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Abstract—In some applications, blind source separation can be
performed by computing an approximate block-term tensor de-
composition (BTD), under much milder constraints than matrix-
based techniques. However, choosing the BTD model structure
(i.e., the number of blocks and their ranks) is a difficult problem,
and the standard least-squares formulation can be ill-posed.
This paper proposes an alternating group lasso algorithm to
compute approximate low-rank BTDs. It solves, in a provably
convergent manner, a well-posed mixed-norm regularized tensor
approximation problem which allows jointly estimating the model
parameters and its structure. A variant is also put forward
for dealing with linearly constrained blocks, motivated by the
problem of blind separation of sums of complex exponentials,
which can be cast as a low-rank Hankel-structured block-term
tensor approximation problem. An experimental comparison with
a standard nonlinear least-squares algorithm on synthetic tensor
data indicates that the proposed algorithm is much more robust
with respect to initialization. We also apply the constrained
variant to the extraction of atrial activity from semi-synthetic and
real-world electrocardiogram recordings during atrial fibrillation
episodes. Our results show its ability to consistently select an
adequate structure and to extract multiple signals which can be
physiologically interpreted as atrial fibrillation patterns.

Index Terms—Tensors, block term decomposition, group lasso,
structured low-rank approximation, atrial fibrillation.

I. INTRODUCTION

REcorded signals in biomedical applications, such as
electroencephalography [1] and electrocardiography [2],

[3], [4], [5], [6] can be modeled as instantaneous unknown
linear mixtures of R sources. To separate them, the un-
known sources are assumed to be statistically independent
and orthogonal, in independent component analysis (ICA) and
principal component analysis (PCA), respectively. Although
this renders the underlying blind source separation (BSS)
well-posed, such stringent assumptions may lack physiological
grounds, hindering results interpretation. A less constraining
approach is to assume that sources can be approximated
by sums of complex exponentials (SCE), which can model
narrowband and transient signals that can be linked to specific
clinical conditions. This leads to a identifiable low-rank matrix
factorization involving a Vandermonde matrix [7], but the total
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number of exponentials that can be identified by this matrix
approach is bounded by the number of sensors.

Alternatively, by forming a matrix with shifted versions of
each measured signal and by stacking these matrices in a
third-order tensor, a process called “Hankelization,” BSS of
SCE signals can be cast as an approximate block-term tensor
decomposition (BTD) problem with Hankel-structured blocks
[8]. Each SCE source contributes in the decomposition with
a structured term given by a tensor product of a rank-Lr
Hankel matrix containing its samples with a vector containing
its spatial signature (i.e., its weights for each channel), where
Lr is the number of complex exponentials (poles) in the SCE.
The main benefit of this approach is that identifiability of
the decomposition is guaranteed under mild conditions which
do not involve stringent constraints such as orthogonality or
independence and can hold even when the sum of the block
ranks exceeds the number of sensors and the dimensions of
the Hankel matrices as well [9], [8].

When implementing this approach, however, two problems
arise. The first one refers to the computation of the approxi-
mate BTD. Some methods have been made available for this
task, such as the nonlinear least-squares methods implemented
in Tensorlab [10] or the alternating least squares method
with enhanced line search (ALS-ELS) [11]. However, the
performance of such techniques depends considerably on the
choice of structural parameters (R and Lr), which is difficult
to make in practice. Furthermore, they usually exhibit strong
sensitivity with respect to the initialization and address an
optimization problem which may lack a global minimizer [12];
this can lead to the estimation of almost collinear blocks
with no physical interpretation, a phenomenon often termed
model degeneracy. The second problem refers to the low-rank
Hankel structure constraint, which is hard to enforce for real-
valued data. To our knowledge, no existing BTD algorithm
can reliably impose Hankel constraints in this case.

In [13], a functional promoting group sparsity of the decom-
position factor columns was minimized to estimate appropriate
structural parameters of an (unconstrained) BTD model, but
not the model itself. Moreover, the authors only considered
the case where all Lr are equal. In this work, we show that (i)
the same principle can be used to jointly estimate the model
structure and its parameters, and that (ii) the general case with
different block ranks can also be addressed.

To achieve this goal, we formulate the approximate BTD
computation as the minimization of a (least-squares) fitting
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term plus a regularization term given by the sum of the
`2,1-norms of the matrices containing the model parameters.
The latter enforces (column-wise) group sparsity of the factor
matrices, thus penalizing models with high R and Lr. In
this way, we are able to find an approximate BTD without
assumptions on R and Lr, effectively achieving a trade-off
between data fitting and model complexity. Furthermore, the
regularization renders the BTD approximation problem well-
posed.

To solve this problem, we propose an algorithm called
alternating group lasso (AGL), which is simpler than the
algorithm of [13] and provably convergent. We also devise
a variant termed constrained AGL (CAGL) to deal with linear
(subspace) constraints over block matrices. For this purpose,
alternating projections are performed at each iteration to
ensure that the block matrices have low rank and belong to the
specified subspace. This strategy is well-known as Cadzow’s
algorithm (CA) [14], and allows in particular imposing a low-
rank Hankel structure.

As an application of CAGL, we consider the problem
of extracting the atrial activity (AA) in electrocardiograms
(ECGs) of atrial fibrillation (AF). AF is the most common
sustained cardiac arrhythmia encountered in clinical practice, a
major public health and economical concern. The importance
given to this challenging cardiac condition has increased in
the past few years, since its mechanisms are not completely
understood. Accurate analysis of the fibrillatory waves (f-
waves) is then necessary for better understanding the arrhyth-
mia. Noninvasive AA extraction from ECG recordings is,
therefore, a key problem that motivates the development of
signal processing techniques such as the one we propose in
this paper.

