL algo-
rithms. A numerical evaluation of AGL is shown in Section IV.
The application of CAGL to AA extraction is then presented
in Section V, where both semi-synthetic and real-world ECG
datasets are considered. Finally, concluding remarks are made
in Section VI.

Notation: Tensors are denoted in uppercase bold script
letters X, matrices in uppercase bold letters X, vectors in

lowercase bold letters x and scalars in lowercase letters x.
The notations ‖ · ‖F and ‖ · ‖2,1 stand for the Frobenius norm
and the matrix mixed `2,1-norm, respectively. The latter is
defined as the sum of the norms of its argument’s columns,
as in ‖X‖2,1 =

∑R
r=1 ‖xr‖2. The symbols ⊗, � and � are

used for outer (tensor), Kronecker, and Khatri-Rao (column-
wise Kronecker) product, respectively. The block Khatri-Rao
product �L is such that, given X =

[
x1 · · · xR

]
∈

CK×R and Y =
[
y1 · · · yLR

]
∈ CM×LR, it yields

Z = X �LY =
[
Z1 · · · ZR

]
∈ CKM×LR where Zr =

xr�
[
y(r−1)L+1 · · ·y(r−1)L+L

]
∈ CKM×L. Diag(x) denotes

a diagonal with the components of x on its diagonal, and
the vec(·) operator maps a matrix

[
x1 · · · xR

]
∈ CK×R

into the vector
[
xT

1 . . . xT
R

]T ∈ CRK . The superscript (·)T
denotes matrix transpose, and a hat ( ·̂ ) denotes an estimate.

II. TENSOR-BASED SEPARATION OF SUMS OF COMPLEX
EXPONENTIALS

This section reviews the method proposed in [7] for sep-
aration of SCE sources by means of a block-term tensor
decomposition, under the assumption that each source has
a small number of poles. We also discuss existence and
uniqueness of solutions to the approximate decomposition
problem which is addressed in practice.

A. Low-rank Hankel source model

A celebrated result in signal processing states that if a
discrete-time signal is a linear combination of L damped
complex exponentials, say

s(n) =
∑L
`=1 α` exp(ζ` n), n = 0, . . . , N − 1, (1)

where α`, ζ` ∈ C, then the M ×M Hankel matrix

Hs ,
[
s(0) s(1) . . . s(M − 1)

]
,

with s(n) ,
[
s(n) s(n+ 1) . . . s(n+M − 1)

]T
and

N = 2M − 1, has rank at most min{L,M}. In fact, this
property follows immediately from the decomposition [16]

Hs = Vs Diag(α1, . . . , αL)VT
s , (2)

where Vs is the Vandermonde matrix

Vs ,


1 . . . 1

exp(ζ1) . . . exp(ζL)
...

...
exp(ζ1(M − 1)) . . . exp(ζL(M − 1))

 ∈ CM×L,

and is at the heart of classical modal analysis methods [17]. It
implies that a “simple” signal of the form (1) can be mapped
into a low-rank Hankel matrix, where simple here means being
constituted by a small number L of exponentials. We will see
next how signal separation can be performed by relying on
this relation.

Remark 1. For real-valued signals, usual conjugacy conditions
must hold in (1). Correspondingly, complex-valued columns of
Vs as well as coefficients α` must arise in complex conjugate
pairs.



3

B. Separation of linear mixture via block term decomposition

Consider now a linear instantaneous mixture y(n) =∑R
r=1 xr sr(n), with

sr(n) =
∑Lr

`=1 α
(r)
` exp

(
ζ

(r)
` n

)
, Lr < M, (3)

and assume one wants to recover the signals sr(n) from
knowledge of y (and of the above model) only. By linearity of
the map discussed above, we have y 7→ Hy =

∑R
r=1 xrHsr ,

so that rankHy ≤
∑R
r=1 Lr. Without further information,

though, this linear combination of matrices is not of much
help for separation.

The situation changes upon introduction of spatial diversity,
meaning we now observe y(k, n) =

∑R
r=1 xk,r sr(n) for k =

1, . . . ,K. In matrix notation, we have

Y = XST, (4)

where S = (sn,r) = (sr(n−1)) is an N×R matrix containing
the source signals and X = (xk,r) is a K×R mixture matrix
specifying how the sources are combined to yield the channels’
outputs. Each such output yk(n) = y(k, n) for a fixed k (i.e.,
each row of Y) can be mapped into an M×M Hankel matrix
as before, say yk 7→ Yk. Hence, Yk =

∑R
r=1 xk,rHr, where

Hr is the rank-Lr Hankel matrix associated with sr. The
matrices Yk can be viewed as slices of an M × M × K
tensor Y satisfying

Y =
∑K
k=1 Yk ⊗ ek =

∑K
k=1

(∑R
r=1 xk,rHr

)
⊗ ek

=
∑R
r=1 Hr ⊗

(∑K
k=1 xk,rek

)
=
∑R
r=1 Hr ⊗ xr, (5)

where ek is the kth canonical basis vector of CK , xr is the
rth column of X and ⊗ is the tensor product. The data tensor
thus consists of a sum of blocks, each one given by the tensor
product of a low-rank matrix and a vector. We refer to the
parameters (R, {Lr}Rr=1) as structural parameters or simply
the structure of the model in (5).

It turns out that the tensor decomposition (5), known as
block-term decomposition (BTD) and introduced by [8], is
essentially1 unique under relatively mild assumptions. Its
uniqueness properties have been first studied in [8], and further
results were given in [7]. In particular, Theorem 2.4 of [7]
states that if X has full column rank and rank

∑R
r=1 wrHr >

maxr rankwrHr for all w =
[
w1 . . . wR

]T
having at

least two nonzero components, then the BTD in (5) is es-
sentially unique. (It is thus necessary that Lr < M .) Other
uniqueness results have been derived in [18], [19], including
some that apply to coupled BTDs.

C. Approximate block term decomposition

In practice, the data matrix Y is only approximately given
by (4), due to noise and imperfect modeling. Hence, one can
only approximate tensor Y by a low-rank BTD model of the
form in (5).

