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In the absence of a central naming authority on the Semantic Web, it is common for different datasets to refer to the same thing by different IRIs. Whenever multiple names are used to denote the same thing, owl:sameAs statements are needed in order to link the data and foster reuse. Studies that date back as far as 2009, have observed that the owl:sameAs property is sometimes used incorrectly. In this paper, we show how network metrics such as the community structure of the owl:sameAs graph can be used in order to detect such possibly erroneous statements. One benefit of the here presented approach is that it can be applied to the network of owl:sameAs links itself, and does not rely on any additional knowledge. In order to illustrate its ability to scale, the approach is evaluated on the largest collection of identity links to date, containing over 558M owl:sameAs links scraped from the LOD Cloud.

Introduction

As the Web of Data continues to grow, more and more large datasets -covering a wide range of topics -are being added to the Linked Open Data (LOD) Cloud. It is inevitable that different datasets, most of which are developed independently of one another, will come to describe (aspects of) the same thing, but will do so by referring to that thing with different names. This situation is not accidental: it is a defining characteristic of the (Semantic) Web that there is no central naming authority that is able to enforce a Unique Name Assumption (UNA). As a consequence, identity link detection, i.e., the ability to determine -with a certain degree of confidence -that two different names in fact denote the same thing, is not a mere luxury but is essential for Linked Data to work. Thanks to identity links, datasets that have been constructed independently of one another are still able to make use of each other's information. The most common predicate that is used for interlinking data on the web is the owl:sameAs property. This property denotes a very strict notion of identity that is formalized in model theory. It is defined by Dean et al. [START_REF] Dean | Owl web ontology language reference[END_REF] as: "an owl:sameAs statement indicates that two references actually refer to the same thing". As a result, a statement of the form "x owl:sameAs y" indicates that every property attributed to x must also be attributed to y, and vice versa.

Over time, an increasing number of studies have shown that owl:sameAs is sometimes used incorrectly in practice. For example, Jaffri et al. [START_REF] Jaffri | URI disambiguation in the context of Linked Data[END_REF] discuss how erroneous uses of owl:sameAs in the linking of DBpedia and DBLP has resulted in several publications being affiliated to incorrect authors. In addition, Ding et al. [START_REF] Ding | owl:sameas and linked data: An empirical study[END_REF] discuss a number of issues that arise when linking New York Times data to DBpedia. Specifically, they discuss issues that arise when two things are considered the same in some, but not all contexts.

Halpin et al. [START_REF] Halpin | When owl: sameas isn't the same: An analysis of identity in linked data[END_REF] discuss how the 'sameAs problem', originates from the identity and reference problems in philosophy. In the Semantic Web literature, several approaches have been proposed that focus on limiting this problem. While some approaches consider the introduction of alternative properties that can replace owl:sameAs [START_REF] Halpin | When owl: sameas isn't the same: An analysis of identity in linked data[END_REF], or alternative semantics of the owl:sameAs property [START_REF] Beek | A contextualised semantics for owl: sameas[END_REF][START_REF] Raad | Detection of contextual identity links in a knowledge base[END_REF], other approaches focus on the (semi-)automatic detection of potentially incorrect owl:sameAs statements [START_REF] Ph | idMesh: graph-based disambiguation of linked data[END_REF][START_REF] De Melo | Not quite the same: Identity constraints for the web of linked data[END_REF][START_REF] Papaleo | Logical detection of invalid sameas statements in rdf data[END_REF]. This paper presents a novel approach for the automatic detection of potentially erroneous owl:sameAs statements. The approach consists of applying an existing community detection algorithm to an RDF graph that contains solely owl:sameAs statements. Based on the communities that are detected, an error degree is calculated for each identity link in the graph. The error degree of an owl:sameAs link depends on the density of the community(ies) in which the two terms exist, and whether the identity link is symmetrical or not. It is subsequently used to rank identity links, allowing potentially erroneous links to be identified, and potentially true owl:sameAs to be validated.