Other BSS techniques such as PCA and ICA have been
applied to noninvasive AA extraction [15]–[16] and provided
satisfactory results. However, as previously stated, results are
difficult to interpret due to the imposed constraints. Moti-
vated by identifiability and interpretability requirements, BTD
modeling using “Hankelization” for AA extraction has been
recently proposed and studied in [3], [17], [4], [5], [6]. Ex-
perimental results in synthetic and real AF ECG data showed
that BTD can outperform the matrix-based techniques for AA
extraction in short and long segments of AF ECG recordings.
The application in this work follows the same line of [3],
[17], [4], [5], [6], but differs from [3], [17], [5], [6], since we
do not impose the structural parameters of the model. It also
differs from [4], where structural parameters are chosen fitting
different BTD models and selecting the best one with respect
to an information-theoretical criterion.

The outline of the paper is the following: in Section II we
present the problem of source separation of sums of complex
exponentials using BTD with Hankel structure. Section III
formulates regularized BTD approximation problem and the
algorithms AGL and CAGL. A numerical evaluation of AGL
algorithm is shown in Section IV. The application of CAGL
approach to AA extraction is then presented in Section V,
where semi-synthetic ECG datasets and real ECG datasets are
considered. Finally, conclusions are given in Section VI.

Notation: Tensors are denoted in uppercase bold script

letters X, matrices in uppercase bold letters X , vectors in
lowercase bold letters x and scalars in lowercase letters x.
Notations ‖ · ‖F and ‖ · ‖2,1 stand for the Frobenius norm
and the matrix mixed `2,1-norm, respectively. The latter is
defined as the sum of the norms of its argument’s columns,
as in ‖X‖2,1 =

∑R
r=1 ‖xr‖2 , respectively. The symbols

⊗, � and � are used for tensor, Kronecker, and Khatri-Rao
(column-wise Kronecker) product, respectively. Block Khatri-
Rao product is denoted by �L, for a product Z = X �L Y
with X = [x1 · · ·xR] and Y = [y1 · · ·yLR], the ith block
of Z is given by xi �

[
y(i−1)L+1 · · ·y(i−1)L+L

]
. Diagx

denotes a diagonal tensor or matrix with entries given by x.
The superscript (·)T denotes matrix transpose, and a hat ( ·̂ )
denotes an estimate.

II. TENSOR-BASED SEPARATION OF SUMS OF COMPLEX
EXPONENTIALS

This section reviews the method proposed in [8] for sep-
aration of SCE sources by means of a block-term tensor
decomposition, under the assumption that each source has
a small number of poles. We also discuss existence and
uniqueness of solutions to the approximate decomposition
problem which is addressed in practice.

A. Low-rank Hankel source model

A celebrated result in signal processing states that if a
discrete-time signal is a linear combination of L damped
complex exponentials, say

s(n) =
∑L
`=1 α` exp(ζ` n), n = 0, . . . , N − 1, (1)

where α`, ζ` ∈ C, then the M ×M Hankel matrix

Hs ,
[
s(0) s(1) . . . s(M − 1)

]
,

with s(n) ,
[
s(n) s(n+ 1) . . . s(n+M − 1)

]T
and

N = 2M − 1, has rank at most min{L,M}. In fact, this
property follows immediately from the decomposition [18]

Hs = Vs Diag(α1, . . . , αL)VT
s ,

where Vs is the Vandermonde matrix

Vs ,


1 . . . 1

exp(ζ1) . . . exp(ζL)
...

...
exp(ζ1(M − 1)) . . . exp(ζL(M − 1))

 ∈ CM×L,

and is at the heart of classical modal analysis methods [19]. It
implies that a “simple” signal of the form (1) can be mapped
into a low-rank Hankel matrix, where simple here means being
constituted by a small number L of exponentials. We will see
next how signal separation can be performed by relying on
this relation.

Remark 1. For real-valued signals, usual conjugacy conditions
must hold in (1). Correspondingly, complex-valued columns of
Vs as well as coefficients α` must arise in complex conjugate
pairs.
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B. Separation of linear mixture via block term decomposition

Consider now a linear instantaneous mixture y(n) =∑R
r=1 xr sr(n), with

sr(n) =
∑Lr

`=1 α
(r)
` exp

(
ζ

(r)
` n

)
, Lr < M, (2)

and assume one wants to recover the signals sr(n) from
knowledge of y (and of the above model) only. By linearity of
the map discussed above, we have y 7→ Hy =

∑R
r=1 xrHsr ,

so that rankHy ≤
∑R
r=1 Lr. Without further information,

though, this linear combination of matrices is not of much
help for separation.

The situation changes upon introduction of spatial diversity,
meaning we now observe y(k, n) =

∑R
r=1 xk,r sr(n) for k =

1, . . . ,K. In matrix notation, we have

Y = XST, (3)

where S = (sn,r) = (sr(n−1)) is an N×R matrix containing
the source signals and X = (xk,r) is a K×R mixture matrix
specifying how the sources are combined to yield the channels’
outputs. Each such output yk(n) = y(k, n) for a fixed k (i.e.,
each row of Y) can be mapped into an M×M Hankel matrix
as before, say yk 7→ Yk. Hence, Yk =

∑R
r=1 xk,rHr, where

Hr is the rank-Lr Hankel matrix associated with sr. The
matrices Yk can be viewed as slices of an M × M × K
tensor Y satisfying

Y =
∑K
k=1 Yk ⊗ ek =

∑K
k=1

(∑R
r=1 xk,rHr

)
⊗ ek

=
∑R
r=1 Hr ⊗

(∑K
k=1 xk,rek

)
=
∑R
r=1 Hr ⊗ xr, (4)

where ek is the kth canonical basis vector of CK , xr is the
rth column of X and ⊗ is the tensor product. The data tensor
thus consists of a sum of blocks, each one given by the tensor
product of a low-rank matrix and a vector. We refer to the
parameters (R, {Lr}Rr=1) as structural parameters or simply
the structure of the model in (4).