1Note that (5) can only be unique modulo a permutation of the summands
and a joint rescaling of the components of each summand as in (Hr,xr) 7→
(αHr, (1/α) xr) for some α 6= 0.

Since the approximate BTD problem is important in its
own right, we hereby discuss it from a general perspective,
momentarily leaving aside the Hankel constraints in (5) and
considering a third-order tensor Y ∈ CI×J×K (in model (5)
we had I = J = M ). Typically, an approximate BTD is
computed by minimizing a measure of distance between the
data tensor and a model of fixed structure with respect to the
model components. Mostly often, a least-squares criterion is
adopted (as in, e.g., [10]), leading to

min
(A,B,X)∈S

f(A,B,X) ,
∥∥∥Y−∑R

r=1

(
ArB

T
r

)
⊗ xr

∥∥∥2

F
(6)

with S , CI×
∑R

r=1 Lr×CJ×
∑R

r=1 Lr×CK×R, where Ar con-
tains the columns of indices 1 +

∑r−1
m=1 Lm to

∑r
m=1 Lm of

A, and likewise for Br. Observe that the factorization ArB
T
r

is employed to bound each block rank as rankHr ≤ Lr.
We discuss next the existence and uniqueness of solutions

to (6).
1) Existence: Problem (6) may lack a global minimizer,

because the set of tensors having a given BTD structure is not
necessarily closed. An example of this phenomenon has been
known since the introduction of the BTD [10]. As recently
shown in [11], spaces of real-valued tensors can contain sets
with nonempty interior whose elements do not admit a best
approximate BTD having a given structure. This fact has
practical consequences, since it implies that a random tensor
drawn from an absolutely continuous distribution has nonzero
probability of falling into such a set. For complex-valued
tensors, [20] shows that this issue only affects tensors from
sets of zero volume, and thus is of lesser practical concern.

2) Uniqueness: In fact, the results of [20] not only imply
that a closest tensor having a specified BTD structure exists for
almost all complex-valued tensors, but also that it is unique
(see [20, Corollary 7.4]). However, there is a subtlety: this
simply means that for a random complex-valued tensor Y the
problem

min
Ŷ∈BL1,...,LR

‖Y− Ŷ‖2F
has a unique solution almost surely, where BL1,...,LR

is the set
of all complex-valued tensors which can be written in the form∑R
r=1 Hr ⊗xr with rankHr ≤ Lr. This does not imply that

the BTD components themselves are unique, which requires
additional conditions over these components, such as those
stated in Section II-B.

For real-valued tensors, though, no analogue of the above
mentioned result is known.

D. Structured low-rank approximation

In the special case of interest (5), Hr must belong to the
subspace of M ×M Hankel matrices, H. Although the slices
Yk are Hankel by construction, there is no reason why a
solution (Â, B̂, X̂) of (12) or (6) should satisfy ÂrB̂

T
r ∈ H. In

fact, even if the sum
∑R
r=1 x̂k,rÂrB̂

T
r is Hankel, the matrices

ÂrB̂
T
r do not need to be (though the opposite is certainly true).

In other words, the solution may lack temporal structure, not
being interpretable as a mixture of sources of the form (1).

There are basically two ways of dealing with this issue:
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1) Projected unconstrained solution: Ignore the Hankel struc-
ture to compute an unconstrained approximate low-rank
BTD and then project each estimated block Ĥr onto the
set HLr

of Hankel matrices having rank up to Lr.
2) Constrained solution: Use a constrained optimization algo-

rithm for imposing the Hankel structure while computing
the solution of (5).

More generally, a similar choice is faced in related problems
such as harmonic retrieval [21] or the so-called shape-from-
moments problem [22], which can be cast as the computation
of a low-rank approximation of a Hankel data matrix Y. In
practice, one either ignores the Hankel structure or solves a
structured low-rank approximation problem of the form

minH∈HL
‖Y −H‖F , (7)

which can be addressed by structured low-rank approximation
methods such as those thoroughly discussed in [23].

In principle, one would expect that more accurate results are
attained when the Hankel structure is imposed, for this intro-
duces an additional prior in the optimization process. However,
this is not necessarily true: for instance, the experiments
in [22] concerning the shape-from-moments problem show
that a constrained algorithm can outperform an unconstrained
one in a low-noise regime, even if the inverse holds at a
higher level of noise. This behavior is probably explained
by the fact that the local optimization algorithms used to
solve the nonconvex problem (7) may attain a suboptimal
local minimum. Furthermore, these constrained optimization
algorithms are typically more computationally demanding than
unconstrained ones.

Due to these difficulties, in practice unconstrained algo-
rithms are often employed, as seen in [22], [21]. In the
particular case of our BTD problem, to date only the projected
unconstrained approach has been followed, as in [1], [4].
However, in spite of the above mentioned difficulties, the use
of a constrained approach can lead to more accurate solutions,
as our computer experiments will show in Section V.

Finally, note that the above discussion also applies to
arbitrary constraints of the form Hr ∈ U where U is any2

subspace of C.

III. ALTERNATING GROUP LASSO ALGORITHM FOR BTD

In the following, we derive a provably convergent algorithm
for computing an (unconstrained) approximate BTD of a
given tensor. Subsequently, we show how linear (subspace)
constraints can be imposed upon the block matrices, Hankel
structure being a special case of these constraints.

A. Problem formulation

Instead of determining the BTD structure beforehand, one
can include penalization terms promoting low-rank blocks and
controlling the number of blocks in the formulation, as in

min
(A,B,X)∈S

F (A,B,X) , f(A,B,X) + γ g(A,B,X), (8)

2In some special cases, such as when U is the space of circulant matrices,
the structured low-rank matrix problem has a closed-form solution.

where S , CI×LR×CJ×LR×CK×R, f is the same as in (6),
γ > 0 is a regularization parameter and g is a regularization
function of the form

g(A,B,X) , ‖A‖2,1 + ‖B‖2,1 + ‖X‖2,1. (9)

Adding a mixed `2,1-norm regularization term is a well-
known strategy for inducing group sparsity of its argument’s
columns. This is essentially a generalization of the lasso (least
absolute shrinkage and selector operator) estimator principle,
called group lasso, and is owed to geometric properties of the
`2,1-norm [24].