Since the here presented approach is specifically developed in order to be applied to real-world data, the experiment is run on the largest collection of identity links to date, containing over 558 million owl:sameAs links scraped from the LOD Cloud. The evaluation indicates that the calculated error degrees are useful for identifying a large number of correct and erroneous identity links, when applied to this real-world data collection.

The rest of this paper is structured as follows. The next section discusses related work. The approach for detecting potentially erroneous identity links is presented in Section 3. The experiments and the evaluation are described in Section 4, and Section 5 concludes.

Related work

This section will give an overview of the related work on detecting erroneous identity links (section 2.1) and existing approaches for community detection (section 2.2). We will briefly reflect on why we believe community detection to be a particularly good fit for identity error detection in Section 2.3.

Identity error detection

Source Trustworthiness. An early approach for detecting erroneous identity statements in the Web of Data is idMesh [START_REF] Ph | idMesh: graph-based disambiguation of linked data[END_REF], a probabilistic and decentralized framework for entity disambiguation. idMesh hypothesizes that links published by trusted sources (e.g., OpenID-based) are more likely to be correct. The approach detects conflicts between owl:sameAs and owl:differentFrom assertions by using a graph-based constraint satisfaction solver that exploits the symmetric and transitive nature of the owl:sameAs relation. The detected conflicts are resolved based on the iteratively refined trustworthiness of the sources from which the assertions originate.

UNA Violations. Several approaches have made use of the hypothesis that individual datasets apply the Unique Name Assumption (UNA) [START_REF] De Melo | Not quite the same: Identity constraints for the web of linked data[END_REF][START_REF] Valdestilhas | Cedal: timeefficient detection of erroneous links in large-scale link repositories[END_REF], and that violations of the UNA that are caused by cross-dataset linking are indicative of erroneous identity links. De Melo [START_REF] De Melo | Not quite the same: Identity constraints for the web of linked data[END_REF] applies a linear programming relaxation algorithm that seeks to delete the minimal number of owl:sameAs statements such that the UNA is no longer violated. Valdestilhas et al. [START_REF] Valdestilhas | Cedal: timeefficient detection of erroneous links in large-scale link repositories[END_REF] efficiently detect the resources that share the same equivalence class and that belong to the same dataset, and ranks erroneous candidates based on the number of UNA violations.

Content-based. Paulheim [START_REF] Paulheim | Identifying wrong links between datasets by multi-dimensional outlier detection[END_REF] represents each identity link as a feature vector in a high dimensional vector space, using direct types and in-and/or outgoing properties. They have tested different outlier detection methods in order to assign a score to each link, indicating the likeliness of being an outlier. Cuzzola et al. [START_REF] Cuzzola | Filtering inaccurate entity co-references on the linked open data[END_REF] propose to calculate a similarity score between the names that are involved in a given owl:sameAs link, by using the textual descriptions that are associated to these names (e.g., through the rdfs:comment property).

Ontology Axiom Violations. Hogan et al. [START_REF] Hogan | Scalable and distributed methods for entity matching, consolidation and disambiguation over linked data corpora[END_REF] exploit ten OWL 2 RL rules in order to express the semantics of axioms such as differentFrom and comple-mentOf in order to detect inconsistencies. Whenever an inconsistent equality set is detected, the erroneous links are identified by incrementally rebuilding the equality set in a manner that preserves consistency. Papaleo et al. [START_REF] Papaleo | Logical detection of invalid sameas statements in rdf data[END_REF] exploit class disjointness, (inverse) functional properties, locally complete properties, and property mappings in order to detect inconsistencies in an RDF graph made of the subparts of the two RDF descriptions involved in conflicting statements.

Network Metrics. Finally Gueret et al. [START_REF] Guéret | Assessing linked data mappings using network measures[END_REF] hypothesizes that the quality of a link can be determined based on how connected a node is within the network in which it appears. The approach is based on the use of three classic network metrics (clustering coefficient, centrality, and degree), and two Linked Data-specific metrics (owl:sameAs chains, and description richness). The approach constructs a local network for a set of selected resources by querying the Web of Data. After measuring the different metrics, each local network is first extended by adding new edges and then analyzed again. The result of both analyses is compared to the ideal distribution for the different metrics.

