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THE KELLER-SEGEL SYSTEM ON THE 2D-HYPERBOLIC SPACE

In this paper, we shall study the parabolic-elliptic Keller-Segel system on the Poincaré disk model of the 2D-hyperbolic space. We shall investigate how the negative curvature of this Riemannian manifold influences the solutions of this system. As in the 2D-Euclidean case, under the sub-critical condition χM < 8π, we shall prove global well-posedness results with any initial L 1 -data. More precisely, by using dispersive and smoothing estimates we shall prove Fujita-Kato type theorems for local well-posedness. We shall then use the logarithmic Hardy-Littlewood-Sobolev estimates on the hyperbolic space to prove that the solution cannot blow-up in finite time. For larger mass χM > 8π, we shall obtain a blow-up result under an additional condition with respect to the flat case, probably due to the spectral gap of the Laplace-Beltrami operator. According to the exponential growth of the hyperbolic space, we find a suitable weighted moment of exponential type on the initial data for blow-up.

Introduction

In the last forty years, various models of the Keller-Segel system (also called Patlak-Keller-Segel) for chemotaxis have been widely studied due to important applications in biology. Most of the results of these analytical investigations focus on the fact that the global existence or the blow-up of the solutions of these problems is a space dependent phenomenon. Historically, the key papers for this family of models are the original contribution [START_REF] Keller | Initiation of slide mold aggregation viewed as an instability[END_REF] E. F. Keller and L. A. Segel, and a work by C. S. Patlack [START_REF] Patlak | Random walk with persistence and external bias[END_REF]. The optimal results in the Euclidean space R 2 are obtained by A. Blanchet, J. Dolbeault and B. Perthame (see [START_REF] Dolbeault | Optimal critical mass in the two dimensional Keller-Segel model in R 2[END_REF], [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solution[END_REF]). Moreover, a large series of results, mostly in the bounded domain case has been obtained by T. Nagai, T. Senba and T. Suzuki (see [START_REF] Nagai | Global existence and blow-up of solutions to a chemotaxis system[END_REF], [START_REF] Senba | Weak solutions to a parabolic-elliptic system of chemotaxis[END_REF], [START_REF] Senba | Applied analysis[END_REF], [START_REF] Suzuki | Free energy and self-interacting particles[END_REF], [START_REF] Jäger | On explosions of solutions to a system of partial differential equations modelling chemotaxis[END_REF]). The literature on this subject is huge and we shall not attempt to give a complete bibliography.

In this paper, we study the (parabolic-elliptic)-Keller-Segel system (1.1) on the classical model of Riemannian manifold of constant negative curvature -1, namely the 2Dhyperbolic space. We present our study in the Poincaré disk model B 2 . Let

n : [0, +∞) × B 2 → R + (t, x) → n t (x) = n(t, x)
be a non-negative function satisfying the following Keller-Segel system of equations (1.1)

     ∂ ∂t n t (x) = ∆ H n t (x) -χdiv H (n t (x)∇ H c t (x)) , x ∈ B 2 , t > 0 , -∆ H c t (x) = n t (x), x ∈ B 2 , t > 0, n(t = 0, x) = n 0 (x) ≥ 0, x ∈ B 2 .
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We shall denote n t or n(t) indifferently. The subscript H on differential operators refers to the operators associated with the Riemannian metric of the Poincaré disk. More details will be given below in Section 2. We shall understand the second condition in (1.1) on the function c t as

c t (x) = (-∆ H ) -1 n t (x) = B 2 G H (x, y) n t (y) dV y , x ∈ B 2 ,
where G H is the (Dirichlet)-Green function of -∆ H given by G H (x, y) = -1 2π log(tanh ρ(x, y)/2), x, y ∈ B 2 .

We denote by ρ(x, y) the hyperbolic distance between x and y in B 2 (see Section 2).