Hence, for sufficiently high γ, minimizers of (8) will be
formed by A and B displaying some columns made entirely
of zeros, effectively yielding a BTD of low-rank blocks. The
same applies to X, possibly reducing the number of blocks.
This allows much more flexibility compared to (6), since now
the number of degrees of freedom of the model can adapt
to the data Y. Moreover, at least one solution is guaranteed
to exist: because F is nonnegative, coercive3 (due to g) and
continuous, existence follows from the extreme value theorem.

B. Algorithm for unconstrained blocks

To tackle the nonconvex and nonsmooth problem (8), we
employ a block coordinate descent (BCD) approach. This
widespread technique consists in partitioning the set of opti-
mization variables and then sequentially solving subproblems
in each subset of variables (with the others fixed) until all
subsets are updated, completing one iteration of the algorithm.

Here, we have a natural partition into three blocks: A, B
and X. Let Â(t−1), B̂(t−1) and X̂(t−1) denote the estimates
obtained at iteration t−1. Fixing B = B̂(t−1) and X = X̂(t−1)

in (8), the subproblem in A of iteration t becomes a standard
group lasso problem

minA∈CI×LR F
(t)
A (A), (10)

with F
(t)
A (A) , 1

2‖Y− W
(t)
A (A)‖2F + γ ‖A‖2,1,

where W
(t)
A is a linear map depending on B̂(t−1) and X̂(t−1).

The groups are disjoint and correspond to the columns of
A. Existing group lasso algorithms such as that in [25] can
be readily invoked4 to solve (10), which is convex. Similar
subproblems can be derived for B and X.

Now, despite being convex, subproblem (10) may not be
strictly convex, because W

(t)
A may not be injective at some

iterations. It can thus fail to have a unique solution, and
convergence to a stationary point cannot be guaranteed [26].
One can remedy this shortcoming by adding a proximal term,
as in minA∈CI×LR F

(t)
A (A) + τ

2‖A− Â(t−1)‖2F , with τ > 0.
Putting a , vec(A) and y1 , vec(Y〈1〉), where Y〈1〉
indicates the mode-1 matrix unfolding of Y (see e.g. [7]), this
is equivalent to

min
a∈CILR

1

2

∥∥∥∥[ y1√
τ â(t−1)

]
−
[
W

(t)
A√
τ I

]
a

∥∥∥∥2

2

+ γ

R∑
r=1

L∑
l=1

‖ar,l‖2,

(11)

3Recall that a function F (A,B,X) is said to be coercive if and only if
F (x)→∞ whenever ‖A‖F →∞ or ‖B‖F →∞ or ‖X‖F →∞.

4This algorithm was, however, formulated for the real-valued setting only.
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TABLE I: Pseudocode for constrained AGL algorithm.

Inputs: Data tensor Y, penalty parameter γ, proximal term weight τ ,
initial point (A(0),B(0),X(0))

Outputs: Approximate BTD factors (A,B,X)

1: t← 1
2: while stopping criteria not met do
3: Solve group lasso subproblem (11) to obtain A(t) from A(t−1),

B(t−1) and X(t−1)

4: Solve group lasso subproblem in B analogous to (11) to obtain B(t)

from A(t), B(t−1) and X(t−1)

5: for r = 1, . . . , R do
6: L

(t)
r ← rank

(
A

(t)
r (B(t))Tr

)
7: (A

(t)
r ,B

(t)
r )← slra(A

(t)
r (B

(t)
r )T, L

(t)
r )

8: (A
(t)
r ,B

(t)
r )← ([A

(t)
r 0

I×L−L
(t)
r

], [B
(t)
r 0

I×L−L
(t)
r

])

9: Solve group lasso subproblem in X analogous to (11) to obtain X(t)

from A(t), B(t) and X(t−1)

10: t← t+ 1

where W
(t)
A ,

(
X̂(t−1) �L B̂(t−1)

)
� II and ar,l holds

components (((r− 1)L+ l)− 1)I+ 1 to ((r− 1)L+ l)I of a.
By construction, (11) is strictly convex, since the Hessian of
the least-squares term is positive definite. Analogous strictly
convex subproblems can also be derived for B and X, with

W
(t)
B ,

(
X̂(t−1) �L Â(t)

)
� IJ ,

W
(t)
X ,

[(
B̂(t) � Â(t)

)
(IR � 1L)

]
� IK .

The AGL algorithm solves them in alternating fashion, cycling
through updates of Â(t), B̂(t) and X̂(t), in that order, at
each iteration t. It can be seen as a regularized version of
the alternating least squares scheme proposed in [10]. As
we explain in Appendix A, AGL’s formulation satisfies the
conditions of [26, Theorem 2], and hence its iterates converge
to a stationary point of problem (8).

It should be noted that AGL is a general approach to
compute an unconstrained approximate low-rank BTD and is
not specifically tailored to the application we consider later in
the paper. Hence, it could also be applied, for example, to the
problems presented in [1], [27] and [28].

C. Handling linear constraints in Hr

In order to address the issue discussed in Section II-D, we
propose a variant of AGL, termed constrained AGL (CAGL),
to address the problem

min
(A,B,X)∈S

F (A,B,X) subj. to ∀r, ArB
T
r ∈ U , (12)

with U denoting a given subspace of I×J matrices. In CAGL,
the constraint in (12) is enforced by applying a structured low-
rank approximation (SLRA) algorithm during the iterations,
after having estimated Â(t) and B̂(t). For clarity, the algorithm
is summarized in Table I, where notation was simplified by
dropping the symbol (̂·) from the computed estimates and
slra denotes the SLRA algorithm, which takes a matrix Ĥr

and a maximum rank Lr as inputs and produces factors Âr

and B̂r having Lr columns and satisfying Ĥr ≈ ÂrB̂
T
r ∈ U .