It turns out that the tensor decomposition (4), known as
block-term decomposition (BTD) and introduced by [9], is
essentially1 unique under relatively mild assumptions. Its
uniqueness properties have been first studied in [9], and further
results were given in [8]. In particular, Theorem 2.4 of [8]
states that if X has full column rank and rank

∑R
r=1 wrHr >

maxr rankwrHr for all w =
[
w1 . . . wR

]T
having at

least two nonzero components, then the BTD in (4) is essen-
tially unique. (It is thus necessary that Lr < M .)

C. Approximate block term decomposition

In practice, the data matrix Y is only approximately given
by (3), due to noise and imperfect modeling. Hence, one can
only approximate tensor Y by a low-rank BTD model of the
form in (4).

Since the approximate BTD problem is important in its
own right, we hereby discuss it from a general perspective,

1Note that (4) can only be unique modulo a permutation of the summands
and a joint rescaling of the components of each summand as in (Hr,xr) 7→
(αHr, (1/α)xr) for some α 6= 0.

momentarily leaving aside the Hankel constraints in (4) and
considering a third-order tensor Y ∈ CI×J×K (in model (4)
we had I = J = M ). Typically, an approximate BTD is
computed by minimizing a measure of distance between the
data tensor and a model of fixed structure with respect to the
model components. Mostly often, a least-squares criterion is
adopted (as in, e.g., [11]), leading to

min
(A,B,X)∈S

f(A,B,X) ,
∥∥∥Y−∑R

r=1

(
ArB

T
r

)
⊗ xr

∥∥∥2

F
(5)

with S , CI×
∑R

r=1 Lr×CJ×
∑R

r=1 Lr×CK×R, where Ar con-
tains the columns of indices 1 +

∑r−1
m=1 Lm to

∑r
m=1 Lm of

A, and likewise for Br. Observe that the factorization ArB
T
r

is employed to bound each block rank as rankHr ≤ Lr.
We discuss next the existence and uniqueness of solutions

to (5), and also the imposition of a Hankel constraint over the
blocks in (4).

1) Existence: Problem (5) may lack a global minimizer,
because the set of tensors having a given BTD structure is not
necessarily closed. An example of this phenomenon has been
known since the introduction of the BTD [11]. As recently
shown in [12], spaces of real-valued tensors can contain sets
with nonempty interior whose elements do not admit a best
approximate BTD having a given structure. This fact has
practical consequences, since it implies that a random tensor
drawn from an absolutely continuous distribution has nonzero
probability of falling into such a set. For complex-valued
tensors, [20] shows that this issue only affects tensors from
sets of zero volume, and thus is of lesser practical concern.

2) Uniqueness: In fact, the results of [20] not only imply
that a closest tensor having a specified BTD structure exists for
almost all complex-valued tensors, but also that it is unique
(see [20, Corollary 7.4]). However, there is a subtlety: this
simply means that for a random complex-valued tensor Y the
problem

min
Ŷ∈BL1,...,LR

‖Y− Ŷ‖2F
has a unique solution almost surely, where BL1,...,LR

is the set
of all complex-valued tensors which can be written in the form∑R
r=1 Hr ⊗xr with rankHr ≤ Lr. This does not imply that

the BTD components themselves are unique, which requires
additional conditions over these components, such as those
stated in Section II-B.

For real-valued tensors, though, no analogue of the above
mentioned result is known.

3) Linear constraints over block matrices: In the special
case of interest (4), Hr must belong to the subspace of M×M
Hankel matrices, H. Although the slices Yk are Hankel by
construction, there is no reason why a solution (Â, B̂, X̂) of
(11) or of (5) should satisfy ÂrB̂

T
r ∈ H. In fact, even if the

sum
∑R
r=1 x̂k,rÂrB̂

T
r is Hankel, the matrices ÂrB̂

T
r do not

need to be (though the opposite is certainly true). In other
words, the solution may lack temporal structure, not being
interpretable as a mixture of sources of the form (1).

To date, this issue has been circumvented by projecting the
unconstrained estimated block matrices onto H [1], [5]:

Ĥr = PH(ÂrB̂
T
r ), r = 1, . . . , R, (6)
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where PH is the orthogonal projector onto the Hankel sub-
space H. However, there are two problems with this approach:

(i) It can happen in practice that ‖PH⊥(ÂrB̂
T
r )‖2F 6�

‖Ĥr‖2F for one or more indices r, where H⊥ denotes
the orthogonal complement of H. In this case, it is also
hard to interpret the results, because a significant portion
of the “energy” of the rth block is discarded.

(ii) Ĥr has full rank in general, and thus the simplicity con-
straint (small number of poles) is not satisfied anymore,
not even approximately if ‖PH⊥(ÂrB̂

T
r )‖F is large.

Instead of performing a single projection as in (6), one
can employ Cadzow’s Algorithm (CA) [14], performing a se-
quence of alternating projections onto H and the (nonconvex)
set Lr , {M ∈ CM×M : rankM ≤ L̂r}, where L̂r ,
rank ÂrB̂

T
r . It is cheap to apply PH: it suffices to compute

the means of antidiagonals of its argument. Computing PLr is
also easy but more costly, since it requires truncating a singular
value decomposition (SVD) according to the rank bound. This
strategy addresses issue (ii) above, but issue (i) still remains.

Finally, note that the above discussion applies almost en-
tirely to arbitrary constraints of the form Hr ∈ U where U is a
subspace of C, except for the fact that the projector PU may be
not as cheap to apply as PH. Though CA is known to converge
to generally suboptimal solutions [21], it is very simple to
implement and to adapt to arbitrary constraints, whilst often
producing good solutions in practice.

III. ALTERNATING GROUP LASSO ALGORITHM FOR BTD

In the following, we derive a provably convergent algorithm
for computing an (unconstrained) approximate BTD of a
given tensor. Subsequently, we show how linear (subspace)
constraints can be imposed upon the block matrices, Hankel
structure being a special case of these constraints.