The Cauchy problem for the analogous Keller-Segel system (1.1) in R 2 is now very well-understood (see [START_REF] Dolbeault | Optimal critical mass in the two dimensional Keller-Segel model in R 2[END_REF], [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solution[END_REF], [START_REF] Blanchet | Infinite time aggregation for the critical Patlak-Keller-Segel model in R 2[END_REF]). The natural framework in dimension two is to work in L 1 which is the Lebesgue space invariant by the scaling of the equation and with nonnegative solutions. The mass M = R 2 n t dx is then a preserved quantity. Nevertheless because of the scaling critical aspect of L 1 , the conservation of the mass is not enough to ensure global well-posedness. A simple "virial" type argument that we shall recall in Section 4 allows to prove that the solution blows up if the initial mass is such that χM > 8π. When χM < 8π, global existence results were proven in [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solution[END_REF] by using the gradient flow structure of the equation. More precisely, the Keller-Segel system can be seen as the gradient flow of the free energy

F [n] = n log n - χ 2 n c
and thus, if the initial data has finite entropy then we get a control of the free energy for all times. The use of the sharp logarithmic Hardy-Littlewood-Sobolev inequality in R 2 then allows to get an a priori estimate in LlogL of the solution of (1.1) which is enough to propagate any higher L p regularity. In the case χM = 8π, it was latter shown in [START_REF] Blanchet | Infinite time aggregation for the critical Patlak-Keller-Segel model in R 2[END_REF] that concentration occurs in infinite time.

As we see in this brief reminder, the results in R 2 are sharp but use very deeply the structure of the system and the dilation structure of the Euclidean space. If the system is perturbed a little bit, for example by replacing the Poisson equation by the equation -∆c+αc = n with α > 0, or by replacing the Poisson equation by the parabolic equation ∂ t c -∆c = n, then the results are much less complete, see for instance [START_REF] Calvez | The parabolic-parabolic Keller-Segel model in R 2[END_REF]. In the same way, we can expect that any change in the geometry will also change some results. This type of problems was already studied in bounded domains of R 2 with various boundary conditions. The aim of our work is to investigate the influence of the geometry and in particular the curvature on these results. Note that, for larger mass, an additional condition for blow-up appears with respect to the Euclidean case. The main blow-up result of our Theorem 4.1 will be the following. Note that in R 2 , the sufficient criterion for blow-up is obtained by studying the 2moment

I(t) = R 2 |x| 2 n(t, x) dx.
The first difficulty we had to face was to find the appropriate substitute for the weight |x| 2 on the hyperbolic space. According to the exponential growth of the hyperbolic space, here the good quantity to use is the following weight of exponential type

p(ρ) := p(x) := 2|x| 2 1 -|x| 2 = 2 sinh 2 (ρ/2) = cosh ρ -1 ≥ 0, x ∈ B 2 ,
where ρ := ρ(x, 0) is the distance from x ∈ B 2 to 0. Because of the hyperbolic geometry, as we shall see in Section 4, the proof is more involved than in the Euclidean case. Our second main result is the following global well-posedness in the case χM < 8π.

Theorem 1.2. For every n 0 ∈ L 1 + (B 2 ), with I 0 = B 2 p n 0 dV < ∞ and χM < 8π, we have global well-posedness on X T,q ∩ C(R + , L 1 + (B 2 , (1 + p)dV )), for every T > 0 of the Keller-Segel system (1.1), where

X T,q = {n : [0, +∞) × B 2 → R | sup [0,T ] t (1-1 q ) n t L q (B 2 ) < +∞}, with 4 
3 < q < 2. A crucial ingredient in our proof is a logarithmic Hardy-Littlewood-Sobolev type inequality on the hyperbolic space, that we deduce from a Hardy-Littlewood-Sobolev type inequality on B 2 , see [START_REF] Lu | Hardy-Sobolev-Maz'ya inequalities for higher order derivatives on half-spaces[END_REF]. To build the solution, by using dispersive and smoothing estimates, we shall propose a different approach than the one used in [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solution[END_REF] which is based on the construction of weak solutions by compactness arguments. More precisely, we shall use the fixed point method popularized by Kato for parabolic equations (including the Navier-Stokes system) to prove local well-posedness in space X T,q ∩ C T L 1 , see (3.3). We shall then use a priori estimates which can be deduced from the free energy dissipation to prove that the solution cannot blow-up in finite time.