Community detection

Despite the absence of a universally agreed upon definition, communities are typically thought of as groups that have dense connections among their members, but sparse connections with the rest of the network. Community detection is a form of data analysis that seeks to automatically determine the community structure of a complex network [START_REF] Liu | Detecting communities based on network topology[END_REF][START_REF] Mark Ej Newman | Modularity and community structure in networks[END_REF]. It has applications in statistical physics, mathematics, computer science, biology, and sociology [START_REF] Yang | A comparative analysis of community detection algorithms on artificial networks[END_REF]. Importantly, community detection only requires information that is already encoded in the network topology.

Several community detection algorithms exist, as well as several comparative studies. Lancichinetti et al. [START_REF] Lancichinetti | Community detection algorithms: a comparative analysis[END_REF] analyse 12 community detection algorithms by applying them to the LFR graph benchmark [START_REF] Lancichinetti | Benchmark graphs for testing community detection algorithms[END_REF]. In a more recent study, Yang et al. [START_REF] Yang | A comparative analysis of community detection algorithms on artificial networks[END_REF] have evaluated 8 of the most widely used community detection algorithms, again on the LFR benchmark graphs. From both meta studies, the Louvain algorithm emerges as combining a high accuracy with good computational performance.

The Louvain algorithm [START_REF] Blondel | Fast unfolding of communities in large networks[END_REF] is a greedy heuristic method, that starts out by assigning a different community to each node of a given network. It then moves each node over to one of its neighbor communities, specifically, neighbors, the one which results in the highest contribution to a modularity score. In the next step, each community from the previous step is regarded as a single node, and the same procedure is repeated until the modularity (which is always computed with respect to the original graph) no longer increases.

Discussion

We believe community detection to be a particularly good fit for identity error detection, since it can be applied to the network structure of the owl:sameAs graph itself. Specifically, the approach that we suggest does not require access to resource descriptions, property mappings, or vocabulary alignments. Also, it does not rely on additional assumptions like the UNA that could be false for some dataset (e.g., datasets that are constructed over a longer period of time and/or by a large group of contributors). Finally, current approaches for identity error detection have not always been applied to real-world owl:sameAs links, and no current approach has been evaluated at web scale, i.e., applied to hundreds of millions of links. Since the Louvain algorithm has already been successfully used in other domains, we believe that it can also perform well on the task of detecting owl:sameAs-based communities.

Approach

This section presents our approach for detecting erroneous identity links by exploiting the community structure of the identity network itself. This section describes the two main steps that our approach is composed of: firstly, the extraction and compaction of the identity network (section 3.1), and secondly, the ranking of each identity link based on the community structure (section 3.2). Algorithm 1 provides an effective procedure for calculating this ranking.

Identity Network Construction

The first step of our approach consists of extracting the identity network from a given data graph (definition 1).

Definition 1 (Data Graph).

A data graph is a directed and labeled graph G = (V, E, Σ E , l E ). V is the set of nodes4 . E is the set of node pairs or edges. Σ E is the set of edge labels. l E : E → Σ E is the mapping from edges to edge labels. l E (e) denotes the labels of edge e.

We use e ij to denote the edge between nodes v i and v j . From a given data graph G, we can extract the explicit identity network N ex (definition 2), which is a directed labeled graph that only includes those edges whose labels include owl:sameAs.

Definition 2 (Explicit Identity Network). Given a graph G = (V, E, Σ E , l E ), the related explicit identity network is the edge-induced subgraph G[{e ∈ E | {owl:sameAs} ⊆ l E (e)}].
We can reduce the size of the explicit identity network N ex into a more concisely represented undirected and weighted identity network I (definition 3), without losing any significant information. Since reflexive owl:sameAs statements are implied by the semantics of identity, there is no need to represent them explicitly. In addition, since the symmetric statements e ij and e ji make the same assertion: that v i and v j refer to the same thing, we can represent this more efficiently, by including only one undirected edge with a weight of 2. A weight of 1 is assigned for edges which either e ij or e ji , but not both, are present in N ex . Definition 3 (Identity Network). The identity network is an undirected labeled graph I = (V I , E I , {1, 2}, w), where V I is the set of nodes, E I is the set of edges, {1, 2} are the edges labels, and w : E I → {1, 2} is the labeling function that assigns a weight w ij to each edge e ij . For each explicit identity network N ex = (V ex , E ex ), the corresponding identity network I is derived as follows:

