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THE KELLER-SEGEL SYSTEM ON THE 2D-HYPERBOLIC SPACE

PATRICK MAHEUX & VITTORIA PIERFELICE

ABSTRACT. In this paper, we shall study the parabolic-elliptic Keller-Segel system on
the Poincaré disk model of the 2D-hyperbolic space. We shall investigate how the nega-
tive curvature of this Riemannian manifold influences the solutions of this system. As in
the 2D-Euclidean case, under the sub-critical condition y M < 8, we shall prove global
well-posedness results with any initial L'-data. More precisely, by using dispersive and
smoothing estimates we shall prove Fujita-Kato type theorems for local well-posedness.
We shall then use the logarithmic Hardy-Littlewood-Sobolev estimates on the hyper-
bolic space to prove that the solution cannot blow-up in finite time. For larger mass
xM > 8w, we shall obtain a blow-up result under an additional condition with respect
to the flat case, probably due to the spectral gap of the Laplace-Beltrami operator. Ac-
cording to the exponential growth of the hyperbolic space, we find a suitable weighted
moment of exponential type on the initial data for blow-up.

1. INTRODUCTION

In the last forty years, various models of the Keller-Segel system (also called Patlak-
Keller-Segel) for chemotaxis have been widely studied due to important applications in
biology. Most of the results of these analytical investigations focus on the fact that the
global existence or the blow-up of the solutions of these problems is a space dependent
phenomenon. Historically, the key papers for this family of models are the original con-
tribution [12] E. F. Keller and L. A. Segel, and a work by C. S. Patlack [16]. The optimal
results in the Euclidean space R? are obtained by A. Blanchet, J. Dolbeault and B.
Perthame (see [6],[3]). Moreover, a large series of results, mostly in the bounded domain
case has been obtained by T. Nagai, T. Senba and T. Suzuki (see [15],[18],[19],[22],[10]).
The literature on this subject is huge and we shall not attempt to give a complete bibli-
ography.

In this paper, we study the (parabolic-elliptic)-Keller-Segel system (1.1) on the clas-
sical model of Riemannian manifold of constant negative curvature —1, namely the 2D-
hyperbolic space. We present our study in the Poincaré disk model B?. Let

{ n:[0,+00) x B2 — R*
(t,x) = ny(x) = n(t, x)

be a non-negative function satisfying the following Keller-Segel system of equations
%nt(a:) = Agny(z) — xdivg (ne(2)Vre(x)), z€B? t>0,

(1.1) —Agc(x) =ny(z), zeB t>0,
n(t=0,7) =no(z) >0, =z€B.
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Key words and phrases. Keller-Segel equations, non compact Riemannian manifolds, negative cur-
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We shall denote n; or n(t) indifferently. The subscript H on differential operators refers to
the operators associated with the Riemannian metric of the Poincaré disk. More details
will be given below in Section 2.

We shall understand the second condition in (1.1) on the function ¢; as

a(x) = (=8p) (@) = | Gulz,y)ni(y)dV,, =B’

B2

where G is the (Dirichlet)-Green function of —Ag given by

1
GH(xvy) = —%log(tanhp(x,y)/Z), T,y € B2‘

We denote by p(z,y) the hyperbolic distance between x and y in B? (see Section 2).

The Cauchy problem for the analogous Keller-Segel system (1.1) in R? is now very
well-understood (see [6],[3],[2]). The natural framework in dimension two is to work in
L' which is the Lebesgue space invariant by the scaling of the equation and with non-
negative solutions. The mass M = fRQ nidx is then a preserved quantity. Nevertheless
because of the scaling critical aspect of L', the conservation of the mass is not enough
to ensure global well-posedness. A simple "virial” type argument that we shall recall
in Section 4 allows to prove that the solution blows up if the initial mass is such that
XM > 8r. When xM < 8, global existence results were proven in [3] by using the
gradient flow structure of the equation. More precisely, the Keller-Segel system can be
seen as the gradient flow of the free energy

F[n]:/nlogn—g/nc

and thus, if the initial data has finite entropy then we get a control of the free energy for
all times. The use of the sharp logarithmic Hardy-Littlewood-Sobolev inequality in R?
then allows to get an a priori estimate in LlogL of the solution of (1.1) which is enough
to propagate any higher LP regularity. In the case yM = 8, it was latter shown in [2]
that concentration occurs in infinite time.

As we see in this brief reminder, the results in R? are sharp but use very deeply the
structure of the system and the dilation structure of the Euclidean space. If the system
is perturbed a little bit, for example by replacing the Poisson equation by the equation
—Ac+ac =n with a > 0, or by replacing the Poisson equation by the parabolic equation
0yc — Ac = n, then the results are much less complete, see for instance [4]. In the same
way, we can expect that any change in the geometry will also change some results. This
type of problems was already studied in bounded domains of R? with various boundary
conditions. The aim of our work is to investigate the influence of the geometry and
in particular the curvature on these results. Note that, for larger mass, an additional
condition for blow-up appears with respect to the Euclidean case. The main blow-up
result of our Theorem 4.1 will be the following.

Theorem 1.1. There exists a weight p : B* — [0, +o0c[ such that, if the following two
conditions:

xM > 8,

M
/pnodV<M< X——l)
B2 87T

2

with M := fB2 nodV, and



are satisfied, then a smooth solution n : [0,T*) x B> — RY of the Keller-Segel system
(1.1) with initial condition ny can exist only on a finite interval [0,T*).

Note that in R2, the sufficient criterion for blow-up is obtained by studying the 2-
moment

I(t) = /}RQ |z|?n(t, x) dx.

The first difficulty we had to face was to find the appropriate substitute for the weight |z|>
on the hyperbolic space. According to the exponential growth of the hyperbolic space,
here the good quantity to use is the following weight of exponential type

2|

p(p) = p(x) = T [a]? = 2sinh*(p/2) =coshp —1>0, =z <€ B
— |z

where p := p(x,0) is the distance from 2 € B* to 0. Because of the hyperbolic geometry,
as we shall see in Section 4, the proof is more involved than in the Euclidean case. Our
second main result is the following global well-posedness in the case yM < 8.

Theorem 1.2. For every ng € LY (B?), with Iy = fEQpno dV < oo and xM < 87, we
have global well-posedness on Xr, N C(RY, L (B2, (1 + p)dV)), for every T > 0 of the
Keller-Segel system (1.1), where

Xrq={n:[0,400) x B2 = R | supt"~2|[n| a2 < +00},
[0,7]

wz’th%<q<2.

A crucial ingredient in our proof is a logarithmic Hardy-Littlewood-Sobolev type in-
equality on the hyperbolic space, that we deduce from a Hardy-Littlewood-Sobolev type
inequality on B2, see [13]. To build the solution, by using dispersive and smoothing esti-
mates, we shall propose a different approach than the one used in [3] which is based on
the construction of weak solutions by compactness arguments. More precisely, we shall
use the fixed point method popularized by Kato for parabolic equations (including the
Navier-Stokes system) to prove local well-posedness in space X1, N CrL', see (3.3). We
shall then use a priori estimates which can be deduced from the free energy dissipation
to prove that the solution cannot blow-up in finite time.

Note that in the hyperbolic space, the case

[xM
xM > 8r and /pnodV2M< X——l)
B2 8

is not covered by Theorem 1.1 and Theorem 1.2 above. It will be interesting to analyze
this case further. A similar situation occurs in R? in the case studied by V. Calvez and L.
Corrias in [4], where the Poisson equation is replaced by —Ac+ ac = n with o > 0. Note
that this case shares some similarities with our case since the Laplacian has a spectral
gap on the hyperbolic space, o(Ag) = [1/4, 400).

