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Résumé — Multi-stable shells have been recently proposed as an effective solution to design morphing
structures. We describe a class of shallow shells which are bistable after one of their sides is completely
clamped. Employing the polar method, we investigate the influence of the constitutive properties of the
laminate on its multistability.
Mots clés — Morphing Structures, Multistability, Bistable clamped shells, Polar method.

1 Introduction

One of the emerging challenges in structural engineering is to design structures able to face quite
different operating conditions. This goal can be achieved by resorting to morphing structures. Roughly
speaking, it can be said morphing a structure or a structural system capable of updating its geometric
configuration in order to satisfy some performance requirements. Even if morphing structures are sprea-
ding in some areas of structural engineering (see [4]), much remains to be done to properly design and
implement this kind of systems.

Morphing structures can be realized by means of multistable shells. A multistable shell is merely an
elastic surface that exhibit more than one equilibrium configuration, even without applied external ac-
tions. Since actuation is required only to switch between the alternative stable states and it can be realized
with a limited actuation force (e.g., by triggering instability phenomena, or by exploiting displacement
amplifications due to geometrical nonlinearities), multistable shells turn out to be a cheap way to get
structural systems capable of considerable shape change.

Multistabilty in shells stems from a complex interplay between geometric nonlinearities and elastic
properties and it can be achieved in various ways including pre-stresses, initial curvatures and plastic
deformations. Morever, multistability is highly sensitive to boundary conditions. The global stability
scenario (the number of the stable equilibrium configurations, their shapes and their ’robustness’) de-
pends on such choices and should be known to properly design the morphing system. However stable
states usually have quite different shape and the transition between them may be realized by several load
paths : to depict such global stability scenario Finite Element analysis serve little purpose and reduced
shell models with few degrees of freedom are required.

For shallow shells, as the ones commonly used in technological applications, the nonlinear (genera-
lized) von Kármán shell model [20] can be chosen as ’parent’ model. Then, the discrete model can be
generated by reducing the parent model to a low-dimensional subspace by means of a careful selection
of admissible configurations. Indeed, in order to be effective the reduction should globally preserve the
multi-well elastic energy of the parent model [13, 18, 19].

To the best of the authors knowledge most of the literature studies deal with shells completely free
on their sides, see for instance [3, 5, 6, 10, 12, 13, 18]. Despite the relevance of boundary conditions,
only few works address the design of multistable constrained shells [7, 11]. In [1] the authors used
the reduction procedure proposed in [19] to infer a three-degrees-of-freedom reduced model capable of
predicting the multistable behavior of pseudo-conical cantilever orthotropic shells. They identify two
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compact disjoint regions in the plane of shell initial curvatures corresponding to shells bistable after
clamping, thus opening the way to a more general approach to design and optimization of multistable
shells.

In this contribution the same model is used to investigate how the material elastic constants affect the
multistability of clamped shells. To this aim, we employ the polar method [17] which makes it possible
to express the elasticity tensor of an anisotropic material in terms of its invariant quantities. Here, the
initial geometry of the natural stress-free configuration of the shell and the constitutive properties are the
primary means to induce bistability : we do not consider other sources of multistability (e.g., inelastic pre-
stresses, see [8]). For sake of simplicity we chose two initial geometry for the shell natural configuration
and we consider uncoupled quasi-homogeneous orthotropic laminates [15]. We detect the regions in the
plane of the polar moduli corresponding to shells which turn out to be bistable after clamping ; moreover,
we investigate the influence of the polar moduli on the shape of the clamped stable configurations.

2 Design parameters

2.1 Natural shape

We consider shallow shells with pseudo-conic natural configurations described by surfaces in the
form :

S0 = {(x,y,w0(x,y)), 0≤ x≤ Lx, −Ly/2≤ y≤ Ly/2} ,

with :

w0(x,y) =
y2

2

(
h1 +(h2−h1)

x
Lx

)
, (1)

for some h1,h2 ∈R and 0 < Ly ≤ Lx. The geometry of the natural configuration of the shell is completely
defined by three design parameters : the aspect ratio η = Lx/Ly ≥ 1 and the real numbers h1 and h2,
which measure the curvatures of the edges parallel to the y-direction x = 0 and x = Lx, respectively.
In what follows two different initial configurations are considered, see Figure 2.1. The corresponding
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FIGURE 1 – Natural configurations of the shell. Left : first shell (quasi-cylindrical) ; Right : second shell.

values for the design parameters are listed in Table 1. The curvatures h1, h2 have been chosen so that
the shallowness ratio wmax/Ly is 1/8 for the edge x = 0 to clamp, 1/6 for the edge x = Lx to leave free.
The two shells only differ by the sign of the curvature of the free edge. Since curvatures are only slightly
different, we will call the first shell quasi-cylindrical.