-E I := {e ij ∈ E ex | i = j} -V I := V ex [E I ], i.e., the vertex-induced subgraph. -w(e ij ) := 1, if e ij ∈ E ex 2, if e ji ∈ E ex

Links Ranking

Given I = (V I , E I , Σ E I , w), a partitioning of V I is a collection of non-empty and mutually disjoint subsets V k ⊆ V I that together cover V I . Since the closure of E I forms an equivalence set (the semantics of the owl:sameAs property states that it is reflexive, symmetric, and transitive), it also induces a unique partitioning. We call members of this partition identity sets. These partition members correspond to the connected components of I that we call equality sets (definition 4).

Definition 4 (Equality Set). Given an identity network I = (V I , E I , {1, 2}, w), an equality set Q k is a connected component of I.

We want to detect erroneous identity links based on the community structure of each connected component of the identity network. While the number of potential identity links is quadratic in the size of the domain, the representation of equality sets is only linear in terms of the size of the domain. With equality sets, we can implement the following requirements for our algorithm:

-The calculation of erroneous identity links must not have a large memory footprint, since it must be able to scale to very large identity networks, and preferably to all identity statements that appear in the LOD Cloud. -It must be possible to perform computation in parallel, to allow errors to be detected relatively quickly, preferably directly after the publication of the potential error into the LOD Cloud. -Calculation must be resilient against incremental updates. Since triples are added to and removed from the LOD Cloud constantly, adding or removing a owl:sameAs link must only require a re-ranking of the links within the equality sets that are directly involved in this link.

In order to compute a ranking for the owl:sameAs links, we first partition the identity network into different equality sets (several graph partitioning techniques could be applied, such as [START_REF] Beek | sameas. cc: The closure of 500m owl: sameas statements[END_REF]). Then we detect a set of non-overlapping communities by applying the Louvain algorithm [START_REF] Blondel | Fast unfolding of communities in large networks[END_REF] for each equality set. Given an equality set Q k , the Louvain algorithm returns a set of non overlapping communities C(Q k ) = {C 1 , C 2 , . . . , C n } where:

a community C of size |C| (i.e. the number of nodes) is a subgraph of Q k such that the nodes of C are densely connected (i.e. the modularity of the

Q k is maximized). -1≤i≤n C i = Q k and ∀C i , C j ∈ C(Q k ) s.t. i = j, C i ∩ C j = ∅.
We then evaluate each identity link by relying on its weight and the structure of the communities it occurs in. More precisely, to compute the erroneous degree, we distinguish between two types of links: the intra-community links and intercommunity links. Definition 5. Intra-Community Link. Given a community C, an intracommunity link in C noted by e C is a weighted edge e ij where v i and v j ∈ C. We denote by E C the set of intra-community links in C. Definition 6. Inter-Community Link. Given two non overlapping communities C i and C j , an inter-community link between C i and C j noted by e Cij is an edge e ij where v i ∈ C i and v j ∈ C j . We denote by E Cij the set of intercommunity link between C i and C j .

For evaluating an intra-community link, we rely both on the density of the community containing the edge, and the weight of this edge. The lower the density of this community and the weight of an edge are, the higher the error degree will be.