2. THE HYPERBOLIC SPACE AND SOME USEFUL FORMULAS

In this section, we shall recall the main geometric and analytic objects on the Poincaré
disk and some useful formulae that we need. It is well-known that the Poincaré disk is
one of the models of the hyperbolic space, which is a non-compact Riemannian manifold
with constant negative curvature -1. Of course, our results can be translated in the other

models as far as they are isometric to B2 For more details, we refer to Analysis and
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Riemannian geometry textbooks [20],[7],[11] for example.

Let B? = {x € R? |z| < 1} the 2-dimensional hyperbolic disk endowed with its Rie-
mannian metric

4(dx? + dx3)
(1—z?)?
The hyperbolic distance between x € B? and 0 = (0,0) € B? is given by

p = p(x,0) = log (1+ ’”‘)

1—|z|

ds® =

(equivalent to |z| = tanh(p/2)). More generally, the hyperbolic distance between = and
y in the disk is given by
1+ |Ta(y)] >

p(z,y) = p(Tx(y),0) = p(T,(x),0) = log (—
! 1 —|T:(y)|
where T, (y) is the Méebius transformation

ly — =Pz — (1 — |z[*)(y — =)

T, =
v) =22y + 2Pl

I

with x - y = z1y; + T2y» denoting the scalar product on R? (see [20]). We have several
useful relations )

z —y|

T,z‘ 2 _ | 7

O =Ty e

Ty(Ty(x)) =,

P L@) Lyl |z —y]
2 L-LWP VO =P~ yP)
cos PT=®)) _ 1 _ V12w g+ Pyl
2 LTl V(= 2P = yP?)

We can consider three different systems of coordinates: x = (x1,z2) (cartesian coor-
dinates), (r,0) with » = |z| (polar coordinates) and (p,#) (spherical coordinates) with
|z| = tanh(p/2) where |z| is the Euclidean norm. So, we can write

z = |z|(cosf,sinh) = |z|e’ = tanh(p/2)e” = tanh(p/2)(cosf,sinh).

We shall denote indifferently f(x) = f(r,0) = f(re?) = f(p,0) for simplicity. We shall
also use indifferently in the same equation both variables z and p.
Let us denote by ¢,(X,Y’) the metric tensor on two vector fields

X(x) = Xila) g+ Xal) g, V() = Vi) + Yala) 5

evaluated at z € B2, which is given by

9%,Y) = <1—|x|2> ZXY

The Riemannian element of volume (measure) of the exponential growth is given by

9 2
dV(z) = <1——]x|2> dx = sinh p dpdb,

4



where dov = dwxdz, is the Lebesgue measure on B?. In cartesian coordinates, we now
define classical differential operators. First of all, the gradient Vi with respect to the
Riemannian structure is defined by

1—Jzf ’ 2
VHf($) = T vef($)a reB )
where V. f = (aa—gfl, ;—;;) is the Euclidean gradient. For a radial function f, we note
F() = f(plx)) and have
f'(p T I'(p
Ve (Flo(@)) = LWL o S10)

~ 2cosh?(p/2) x| sinh(p)glj7

where f’(p) is the derivative of f with respect to p. In particular

1—|z2\?
ga:(VHf7 va) = ( ) vef : Vef,

where V.f - V.g = g—i;—;’l + 8‘%;—;’2. For a radial function f, we have

Vet (p(@)) |7 = 9.(Vuf. Vif) = | f'(p)]*.
The divergence of the vector field Z(z) = Z; (x)a%l + Zo(w) 52 is defined by

‘ 4 2 2
=1 =1

We also define the Laplace-Beltrami operator on B2

1— |z”
2

Bafta) = ( fAwaafB%

where A, is the Euclidean Laplacian
0? 0?
T, Py

with z = (z1,29) € B2 For radial function f(p), the Laplace-Beltrami operator takes
the form

0 0
Am@ww%m+mm@vw»:w;ﬁﬁGmway)

The (Dirichlet)-Green function of —Ap is given by

k
(22) Gu(z,y) = —ki log tanh(p(z,y)/2) = —= log | T (y)|",
with ki = 5= (see [20]).

For any function u and vector field Y defined on B?, we define in the usual way

ol = ([ lopavz) " e = ([ vy are )
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3. LOCAL WELL-POSEDNESS

3.1. Auxiliary estimates. Let us first state the dispersive and smoothing estimates
that we shall use for the heat equation associated with the Laplace-Beltrami operator.
The proof of these estimates can be found for example by V. Pierfelice in [17].

Lemma 3.1. For every 1 < p < q, we have the estimate
1.1 _
||€tAHUO||L‘1(B2) < Cl(t)p e t’7p711||u0HLp(]B2)7 t> 07

1480~ ]lj)) >0 and ¢i(t) = CMaz (1,t71) for some §, C > 0.

where v, , = 5(% —;t3

We shall also use the next lemma.
Lemma 3.2. For every 1 < p < q, and every vector field Y on B2, we have the estimate

¢ psatg,g

€' divgY || aze)y < ci(t)r it ze -7 Wlee, >0,

where Y4 = 5(11J - % + %(1 - %)) >0 and ¢, (t) = CMax (1,t71) for some §, C > 0.
We shall also need to estimate ¢ := —Aﬁln. To do so, in the next Lemma, we use the

boundedness of the Riesz transorm, Sobolev embedding and Poincaré inequality on the
hyperbolic space.

Lemma 3.3. For every s > 1, 1 < q < 2 such that % = % — %, we have the estimate

| Vic|

LS(IBS2) 5 ||n||Lq(]EQ).

Proof. We want to estimate Vyc = —VHAﬁln. Note that we can write

11
VHC = —(VHAHQ)AH2TL
therefore, by using the continuity of the Riesz transform on L* (see [21] for example), we
obtain 1
IVacllzs S 1Ay n]
Next, by using the Sobolev embedding W'¢ C L* and the Poincaré inequality on the
hyperbolic space, we obtain

LS.

_1 _1
1Vaclrs S 1A nllwie S IIVaAg®n| .

By using again the continuity of the Riesz transform on L9, we finally obtain that

Ve

e S lInllea,

which is the desired estimate.
O

3.2. Local well-posedness results. Let 1 < ¢ < 400 and T" > 0 be fixed. We recall
the following Banach space
(3.3) Xrg={n:[0,400) x B> = R | supt®™ 2 ||n,| o) < +00},
[0,7]
with norm

_1
7l xr,, = sup 79 |74 ago2)-
[0,7]

Theorem 3.4. For every ng € L' and % < q < 2, there exists T' > 0 such that there is a
unique solution n of the Keller-Segel system (1.1) in Xr,NC([0,T], L'(B?)).
6



Remark 3.5. Note that as usual, the arguments in the proof can also be used to get global
well-posedness for sufficiently small data in L*.

Proof. Without lost of generality, we can assume that x = 1 in (1.1). By using Duhamel
formula, solving the system (1.1) is equivalent to look for

(3.4) n = e“fny + B(n,n),
with
B(n,n) = — /t et=%udivy (n(s)Vac(s)) ds, c=—Agz'n.
We shall use the following Colassical variant of the Banach fixed point Theorem:

Lemma 3.6. Consider X a Banach space and B a bilinear operator X x X — X such
that

Vu, ve X, [|B(u,v)lx < ylullx[lv]lx,
then, for every uy € X, such that 4v||ui||x < 1, the sequence defined by
Upr1 = U + B(up,uy,), ug=0
converges to the unique solution of
u=uy + B(u,u)
such that 27||ul|x < 1.

We can always assume that 7' < 1 such that, in the following, we will use Lemma 3.1
and Lemma 3.2 with ¢(t) = C'/t.