Note that each application of slra re-estimates both Ar

and Br. Also, in practice the computation of L(t)
r at line 6

can be performed by counting how many of the columns of
Ar and Br are simultaneously nonzero. Finally, it should be
noted that, since Â

(t)
r and B̂

(t)
r always have L columns, zeros

must be added in those blocks after applying slra, as done
in line 8 of Table I.

As we will see in Section V, in practice CAGL is able to
yield meaningful solutions to the source separation problem.
However, constraining the block matrices brings a heavier
computational load, due to use of the structured low-rank
approximation algorithm, which is typically iterative. Further-
more, the arguments which allow showing the convergence of
AGL no longer apply here.

Remark 2. In the particular case of a Hankel constraint,
another way of imposing it is by estimating for each block
matrix a low-rank decomposition of the form (2), where the
Vandermonde factors are parameterized by their poles ζ`. In
this case, a sparsity prior over the coefficients α` can be
used to promote low-rank blocks. However, since ζ` and α`
are generally complex-valued, conjugacy constraints would be
needed to obtain real-valued block matrices, which requires
fixing the (maximum) number of complex-conjugate pole pairs
and of single real-valued poles of each block a priori. This
loss of generality can be mitigated by using a high value of
L for the starting rank (thus including “enough” conjugate
pole pairs and single poles), but at the expense of increased
computing cost.

IV. NUMERICAL EVALUATION ON RANDOM BLOCK TERM
DECOMPOSITION MODELS

We now evaluate AGL in the approximate computation of
synthetic BTD models, with and without Hankel constraint.

A. Unconstrained BTD

We generate 500 joint realizations of (A,B,X,N) by
drawing the (real-valued) elements of A, B, X and N in an
independent and identically distributed (i.i.d.) fashion from the
standard normal distribution. X is then normalized column-
wise and the condition maxi,j |xT

i xj | < 0.9 is imposed (by
drawing X multiple times until it is met). This prevents nearly
collinear spatial signatures. Next, we construct the noisy model
Y = Y0 + σN N, where Y0 =

∑R
r=1(ArB

T
r ) ⊗ xr and σN

is the standard deviation of the noise, which is adjusted to
achieve a desired level of signal-to-noise ratio (SNR), defined
as SNR , ‖Y0‖2F σ−2

N ‖N‖−2
F .

We set I = J = 16 and K = R = 3. The block ranks
are L1 = 8, L2 = 6 and L3 = 4. These values were
chosen to yield

∑3
r=1 Lr > min{I, J} = I , in which case

one cannot employ an algebraic solution as described by [8,
Theorem 4.1] to initialize the algorithm. Hence, in the absence
of a better initialization strategy, we are forced to employ
an arbitrarily chosen (in practice, a random) initial solution.
Under these circumstances, the approximate BTD problem
becomes particularly challenging because it is nonconvex.
Moreover, as we shall see in Section V-C, the case where∑R
r=1 Lr > min{I, J} is relevant in the application of

BTD to source separation. Note that the procedure based on
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simultaneous diagonalization proposed in [19] does not apply
either, because we consider blocks with different ranks, which
is also pertinent in the application dealt with in Section V-C.

For each realization, AGL is applied with L = 8 using the
following procedure:
• starting from a random initial point, the algorithm is run

with γ = γ0, producing an initial solution;
• for p = 1, . . . , P − 1, it is run with γ = γp = (p+ 1)γ0,

using the solution obtained for γp−1 as the initial point.
This γ-sweeping procedure is inspired by solution-path tech-
niques used in the statistics community [29] and produces a
sequence of candidate solutions. Of all P candidate solutions,
we keep the best one according to the normalized mean
squared error (NMSE) over the blocks:

NMSE(Â, B̂, X̂),
1

R

R∑
r=1

‖(ArB
T
r )⊗ xr−(ÂrB̂

T
r )⊗ x̂r‖2F

‖(ArBT
r )⊗ xr‖2F

.

For comparison, Tensorlab’s Gauss-Newton BTD algorithm5

(BTD-GN) [9] is used with the same rank L for all three
blocks and also with the true ranks Lr.

To study sensitivity with respect to initialization, we run
each algorithm starting at several random initial solutions: 12
initial points for AGL and 30 initial points for BTD-GN. (The
first 12 initial points used for both algorithms are the same,
and when the true ranks are used in BTD-GN, we keep only
the first Lr columns of matrices Â(0)

r and B̂
(0)
r used in AGL.)

Fig. 1(a) shows the results for SNR = 10 dB. The nith
curve (from bottom to top) of each algorithm is the empir-
ical cumulative distribution function (ECDF) of the NMSE
obtained by keeping the best solution among those given by
the first ni initializations. Clearly, AGL outperforms BTD-GN
by a significant margin, even when the latter is given the true
ranks (which is an unrealistic condition in practice). Indeed,
a single run of AGL suffices to produce statistically better
results than 30 runs of BTD-GN. The magnified portions of
the plot show that the curves start to “accumulate” when ni
attains a certain value, suggesting that little or no improvement
can be achieved by further increasing it. AGL is also visibly
much more robust with respect to its initialization, since its
curves are much less spread apart. The average computing
time and standard deviation for a single run of each algorithm
are: µ = 4.91 s and σ = 1.06 s for AGL (taking into account
the execution of AGL for the whole range of values of γp,
as described above); µ = 4.44 s and σ = 3.89 s for BTD-
GN with ranks (8, 8, 8) and µ = 4.88 s and σ = 4.04 s for
BTD-GN with ranks (8, 6, 4).

Fig. 2(a)–(c) shows the proportion of block ranks estimated
by AGL. All block ranks are well estimated most of the time,
but there is a significant chance of underestimation of L1. This
behavior probably comes from the choice of the γ parameter
range, whose values may be slightly higher than necessary.

For a more comprehensive comparison, we repeat the ex-
periment for other SNR values and then compute the median
NMSE over the blocks attained by each algorithm. The results
are shown in Fig. 3, where now the nith curve from top to

5The Tensorlab function used in our experiments is ll1_nls.