Definition 7. Intra-Community Link Error Degree. Let e C be an intracommunity link of the community C, the intra-community error degree of e c denoted by err(e C ) is defined as follows:

a) err(e C ) = 1 w(e C ) × 1 - W C |C| × (|C| -1)
where

W C = e C ∈E C w(e)
For evaluating an inter-community link, we rely both on the density of the intercommunity connections, and the weight of this edge. The less the two communities are connected to each other and the lower the weight of an edge is, the higher the error degree will be. Definition 8. Inter-Community Link Error Degree. Let e Cij be an intercommunity link of the communities C i and C j , the inter-community error degree of e Cij denoted by err(e Cij ) is defined as follows:

b) err(e Cij ) = 1 w(e Cij ) × 1 - W Cij 2 × |C i | × |C j | where W Cij = e C ij ∈E C ij w(e)
4 Experiments

Dataset

We have tested our approach on the LOD-a-lot dataset [START_REF] Fernández | LOD-a-lot -A Queryable Dump of the LOD Cloud[END_REF] 5 , a compressed data file that contains 28 billion unique triples from the 2015 LOD Laundromat Linked Data crawl [START_REF] Beek | Lod laundromat[END_REF]. This large subset of the LOD Cloud represents our data graph (definition 1).

Algorithm 1: Identity Links Ranking

Input: G: a Data graph Output: E err : a set of pairs in the from {(e1, err(e1)), . . . ,(em, err(em))} with m is the number of edges in the identity network extracted from G 1 Iex ← ExtractSameAsEdges(G); // the explicit identity network 2 I ← empty graph; // the identity network 3 foreach (e(v1, v2) ∈ Iex and v1 = v2) do 

Quantitative Results

Explicit Identity Network Extraction. We have extracted the explicit identity network (definition 2) from the data graph described above, by performing a Triple Pattern query of the form ?, owl:sameAs, ? with the HDT C++ library 6 ). This returns a stream of distinct identity pairs, as described in [START_REF] Beek | sameas. cc: The closure of 500m owl: sameas statements[END_REF]. This extraction process takes around four hours using 1 CPU core, resulting in an explicit identity network of 558.9M edges and 179.73M nodes. The explicit identity network is publicly available at https://sameas.cc/triple.

Identity Network Construction. From the explicit identify network described above, we build an identity network (definition 3) containing ∼331M weighted edges and 179.67M terms. We leave out ∼2.8M reflexive edges and ∼225M duplicate symmetric edges. As a result, we also leave out 67,261 nodes that only appear in such removed edges. This indicates that 68% of the identity network edges are redundantly asserted, with a weight = 2.

Graph Partitioning. The next step consists of partitioning the identity net-work into several equality sets (definition 4). We have deployed an efficient algorithm described in [START_REF] Beek | sameas. cc: The closure of 500m owl: sameas statements[END_REF] that partitions the identity network into ∼49M equality sets, in just under 5 hours using 2 CPU cores. The identity sets are publicly available at http://sameas.cc/id. Links Ranking. Once the identity network has been partitioned, we apply the Louvain algorithm to detect communities in each equality set. We then assign an error degree to all edges of each equality set. This process takes 80 minutes 7 , resulting an error degree to each irreflexive 8 owl:sameAs statement (∼556M statements) in the explicit identity network. The error degree distribution of these statements is presented in Figure 1, showing that around 73% of the statements have an error degree below 0.4. Whilst this distribution is mainly caused by the high number of symmetrical identity statements in the LOD, it also indicates that most equality sets have a rather dense structure. The 179.67M terms of the identity network were assigned into a total of 24.35M communities, with the communities size varying between 2 and 4,934 terms (averaging ∼7 terms per community). The Java implementation of the link ranking process is available at http://github.com/raadjoe/LOD-Community-Detection. The erroneous degree of all the owl:sameAs statements are available in our identity web service (https://sameAs.cc).

Community Structure Analysis

In this section we provide a first analysis of the community structure obtained from two equality sets (the largest one and the one about Barack Obama) based on the IRIs contained in the communities. In a 2016 study conducted on the same data collection, de Rooij et al. [START_REF] De Rooij | Are names meaningful? quantifying social meaning on the semantic web[END_REF] have shown that the social meaning encoded in IRI names significantly coincides with the formal meaning of IRIdenoted resources. Hence, indicating that IRIs can give an idea on the quality of the detected communities. Community Structure in the Largest Equality Set. The largest equality set Q max contains 177,794 terms connected by 2,849,650 undirected and weighted edges. This equality set is the result of the compaction of 5,547,463 distinct owl:sameAs statements (∼ 1% of the total number of owl:sameAs) and is available at https://sameas.cc/term?id=4073. By looking at the IRIs of this equality set, we can observe that it contains a large number of terms denoting different countries, cities, things and persons (e.g. Bolivia, Dublin, Coca-Cola, Albert Einstein, Literals, and so on). Clearly showing that this equality set contains many erroneous owl:sameAs statements.