Step 1. Ewistence of solutions in Xp,.
1.1. Smallness of u; = e'®ing in X1, for some T > 0. On one hand, by applying Lemma
3.1, we have

(3.5) Nr(ng) = [le®nllx,, < cllnollzi s,

for any ng € L'(B?) and ¢ > 1. On the other hand, we have

1
llg%t(l 7 [l g || Lagez) = 0,

for any ny € L9 N L' and ¢ > 1. Hence limy_,o Np(ng) = 0. Then, by density of L4 N L!
in L', we get

(3.6) Tim [le"®no|lx,., =0,

for any ng € L'(B?). So, for all ¥ > 0 and all ny € L'(B?), there exists 7' > 0 such that
47HetAHn0||XT‘q < 1.

1.2. Boundedness of B(n,n). Next we shall study the continuity of B(n,n) on Xr,. By
using successively Lemma 3.2 and the Holder inequality, we obtain

_1 ¢ 1
1B, m) |y, < suptd=H) / () VeAT ()| ds
[0,7] 0 (t—s)p at2
a-b [* 1 1
Ssupth e ﬁ”n(s)HLq(Bz)HVHAH n(s)| L m2) ds,
0.7] 0 (t—s)pat?

7



with % = }D — % and p < ¢. By using Lemma 3.3 with ¢ = —Aﬁln, we have

a-y [ 1 2

Ssupt e —1+1Hn( )N Lam2) ds,
[0,7] 0 (t—s)r a2
Gn 1l 11 1 2 1 4
with & = ;3 Thus for 1 < p < ¢ such that = = 573 and hence q > 3, we have
(3.7) 1B(n,n)|lx, < Illlnlliw
where
t
1 1
(3.8) I, = sup t(l_é)/ ds.
[0,7] 0 (t — s)p q+7 2(177)

By using the change of variables s = tw, we find

1 1
1 tdw 1 1
I, =su t(l_é)/ = / dw
' [077% 0 tii%Jr%(l — w)%f%r% 2072)20=¢) o (1- w)% w23

assuming é <lie ¢g>1and?2(1-— é) < lie. g <2, weensure [; < oo and hence

4
(3.9) 1B, m)llxr, S Dl for 5 <q<2.

1.8. Conclusion. By using Lemma 3.6 with X = Xr, with 7' > 0 given by Step 1.1, (3.6)
and (3.9), we find a solution of (1.1) in X, i.e for Keller-Segel problem with initial data
no in L for T sufficiently small.

Step 2. Proof of n € L>([0,T], L'(B?)) and Conclusion.
Since by Lemma 3.1 we have

(3.10) ||€tAHTL0||Loo([0’T]’L1(B2)) S ||n0||L1(IB%2);

it remains to estimate || B(n,n)|| reo(jo,r),01(82)- By using successively Lemma 3.2 and the
Holder inequality, we obtain

1
(t _ 3)% ||n(s)VHA n( >||L1(BZ) dS

t
1
< sup / 1(3) o) | VA 1(5) | o o, ds.
o1Jo (t—s)2

t
1B(n, n) || Lo (0,7),182)) S SUP/
[O,T} 0

Thus we have
(3.11)

t 1 B
| B(n,n)|| o (o.1),L1.(82)) < SUp (/0 WHVHAHIH(S)HLQ’(BQ) ds | [|nl|xz,,-
—s

[0,T] 28 4

By Lemma 3.3 we have

_ .13 1
IVaAz" ()| @2) S [0(s) [y, with — =5 — .
no2 q
Since % < ¢ < 2, we obtain that 1 < n < ¢ and hence we can use the following interpola-
tion inequality

(

)
)

N
QN

In($)llzrz2) < ()2 10(8) oz, with 6 =

8

—~
—_

Q=



to obtain

(3.12)
t 1 )
1B(1, 1) | oo oy, 82)) S Sup/ 1) 12132y 1 (5) | La ey A5 | Il
1o (t — 5)2 q

Thus we have
(3.13) | B(n, n)HLoo (0,T],L1(B2)) = ]2||n||Lo<> (j0,7],L (B2 )”n”XTq
where
(3.14) I /t ! Ly /t ds

) = sup s=sup | —— .

* oo (t —s)z g0 011 Jo (t—s)2s2

As before, by using the change of variables s = tw, we find
1
td
I, = sup / _ fdw
o1Jo t(1—w)2w

7l oe o1, B2)) S NImollpae2) + H"HLoo(o:r] L1(B2) HnHXTq

=

which is finite. This yields

with 0 < 6 < 1. By using the Young inequality we have

17| Loe 0,77, 82)) S [Im0]] 21 (B2) + ||n||qu

which proves that n € L>([0,T], L'(B?)) N X7,. By a classical argument we deduce that
n e C([0,T], L' (B2)) N X1,
We can also deduce the uniqueness of n € C([0,T], L'(B?)) N X7, from similar argu-
ments. This produces automatically local well-posedeness result.
U

Similar to Theorem 3.4, we shall obtain the next result of existence and uniqueness of
the solution of the Keller-Segel system (1.1) with initial data ng in L9(B?) for all ¢ such
that % < ¢ < 2 and a uniform positive lower bound on the existence time T independent
of the initial data ngy in any fixed ball of LY.

Theorem 3.7. For every ny € L4(B?) and % < q < 2, there exists T' > 0 such that there
exists a unique solution n € C([0,T], LY(B?)) of the Keller-Segel system (1.1). Moreover
for every R > 0 there exists T(R) > 0 such that T'> T(R) for every ||nol|Lem2) < R.

Proof. We shall again use Lemma 3.6 to solve (1.1). We can always assume that 7 < 1
such that in the following we will use Lemma 3.1 and Lemma 3.2 with ¢(¢t) = C'/t. We
have

(3.15) ||€tAHTL0||c([0,T],Lq(B2)) § Hn()HLq(Bz).

To study the continuity of B(n;,n;) on C([0,T], L1(B?)) we use successively Lemma 3.2
and the Holder inequality

t
1 -
1B (n, n)lleqor),Lo@2) S SUP/ —————7IIn(5) Vg n(s) || oee) ds
[0,11J0 (t—s)p q "2
t 1 .
Ssup [ ——— 7 |[n(s)llpe@) [Vady n(s)l| @2 ds,
1) Jo (t—s)r a'2



with % = }D — %, p < q. By using Lemma 3.3 with ¢ = —Aﬁln, we have
K 1
< 2
NSUP/ ﬁﬂn(s)lhq@z) ds,

[0,11J0 (t — s)p q "2
With%:%—%,80§§q<2. Thusforlgpgqsuchthat%z%—%,wehave
(3.16) IB(n, n)lleom,za@2) S LsllnllZ oy comey):
where

t
1
(317) 13 = Sup/ — 1T 1 1 ds.
p11Jo (t—s)p 'z

As before, by using the change of variables s = tw, we find

1 1
tdw 1 1
]3zsup/ 111 T_1_ 1 :Supt(l (11)/ —1dw
.01 Jo trTatE(1 —w)r a2 o] 0 (1—w)a
which is finite for ¢ > 1. Hence there exists a constant C'; > 0 independent of 7" and n
such that

(3.18) | B(n,n)lleqor,Lo@2) < ClT(l_%)H“H?:([o,:r],m(m)
for any ¢ such that % <q<2

Let X = C([0,T],L4(B?)) and v := oAt Imposing the conditions 0 < 7" < 1 and
401T(1_%)H77/OHL¢1(B2) < 1, this implies 4y|le"®ngllcqor ze@2)) < 1 by (3.15). By using
Lemma 3.6 with u; := e®ng and Duhamel formula (3.4), we obtain a unique solution

n € C([0,T], L4(B?)) of the Keller-Segel system (1.1). This produces automatically local
well-posedeness result.