TABLE 1 – Geometric design parameters

Lx Ly h1 h2

m m 1/m 1/m
First shell (quasi-cylindrical shell) 0.3 0.15 1/0.15 1/0.1125
Second shell 0.3 0.15 1/0.15 -1/0.1125
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2.2 Material constants

In Voigt notation, let us denote with : M = {Mx,My,Mxy} the bending moments ; N = {Nx,Ny,Nxy}
the membrane stresses ; k = {kx,ky,2kxy} the curvatures ; e = {ex,ey,2exy} the membrane strains. Moreo-
ver, let f = { fx, fy,2 fxy} represent non-zero membrane stresses in the flat reference configuration, and
curvatures h = {hx,hy,2hxy} provide non-zero bending moments in the reference configuration. Since we
do not consider inelastic pre-stresses, the Gauss compatibility equation holds true :

∂2 fx

∂y2 +
∂2 fy

∂x2 −2
∂2 fxy

∂x∂y
= hyhx−h2

xy

For an uncoupled orthotropic shell, we assume the principal material directions aligned with the co-
ordinate directions x and y. Then, the constitutive relations between bending moments and curvatures
M = Dk read as :

Mx = D11(kx−hx)+D12(ky−hy), Mxy = D33(kxy−hxy),

My = D12(kx−hx)+D22(ky−hy),
(2)

The relations between membranal stresses and membranal strains N = Ae will read as :

Nx = A11(ex− fx)+A12(ey− fy), Nxy = A33(exy− fxy),

Ny = A12(ex− fx)+A22(ey− fy),
(3)

Moreover we suppose the shells to be quasi-homogeneous [15], i.e., we consider laminates having the
same elastic behaviour in tension and bending in each direction ; for t the shell thickness this implies

D =
t2

12
A, A/A11 = D/D11 =

1 ν 0
ν β 0
0 0 γ


Here : β = D22/D11 = A22/A11 is the ratio between the membrane and bending stiffnesses in the coordi-
nate directions, γ = D33/D11 = A33/A11 is the shear and torsional moduli and ν = D12/D11 = A12/A11
is the in-plane and out-of-plane Poisson effects. By employing the polar method we express the dimen-
sionless constitutive parameters β, ν, γ in terms of the invariants of the elasticity tensors, say the polar
moduli. For laminates with identical layers it can be shown that the isotropic parts of the homogenised
elastic tensors (12/t3)D = A/t are equal and coincide to that of the elementary layer, say T `

0 , T `
1 . As a

consequence β, ν, γ only depend on two polar moduli, say Rk
0 = (−1)kR0, with k ∈ {0,1}, and R1, which

measure the anisotropic part of the elastic tensors :

β(Rk
0,R1) =

T `
0 +2T `

1 +Rk
0 +4R1

T `
0 +2T `

1 +Rk
0 +4R1

, ν(Rk
0,R1) =

−T `
0 +2T `

1 −Rk
0

T `
0 +2T `

1 +Rk
0 +4R1

γ(Rk
0,R1) =

T `
0 −Rk

0

T `
0 +2T `

1 +Rk
0 +4R1

For the elastic tensors to be positive definite some restrictions on the polar moduli shall be considered,
leading to an admissible elastic domain in the plane Rk

0−R1. However, for laminates tailored by bonding
together identical plies some more restrictive geometric bounds arise from the combination of the layer
orientations and position in the stack, see [16]. In our case, such admissible domain is defined by the
conditions, see Figure 2 :

R0−R`
0

[
2
(

R1

R`
1

)2

−1

]
≥ 0, −R`

0 ≤ Rk
0 ≤ R`

0, −R`
1 ≤ R1 ≤ R`

1

Shells represented by a lamination point on the curved boundary of the domain are made by angle-ply
laminates, i.e., laminates composed by an even number of plies and having for each ply at the orientation
θ a ply at the orientation −θ. As an example, point B of Figure 2 corresponds to θ = 45◦ : the shells
studied in [1] belong to this class of laminates. The straight line between the two points A and C represents
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FIGURE 2 – Admissible domain in the plane of the polar moduli. Values are in GPa.