A. Problem formulation

Instead of determining the BTD structure beforehand, one
can include penalization terms promoting low-rank blocks and
controlling the number of blocks in the formulation, as in

min
(A,B,X)∈S

F (A,B,X) , f(A,B,X) + γ g(A,B,X), (7)

where S , CI×LR×CJ×LR×CK×R, f is the same as in (5),
γ > 0 is a regularization parameter and g is a regularization
function of the form

g(A,B,X) , ‖A‖2,1 + ‖B‖2,1 + ‖X‖2,1. (8)

Adding a mixed `2,1-norm regularization term is a well-
known strategy for inducing group sparsity of its argument’s
columns. This is essentially a generalization of the lasso (least
absolute shrinkage and selector operator) estimator principle,
called group lasso, and is owed to geometric properties of the
`2,1-norm [22].

Hence, for sufficiently high γ, minimizers of (7) will be
formed by A and B displaying some columns made entirely
of zeros, effectively yielding a BTD of low-rank blocks. The
same applies to X, possibly reducing the number of blocks.
This allows much more flexibility compared to (5), since now

the number of degrees of freedom of the model can adapt to
the data Y. Moreover, at least one solution is guaranteed to
exist, because F is coercive (due to g) and continuous.

B. Algorithm for unconstrained blocks

To tackle the nonconvex and nonsmooth problem (7), we
employ a block coordinate descent (BCD) approach. This
widespread technique consists in partitioning the set of opti-
mization variables and then sequentially solving subproblems
in each subset of variables (with the others fixed) until all
subsets are updated, completing one iteration of the algorithm.

Here, we have a natural partition into three blocks: A, B
and X. Let Â(t), B̂(t) and X̂(t) denote the estimates obtained
at iteration t. Fixing B = B̂(t) and X = X̂(t) in (7), the
subproblem in A of iteration t+ 1 becomes a standard group
lasso problem

minA∈CI×LR F
(t)
A (A), (9)

with F
(t)
A (A) , 1

2‖Y− W
(t)
A (A)‖2F + γ ‖A‖2,1,

where W
(t)
A is a linear map depending on B̂(t) and X̂(t).

The groups are disjoint and correspond to the columns of
A. Existing group lasso algorithms such as that in [23] can
be readily invoked2 to solve (9), which is convex. Similar
subproblems can be derived for B and X.

Now, despite being convex, subproblem (9) may not be
strictly convex, because W

(t)
A may not be injective at some

iterations. It can thus fail to have a unique solution, and
convergence to a stationary point cannot be guaranteed [24].
One can remedy this shortcoming by adding a proximal term,
as in minA∈CI×LR F

(t)
A (A) + τ

2‖A − Â(t)‖2F , with τ > 0.
Putting a , vec(A) and y1 , vec(Y〈1〉), where Y〈1〉
indicates the mode-1 matrix unfolding of Y (see e.g. [8]), this
is equivalent to

min
a∈CILR

1

2

∥∥∥∥[ y1√
τ â(t)

]
−
[
W

(t)
A√
τ I

]
a

∥∥∥∥2

2

+γ

R∑
r=1

L∑
l=1

‖ar,l‖2, (10)

where W
(t)
A ,

(
X̂(t) �L B̂(t)

)
� II and ar,l holds compo-

nents (((r − 1)L + l) − 1)I + 1 to ((r − 1)L + l)I of a.
By construction, (10) is strictly convex, since the Hessian of
the least-squares term is positive definite. Analogous strictly
convex subproblems can also be derived for B and X, with

W
(t)
B ,

(
X̂(t) �L Â(t+1)

)
� IJ ,

W
(t)
X ,

[(
B̂(t+1) � Â(t+1)

)
Diag(1L, . . . ,1L)

]
� IK .

The AGL algorithm solves them in alternating fashion, cycling
through updates of Â(t), B̂(t) and X̂(t), in that order, at
each iteration t. It can be seen as a regularized version of
the alternating least squares scheme proposed in [11]. As
we explain in Appendix A, AGL’s formulation satisfies the
conditions of [24, Theorem 2], and hence its iterates converge
to a stationary point of problem (7).

It should be noted that AGL is a general approach to
compute an unconstrained approximate low-rank BTD and is

2This algorithm was however formulated for the real-valued setting only.
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TABLE I: Pseudocode for constrained AGL algorithm.

Inputs: Data tensor Y, penalty parameter γ, proximal term weight τ ,
initial point (A(0),B(0),X(0))

Outputs: Approximate BTD factors (A,B,X)

1: t← 1
2: while stopping criteria not met do
3: Solve group lasso subproblem (10) to obtain A(t) from A(t−1),

B(t−1) and X(t−1)

4: for r = 1, . . . , R do
5: L

(t)
r ← number of nonzero columns in A

(t)
r

6: (A
(t)
r ,B

(t−1)
r )← cadzow(A

(t)
r (B

(t−1)
r )T, L

(t)
r )

7: (A
(t)
r ,B

(t−1)
r )← ([A

(t)
r 0

I×L−L
(t)
r

], [B
(t−1)
r 0

I×L−L
(t)
r

])

8: Solve group lasso subproblem in B analogous to (10) to obtain B(t)

from A(t), B(t−1) and X(t−1)

9: for r = 1, . . . , R do
10: L

(t)
r ← number of nonzero columns in B

(t)
r

11: (A
(t)
r ,B

(t)
r )← cadzow(A

(t)
r (B

(t)
r )T, L

(t)
r )

12: (A
(t)
r ,B

(t)
r )← ([A

(t)
r 0

I×L−L
(t)
r

], [B
(t)
r 0

I×L−L
(t)
r

])

13: Solve group lasso subproblem in X analogous to (10) to obtain X(t)

from A(t), B(t) and X(t−1)

14: t← t+ 1

not specifically tailored to the application we consider later in
the paper. Hence, it could also be applied, for example, to the
problems presented in [1], [25] and [26].