We now prove the uniformity result. Choose T'(R) := (8C{R)a-T such that T(R) < 1
for R positive and large enough. The same arguments as above prove the existence
of a unique solution n defined on the fixed interval [0,7(R)] for all initial conditions
ng € L9(B?) such that ||ng||«s2) < R. This finishes the proof of our theorem. O

4. BLow-UP

In the case of R?, the blow-up for the Keller-Segel system is quite easy to prove. In
fact, under the assumption [p,(1+]2[*)ng(x) dz < oo, we have the following ”virial” type
identity

AM
(4.19) z|*n(t, z) do = / |z|*no(z) dv + — (87 — xM)t, ¥Vt >0,
R2 R2 8
where M =[5, no(z) dz. If xM > 87 and t large enough, the right-hand side of (4.19) is
negative, contradicting the non-negative left-hand side of the equation. Thus the solution
cannot exist for ¢ > T™ for some finite 7.

In this section, our goal is to study the blow-up phenomenon for the solution of (1.1) on
B2. Because of the geometry of the hyperbolic space, our main difficulty here is to find an
appropriate weight to obtain a ”virial” type argument for blow-up. Thanks to our choice
of a weight of exponential type, we are able to replace the identity (4.19) by the inequality
(4.22) below. This inequality will allow to prove blow up for M = [, ng(x) dV > 8 /x
under an additional condition on the moment, with a suitable weight p of exponential

type, fB2 pnodV . As noted before, an additional condition for blow-up on the 2-moment
10



Jgo |2*no dz was also needed in [4][Thm.1.2 eq.(1.2)] where in particular the Keller-Segel
system on R? with the Laplacian replaced by the operator —A + «, a > 0 was studied.
Let us recall the expression of the weight p that we shall use in our blow-up argument

4200 o) = o) =

= 2sinh*(p/2) = coshp —1>0, z € B>

Note that the expression of the weight p = 2sinh*(p/2) = coshp — 1 is the same in
any isometric representation of the Poincaré disk (for instance in the Poincaré upper-half
space model). Next, we shall need the following relations £ +1 = ﬁ and

Our blow-up result is the following statement.

Theorem 4.1. Let n: [0,7*) x B> — R" be a solution of the Keller-Segel system (1.1)
with T* < +00 such that n € C([0,T*), L (B, (1 + p)dV). Then we have

(1) For allt € [0,T7),

2 2
(4.22) / png dV + M | < / pnog dV + M S Ve e4t+iM3,
B2 B2 8m 8T

with M =[5, no(z) dV.
(2) If the two conditions xM > 8w and

(4.23) / pngdV < X*(M),
B2

where

(4.24) N (M) = M (,/% - 1) ,

are satisfied, then the solution ny can exist only on a finite interval [0, T*) with

1 M? yM3 2
4.2 T < Ty :=-=1 —(xM — — M d
(4.25) <Ty= og o (x 87) [ . < +/BQpn0 V)

In particular, a smooth solution n; does not exist fort > Ty.

Proof. 1. Let Z(t) = [z, pne dV. Formally, the derivative of Z(t) is given by

Z'(t) = /132 p%nt(x) dV = /WpAH ny(z) dV, — X/JB? pV - (n(2) Ve (x)) dV,

= / Ay png(z)dV, + X/ 9= (Vup(x), n(z)Vue(z)) dV,.
B2 B2
The second integral has been integrated by parts. Thus we obtain
9 2
I'(t) = / Ay pny(z) dV, + X/ (1—|$|2> Vup(z) - Vici(z)ni(z) dV,.
B2 B2 -

Here again X - Y denotes the Euclidean scalar product. We express the hyperbolic
gradient with the Euclidean gradient and get

T'(t) = g Agpny(x)dV, + X/B2 (1 —2|x|2) Vep(2) - Veer(z)ng(x) dV.

11



Using the Green kernel Gy of —Apg to express ¢;, we obtain for the second integral

/Bg <1_T|x|2)2 Vep(z) - Veer(x)ny(z) dVy =

/BQ /B (1 _2’95‘2>2V6p(‘”)-ViGH(x,y)nt(a;)nt(y) Vv,

where we recall that

k 1
Gia(,y) = —ky log [tanh(p(z,9)/2)] = = Llog [T, ky = 5.

To simplify our notation, we set H(x,y) = log|T,(y)|?, where T,(y) is the Moebius
transformation (see Section 2). This leads to the following

v = [ dapn@av % [ [ (Y 0 e e

where dy(z,y) is the symmetric measure given by du(z,y) = n(z)n(y) dV,dV,. Note
that p = p; depends on t. For the second integral, we set

r= [ (1 ‘2"”"2)2 Vep(a) - V2H(z,y) du(z, ).

By changing the role of x and y in the integral (using the symmetry of the measure and
the fact that |T,(y)| = |T,(x)]), we also have

-/, / (1 - W) p0) - VH(x.y) du(z. ).

Hence, by symmetrization, the derivative of Z(t) takes the next form

T'(t) = /B Aupny(z)dV, — %(y),

with yo := Xt and 2J = [ [ L(z,y) du(z,y), where
1 — [z

s = (“FE) Vo) w2 + (2 vt v

2. Computation of V*H(x,y). We write the square of the Euclidean norm of the
Moebius transformation as

2
Tg; 2:|x_y|
e =T

with V= V(z,y) =1 -2z -y +[2[|y]* = |z — y|* + (1 — [z*)(1 - [y*).
By a straightforward computation, we have
- 2
Vel T (y)? = 2 (L= [2) (1 = )@ —y) + |z = yP (1~ [y[*)a] .

Hence, we obtain

ViH@ ) = VLW L) = 2 ) 20

We deduce that L has the following simple form with the choice of p given by (4.20)

Lwy) = o [1 = laPlyP]

Note that, in the Euclidean case R?, the function L is a positive constante (and A.|z|?

also) and leads immediately to the blow-up equation (4.19). On the Poincaré disk, besides
12




the fact that L is not a constant, we have to deal with a new difficulty i.e. inf L = 0.
Finally, we have

2
x
7= [ swpmav, o [ [ 2 ey,
B2 B2 JB2
By the relation Ay p = 2p+2, the function Z(t) satisfies the followmg differential equation
(4.26) T'(t) = 2Z(t) + 2M — x / / |x| W) ).
B2 JB2

3. Dealing with K. Let K := [5, [5 Mdu(m ).

In order to obtain an upper bound on Z' ( ) in (4.26) i.e. a lower bound on K, we use the
fact that

V=V(z,y)=1-2z-y+zPyf < 1+ |zlly)*.
Hence, we have

A= |=Plyf?) 1—Jz|ly|
B2 JB2 1+|x||y| w2 Jee 1+ [2][y]

Then, by Cauchy-Schwartz inequality, we obtain

— [ [ wmaviav,= [ [ ey
IBQ IB2 IBQ Bz
_ L lelly[\"* (Lt Jallyl\
2 Je \ 1+ [2]]y] 1 — |zly]
1—|z|ly 14|z y 1/2
w Je2 1+ |2|ly] B2 Jm2 1 — |I||y|
Finally, we have

(4.27) M2 <VE (/ /BZ L Jllv] du(a;,y))m.

1 — |||y

To obtain an upper bound on Z'(t) in (4.26) i.e. a lower bound on K (since —xo < 0), it
remains to prove an upper bound on

1+ |allyl
0= [, ey

as follows. Using the fact that for any z,y € B?

1— |zlly| = V1= [z]2/1 = |y|?,

we deduce that

Q<

1 |z]]y|
du—i—/ djt.
52 JE2 /1 — [z /1 = [yl? B2 Je2 /1= [zf2/1 = [y]?