cross-ply laminates, i.e., laminates having layers at 0◦ or 90◦, in relative quantities depending upon the
location of the lamination point on the line. By simplifying, moving from A to C the stiffness in the
x−direction increases while the stiffness in the y−direction decreases. In what follows we chose the
polar moduli Rk

0 and R1 as design parameters. For each of the shell natural configurations we consider,
we want to determine the regions in the plane Rk

0−R1 corresponding to shells bistable after clamping. To
perform the numerical analysis, an highly anisotropic unidirectional carbon/epoxy ply (T300/5208) (see
[14], [9]) has been chosen ; technical moduli and polar parameters are listed in Table 2.

TABLE 2 – Material properties unidirectional carbon/epoxy ply (T300/5208).

E1 E2 ν12 G12 T `
0 T `

1 R`
0 R`

1
GPa GPa - GPa GPa GPa GPa GPa
181 10.3 0.28 7.17 26.9 24.7 19.7 21.4

3 Reduced nonlinear model

For shells having the natural shapes described by (1), we examine the stability properties once the
side x = 0 has been clamped. We want to characterize the number and the nature of all stable equilibria.

3.1 Modelling assumptions

We briefly recall the main assumptions of the generalized von-Kármán (FvK), see [2] for details. We
shall consider shell configurations in the form :

S = {(x+u(x,y),y+ v(x,y),w(x,y)), 0≤ x≤ Lx, −Ly/2≤ y≤ Ly/2} ,

where the in-plane displacement fields u and v and the transverse displacement field w scale as : u,v =
O(ε2), w = O(ε), with ε = t2/R2 a small parameter, R being the characteristic radius of curvature of the
shell. By assuming these scaling laws, the contributions of the in-plane and transverse displacements to
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the membrane strains of the surface S are comparable, so that we have :

ex =
∂u
∂x

+
1
2

(
∂w
∂x

)2

, ey =
∂v
∂y

+
1
2

(
∂w
∂y

)2

, exy =
1
2

(
∂v
∂x

+
∂u
∂y

+
∂w
∂x

∂w
∂y

)
(4)

Instead the curvatures of the surface S only depend on the transverse displacement :

kx =
∂2w
∂x2 , ky =

∂2w
∂y2 , kxy =

∂2w
∂x∂y

(5)

The stable equilibria of a FvK shell are the local minima of the total energy, sum of the bending and
membrane contribution :

E(u,v,w)=
1
2

∫ Lx

0

∫ Ly/2

−Ly/2
(Mxkx +Myky +2Mxykxy) dA+

1
2

∫ Lx

0

∫ Ly/2

−Ly/2
(Nxex +Nyey +2Nxyexy) dA, (6)

with the bending moments and membrane stresses as in (2) and (3). We observe that the in-plane displa-
cement field can be computed in terms of the transverse displacement solving a linear elasticity problem.
This allows us to use an effective minimization strategy for the (6). Indeed, necessary conditions for the
functional E to be stationary with respect to u and v are :

∂Nx

∂x
+

∂Nxy

∂y
= 0,

∂Nxy

∂y
+

∂Ny

∂y
= 0

while for the system (4) and (5) to be integrable the Gauss compatibility condition holds true :

∂2ex

∂y2 +
∂2ey

∂x2 −2
∂2exy

∂x∂y
= kxky− k2

xy. (7)

By inversion of the constitutive relations (3), (7) is transformed in terms of stresses to get a standard
plane elasticity problem which is linear in the data, namely the difference in gaussian curvature between
the actual and natural configurations, ∆g = detk−deth (see [19], [1]). As we will point out, the linearity
of the membrane problem plays a crucial role in the reduction procedure used to deduce a discrete
approximation with few degrees of freedom of the FvK functional (6).

3.2 Reduction procedure

We summarize the main steps of the reduction procedure (see [19], [1] for details).
Step 1. We introduce an ansatz for the transverse displacement field. Here we seek w in the form

w(x,y) = q1
x2

2
+q2

y2

2
+q3

x3

6
+q4

x2y2

2
+q5

xy2

2
, (8)

so that it is uniquely defined by five Lagrangian parameters q1 to q5. We remark that the assumption (8)
shall include the pseudo-conical natural configurations. Moreover, (8) allows to easily handle the clamp
boundary condition on the edge x = 0. Indeed, one easily obtains q2 = 0, q5 = 0. Therefore, the clamped
shell has only three degrees of freedom.