C. Handling linear constraints in Hr

In order to address issues (i) and (ii) stated in Section II-C3,
we propose a variant of AGL, termed constrained AGL
(CAGL), to address the problem

min
(A,B,X)∈S

F (A,B,X) subj. to ∀r, ArB
T
r ∈ H. (11)

In CAGL, the constraint in (11) is enforced by applying CA
during the iterations, after having estimated Â(t) and B̂(t). For
clarity, the algorithm is summarized in Table I, where notation
was simplified by dropping the symbol (̂·) from the computed
estimates.

Note that each application of CA re-estimates both Ar and
Br, which are updated as the factors of the last SVD computed
by CA. The reason for this joint update is that, for a fixed
rank L′ and a fixed J ×L′ matrix Vr, it can happen that the
only solution I × L′ matrix Ur for UrV

T
r ∈ H is Ur = 0.

Another observation is that the rank estimate L̂r given to CA
is a conservative one, since we only take into account the
columns of one factor. Finally, it should be noted that, since
Â

(t)
r and B̂

(t)
r always have L columns, zeros must be added

in those blocks after applying CA, as done in lines 7 and 12
of Table I.

As we will see in Section V, in practice CAGL yields
meaningful solutions to the source separation problem and
seems to be robust with respect to its initialization, in spite of
the suboptimality of CA. The price to pay for constraining the
block matrices is a heavier computational load, mainly due to
the computation of the SVDs required by CA. Note also that
any other structured low-rank approximation algorithm, such
as those in [27], can be used in place of CA.

IV. NUMERICAL EVALUATION ON RANDOM BLOCK TERM
DECOMPOSITION MODELS

We now evaluate AGL in the approximate computation of
synthetic BTD models, with and without Hankel constraint.

A. Unconstrained BTD

We generate 500 joint realizations of (A,B,X,N) by
drawing the (real-valued) elements of A, B, X and N in an
independent and identically distributed (i.i.d.) fashion from the
standard normal distribution. X is then normalized column-
wise and the condition maxi,j |xT

i xi| < 0.9 is imposed (by
drawing X multiple times until it is met). This prevents nearly
collinear spatial signatures. Next, we construct the noisy model
Y = Y0 + σN N, where Y0 =

∑R
r=1(ArB

T
r ) ⊗ xr and σN

is the standard deviation of the noise, which is adjusted to
achieve SNR , ‖Y0‖2F σ−2

N ‖N‖−2
F = 20 dB.

We set I = J = 8 and K = R = 3. The block ranks are
L1 = 4, L2 = 3 and L3 = 2. For each realization, AGL is
applied three times with L = 4 using the following procedure:
• starting from a random initial point, the algorithm is run

with γ = γ0, producing an initial solution;
• for p = 1, . . . , P − 1, it is run with γ = γp = (p+ 1)γ0,

using the solution obtained for γp−1 as the initial point.
This γ-sweeping procedure is inspired by solution-path tech-
niques used in the statistics community [28] and produces a
sequence of candidate solutions. Of all P candidate solutions,
we keep the best one according to the normalized mean
squared error (NMSE) over the blocks:

NMSE(Â, B̂, X̂),
1

R

R∑
r=1

‖(ArB
T
r )⊗ xr−(ÂrB̂

T
r )⊗ x̂r‖2F

‖(ArBT
r )⊗ xr‖2F

.

For comparison, Tensorlab’s Gauss-Newton BTD algorithm
(BTD-NLS) [10] is also used. The same rank L is used for
all three blocks, since true ranks (or at least adequate ones)
are typically unknown in practice. Ten random initializations
are used, the first three being the same as used by AGL.
Fig. 1(a) shows the empirical cumulative distribution function
(ECDF) of NMSE obtained by selecting the best solution
among the first Ni initializations. For BTD-NLS, we let Ni

vary from 1 to 10; for AGL, it varies from 1 to 3. Clearly, AGL
outperforms BTD-NLS by a significant margin. Furthermore,
its performance seems much less sensitive with respect to
initialization. Table II displays the proportion of realizations
for which each block rank is estimated by AGL at a given
value, for Ni = 2. It shows that AGL is able to correctly
estimate each block’s rank most of the time, though there is
some non-negligible chance of overestimation.

Now, even if the true ranks are given as input to BTD-NLS
(which is an unrealistic assumption), it is still outperformed
by AGL with Ni ∈ {2, 3}, as seen in Fig. 1(b). The average
computing times and standard deviations (in seconds) for AGL
with Ni = 1 and Ni = 2 are (µ = 25.56, σ = 9.70) and
(µ = 50.75, σ = 14.65), respectively; for BTD-NLS with
ranks (4, 4, 4), they are (µ = 71.24, σ = 32.38), and when
the true ranks (4, 3, 2) are used, (µ = 70.13, σ = 34.78).
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(c) Constrained, BTD-NLS ranks = (4, 4, 4)
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Fig. 1: Empirical CDFs of NMSE (over estimated blocks) attained by AGL and BTD-NLS for 500 realizations of a noisy
random BTD model, in the constrained and unconstrained scenarios. BTD-NLS’ results are portrayed by the shaded regions:
each such region indicates the area between the curve obtained by keeping the best result among Ni initializations and that
obtained by keeping the best result among Ni + 1 initializations.

TABLE II: Proportion of block rank values estimated by
AGL in both scenarios of Section IV, when the best solution
obtained with two initializations (Ni = 2) is kept.