Now, we can introduce again the weight p(x) = f_'TfP using the two next formulae

Vif= B b=

1
VI=]al*

This implies for @)

Q< (/B [(§+1)nt}é\/n_td%>2+(/32 %\/n_tdvx)Q.

13



Again by Cauchy-Schwarz inequality applied on both integrals, we have

QSM(/ <§+1)ntd%+/ gntdm>:M</ pntd%—i—M):M(I(t)—i—M).
B2 B2 B2

From (4.27), we finally get
M*< KQ < KM (Z(t)+ M),
or equivalently a lower bound on K
M3
4.28 K> ——.
(4.28) I+ M
4. A differential inequality for Z(t).
From (4.26) and (4.28), we deduce a differential inequality for Z(t) = [z, pn, dV/,
M3
T'(t) <2Z(t)+ M) — xoK <2(Z(t) + M) — xo=———.
() < 2Z(0) + M) = xok < 220+ M) = o7
We set p(t) = Z(t) + M, the preceding inequality reads as
3
(1) < 20(t) = xo— -

()
Thus, we have

5 () (1) < 26°(1) — xoM®.

Now, by setting () = ¢*(t), we deduce the following simple differential inequality
D' (t) — 4p(t) < —2x0M°.
By multiplying the last inequality by e~*, we obtain
_ 1 _
[6 4t¢<tﬂ/ < 5)(0]\/[3 [6 4t} g
We integrate on (0,¢) and we get for any ¢ € (0,7%)

e Map(t) — 1p(0) < %XOMS e —1].

This leads to the following

(4.29) o(t) < {w(()) - %XOM:S} o %XOMB’.

Since 1(t) = (Z(t) + M)?, where Z(t) = [, pn, dV and ki = (27)~! (xo = x(47)1), we
get (4.22), i.e.

2 2
(/ pnth—i-M) S({/ pnodV—i—M] —1M3>€4t+1M3.
B2 B2 8w 8T

5. Blow-up conditions. Now assume that the solution n; exists for any ¢ > 0 (i.e.
T* = +00) and assume also that

2
(4.30) V png dV + M] e Ve
B2 87T

holds true. We obtain a contradiction since the right-hand side term of (4.22) tends to

—o00 as t — +o00 and (f]BQ png dV + M)2 remains non-negative for any ¢ > 0.
14



Then we say that a blow-up appears i.e. the solution does not exist globally in time (i.e.
T* < +00).

Remark 4.2. The inequality (4.30) is equivalent to

(4.31) 0< / p(x)no(z)dVy, < M (\/ % - 1) = N (M).

In fact, the inequality (4.30) implies two conditions. First, the right-hand side of the
equation above should be positive i.e. xM > 8w and, secondly, the p-moment at the
initial time t = 0 should satisfy (4.31). Note that M > 8m/x is the same condition
for blow-up than the Euclidean case R?. But here, as pointed out before, it appears the
additional condition (4.31) for blow-up on our weighted moment.

6. Fstimate of the blow-up time Ty. In case of blow-up i.e. under the conditions
M > 8r/x and (4.31), the existence time 7™ of any solution (n:) of the Keller-Segel
system is bounded by the next bound 7}, obtained as follows. From (4.29) and

M? < (t) = (Z(t) + M)?,

1 2
MZS—[§X0M3—(M+/2pn0dV)
B

— X
87

we have

1
€4t 4 §XOM37

or, equivalently for any ¢ < T with %XO

1 M3 2

which leads to (4.25). This completes the proof of Theorem 4.1. O

5. A PRIORI CONTROL OF THE ENTROPY OF A POSITIVE SOLUTION

In this section, we prove lower and upper bounds of the entropy of the solution of the
Keller-Segel problem (1.1) on the hyperbolic space. In particular, we shall prove that
nylogn, € L' is locally uniformly bounded in time under the condition yM < 8. The
main ingredients in our proof are the use of the upper bound of the p-moment (4.22) and
the logarithmic Hardy-Littlewood-Sobolev inequality on B? (5.39).

5.1. Lower bound on the Entropy of the solution of Keller-Segel system. We
prove a lower bound on the entropy of the solution of the Keller-Segel problem (1.1) on
the hyperbolic space by using the tool of relative entropy as in [3].

Lemma 5.1. Assume that a function f : B*> — [0,400) is such that M = [;, fdV and
fB2 pfdV are finite. Then, for all s > 0, we have

1 M
(5.32) flog fdV > ——/ pfdV + M log (—) .
B2 5 Jg2 2ms

Here p = p(p) = 2sinh*(p/2) denotes the weight defined in (4.20).
Proof. Let s > 0 and define

g(x) = gs(x) = iseXp (-@) - 2Lexp (M) .

2T TS S
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By using the volume element dV' in spherical coordinates, we easily see that ¢s is a density
of a probability measure on B? with respect to the mesure dV. A lower bound on the
relative entropy of f with respect to ¢ is given by

[ L (L f _
/]BszngdV_/Bzflqudv/]qul()g(q>qdvqu</ﬁz qqu) = Mlog M.

The last inequality is obtained by Jensen’s inequality applied to the convex function
U(u) = ulogu and the probability measure ¢gdV. We deduce that

flogfdvz/
B2 B

which is nothing else than (5.32). O

(—73 _ 10g(27rs)> FdV + Mlog M,
S

2

By using this general Lemma 5.1 and the estimates (4.22) obtained in Section 4, we
obtain the following lower bound on the entropy of the positive solution (n;) of Keller-
Segel system (1.1).

Lemma 5.2. Let n : [0,T) x B> — R" be a solution of the Keller-Segel system (1.1)
with T' < 400 such that n € C([0,T), LY (B?, (14 p)dV'). Assume that M := [z, n,dV =
Jg2m0dV and [5, pnodV are finite. Then, for all0 <t < T and s > 0 we have the
following lower bound on the entropy of the positive solution (n;) of Keller-Segel system

(1.1)
(5.33) /B nglogn, dV > —% K/ano dV)) e + M(e* — 1)} + M log (%) :

With s = e, we deduce for all t > 0,
—at M
(5.34) / ntlognthZ—/ pnodV — M 4+ Me™ =" + M log <2—) — 2Mt.
B2 B2 m
Proof. Set Z(t) := [z, pne dV, by using the estimates (4.22) we have
1
(Z(t) + M)* < (1(0) + M)*e* + SXoMA(1 = ") < (1(0) + M)? ™.

Thus, we deduce the next upper bound on the p-moment Z(t) for any ¢ > 0,

Z(t) = / pnydV < (/ PN dV) e+ M(e* —1).
B2 B2

By Lemma 5.1 with f = n;, we get

1 M
/ ng logn, dV > ——/ pny dV + M log (—) ,
B2 s Jg2 27s

since M := [, n, dV = [5,modV for all t > 0. From the upper bound on Z(t) just above,
we immediately deduce (5.33) and its consequence (5.34) when choosing s = €. O

5.2. Upper bound on the Entropy of the solution of Keller-Segel system. The
aim of this section is to obtain upper bound estimates for the entropy of the positive
solution (n;) of Keller-Segel system (1.1). To do so, we prove a suitable logarithmic
Hardy-Littlewood-Sobolev inequality on B?, involving the entropy of the function and

the Green kernel on B2,
16



5.2.1. Logarithmic Hardy-Littlewood-Sobolev type inequality on B*. We start by recalling
a Hardy-Littlewood-Sobolev type inequality proved recently on the hyperbolic space B"
by G. Lu and Q. Yang, see [13].