Applying the Louvain algorithm on Q max resulted in 930 non-overlapping communities, with a size varying from 32 to 2,320 terms per community. As a first interpretation on the community structure, we have solely looked at the IRIs. Despite a few exceptions, we can see that this algorithm is able to group related (and possibly identical) terms in the same community, while keeping out unrelated terms in other communities. For instance, the community C 258 , illustrated in Figure 2 contains 242 terms. We can see from this excerpt that most of these terms come from the DBpedia dataset and refer to descriptions of Dublin expressed in different languages: City of Dublin, Capital of Ireland, Baile Atha Cliath (Dublin in Irish), Dyflin (the old Norse name for The Kingdom of Dublin), etc. However, we can also see that this community contains terms that do not refer to the city of Dublin, but actually refer to the weather in Dublin or visitor information for Dublin.

With this excerpt of the Dublin community, we can see that an owl:sameAs statement between two terms in the same community is not necessarily correct, and requires evaluation as well.

Community Structure in the 'Barack Obama' Equality Set. We present here an analysis of the community structure detected on the equality set Q obama which has a reasonable size and thus easier to analyse. The equality set containing the term http://dbpedia.org/resource/Barack_Obama is composed of 440 terms connected by 7,615 undirected and weighted edges. It is built from an explicit identity network of 14,917 owl:sameAs statements.

Applying the Louvain algorithm on Q obama resulted in 4 non-overlapping communities, with a size varying from 34 to 166 terms per community. This identity set is available at (https://sameas.cc/term?id=5723). The resulting community structure of Q obama is presented in Figure 3: -C 0 (purple) includes 166 terms, with 98% of the links of this community representing cross-language symmetrical links between DBpedia IRIs (e.g. http://fr.dbpedia.org/resource/Barack_Obama) referring to the person Barack Obama. -C 1 (green) includes 162 terms, mostly DBpedia IRIs of the person Obama in his different roles and political functions (e.g. http://dbpedia.org/resource/President_barack_obama, http: //dbpedia.org/resource/senator_obama).

-C 2 (orange) includes 78 terms, mostly referring to the presidency and administration of Barack Obama (e.g. http://dbpedia. org/resource/Obama_cabinet, http://dbpedia.org/resource/Barack_ Hussein_Obama_administration) -C 3 (blue) includes 34 terms from different datasets denoting various entities such as: Barack Obama the person, his senate career, and a misused literal ("http://dbpedia.org/resource/United_States_Senate_career_of_ Barack_Obama, "http://dbpedia.org/resource/Barack_Obama"^^xsd: string).

Links Ranking Evaluation

In order to evaluate the accuracy of our ranking approach, we have conducted several manual evaluations. The judges relied on the descriptions 9 associated to the terms in the LOD-a-lot dataset [START_REF] Fernández | LOD-a-lot -A Queryable Dump of the LOD Cloud[END_REF], and did not have any prior knowledge about each link's error degree (i.e. whether they are evaluating a well-ranked link or not). In order to avoid any incoherence between the evaluations, the judges were asked to justify all their evaluations and were given the following instructions: (a) the same: if two terms denote the same entity (e.g. Obama and the First Black US President), (b) related: not intended to refer to the same entity but closely related (e.g. Obama and the Obama Administration), (c) unrelated: not the same nor closely related (e.g. Obama and the Indian Ocean), (d) can't tell: in case there are no sufficient descriptions available for determining the meaning of both terms.