Unconstrained Constrained
L1 = 4 L2 = 3 L1 = 2 L1 = 4 L2 = 3 L1 = 2

L̂i = 1 00.0% 00.0% 00.4% 00.0% 00.4% 01.6%
L̂i = 2 00.2% 00.6% 65.4% 01.2% 04.6% 52.2%
L̂i = 3 02.2% 69.2% 22.2% 06.6% 53.8% 12.8%
L̂i = 4 97.6% 30.2% 12.0% 92.2% 41.2% 33.2%

B. Constrained BTD

A similar evaluation is performed in this scenario, also
with 500 realizations and SNR= 20 dB, but now the block
matrices are random low-rank Hankel matrices generated using
CA. Moreover, to enforce the constraint after convergence,
CA is also applied to the outcomes of BTD-NLS. Setting all
ranks to L = 4 in BTD-NLS leads to the results shown in
Fig. 1(c). The performance of both CAGL and BTD-NLS are
worse in comparison to the previous scenario, with CAGL
still ahead. Yet, it appears to be more sensitive with respect to
initialization now. Also, block rank estimation is less accurate,
as shown in Table II. If the true ranks are given to BTD-
NLS, then CAGL with Ni = 2 still produces slightly better
results than BTD-NLS with Ni = 20, as seen in Fig. 1(d). The
average computing times and standard deviations (in seconds)
for CAGL (Ni = 2) are (µ = 199.46, σ = 145.25); for BTD-
NLS (Ni = 20) with ranks (4, 4, 4), they are (µ = 207.97,
σ = 96.07), and when the true ranks (4, 3, 2) are used,
(µ = 218.56, σ = 87.39). Hence, overall CAGL outperforms
BTD-NLS also in this scenario.

V. EXPERIMENTAL RESULTS WITH ECG DATA

A. Tensor representation of ECG signals

ECG produces a time plot that represents the heart’s elec-
trical activity recorded from electrodes placed on the body
surface. The ECG data matrix with K leads and N samples
can be modeled as (3), where X ∈ RK×R is the mixing
matrix, that models the propagation of the cardiac electrical
sources from the heart to the body surface, S ∈ RN×R is the
source matrix that contains the atrial, ventricular, and possibly
disturbance sources, and R is the number of sources [16].

AA extraction in AF ECG recordings can be viewed as a
BSS problem where the goal is to estimate the matrices X
and S only from the observed data matrix Y. The tensor built
from the ECG data matrix as described in Section II-B then
satisfies (4), where Hr ∈ RM×M is a Hankel matrix built
from the rth column of S, and thus contains samples of the
rth ECG source. Vector xr, which is the rth column of X,
quantifies the contribution of this source to each electrode’s
output, and so can be thought of as its spatial signature.

Due to the quasi-periodic nature of AF, atrial sources can
be represented by the SCE model (1) with a small number of
exponentials. Ventricular sources, in their turn, are typically
composed by a few transient components, and thus can also
be well modeled by (1) with small L. Hence, these signals
can be mapped into low-rank Hankel matrices, as discussed
in Section II-B.

B. Semi-synthetic AF data

The usefulness of CAGL for ECG source separation is now
assessed by resorting to a semi-synthetic AF data model. To
simulate the AA signal during AF, the model proposed in [29]
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TABLE III: Parameters of the synthetic AA signal model (12).

Model P a ∆a fa Fs f0 ∆f Ff

1 5 150 50 0.08 1000 6 0.2 0.10
2 3 60 18 0.50 1000 8 0.3 0.23

that mimics the sawtooth pattern (a typical characteristic of the
f waves) is used. This model is given by

s(n) = −∑P
p=1 ap(n) sin (p θ(n)) (12)

with modulated amplitude and phase respectively given by

ap(n) = 2
pπ

[
a+ ∆a sin

(
2π faFs

n
)]

and
θ(n) = 2π f0Fs

n+
(

∆f
Ff

)
sin
(

2π
Ff

Fs
n
)
,

where a is the sawtooth amplitude, ∆a is the modulation peak
amplitude, fa is the amplitude modulation frequency, Fs is the
sampling frequency, f0 is the frequency value in which θ(n)
varies sinusoidally, ∆f is the maximum frequency deviation
and Ff is the modulation frequency.

1) One AA source: We first consider a scenario with one
AA source s(n), which is generated using (12) with the
parameters of Model 1 given in Table III. This signal is shown
in Fig. 2(a). A random spatial signature x ∈ R12 over all
12 ECG leads is generated for this source, having standard
normal i.i.d. components. The ventricular activity (VA) source
is taken from a real 12-lead ECG of a healthy person, after P
wave suppression as in [3]. This ECG, that belongs to the
database of [30], is acquired at a sampling rate of 1 kHz
and is preprocessed by a zero-phase forward-backward type-
II Chebyshev bandpass filter with cutoff frequencies of 0.5
and 30 Hz, in order to suppress high-frequency noise and
baseline wandering. Additive white Gaussian noise (AWGN)
with variance σ2 was added, yielding the overall model

Y = V + αxsT + N ∈ R12×N , (13)

where V holds the normalized VA signal, s ∈ RN holds
the AA signal samples, N contains the AWGN samples and
α = 2 is a scaling factor chosen to obtain an average
atrial-to-ventricular power ratio consistent with clinical ob-
servations. A window of about 1.2 seconds is used, yielding
1221 samples. An example of the overall generated signal is
shown in Fig. 2(b) (dashed curve). A direct Hankelization of
this matrix yields a tensor of dimensions 611 × 611 × 12,
whose approximate BTD demands a large computing time.
To reduce it, we downsample the signals by a factor of 10
before computing the decomposition. The resulting tensor Y

has dimensions 62× 62× 12.
CAGL is run with the same γ-sweeping procedure used

in Section IV, but now with γ taking 30 equispaced values
in the interval [8 × 10−4, 0.33 × 10−2] and keeping the last
solution. For γ0, we start the algorithm with R = 6 random
blocks of rank L = 40. Among the estimated sources, the AA
source is chosen as that which maximizes (in absolute value)
the correlation coefficient ρ with respect to the ground truth
s(n).