Theorem 5.3. [13]. Letn € N, 0 <A <n and p=p(\) =

223. For all f,g € LP(B™),

we have
()9 (y)|
5.35 av,dv, < C, o (T (),
539 lﬂ/;%mm@wﬂw v < Cuallfllzrenl9llee
where Cy, \ 1s given by
D(n/2 - X/2) (T(n/2)\ "
_ A2

and p(x,y) is the hyperbolic metric.

By the same derivation argument at A = 0 used by Carlen and Loss [5], we deduce the
following version of logarithmic Hardy-Littlewood-Sobolev inequality on B".

Theorem 5.4. Let n € N*. For all f € L*(B") with f > 0, we have

(5.37) . f(z)log f(x)dV, + — /n . f(x)f(y)log [2sinh(p(x,y)/2)] dV,dV,,

with M := an x)dV, and
d
Cn(M) = —MlogM + TLMaCm}\b\:o

=—MlogM +nM B log 7 + % log FIEZ{L)Q) + %(\Il(n) —U(n/2))

where W is the logarithmic derivative of the Gamma function. In particular, Co(M) =
M log(emM).

The constants C,, y and C,,(M) are sharp and exactly the same as in the Euclidean
space R", see [13] and [5].

Now recall that, for non-negative functions on R?, the classical logarithmic Hardy-
Littlewood-Sobolev inequality can be expressed as

638 [ fe)os (e do— F(2)f(9) Gl y) dady > —M log(er M),

R2 JR2
with M = fR2 x) dxr and the Euclidean Green kernel given by

1
Ge<xvy) = _%log‘x - y‘

In particular, note that the classical inequality (5.38) involves naturally the Green kernel,
which is the important link with the Keller-Segel system on R%  Here, because the
expression of the Green kernel G on B? is given by

Gl y) = — 5 log [tanh(p(z,)/2)]

the inequality (5.37) is not enough to be connected with the Keller-Segel system (1.1).
So, in the following Theorem, we state a suitable logarithmic Hardy-Littlewood-Sobolev
inequality on B2, which allow us to obtain upper bound estimates for the entropy of the

solution of the Keller-Segel system (1.1).
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Theorem 5.5. For all f € L'(B*) with f > 0, we have

(5.39) f(x)log f(x)dVy — — f(@)f(y)Gu(x, y) dVedV,

B2 J B2

> (M) — 2 / p(2) (@) Vi,

BZ

with M =[5, f(x)dV, and Ky(M) := M log(4emM).

Proof. Let d = p(x,y) to avoid confusion with p(z) := p(x,0). From Theorem 5.4 with
n = 2, we have

() log f(2)dV, + 2M log2 + - / F () (y) log [sinh(d/2)] dV,dV, > —Cy(M)
B2 B2 JB2

because
f(x)f(y)log2dV,dV, = 2M log 2.
M B2 JB2
This can be rewritten as
(5.40) f(z)log f(x)dV, +97 f(x)f(y)log [tanh(d/2)] dV,dV,
2 ]BQ ]EQ
f(z)f(y)log [cosh(d/2)] dV,dV,, > —C, (M) — 2M log 2.

M B2 JB2
Now by using the triangle inequality for the metric p, we have the following
1
5 lp(x) + p(y)],

log [cosh(p(z, y)/2] < plz,y)/2 < p(2,0)/2+ p(y,0)/2 = 5 |

by multiplying the last inequality by % f(z)f(y) > 0, integrating over B x B? and using
Fubini’s Theorem, we obtain

(5.41) M , B2f y) log [cosh(p(z,y)/2] dV,dV,

<7 L [ 1@ bta) + )] dviav,

=2 (Lrwan) ([ sos@a) =2 [ s av.

Then the inequality (5.39) follows from inequalities (5.40) and (5.41) above. This com-
pletes the proof. O

5.2.2. Entropy upper bound. The next results are used for the study of the entropy upper
bound of the solution of the Keller-Segel system (1.1). Here, we consider the Lyapunov
functional defined by

F[nt]:/wnt lognth—g/Eﬁntch

similar to the Euclidean one given in [3].

From now we shall perform a priori estimates in the setting of smooth enough solu-
tions, the one constructed in Theorem 3.7. In particular, for such a solution we can
define T as the maximal existence time which is characterized by if T* < +o0o, then

SUP¢eo,7+[ n(t)HLq(BQ) = +00.

18



Proposition 5.6. Let n; be a solution of the Keller-Segel system (1.1) as above. Assume
that F[no] is finite, then we have

0

—Fny] = —/ ny| Vi logn, — xVue|* dV <0,

ot B2
for allt € (0,T*). In particular, F[n,] < Fno| for all0 <t < T*.
Proof. The proof is similar to the Euclidean one and relies on the existence of an explicit
expression of the Green kernel on B2 O

Next, by using the inequality (4.22) we obtain an upper bound on the p-moment of the
solution of the Keller-Segel system (1.1).

Proposition 5.7. Let n; be a solution of the Keller-Segel system (1.1) as above. Then,
for all O < t < T*, we have the following upper bound of the p-moment

(5.42) / png dV < Oy (p,ng)e® + \* (M),
B2
with
12 7 1/2
(5.43)  Cy(p,mg) = (/ PNy dV—/\*(M)) / pngdV + M+ M i :
B2 + B2 8w

where X*(M) is giwen by (4.24) and M = [z, no dV.
Proof. We recall here (4.22)

2 2
(/ pnth+M) g([/ pnng—l—M} —1M3)e4t+lM3,
B2 B2 87T 87T

valid for all ¢ € (0,7%*) with 7% < +o00. By taking the square root on both sides and
using the inequality va + b < v/a + Vb, a,b > 0, we obtain
1/2

2 2
M
/pnth§ U pnodV—l—M] —(M X—> e X s
B2 B2 87T 87T

+
Hence, we have

1/2 1/2
M
/pnthS(/ pnodV—)\*(M)) (/ pnodV—i—M—l—M\/X—> 2 4+ \*(M).
B2 B2 n B2 8m

So, we obtain
[ pmdv < Cutpino)e + x(0),
]B2

where C'y(p,ng) and \*(M) are given respectively by (5.43) and (4.24). This concludes
the proof of the proposition. O

Remark 5.8. Note that if [z, pno dV — X*(M) < 0, it implies that X\*(M) > 0, hence
XM > 8m. Under the condition of blow-up or critical case we get Cy(p,ng) = 0 and so,
we have the following uniform bounds in time of the p-moment

/ png dV < X (M),
BZ

for any t € (0,T*).
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Now, we shall control the p-moment of the solution n; of the Keller-Segel system (1.1)
fBQ pny dV, which appears in the lower bound of our logarithmic Hardy-Littlewood-
Sobolev inequality on B? (5.39) with f = n;.

Proposition 5.9. For any solution n; of the Keller-Segel system (1.1) with T* < +o0,
we have

OS/ png dV < K, +2Mt, 0<t<T",
B2

with M = fW no dV, p = p(x,0) is the distance from x € B? to the center 0 of B* and

Cy . [N(M)
K, =2M1 2 24/ = 1
+ Og (Sup( 2M7 2M + >>7

with C given by (5.43) of Proposition 5.7 .

Proof. We apply Jensen’s inequality with ®(u) = sinh(u) as convex function and dy =
15 dV as probability measure. For any 0 <t < T™ < 400, we get

1 1/2
ny dV < 2M sinh™! [ —— (/ n dV) .
/WP t S ( i sz t

By using the inequality sinh™(u) < log(2u + 1),u > 0 and Proposition 5.7, we obtain

/ png dV < 2M sinh™ (1/ \/)\ >
B2

[C. NL(M) K
< 0g ( o onf T ST ’
with K, = 2M log (SuP(2\/ S 24/ M;ff)

The following Lemma is nothing else than the Lemma 8 of [3] written in a general
measure theory context.