TABLE II: Pseudocode of Cadzow’s algorithm [31] for a
Hankel constraint.

Inputs: Data matrix Y, target rank L, tolerance εCA and maximum
number of iterations TCA

Outputs: Low-rank Hankel approximation H of Y

1: Initialization: t← 1, H(0) ← Y
2: for t = 1, 2, . . . do
3: H(t) ← PH(H(t−1))
4: Compute the SVD: H(t) = UΣVT

5: Truncate the computed SVD at rank L: H(t) ← ULΣLVT
L

6: if ‖H(t) −H(t−1)‖F < εCA ‖H(t−1)‖F or t = TCA then
7: break for loop and output H = H(t)

bottom of each algorithm is computed by keeping the best
result among the first ni initializations. One can see that AGL
is preferable over this entire SNR range, as the median NMSE
of BTD-GN approaches that of AGL only for higher SNR
values and when the algorithm is run several times (with the
known ranks), thus incurring a high computing cost. Finally,
the fact that the 12 curves of AGL are indistinguishable
showcases its robustness regarding the choice of initialization.

The results obtained with BTD-GN highlights the difficul-
ties that it faces in practice: frequent stop due to stagnation in a
region of very slow convergence or failure to converge within
the maximum allowed number of iterations (which is 1500,
the same used for AGL). The employed multi-initialization
scheme mitigates these problems, but only to some extent.
These difficulties stem from the relatively large

∑
r Lr, but

are also possibly related to the ill-posedness of problem (6):
an optimal solution might not exist at all, or the algorithm may
traverse regions close to tensors having no best approximation
with the chosen structure, which causes numerical instability
[30] and typically leads to a very slow convergence.

B. Constrained BTD

A similar evaluation was performed in the case where
block matrices have Hankel structure. Apart from CAGL
and BTD-GN, this evaluation also includes AGL in order
to compare the performances of the constrained and uncon-
strained approaches. For the sake of simplicity, the structured
low-rank approximation method used in CAGL is Cadzow’s
algorithm (CA) [31], which consists in performing alternating
projections onto the Hankel subspace H and onto the set of
matrices with rank bounded by a prescribed value. Although
the approximations provided by CA are not (locally) optimal in
general [32], they are often satisfying in practice. Furthermore,
CA is very simple to implement.

For clarity, a description of the employed CA is given in
Table II. The projection onto H, denoted by PH, is cheap to
compute by averaging anti-diagonals of H(t). By the Eckart–
Young theorem, the projection of H(t) onto L can be obtained
via its truncated singular value decomposition (SVD), which
is easy but costly to compute. Hence, to avoid an excessive
cost per iteration of CAGL, we set the stopping criteria (see
Table II) to εCA = 10−3 and TCA = 10, implying that the
constraint is approximately satisfied along the iterations.

In this scenario, we also generate 500 realizations of noisy
constrained BTD models for each value of SNR. To this
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Fig. 1: Empirical CDFs of NMSE over estimated blocks attained by AGL and BTD-GN for 500 realizations of a noisy random
BTD model (SNR = 10 dB), in the unconstrained and (Hankel-)constrained scenarios. The block ranks used in BTD-GN are
indicated in the legend, while AGL and CAGL start with all ranks set to L = 8. The true ranks are (L1, L2, L3) = (8, 6, 4).
BTD-GN and (C)AGL are run with 30 and 12 random initializations, respectively. The nith curve (from bottom to top) of
each algorithm is the ECDF obtained by keeping the best solution among those given by the first ni initializations. In the
constrained scenario, all algorithms are followed by Cadzow’s algorithm to enforce the low-rank Hankel constraint.

0 1 2 3 4 5 6 7 8
0

0.2
0.4
0.6
0.8
1

R
el

.f
re

q.

(a) L1 = 8

0 1 2 3 4 5 6 7 8

(b) L2 = 6

0 1 2 3 4 5 6 7 8

(c) L3 = 4

0 1 2 3 4 5 6 7 8
0

0.2
0.4
0.6
0.8
1

R
el

.f
re

q.

(d) L1 = 8

AGL+CA

CAGL+CA

0 1 2 3 4 5 6 7 8

(e) L2 = 6

0 1 2 3 4 5 6 7 8

(f) L3 = 4

Fig. 2: Proportion of block ranks estimated by AGL and CAGL
with SNR=10dB: (a)–(c) refer to the unconstrained scenario of
Section IV-A and (d)–(f) refer to the constrained scenario of
Section IV-B. In the constrained scenario, the rank estimates
refer to the best obtained result (with respect to NMSE over
blocks) among the first ni = 5 runs.

end, the block matrices are random low-rank Hankel matrices
generated using CA with εCA = 2.22 × 10−16 (machine
precision) and TCA = 1000. The algorithms are run as in the
previous section, but now we apply CA (with εCA = 10−10

and TCA = 1000) to their outputs for enforcing the Hankel
constraint.

The results obtained for SNR = 10 dB are depicted in
Fig. 1(b) and show that, statistically, both AGL and CAGL
produce more accurate results than BTD-GN. Though the
performance of multi-initialization BTD-GN is now close to
that of single-initialization CAGL, this only applies when the
former is given the true block ranks. The curves also show
that a single run of CAGL performs worse than AGL, but the
opposite is true when more runs are performed. Furthermore,

CAGL is more sensitive with respect to its initialization, which
is expected since the constrained problem is harder to solve.
The block rank estimation is less accurate in this scenario than
in the unconstrained case, as shown in Fig. 2(d)–(f): while L1

is mostly well estimated, overestimation occurs for the other
blocks, with CAGL producing slightly better estimates.