Step 2. We compute the forcing term of the linear membrane problem ∆g. For shells constrained by
the clamp condition, using (5) and (8) we have

kx = q1 +q3x+q4y2, ky = q4x2, kxy = q4xy,

so that

∆g = q1q4 x2 +q3q4 x3 +
(h1−h2)

2

L2
x

y2−3q2
4 x2 y2. (9)

Step 3. We solve the linear membrane problem for ∆g given by (9). Due to the linearity of the differen-
tial problem, we have to solve the same problem for all the following four forcing terms {x2,x3,y2,x2y2}→
{N20,N30,N02,N22}, Then, we use the same linear combination as in (9) to compute the membrane stress
field

N = q1q4 N20 +q3q4 N30 +
(h1−h2)

2

L2
x

N02−3q2
4 N22 (10)
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The auxiliary membrane problems can be solved with standard Finite element codes. We remark that the
high precision we can achieve in this way turns out to be the key ingredient of the procedure ; Indeed
it ensures a good estimate of the membrane energy, which is the dominant term of the elastic energy
functional.

Step 4. We use the ansatz for the transverse displacement (8) and the computed membrane stress
solution (10) to get the energy functional (6) as function of the Lagrangian parameters E ' Ê(q1,q3,q4).
As the membrane stresses (10) and strains, through (3), are second-order polynomials of q1, q3, q4, the
approximated functional Ê(q1,q3,q4) is a fourth-order polynomial in the Lagrangian parameters.

4 Results

Figure 3 displays the global stability scenario in the plane of the polar moduli. Within the admissible

Bistable 
shells

Monostable
shells

M1

M3

M2=B

A

C

Monostable shells

Bistable 
shells

M1

M2=B

M3=C

A

FIGURE 3 – Stability scenario in the plane of polar moduli. Left : quasi-cylindrical shell. Right : pseudo-
conical shell.

domain, shells corresponding to gray points are bistable after clamping while shells corresponding to
white points turn out to be monostable when clamped. Not surprisingly, the bistable region is wider for
the second shell ; indeed, cylindrical shells are proved to be close to the margin of bistability region,
see [1]. We focus on three points on the boundary of angle-ply laminates, M1, M2, M3, see Figure 3. In
both cases, M1 and M3 are found as the intersections with the boundary of the monostability region ; M2
corresponds to the ±45◦ laminate previously studied in [1]. Since all of this points lie on the bistability
region, at each of them correspond two clamped stable configurations. As noted above, moving from A
to C, and then also from M1 to M3, the stiffness in the x−direction increases while the stiffness in the
y−direction decreases. We investigate the shape of the clamped stable configurations by computing the
curvatures Kx = kx(Lx/2,0)/2 and Ky = ky(Lx). Moreover we plot the energy profile computed on the
straight line joining the minima.

First shell (Pseudo-cylindrical shell). Moving from M1 to M3 we observe a sharp reduction of the
curvature Kx of the minimum which lose its stability. Moreover, the two stable configurations tend to
coalesce, see Figure 4. This reduction sounds mechanically reasonable as the stiffness in the x− direction
is increasing. Furthermore, passing from M1 to M3, even the elastic energy stored after the clamping is
strongly reduced. This is because it is becoming lower and lower the stiffness in the direction parallel to
the edge which is to be clamped.

Second Shell. Even in this case, moving from M1 to M3 we observe a sharp reduction of the curvature
Kx for the minimum which lose its stability, see Figure 5. Moreover, as in the previous case, moving from
M1 to M3, the minimum which survives suffers only a slight change in its shape and the elastic energy
stored after the clamping is strongly reduced. However, in this case the different sign of the natural
curvatures h1, h2 forces the other minimum to have an S-shaped configuration for high values of the
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FIGURE 4 – First shell (quasi-cylindrical shell).

stiffness in the y−direction (M1 point). For low values of the stiffness in the y−direction the free edge
changes its concavity (M3 point) so that the curvature Ky of the clamped stable configuration and the
curvature h2 of the natural configuration have different signs.
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