0 0.2 0.4 0.6 0.8 1 1.2

−2

−1

0

1

(a) Generated AA sources

AA model 1

AA model 2

0 0.2 0.4 0.6 0.8 1 1.2
−6

−4

−2

0

2

Time (s)

(b) Overal generated ECG on lead V1

with 1 AA signal (scenario of Section V-B1)

with 2 AA signals (scenario of Section V-B2)

Fig. 2: Examples of generated semi-synthetic models: (a) AA
sources following model (12) with the parameters shown in
Table III; (b) overall synthesized ECG signals on lead V1.

BTD-NLS is run to estimate R blocks of fixed rank L, for
all combinations (R,L) ∈ {4, 5, 6} × {1, . . . , 40}. For each
rank L, the initial point is generated by filling the L columns
of Ar and Br with the first L columns used to initialize these
variables in CAGL.

This procedure is repeated 30 times for each of 10 different
realizations of (x,N). We found that the results of CAGL
are remarkably consistent, producing very similar estimates
regardless of the chosen initial point. By contrast, the results
obtained with BTD-NLS are much more sensitive in this
respect. Specifically, the value of L that yields the best
performance for a given run is not the same across different
runs, as shown by the ECDF of Fig. 3(a). For AGL, the rank
chosen for the AA signal block is almost always 10 as seen
in Fig. 3(a).

Though the most adequate choice for BTD-NLS seems
to be R = 4 and L ∈ {10, . . . , 15}, its performance is
highly variable for this range of L. This is seen in Fig. 4(a),
which displays the histogram of the correlation coefficient
ρ (in absolute value) between the estimated AA source and
the ground truth. We have included all results produced by
BTD-NLS for L ∈ {10, . . . , 15}, and all results produced by
CAGL. It can be seen that the choice of R significantly affects
performance, and a large proportion of results given by BTD-
NLS achieves a poor ρ for every R. By contrast, ρ is very
likely to be quite close to 1 for CAGL.

In conclusion, BTD-NLS only produces good results with a
proper combination of R, L and the initial point. By contrast,
CAGL only requires choosing a reasonable range for γ and
behaves much more robustly with regard to initialization.

2) Two AA sources: In this scenario, the VA source is
still the same as in the previous scenario, but now two AA
sources are generated, each one using the parameters of one
row of Table III. These AA signals are shown in Fig. 2(a).
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Fig. 3: Empirical distribution of rank chosen by CAGL for the
AA source and of rank L yielding the best AA extraction for
BTD-NLS with different numbers of blocks R.
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Fig. 4: Histogram of computed correlation coefficient ρ be-
tween true and estimated AA sources.

Accordingly, the model now reads

Y = V + XST + N ∈ R12×N , (14)

where each column of S ∈ RN×2 contains one of the AA
signals and those of X ∈ R12×2 hold their respective spatial
signatures. Signals are again downsampled by a factor of 10,
yielding data tensors with the same dimensions as before.
Fig. 2(b) displays one example of the overall generated ECG
signal (solid curve).

CAGL and BTL-NLS are run following the same procedure
as in the case with one AA source. However, here the estimated
AA sources are extracted by choosing first the block with the
highest correlation coefficient (in absolute value) with one of
the reference AA sources, and secondly the block maximizing
the correlation with the remaining AA source.

The corresponding results are shown in Fig. 3(b) and
Fig. 4(b). The conclusions are similar to the previous scenario,
with three main differences: (i) BTD-NLS now performs best
with R = 5, as expected; (ii) its performance is closer to that
of CAGL for this choice of R; (iii) two choices of rank were
most often made by CAGL (rather than one), namely Lr = 6
and Lr = 8.

Note that CAGL is run with exactly the same procedure as in
the previous scenario. By contrast, BTD-NLS now yields best
results with a different choice of R. This highlights the fact
that CAGL can effectively adapt to a given dataset, typically
behaving more stably than the usual approach across different
circumstances.

C. Real AF data

To further study the usefulness of CAGL in the target
application, we perform experiments with real-world standard
12-lead ECG recordings from two patients suffering from
persistent AF. These recordings belong to a database provided
by the Cardiology Department of Princess Grace Hospital
Center, in Monaco. They are acquired at a 977 Hz sampling
rate and are preprocessed by a zero-phase forward-backward
type-II Chebyshev bandpass filter with cutoff frequencies of
0.5 and 40 Hz, in order to suppress high-frequency noise and
baseline wandering. For each patient, the segment with the
largest TQ interval recording is chosen for the experiment.
The recordings lengths are about 1.17 and 1.40 seconds, for
Patient 1 and 2, respectively.

First, we downsample all signals by a factor of 10. This
decreases computing cost, with practically negligible informa-
tion loss. After normalization of each signal tensor, CAGL is
applied using the same γ-sweeping strategy as in Section V-B.
However, here we choose the final solution by inspection of
the separated signals.

To assess AA estimation, we employ two commonly used
performance parameters. The first one is spectral concentration
(SC), i.e., the relative amount of energy around the dominant
frequency (DF), computed as in [31]:

SC =
(∑1.17fp

fi=0.82fp
PAA(fi)

)(∑Fs/2
fi=0 PAA(fi)

)−1

,

where fp is the value of the DF, defined as arg maxfi PAA(fi),
Fs is the sampling frequency, fi is the discrete frequency and
PAA is the power spectrum of the AA signal computed using
Welch’s method as in [31]. An AA signal during AF typically
should have a DF between 3 and 9 Hz with high SC. The
second parameter is kurtosis of the signal in the frequency
domain, acquired by a 4096-point FFT. As in [32], we use a
sample-based estimate κ̂ of the general expression of kurtosis
valid for non-circular complex data, given by

κ = E[|Sr(k)|4]−2E[|Sr(k)|2]2−|E[Sr(k)2]|2
E[|Sr(k)|2]2

where Sr(k) denotes the FFT of the rth source. As kurtosis
measures peakedness and sparsity of a distribution, it naturally
provides a quantitative measure of harmonicity of the signal
when computed in the frequency domain. A high kurtosis is
thus suggestive of a harmonic signal like AA during AF [5].