A. Accuracy Evaluation in the 'Barack Obama' Equality Set. Firstly, we have relied on the previous observations, made on the community structure presented in Figure 3, to interpret and evaluate the accuracy of our approach:

(i) an owl:sameAs statement in C 0 has an average error rate of 0.24. The manual evaluation of 30 random owl:sameAs statements shows that they are all true identity links. (ii) the low density of C 1 has led to several correct owl:sameAs statements to have a high error degree (0.9). This is due to the fact that there is only one term linking to all the 161 other terms in this community, with most of these edges being non-symmetrical links. (iii) the only two owl:sameAs statements in this equality set with an error value 1 are the edges in the graph connecting the IRI http://rdf.freebase.com/ns/m.05b6w1g from C 2 to both IRIs http://dbpedia.org/resource/President_Barack_Obama and http:// dbpedia.org/resource/President_Obama from C 1 . Relying on their descriptions in the LOD-a-lot dataset, we can see that the freebase IRI refers to the presidency of Obama, while the two other IRIs refer to the person Obama, indicating that indeed both statements are incorrect. These two detected incorrect identity statements have led to the false equivalence of the 78 terms of C 2 with the rest of the network's terms.

B. Accuracy Evaluation on a Subset of the Identity Network. In order to evaluate the accuracy over the whole identity network, four of this paper's authors were asked to evaluate a subset of the identity network. The judges were asked to evaluate 200 owl:sameAs links (50 links each), representing in an equal manner, each bin of the error degree distribution presented in Figure 1. The results presented in Table 1, shows that the higher an error degree is, the more likely that the link is erroneous. More precisely, we may observe that:

our error degree is able to identify true owl:sameAs links with a high accuracy, since 100% of the evaluated links with an error degree ≤ 0.4. are correct (without considering the "can't tell " cases). when the error degree is between 0.4 and 0.8, 83.3% of the owl:sameAs links are correct. However, in 13.3% of the cases, such links might have been used to refer to two different, but related terms. an owl:sameAs with an error degree > 0.8 is an unreliable identity statement, referring in 31.8% of the cases to two different, and mostly unrelated terms.

We have further investigated the 22 evaluated identity links with an error degree over 0.8. Two features were observed from the 7 incorrect identity statements: (i) their error degree is most of the times higher than the true owl:sameAs links, and (ii) they all belong to equality sets with a higher number of terms than the true ones. To further investigate these observations, we have evaluated 60 additional links with an error degree > 0.9. The first set of links (S1) represents 20 random identity links from the largest equality set. The second set of links (S2) represents 20 random identity links with an error degree 1 (> 0.99). The third set of links (S3) represents 20 random links from the largest equality set with an error degree 1. The results presented in Table 2, show that our approach has a high accuracy in detecting erroneous identity links when the threshold is fixed at 0.99 and only equality sets with a high number of terms are considered.

C. Recall Evaluation. In order to calculate the recall of our approach, we have verified how our approach can rank newly introduced erroneous owl:sameAs statements. Firstly, we have chosen 40 random terms 10 in the explicit identity network, making sure that all these terms are different, by looking at their descriptions, and that they are not explicitly owl:sameAs. From the selected 40 terms, we have generated all the possible 780 undirected edges between them. We added separately, each edge e ij to the identity network with w(e ij )=1, calculated its error degree, and removed it from the identity network before adding the next one. The error degrees of the newly introduced erroneous identity links range from 0.87 to 0.9999. When the threshold is fixed at 0.99, the recall is 93%.

Results Interpretation. The experiments conducted in this paper, on a subset of 28 billion unique triples of the LOD cloud, shows that there exist many false identity statements on the Web. These erroneous owl:sameAs statements have led to the false equivalence of many unrelated terms (e.g. Dublin, Coca-Cola, and Albert Einstein), and many related terms (e.g. Barack Obama the person, and his administration). With a total runtime of 11 hours, these experiments show that an error degree of every available identity link can be computed in practice. Our manual evaluation of these error degrees suggests that:

1. our approach can validate a large number of identity links in the LOD: 73% of the identity links have an error degree of [0-0.4]. All the manually evaluated links in this range were judged as true owl:sameAs links (100% accuracy, table 1). 2. our approach can detect numerous erroneous identity links in the LOD: more than 1.2 million owl:sameAs links have an error degree of [0.99-1], with a large number of these links coming from large equality sets (e.g.