Evidently, CAGL is also considerably more costly than
AGL: the average and standard deviation of computing times
(for a single run) are µ = 8.96 s and σ = 2.51 s for AGL;
µ = 33.49 s and σ = 21.60 s for CAGL; µ = 6.71 s and
σ = 5.39 s for BTD-GN with ranks (8, 8, 8) and µ = 7.10 s
and σ = 5.09 s for BTD-GN with ranks (8, 6, 4). Nonetheless,
CAGL is able to attain a superior statistical performance when
the multi-initialization scheme is used as the accumulation of
the ECDF curves suggest that AGL’s results cannot be further
enhanced by more runs. Therefore, CAGL is a more costly
but more accurate alternative than the other methods in this
scenario.

Finally, the curves of Fig. 3(b) show that the above conclu-
sions hold also for other values of SNR, though the advantage
of CAGL and AGL with respect to BTD-GN decreases as the
SNR grows.

V. EXPERIMENTAL RESULTS WITH ECG DATA

A. Tensor representation of ECG signals

ECG produces a time plot that represents the heart’s elec-
trical activity recorded from electrodes placed on the body
surface. The ECG data matrix with K leads and N samples
can be modeled as (4), where X ∈ RK×R is the mixing
matrix, that models the propagation of the cardiac electrical
sources from the heart to the body surface, S ∈ RN×R is the
source matrix that contains the atrial, ventricular, and possibly
disturbance sources, and R is the number of sources [14].

AA extraction in AF ECG recordings can be viewed as a
BSS problem where the goal is to estimate the matrices X
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Fig. 3: Median NMSE over estimated blocks attained by AGL and BTD-GN for 500 realizations of a noisy random BTD model,
in the unconstrained and (Hankel-)constrained scenarios. The true ranks are (L1, L2, L3) = (8, 6, 4). BTD-GN and (C)AGL
are run with 30 and 12 random initializations, respectively. The nith curve (from top to bottom) of each algorithm is obtained
by keeping the best solution among those given by the first ni initializations. In the constrained scenario, all algorithms are
followed by Cadzow’s algorithm to enforce the low-rank Hankel constraint.

and S only from the observed data matrix Y. The tensor built
from the ECG data matrix as described in Section II-B then
satisfies (5), where Hr ∈ RM×M is a Hankel matrix built
from the rth column of S, and thus contains samples of the
rth ECG source. Vector xr, which is the rth column of X,
quantifies the contribution of this source to each electrode’s
output, and so can be thought of as its spatial signature.

Due to the quasi-periodic nature of AF, atrial sources can
be represented by the SCE model (1) with a small number of
exponentials. Ventricular sources, in their turn, are typically
composed by a few transient components, and thus can also
be well modeled by (1) with small L. Hence, these signals
can be mapped into low-rank Hankel matrices, as discussed
in Section II-B.

B. Semi-synthetic AF data

The usefulness of CAGL for ECG source separation is now
assessed by resorting to a semi-synthetic AF data model. To
simulate the AA signal during AF, the model proposed in [33]
that mimics the sawtooth pattern (a typical characteristic of the
f waves) is used. This model is given by

s(n) = −∑P
p=1 ap(n) sin (p θ(n)) (13)

with modulated amplitude and phase respectively given by

ap(n) = 2
pπ

[
a+ ∆a sin

(
2π faFs

n
)]

and
θ(n) = 2π f0Fs

n+
(

∆f
Ff

)
sin
(

2π
Ff

Fs
n
)
,

where a is the sawtooth amplitude, ∆a is the modulation peak
amplitude, fa is the amplitude modulation frequency, Fs is the
sampling frequency, f0 is the frequency value in which θ(n)
varies sinusoidally, ∆f is the maximum frequency deviation
and Ff is the modulation frequency.

TABLE III: Parameters of the synthetic AA signal model (13).

Model P a ∆a fa Fs f0 ∆f Ff

1 5 150 50 0.08 1000 6 0.2 0.10
2 3 60 18 0.50 1000 8 0.3 0.23

1) One AA source: We first consider a scenario with one
AA source s(n), which is generated using (13) with the
parameters of Model 1 given in Table III. This signal is shown
in Fig. 4(a). A random spatial signature x ∈ R12 over all
12 ECG leads is generated for this source, having standard
normal i.i.d. components. The ventricular activity (VA) source
is taken from a real 12-lead ECG of a healthy person, after P
wave suppression as in [2]. This ECG, that belongs to the
database of [34], is acquired at a sampling rate of 1 kHz
and is preprocessed by a zero-phase forward-backward type-
II Chebyshev bandpass filter with cutoff frequencies of 0.5
and 30 Hz, in order to suppress high-frequency noise and
baseline wandering. Additive white Gaussian noise (AWGN)
with variance σ2 was added, yielding the overall model

Y = V + αxsT + N ∈ R12×N , (14)

where V holds the normalized VA signal, s ∈ RN holds
the AA signal samples, N contains the AWGN samples and
α = 2 is a scaling factor chosen to obtain an average
atrial-to-ventricular power ratio consistent with clinical ob-
servations. A window of about 1.2 seconds is used, yielding
1221 samples. An example of the overall generated signal is
shown in Fig. 4(b) (dashed curve). A direct Hankelization of
this matrix yields a tensor of dimensions 611 × 611 × 12,
whose approximate BTD demands a large computing time.
To reduce it, we downsample the signals by a factor of 10
before computing the decomposition. The resulting tensor Y

has dimensions 62× 62× 12.
CAGL is run with the same γ-sweeping procedure used

in Section IV, but now with γ taking 30 equispaced values
in the interval [8 × 10−4, 0.33 × 10−2] and keeping the last
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Fig. 4: Examples of generated semi-synthetic models: (a) AA
sources following model (13) with the parameters shown in
Table III; (b) overall synthesized ECG signals on lead V1.

solution. For γ0, we start the algorithm with R = 6 random
blocks of rank L = 40. Among the estimated sources, the AA
source is chosen as that which maximizes (in absolute value)
the correlation coefficient ρ with respect to the ground truth
s(n).

BTD-GN is run to estimate R blocks of fixed rank L, for
all combinations (R,L) ∈ {4, 5, 6} × {1, . . . , 40}. For each
rank L, the initial point is generated by filling the L columns
of Ar and Br with the first L columns used to initialize these
variables in CAGL.