Among six blocks estimated by CAGL for Patient 1, one
(having rank Lr = 8) is identified as a potential AA source,
with DF = 6.44 Hz, SC = 77.07% and κ̂ = 155.65. The other
five estimated blocks have ranks 4, 9, 10, 18 and 21. The
corresponding AA estimate on lead V1 is shown by Fig. 5(a),
while Fig. 5(b) shows the overall estimated signal on that lead
along with the measured signal. It also shows the estimated
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Fig. 5: Results produced by CAGL with real-world ECG data from Patient 1. The AA signal in (b) is vertically shifted by
−0.2 mV for ease of visualization.

AA signal (which is vertically displaced by −0.2 mV for an
easier visualization) and the estimated overall lead output after
exclusion of the AA signal. From the observed AA pattern in
Fig. 5(a), the high value of SC and the relatively high value
of κ̂, it is clear that an effective AA extraction is performed.

For Patient 2, two blocks, having ranks 36 and 29, were
identified as potential AA sources: they have typical f-wave
features, as can be seen in Fig. 6(a), and we have measured DF
= 6.2 Hz, SC = 57.68% and κ̂ = 107.62 for AA source 1, and
DF = 6.2 Hz, SC = 81.74% and κ̂ = 166.50 for AA source
2. The other sources have ranks 37 and 39. SC and κ̂ values
are not so high due to the residual of the T-wave (ventricular
repolarization), which can be seen around 0.3 seconds of
Fig. 6(a). The estimated overall signal (with and without the
AA contribution) on lead V1 is displayed in Fig. 6(b), along
with the estimated AA signal on that lead (which is the sum
of the two signals shown in Fig. 6(a)) and the overall observed
signal. Again, the AA signal is vertically shifted by −0.2 mV
for clarity. It is seen that an effective extraction is achieved.
Figs. 6(c)–(e) show the potential AA source contributions
on leads III, V2 and V3 as well. It can be seen that the
contribution of AA source 2 decays along the path V1–V2–V3,
which suggests that this source may reflect electrical activity
mainly occurring in the right atrium, and is almost null on lead
III. By contrast, AA source 1 gives significant contributions to
all plotted leads, which suggests that the associated electrical
propagation pattern may be harbored in a region including
both atria. In fact, these sources have very different spatial
signatures: the cosine of the angle between their respective
(normalized) columns of X is around -0.19, and so they
are far from being collinear. Furthermore, despite having
the same DF, their observed power spectra are considerably
different. The lack of temporal synchronization between the
estimated atrial sources, as manifested by the time lag between
the maxima of the two signals plotted in Fig. 6(a), further
supports the hypothesis that the associated activities may arise
from different areas of atrial tissue. While the possibility of
extracting more than one atrial source presents great interest
for the noninvasive analysis of AF, a thorough validation of
this result would be required by means of ground truth data
such as a full electroanatomical mapping of the atria performed
during catheter ablation interventions.

A final important observation is that in both examples the
sum of the block ranks exceeds the dimension of the Hankel

matrices: for Patient 1,
∑
r Lr = 70 > M = 63; for Patient 2,∑

r Lr = 141 > M = 74. This showcases the benefit of using
a tensor method, since a matrix technique could not possibly
identify all the poles constituting each model.

VI. CONCLUSION

We have proposed a convergent alternating optimization al-
gorithm for a well-posed penalized formulation of the approx-
imate BTD problem that jointly estimates the model structure
and its parameters. The resulting subproblems can be solved
by existing group lasso methods. Moreover, linear (subspace)
structure can be imposed on the block matrices by using a
structured low-rank approximation method, though a study
of the convergence is still needed in this case. Experimental
results with random tensors show that our approach is much
more robust with respect to initialization than the standard
least-squares implementation of BTD.

To illustrate its practical usefulness, our algorithm has been
applied to extract atrial activity signals from ECG recordings
of atrial fibrillation episodes. In this problem, Hankel con-
straints must be imposed on the block matrices. Our results
with semi-synthetic and real-world data highlight the ability of
this approach to consistently perform an effective separation
without the need of choosing structural parameters a priori. A
particularly interesting result is the occurrence in one of the
examples of two distinct sources with f-wave characteristics
and very different spatial signatures. Further study is needed to
give this result a more thorough physiological interpretation.

As future developments on approximate BTD computation,
we can mention studies on how to properly choose γ in
practice and on the convergence of CAGL using a locally
optimal structured low-rank approximation method to impose
the linear constraints. Regarding the AA extraction in AF
ECGs, future work would aim at analyzing the occurrence of
multiple atrial sources, as well as performing the experiments
in a large database of AF patients in order to provide more
statistically significant results.

APPENDIX A
CONVERGENCE OF (UNCONSTRAINED) AGL

AGL’s formulation satisfies the conditions of Theorem 2 of
[24] for the following reasons:
• since the directional derivative of g (see (8)) exists at ev-

ery point (A,B,X) ∈ S and AGL’s subproblems satisfy
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Fig. 6: Results produced by CAGL with real-world ECG data from Patient 2. The legend in (a) applies also to (c), (d) and
(e). The AA signal in (b) is vertically shifted by −0.2 mV for ease of visualization.

F (A | B̂(t), X̂(t)) + τ
2‖A−A(t)‖2F ≥ F (A | B̂(t), X̂(t))

with equality at A = A(t) and likewise for B and X,
Assumption 2 of [24] holds (see [24, Proposition 2]);

• F (A,B,X) is continuous and coercive, and thus its
sublevel sets Lc = {(A,B,X) ∈ S : F (A,B,X) ≤ c},
with c ∈ R, are compact;

• AGL’s subproblems are strictly convex, thus having
unique minimizers;

• as f(A,B,X) < ∞ and f is Gâteaux-differentiable on
all (A,B,X) ∈ S, [33, Lemma 3.1] implies F is regular
at every point (A,B,X) ∈ S.
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