∼13K links in the largest equality set). Up to 88% of the manually evaluated links with these criteria were judged as false identity statements (table 2). 3. refined content-based approaches are needed for evaluating the remaining owl:sameAs links in the LOD (between 50 and 85% were judged as true identity links).

Conclusion

We have presented an approach that aims to detect erroneous owl:sameAs statements in RDF data sources. Our approach is uniquely based on the topology of the identity network itself. In order to illustrate its ability to scale, we have evaluated our approach over 558 million owl:sameAs statements that are scraped from the LOD Cloud. The evaluation shows that the here introduced calculation of an error degree can indeed be used in order to distinguish between correct and incorrect owl:sameAs statements. With a total runtime of 11 hours, these error degrees can be computed in practice. The erroneous degree of all the evaluated owl:sameAs statements are available in our identity web service (https://sameAs.cc). This will allow others to replicate, check, and hopefully improve upon the here presented results. The accuracy of the here presented approach could be further improved by combining or comparing results from multiple community detection methods. Since adding a new dataset to the LOD Cloud only requires recalculation of the equivalence sets that are involved in identity assertions within that dataset, it could be useful to test whether the quality of identity links can now be calculated online, e.g., as part of the publication of a dataset into a widely used data catalog.
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4 if 5 I 6 else 7 I 15 / 17 E

 45671517 (I.containsEdge(e(v2, v1, 1))) then .updateW eight(e(v2, v1, 2); // set the weight of this edge to 2 .addEdge(e(v1, v2, 1)); // add this edge to I with a weight = 1 8 P ← I.partition(); // partitioning the graph into equality sets 9 foreach (Q ∈ P ) do 10 Cset ← LouvainCommunityDetectionAlgorithm(Q); 11 foreach (e ∈ Cset) do 12 if (e is intra-community-edge(ci) then 13 err(e) ← intraCommunityErroneousness(ci); 14 else / e is an inter-community edge, cj is the other community to which e is belonging to; 16 err(e) ← interCommunityErroneousness(ci, cj); err .add(e, err(e)); 18 return E err ;

Fig. 1 .

 1 Fig. 1. Error degree distribution of 556M owl:sameAs statements .

Fig. 2 .

 2 Fig. 2. Excerpt of the 242 terms included in the community containing the IRI http://dbpedia.org/resource/dublin .

Table 1 .

 1 Evaluation of 200 owl:sameAs links, with each 40 links randomly chosen from a certain range of error degree

	error degree range	0-0.2	0.2-0.4	0.4-0.6	0.6-0.8	0.8-1	total
	same	35(100%) 22(100%) 18(85.7%) 7(77.8%) 15(68.2%) 97(89%)
	related	0	0	2	2	2	6
	unrelated	0	0	1	0	5	6
	related + unrelated	0(0%)	0(0%) 3(14.3%) 2(22.2%) 7(31.8%) 12(11%)
	can't tell	5	18	19	31	18	91
	total	40	40	40	40	40	200

Table 2 .

 2 Evaluation of 60 owl:sameAs links with an error degree > 0.9, with the first set of 20 owl:sameAs links (S1) randomly chosen from the largest equality set, (S2) randomly chosen from all links with an error degree 1, (S3) randomly chosen from the largest equality set with an error degree 1

		Largest equality set(S1) err 1 (S2) Largest & err 1 (S3)
	same	6(50%)	6 (60%)	2 (11.7%)
	related	1	1	2
	unrelated	5	3	13
	related+unrelated	6(50%)	4(40%)	15(88.2%)
	can't tell	8	10	3
	Total	20	20	20

In RDF, nodes are terms that appear in the subject and/or object position of at least one triple.

http://lod-a-lot.lod.labs.vu.nl

https://github.com/rdfhdt/hdt-cpp

on an

8GB RAM Windows 10 machine, using 2 CPU cores 8 reflexive statements were discarded in I, and symmetric ones have the same err

the judges were asked to not consider the owl:sameAs statements related to the term