This procedure is repeated 30 times for each of 10 different
realizations of (x,N). We found that the results of CAGL
are remarkably consistent, producing very similar estimates
regardless of the chosen initial point. By contrast, the re-
sults obtained with BTD-GN are much more sensitive in
this respect. Specifically, the value of L that yields the best
performance for a given run is not the same across different
runs, as shown by the ECDF of Fig. 5(a). For CAGL, the rank
chosen for the AA signal block is almost always 10 as seen
in Fig. 5(a).

Though the most adequate choice for BTD-GN seems to
be R = 4 and L ∈ {10, . . . , 15}, its performance is highly
variable for this range of L. This is seen in Fig. 6(a), which
displays the histogram of the correlation coefficient ρ (in
absolute value) between the estimated AA source and the
ground truth. We have included all results produced by BTD-
GN for L ∈ {10, . . . , 15}, and all results produced by CAGL.
It can be seen that the choice of R significantly affects
performance, and a large proportion of results given by BTD-
GN achieves a poor ρ for every R. By contrast, ρ is very likely
to be quite close to 1 for CAGL.

In conclusion, BTD-GN only produces good results with a
proper combination of R, L and the initial point. By contrast,
CAGL only requires choosing a reasonable range for γ and
behaves much more robustly with regard to initialization.
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Fig. 5: Empirical distribution of rank chosen by CAGL for the
AA source and of rank L yielding the best AA extraction for
BTD-GN with different numbers of blocks R.
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Fig. 6: Histogram of computed correlation coefficient ρ (in
absolute value) between true and estimated AA sources.

2) Two AA sources: In this scenario, the VA source is
still the same as in the previous scenario, but now two AA
sources are generated, each one using the parameters of one
row of Table III. These AA signals are shown in Fig. 4(a).
Accordingly, the model now reads

Y = V + XST + N ∈ R12×N , (15)

where each column of S ∈ RN×2 contains one of the AA
signals and those of X ∈ R12×2 hold their respective spatial
signatures. Signals are again downsampled by a factor of 10,
yielding data tensors with the same dimensions as before.
Fig. 4(b) displays one example of the overall generated ECG
signal (solid curve).

CAGL and BTD-GN are run following the same procedure
as in the case with one AA source. However, here the estimated
AA sources are extracted by choosing first the block with the
highest correlation coefficient (in absolute value) with one of
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the reference AA sources, and secondly the block maximizing
the correlation with the remaining AA source.

The corresponding results are shown in Fig. 5(b) and
Fig. 6(b). The conclusions are similar to the previous scenario,
with three main differences: (i) BTD-GN now performs best
with R = 5, as expected; (ii) its performance is closer to that
of CAGL for this choice of R; (iii) two choices of rank were
most often made by CAGL (rather than one), namely Lr = 6
and Lr = 8.

Note that CAGL is run with exactly the same procedure as
in the previous scenario. By contrast, BTD-GN now yields best
results with a different choice of R. This highlights the fact
that CAGL can effectively adapt to a given dataset, typically
behaving more stably than the usual approach across different
circumstances.

C. Real AF data

To further study the usefulness of CAGL in the target
application, we perform experiments with real-world standard
12-lead ECG recordings from five patients suffering from
persistent AF. These recordings belong to a database provided
by the Cardiology Department of Princess Grace Hospital
Center, in Monaco. They are acquired at a 977 Hz sampling
rate and are preprocessed by a zero-phase forward-backward
type-II Chebyshev bandpass filter with cutoff frequencies of
0.5 and 40 Hz, in order to suppress high-frequency noise and
baseline wandering. For each patient, the segment with the
largest TQ interval recording is chosen for the experiment. The
recordings lengths range from about 1.08 to 1.40 seconds.

First, we downsample all signals by a factor of 10. This
decreases computing cost, with practically negligible informa-
tion loss. After normalization of each signal tensor, CAGL is
applied using the same γ-sweeping strategy as in Section V-B.
However, here we choose the final solution by inspection of
the separated signals.

To assess AA estimation, we employ two commonly used
performance parameters. The first one is spectral concentration
(SC), i.e., the relative amount of energy around the dominant
frequency (DF), computed as in [35]:

SC =
(∑1.17fp

fi=0.82fp
PAA(fi)

)(∑Fs/2
fi=0 PAA(fi)

)−1

,

where fp is the value of the DF, defined as arg maxfi PAA(fi),
Fs is the sampling frequency, fi is the discrete frequency and
PAA is the power spectrum of the AA signal computed using
Welch’s method as in [35]. An AA signal during AF typically
should have a DF between 3 and 9 Hz with high SC. The
second parameter is kurtosis of the signal in the frequency
domain, acquired by a 4096-point FFT. As in [36], we use a
sample-based estimate κ̂ of the general expression of kurtosis
valid for non-circular complex data, given by

κ = E[|Sr(k)|4]−2E[|Sr(k)|2]2−|E[Sr(k)2]|2
E[|Sr(k)|2]2

where Sr(k) denotes the FFT of the rth source. As kurtosis
measures peakedness and sparsity of a distribution, it naturally
provides a quantitative measure of harmonicity of the signal
when computed in the frequency domain. A high kurtosis is
thus suggestive of a harmonic signal like AA during AF [4].
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Fig. 7: Results produced by CAGL with real-world ECG data:
observed and estimated signals at lead V1. The estimated
AA signals are vertically shifted by −0.2 mV for ease of
visualization.

Table IV displays a quantitative assessment of the potential
AA sources extracted for each patient, while Fig. 7 shows
the estimated overall and AA signals for each patient along
with the observed signals. Note that, for Patients 2 and 5, two
blocks were identified as potential AA sources; accordingly,
the estimated AA signals in Fig. 7(b) and Fig. 7(e) are given
by the linear combinations of these blocks multiplied by
their corresponding spatial weights for lead V1. These distinct
potential AA sources for Patients 2 and 5 are shown in Fig. 8,
along with their respective spatial weights (i.e., their asso-
ciated columns in X). The shown signals are normalized as
[maxn |sr(n)|]−1 sr(n), and the corresponding spatial weights



11

TABLE IV: Block ranks of the sources extracted by CAGL
and characteristics of the potential AA sources.