)) The proof is completed. O

Lemma 5.10. (1) Let (E,v) be a measure space. Assume that u,q : E — [0, +00]
satisfy the following conditions M := [wdv, [ulogu dv < and [(—logq)u dv <
oo are finite. The measure qdV is a density of probability i.e. [q dv =1. Then
for v =ulp<y<1, we have

2
/u!logu| dug/ulogu du—i-g—i-Z/(—logq)v dv.

(2) Let E =B? and v = dV the hyperbolic measure. Let p the weight given by (4.20).
Then, we have for any s > 0

2 1
(5.44) / ullogu| dv < / ulogu dv + = 4+ 2M log(2ms) + —/ pu du.
B2 B2 (& S Jg2

Finally, we prove the upper bound of the entropy of a positive solution. Note that,
we are able to prove that n,logn, € L' is locally uniformly bounded in time under the
condition yM < 8.

Proposition 5.11. Let n; be a positive solution of Keller-Segel system (1.1) and T* the

mazimal existence time of the solution. Assume that [z, pnodV and Flng] are finite.
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(1) For any 0 <t <T <T* and xM < 87, we have the following estimate

M\ !
(5.45) / nylogn, dV < (1 - X—) C(no,T),
B2 8
with
xM
C(no,T) := Flno] + o (Ko(M) + 2K, +4MT),

where Ko(M) and K are defined respectively in Proposition 5.9 and Theorem
5.5.

(2) Moreover, for all0 <t <T <T*, s> 0 and xM < 87, we have

M\ 2 1
(5.46) / n¢|logng dV < (1 - é—) C(no, T) + B + 2M log(27s) + E/ png dV
B2 B2

™

and its consequence

M\ 2
(5.47) / n¢|log ng| dV < (1 — XS_) C(no,T) + -
B2

7r
+2M log(27s) + s Ce* 4+ s\ (M),
with Cy = Cy(p,ng) given by (5.43).
Proof. 1) The proof follows the same lines as in Lemma 7 (upper bound) of [3]. We
provide the details.

Step 1: Use of the decay of the functional Fn).
From Proposition 5.6, we have F[n;] < F[ng] for all 0 <t < T < T* i.e.

F[nt] = / ny 108; Uz av — K/ NCy dV < F[no]
BQ 2 BQ
which can be written as

/ nylogng dV — % < ng, (—Ag) 'y > < Flng),
B2

with < f,g >= fEQ fgdV. Then we deduce the following inequality
(5.48)

M M 47
(1 — X8_7r) /]E2 n. logny dV—i-);—W (/113%2 nilogng dV — Wi <y, (—Du) 'y >) < Flno].

Step 2: Use Logarithmic of Hardy-Littlewood-Sobolev inequality on B2 From logarithmic
Hardy-Littlewood-Sobolev inequality on the hyperbolic space proved in Theorem 5.5 with
f = ny, we have

4
/ ns logn, dV — —ﬂ/ / n(2)ne(y)Gu(z, y) dVydVy, > — Ko (M) — 2/ pngdV.
BQ M BQ ]BQ ]EQ

This can be written as

4
(5.49) / nylogn, dV — Mﬂ < g, (—Ag) "ty >> —Ko(M) — 2/ pnydV,
B2

B2
Combining (5.48) and (5.49), we obtain

M M
1 - X2 /ntlognthSF[no]—i—X— KQ(M)+2/ pndV ) .
87T B2 87T B2
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Step 3. Upper bound on the p-moment. By Proposition 5.9, we have
OS/ png dV < K, +2Mt, 0<t<T<T"
B2
This implies that

M M
B2

from which we conclude that

M\ M
/ nylogng dV < (1 - X8—> {F[no] + ’;— (Ko(M) + 2K, + 4MT)
B2 T T

for0<t<T <T*and yM < 8.

2) To prove (5.46), we apply 2) of Lemma 5.10 with u = n; and the first part of this
proposition. To deduce (5.47), we use the upper bound of p-moment (5.42) of Proposition
5.7. Now, the proof is completed. O

6. LI-BOUNDS ON SOLUTIONS

The main argument of the proof of the L%-bounds of the solution (n;) under the con-
ditions no € L} and nglogng € L' is the control of My(K) := [5.(ny — K), dV for K
large enough. More precisely, we have the next result.

Proposition 6.1. Under the assumptions of Proposition 5.11, for any positive solution
ny of Keller-Segel system (1.1), we have for all T < T* the following

(6.51) sup M(K) <

c(T
0<t<T - 10gK ( )

for a positive continuous non decreasing function C(T') on [0, +00)

Proof. Let T < T*. We have, for any K > 1 and 0 < ¢ < T, the following

1
M(K) = —K), . dV < av < 1 av.
1;( ) /1532(nt )+ s /nt>K Ty = log K ok Ny 10g 1y
So, by applying (5.47) of Proposition 5.11, we have
1
M(K) < 1 dav < ——C(T).
H(K) < log K ant| ogn|dV < logKC< )
The function C(7') is the bound of the inequality (5.47) (for any fixed s > 0). O

Now, we adapt Proposition 3.3 of [3] to control the L9-bound of the solution (n;).

Theorem 6.2. Assume that ng € LL(B* (1 + p)dV) and nglogng € L'(B* dV) with
XM < 8m and the weight p given by (4.20). Assume in addition that ny € L(B?) for
some 1 < q < 2. Then the solution n; of the Keller-Segel system (1.1) satisfies the
following estimate

sup |[nefLe(s2) < No(T') < +00,
0<t<T

where T < T* and N,(T') is a continuous function on [0, +00).
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Proof. We mention only the main steps. The first idea is to prove a differential inequality
of the form

(6.52) (1) < r(t) +
for ¢(t) == ||(ne — K)+||qu(BQ) for K large enough (¢; > 0) and apply Gronwall lemma
from which we deduce that

wws@@+9}w—9g@@+9yw>9,og5T<w

(&1 C1 C1

Step 1. Reduction to ¢(t) estimate. From theoretical measure theory considerations, we
easily obtain

el = [t [ wp<owpars [
n<AK ng>AK ng>AK

for all K, A > 1and 0 <t < T < T*. So, by using n] < (ﬁ)q_1 (ny — K)? when
ny > AK, we get

_ A\
Il < OR7004 (525) [ e s

Step 2. To bound ||n]| |qu(B2), we only have to deal with the second term by proving (6.52).
We set ¢(t) := ||(ns — K)JquLq(BQ). We use multipliers method to estimate ¢/(t). After
integrations by parts, we get

9(6) = == (s (= 1001%) Pav + 20— O [ (00— KYLav
q B2 B2
(6.53) 4 [ = KTV g = 1 [ (- KOV
B2 B2

As shown in [3], we have

M
/ (n, — K)hav < e +/ (ny — K)% dV.
]BQ

]B2
Thus, we get
¢'(t) < [(2¢ — D)xK + qxK?] ¢(t) + gy KM

+ {# . |V ((m — K)gr/2> 2dV + (q — 1)X/Bg(nt _ K)ti-&-l dV} ‘

Step 3. Use of Gagliardo-Nirenberg inequality. In order to show (6.52), it remains to
show that

—4(qg—1
R(ny) = %/ |V ((nt — K)i/Q) |2dV + (q — 1)X/ (n, — K)dv <0
B2 B2
for K large enough and uniformly for any 0 < t < T < T*. For that purpose, we use
Gagliardo-Nirenberg inequality valid on the hyperbolic space (see [14], [23] , [9] ), for

every 1 < ¢ < 2 we have

|U|2(1+1/q) dV <k, (/ |VHU|2 dV) (/ |v|2/q dV) )
B2 B2 B2

This inequality applied to v = (n; — K )’_{2 leads to

/132(nt — K)¥av < &, (/132 |V <(nt — K)iﬂ) E dV) M, (K),
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with My(K) = [g.(ny, — K); dV. Hence,

=D s = (1) ( [ 19 (- 017 Pav).

and by using the inequality (6.51) of Proposition 6.1, we have

R < | = = o] ([ 19 (- 0117 Pav).

for all 0 <t < T < T*. Thus there exists K = K(T') > 1 such that
—4(qg—1) 1
q log K
This implies the inequality (6.52) with
cy =ci(T) = (2¢ — 1)xK + qxK?, co =co(T) = qxKM.