Note that in the hyperbolic space, the case χM > 8π and

B 2 p n 0 dV ≥ M χM 8π -1
is not covered by Theorem 1.1 and Theorem 1.2 above. It will be interesting to analyze this case further. A similar situation occurs in R 2 in the case studied by V. Calvez and L.

Corrias in [START_REF] Calvez | The parabolic-parabolic Keller-Segel model in R 2[END_REF], where the Poisson equation is replaced by -∆c + αc = n with α > 0. Note that this case shares some similarities with our case since the Laplacian has a spectral gap on the hyperbolic space, σ(∆ H ) = [1/4, +∞).

The hyperbolic space and some useful formulas

In this section, we shall recall the main geometric and analytic objects on the Poincaré disk and some useful formulae that we need. It is well-known that the Poincaré disk is one of the models of the hyperbolic space, which is a non-compact Riemannian manifold with constant negative curvature -1. Of course, our results can be translated in the other models as far as they are isometric to B 2 . For more details, we refer to Analysis and Riemannian geometry textbooks [START_REF] Stoll | Harmonic and subharmonic function theory on the hyperbolic ball[END_REF], [START_REF] Gallot | Riemannian geometry[END_REF], [START_REF] Jost | Riemannian geometry and geometric analysis[END_REF] for example.

Let B 2 = {x ∈ R 2 , |x| < 1} the 2-dimensional hyperbolic disk endowed with its Riemannian metric

ds 2 = 4(dx 2 1 + dx 2 2 ) (1 -|x| 2 ) 2 .
The hyperbolic distance between x ∈ B 2 and 0 = (0, 0) ∈ B 2 is given by

ρ := ρ(x, 0) = log 1 + |x| 1 -|x|
(equivalent to |x| = tanh(ρ/2)). More generally, the hyperbolic distance between x and y in the disk is given by

ρ(x, y) = ρ(T x (y), 0) = ρ(T y (x), 0) = log 1 + |T x (y)| 1 -|T x (y)| ,
where T x (y) is the Möebius transformation

T x (y) = |y -x| 2 x -(1 -|x| 2 )(y -x) 1 -2x • y + |x| 2 |y| 2 ,
with x • y = x 1 y 1 + x 2 y 2 denoting the scalar product on R 2 (see [START_REF] Stoll | Harmonic and subharmonic function theory on the hyperbolic ball[END_REF]). We have several useful relations

|T x (y)| 2 = |x -y| 2 1 -2x • y + |x| 2 |y| 2 , T y (T y (x)) = x, sinh ρ(T x (y)) 2 = |T x (y)| 1 -|T x (y)| 2 = |x -y| (1 -|x| 2 )(1 -|y| 2 ) , cosh ρ(T x (y)) 2 = 1 1 -|T x (y)| 2 = 1 -2x • y + |x| 2 |y| 2 (1 -|x| 2 )(1 -|y| 2 ) .
We can consider three different systems of coordinates: x = (x 1 , x 2 ) (cartesian coordinates), (r, θ) with r = |x| (polar coordinates) and (ρ, θ) (spherical coordinates) with |x| = tanh(ρ/2) where |x| is the Euclidean norm. So, we can write x = |x|(cos θ, sin θ) = |x|e iθ = tanh(ρ/2)e iθ = tanh(ρ/2)(cos θ, sin θ).

We shall denote indifferently f (x) = f (r, θ) = f (re iθ ) = f (ρ, θ) for simplicity. We shall also use indifferently in the same equation both variables x and ρ.