Patient Non-AA source AA SC (%) DF (Hz) κ̂
AA source

ranks source rank
1 3, 9, 10, 16, 18 1 80.23 6.44 163.69 8

2 28, 32 1 59.36 6.20 116.77 29
2 82.05 6.20 163.77 12

3 21, 27, 29 1 66.13 6.20 132.29 20
4 8, 16, 20 1 74.51 5.96 196.16 10

5 32, 38, 39 1 91.70 5.72 348.42 10
2 78.63 5.01 166.95 21

are then rescaled so as to absorb the factor maxn |sr(n)|.
Based on the results of Table IV and Fig. 7, it is seen
that a satisfying extraction is achieved, as the potential AA
sources have typical f-wave features, relatively high SC and
DF between 5 and 6.5 Hz.

Regarding Patient 2, the values of SC and κ̂ for its AA
source 1 are not so high due to the residual of the T-wave
(ventricular repolarization), which can be seen around 0.3
seconds of Fig. 8(a). Furthermore, Fig. 8(b) shows that the
contribution of AA source 2 decays along the path V1–V2–
V3, which suggests that this source may reflect electrical
activity mainly occurring in the right atrium, and is almost
null on other leads. By contrast, AA source 1 gives significant
contributions to most leads, which suggests that the associated
electrical propagation pattern may be harbored in a region
including both atria. In fact, these sources have very different
spatial signatures: the cosine of the angle between their respec-
tive columns of X is around -0.13, and so they are far from
being collinear. Furthermore, despite having the same DF, their
observed power spectra are considerably different. The lack of
temporal synchronization between the estimated atrial sources,
as manifested by the time lag between the maxima of the two
signals plotted in Fig. 8(a), further supports the hypothesis
that the associated activities may arise from different areas of
atrial tissue.

Patient 5 provides another example in which two potential
AA sources with considerably different spatial signatures are
extracted: their respective columns in X form an angle whose
cosine is about 0.09. Moreover, the dominant frequencies
computed for these sources also differ significantly: 5.72 for
AA source 1 and 5.01 for AA source 2. Here, it is AA source
2 that exhibits significant contributions to most leads, while
AA source 1 manifests itself mostly on lead V1 and thus may
correspond to more localized electrical activity taking place in
the right atrium.

While the possibility of extracting more than one atrial
source presents great interest for the noninvasive analysis of
AF, a thorough validation of this result would be required by
means of ground truth data such as a full electroanatomical
mapping of the atria performed during catheter ablation inter-
ventions.

A final important observation is that for all but one patient,
the sum of the estimated block ranks exceeds the dimension of
the Hankel matrices: for Patient 1,

∑
r Lr = 64 > M = 63;

for Patient 2,
∑
r Lr = 101 > M = 74; for Patient 3,∑

r Lr = 97 > M = 71; and for Patient 5,
∑
r Lr =

140 > M = 58. This corroborates the practical importance
of the case where

∑
r Lr exceeds all tensor dimensions.

Furthermore, for all patients the sum of block ranks far exceeds
the number of leads, i.e.,

∑
r Lr > K, which showcases the

benefit of using a tensor method, since a matrix decomposition
approach could not possibly identify all the poles constituting
each model.

VI. CONCLUSION

We have proposed a convergent alternating optimization al-
gorithm for a well-posed penalized formulation of the approx-
imate BTD problem that jointly estimates the model structure
and its parameters. The resulting subproblems can be solved
by existing group lasso methods. Moreover, linear (subspace)
structure can be imposed on the block matrices by using a
structured low-rank approximation method, though a study
of the convergence is still needed in this case. Experimental
results with random tensors show that our approach is much
more robust with respect to initialization than the conventional
least-squares approach (without regularization).

To illustrate its practical usefulness, our algorithm has been
applied to extract atrial activity signals from ECG recordings
of atrial fibrillation episodes. In this problem, Hankel con-
straints must be imposed on the block matrices. Our results
with semi-synthetic and real-world data highlight the ability of
this approach to consistently perform an effective separation
without the need of choosing structural parameters a priori.
A particularly interesting result is the occurrence in (two of
the five) real-world examples of two distinct sources with
f-wave characteristics and very different spatial signatures.
Further study is needed to give this result a more thorough
physiological interpretation.

As future developments on approximate BTD computation,
we can mention studies on how to properly choose γ in
practice and on the convergence of CAGL using a locally
optimal structured low-rank approximation method to impose
the linear constraints. Regarding the AA extraction in AF
ECGs, future work would aim at analyzing the occurrence of
multiple atrial sources, as well as performing the experiments
in a large database of AF patients in order to provide more
statistically significant results. Finally, the classification of
subjects on the basis of their extracted ECG signals can also
be envisaged.

APPENDIX A
CONVERGENCE OF (UNCONSTRAINED) AGL

AGL’s formulation satisfies the conditions of Theorem 2 of
[26] for the following reasons:
• since the directional derivative of g (see (9)) exists at ev-

ery point (A,B,X) ∈ S and AGL’s subproblems satisfy
F (A | B̂(t), X̂(t)) + τ

2‖A−A(t)‖2F ≥ F (A | B̂(t), X̂(t))
with equality at A = A(t) and likewise for B and X,
Assumption 2 of [26] holds (see [26, Proposition 2]);

• F (A,B,X) is continuous and coercive, and thus its
sublevel sets Fc = {(A,B,X) ∈ S : F (A,B,X) ≤ c},
with c ∈ R, are compact;
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Fig. 8: Results produced by CAGL with real-world ECG data from Patients 2 and 5.

• AGL’s subproblems are strictly convex, thus having
unique minimizers;

• as f(A,B,X) < ∞ and f is Gâteaux-differentiable on
all (A,B,X) ∈ S, [37, Lemma 3.1] implies F is regular
at every point (A,B,X) ∈ S.
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