The proof is now completed. U

R(n,) < {

(¢ = DxrC(T) < 0.

Remark. Note that that the explicit value of the constant x, > 0 in Gagliardo-
Nirenberg inequality has no importance in our estimates as in [3].

7. GLOBAL WELL-POSEDNESS

Next, we prove global existence in time of the solution under the subcritical condition
XM < 8m. Let be p the weight defined as in (4.20).

Theorem 7.1. For every ng € L}F(IB%Q), with Iy = fngno dV < oo and xM < 8m we
have global well-posedness on X1, N C(RT, Lt (B?, (1 + p)dV') for every T > 0 of the
Keller-Segel system (1.1).

Proof. By Theorem 3.4 if ny € L'(B?) there exists T > 0 such that there is a unique
solution of the Keller-Segel system (1.1) n, € X7, N C([0,T], L*(B?)), where Xr, =
{ne [ supieo t(lié)”n(t)HLq(BQ) < oo}, with § < ¢ < 2. Then there exists T} €]0,7]
such that n(7}) € L1(B?) N LL(B?) for § < ¢ < 2. We can take n(7}) as initial data and
we use Theorem 3.7 to continue the solution. From Theorem 3.7, we obtain a maximal
solution on [Ty, T*[ such that n, € C([Ty,T*[, L4(B?)). Moreover if T* < +o00, we must
have sup,eip, 7+ [[n(t)||Lam2) = +00. Let us now assume that 7" < +oo, it suffices to
prove that supyep, p«[ [|n(t)[|La(s2) < 400 to get a contradiction and thus obtain a global
solution. Since n(73) € L4(B?) N LL (B2, (1 + p)dV) for 5 < ¢ < 2, [5, n(T1)logn(T1)dV
is well-defined. Consequently, we can use Theorem 6.2 to obtain that

sup [[ne[paee) < No(T™) < +00.
0<t<T™

This ends the proof. O

8. A PRIORI ESTIMATES OF THE ENTROPY AND LY-NORMS OF SOLUTIONS

In this section, we shall derive some interesting a priori estimates on the entropy and
L%-norms of the solutions of the Keller-Segel system (1.1). To do so, we use the classical
multiplier’s method and some functional inequalities, as for example the Poincaré-Sobolev
inequality by Mugelli-Talenti [14] to have (8.55) and also Log-Sobolev inequality by Beck-
ner [1] to prove (8.56). Let I(n) = [q. % dV be the Fisher information and the mass
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M = [GndV = [ n9dV, where (ng)oci<r~ is the non-negative solution of the Keller-
Segel system (1.1).

Proposition 8.1. Let (ny)o<i<r+ be a non-negative solution of the Keller-Segel system
(1.1), where T* < 400 is the mazimal existence time of the solution. Then

(1) For allt € (0,T™), we have

0 xM YM?
. Z < |14 X5 - .
(8.54) atEnt(m) < [ 1+ o ] I(ny) y

(2) If xM < 47 then t — Ent(n;) is non-increasing on (0,7*) and we have
2

M
(8.55) Ent(n,) < —X4 t + Ent(no).
T

for allt € (0,T*). In particular if T* = +o0, limy_,, o, Ent(n;) = —o0.
(3) Under the condition xM < 4w, we have

M
(8.56) Ent(n,) < — X
47

1 4re [ 4w XMt
—M log {exp (—MEnt(ng)> +ar (X_M — 1) (1 — e in )} :
for allt € (0,T7).

Remark. Tt can be shown that the inequality (8.56) is stronger than (8.55). But the
asymptotic behavior of the upper bound is the same i.e. —X4—J‘fr2t ast — +oo (if T* = 400).

2
t

Proof. 1). By multiplying the first equation in the Keller-Segel system (1.1) by log n; and
integrating by parts, we get

2Erlt(m) = —I(n) + X/ n?dv.
ot B2

By using the following Poincaré-Sobolev inequality of Mugelli-Talenti, with u = nq,

2 2
(8.57) (/ |u|dV) +47r/ lu|* dV < (/ |VHu|dV> :
B2 B2 B2

and by the Cauchy-Schwarz inequality, we deduce that

2
M2—|—47r/ n;dvV < < |ant|dv> < (/ ng dV) I(ng) = MI(ny).
B2 B2 B2

Then, we have

gEnt(nt) < —I(n) + ﬁ {477 /B n? dv} < —I(n) + ﬁ (MI(n) — M?).

We conclude that (8.54) holds true.

2) Since I(ny) > 0 and M < 4m, from (8.54) we obtain 2 Ent(n,) < —X~ ® Then the
conclusion is obtained by integration.

3) W. Beckner proved in [I] that the following Log-Sobolev inequality holds on the
hyperbolic space with ||ul|2@m2) = 1,

/]u\Qlog]u\dV< log( /[VHUPCIV)
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We set u = y/n:/M and get
1
/ nylogn, dV < M log (—I(nt)) :
B2 4me
for all ¢ € (0,7*). This implies that
1
—1I(n;) < —demexp (MEnt(nt)> :

By using 1), we deduce that
2

0 xM xM [ xM 1
< |-14 22 < — _ A — .
5% (Ent(nt) + ym t) < [ 1+ ym ] I(ny) < —dem _1 g ] exp <MEnt(nt))

We set U(t) = Ent(n;) + X t Then V¥ satisfies

1 M ]
U'(t) exp (—M\If(t)) < —der {1 — ﬁ—ﬂ exp ( )
This differential inequality is easily integrated and leads to (8.5 This completes the
proof of the proposition. O

Then, in the following proposition, we deduce some L?-estimates of the solutions of the
Keller-Segel system (1.1).

Proposition 8.2. Let (ny)o<i<r+ be a non-negative solution of the Keller-Segel system
(1.1) where T* < 400 is the mazimal existence time of the solution. Then

(1) For allt € (0, T*) and all 1 < g < oo, we have

1 XM (q+ 1) _
(8.58) ﬁ@t” |7 ®2) = _1+8_7TT /”g Q\VHnthV-
(2) If xM < 4mh(q) with h(q) = q+1 Tz then
0

aHnthLq(W) < 0.

So, the map t — ||n4||¢ is non-increasing on (0,T*) and we have
(8.59) el a2y < [Inollzoce2)

for allt € (0,T7).
Proof. 1) By the classical multiplier method, we have that

1 0 q—2 2 X/ 1
- o= — v v + = hav.
q(q—l) HntHLqB) /IB2nt ’ Hnt| + q ]BQnt

By applying the inequality (8.57) to u =n

1 2
Amr </ ndtt dV) < %M (/ n§_2|VHnt|2dV) :
B2 B2

which implies (8.58).
2) This is deduced from (8.58) of 1). The proof is completed. O

(@D/2 e obtain that

Remark 8.3. By using the second statement above, if xM < 4mwh(q) < 4w then in
this case we have a Li-norm control of the solution of the Keller-Segel system (1.1),
which allow us to obtain a global well-posedness on Xr.,NC(R*, L (B?)) without weighted
additional assumption on initial data in L*(B?).
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