Let us denote by g x (X, Y ) the metric tensor on two vector fields

X(x) = X 1 (x) ∂ ∂x 1 + X 2 (x) ∂ ∂x 2 , Y (x) = Y 1 (x) ∂ ∂x 1 + Y 2 (x) ∂ ∂x 2 , evaluated at x ∈ B 2
, which is given by

g x (X, Y ) = 2 1 -|x| 2 2 2 i=1 X i Y i .
The Riemannian element of volume (measure) of the exponential growth is given by

dV (x) = 2 1 -|x| 2 2 dx = sinh ρ dρdθ,
where dx = dx 1 dx 2 is the Lebesgue measure on B 2 . In cartesian coordinates, we now define classical differential operators. First of all, the gradient ∇ H with respect to the Riemannian structure is defined by

∇ H f (x) := 1 -|x| 2 2 2 ∇ e f (x), x ∈ B 2 ,
where ∇ e f = ( ∂f ∂x 1 , ∂f ∂x 2 ) is the Euclidean gradient. For a radial function f , we note f (x) = f (ρ(x)) and have

∇ H (f (ρ(x))) = f (ρ) 2 cosh 2 (ρ/2) x |x| = f (ρ) sinh(ρ)
x,

where f (ρ) is the derivative of f with respect to ρ. In particular

g x (∇ H f, ∇ H f ) = 1 -|x| 2 2 2 ∇ e f • ∇ e f,
where

∇ e f • ∇ e g = ∂f ∂x 1 ∂g ∂x 1 + ∂f ∂x 2 ∂g ∂x 2 .
For a radial function f , we have

|∇ H f (ρ(x)) | 2 g = g x (∇ H f, ∇ H f ) = |f (ρ)| 2 .
The divergence of the vector field

Z(x) = Z 1 (x) ∂ ∂x 1 + Z 2 (x) ∂ ∂x 2 is defined by div H Z(x) = ∇ H • Z(x) := 4 (1 -|x| 2 ) 2 i=1 x i Z i (x) + 2 i=1 ∂ i Z i (x), x ∈ B 2 .
We also define the Laplace-Beltrami operator on B 2

∆ H f (x) := 1 -|x| 2 2 2 ∆ e f (x), x ∈ B 2 ,
where ∆ e is the Euclidean Laplacian

∆ e = ∂ 2 ∂ 2 x 1 + ∂ 2 ∂ 2 x 2 , with x = (x 1 , x 2 ) ∈ B 2 .
For radial function f (ρ), the Laplace-Beltrami operator takes the form

∆ H f (ρ) = f (ρ) + coth(ρ)f (ρ) = 1 sinh ρ ∂ ∂ρ sinh ρ ∂ ∂ρ f .
The (Dirichlet)-Green function of -∆ H is given by

(2.2) G H (x, y) = -k 1 log tanh(ρ(x, y)/2) = - k 1 2 log |T x (y)| 2 ,
with k 1 = 1 2π (see [START_REF] Stoll | Harmonic and subharmonic function theory on the hyperbolic ball[END_REF]).

For any function u and vector field Y defined on B 2 , we define in the usual way

u L q = B 2 |u(x)| q dV x 1 q , Y L q = B 2 |g x (Y, Y )| q 2 dV x 1 q .
3. Local well-posedness 3.1. Auxiliary estimates. Let us first state the dispersive and smoothing estimates that we shall use for the heat equation associated with the Laplace-Beltrami operator.

The proof of these estimates can be found for example by V. Pierfelice in [START_REF] Pierfelice | The incompressible Navier-Stokes equations on non-compact manifolds[END_REF].

Lemma 3.1. For every 1 ≤ p ≤ q, we have the estimate

e t∆ H u 0 L q (B 2 ) ≤ c 1 (t) 1 p -1 q e -tγp,q u 0 L p (B 2 ) , t > 0,
where

γ p,q = δ( 1 p -1 q + 8 q (1 -1 p )) ≥ 0 and c 1 (t) = CMax (1, t -1
) for some δ, C > 0. We shall also use the next lemma. Lemma 3.2. For every 1 ≤ p ≤ q, and every vector field Y on B 2 , we have the estimate

e t∆ H div H Y L q (B 2 ) ≤ c 1 (t) 1 p -1 q + 1 2 e -t γp,q +γq,q 2 Y L p (B 2 ) , t > 0,
where

γ p,q = δ( 1 p -1 q + 8 q (1 -1 p )) ≥ 0 and c 1 (t) = CMax (1, t -1
) for some δ, C > 0. We shall also need to estimate c := -∆ -1

H n. To do so, in the next Lemma, we use the boundedness of the Riesz transorm, Sobolev embedding and Poincaré inequality on the hyperbolic space.

Lemma 3.3. For every s > 1, 1 < q < 2 such that 1 s = 1 q -1 2 , we have the estimate ∇ H c L s (B 2 ) n L q (B 2 ) .
Proof. We want to estimate

∇ H c = -∇ H ∆ -1 H n. Note that we can write ∇ H c = -(∇ H ∆ -1 2 H )∆ -1 2
H n therefore, by using the continuity of the Riesz transform on L s (see [START_REF] Strichartz | Analysis of the Laplacian on the Complete Riemannian manifolds[END_REF] for example), we obtain

∇ H c L s ∆ -1 2
H n L s . Next, by using the Sobolev embedding W 1,q ⊂ L s and the Poincaré inequality on the hyperbolic space, we obtain

∇ H c L s ∆ -1 2 H n W 1,q ∇ H ∆ -1 2
H n L q . By using again the continuity of the Riesz transform on L q , we finally obtain that

∇ H c L s n L q ,
which is the desired estimate.

3.2.

Local well-posedness results. Let 1 ≤ q ≤ +∞ and T > 0 be fixed. We recall the following Banach space

(3.3) X T,q = {n : [0, +∞) × B 2 → R | sup [0,T ] t (1-1 q ) n t L q (B 2 ) < +∞}, with norm n X T,q = sup [0,T ] t (1-1 q ) n t L q (B 2 ) .
Theorem 3.4. For every n 0 ∈ L 1 and 4 3 < q < 2, there exists T > 0 such that there is a unique solution n of the Keller-Segel system (1.1) in X T,q ∩ C([0, T ], L 1 (B 2 )).

Remark 3.5. Note that as usual, the arguments in the proof can also be used to get global well-posedness for sufficiently small data in L 1 .

Proof. Without lost of generality, we can assume that χ = 1 in (1.1). By using Duhamel formula, solving the system (1.1) is equivalent to look for

(3.4) n = e t∆ H n 0 + B(n, n), with B(n, n) = - t 0 e (t-s)∆ H div H (n(s)∇ H c(s)) ds, c = -∆ -1
H n. We shall use the following classical variant of the Banach fixed point Theorem:

Lemma 3.6. Consider X a Banach space and B a bilinear operator X × X -→ X such that ∀u, v ∈ X, B(u, v) X ≤ γ u X v X ,
then, for every u 1 ∈ X, such that 4γ u 1 X < 1, the sequence defined by

u n+1 = u 1 + B(u n , u n ), u 0 = 0 converges to the unique solution of u = u 1 + B(u, u) such that 2γ u X < 1.
We can always assume that T ≤ 1 such that, in the following, we will use Lemma 3.1 and Lemma 3.2 with c(t) = C/t.

Step 1. Existence of solutions in X T,q . 1.1. Smallness of u 1 = e t∆ H n 0 in X T,q for some T > 0. On one hand, by applying Lemma 3.1, we have

(3.5) N T (n 0 ) := e t∆ H n 0 X T,q ≤ c n 0 L 1 (B 2 ) ,
for any n 0 ∈ L 1 (B 2 ) and q ≥ 1. On the other hand, we have

lim t→0 t (1-1 q ) e t∆ H n 0 L q (B 2 ) = 0,
for any n 0 ∈ L q ∩ L 1 and q > 1. Hence lim T →0 N T (n 0 ) = 0. Then, by density of

L q ∩ L 1 in L 1 , we get (3.6) lim T →0
e t∆ H n 0 X T,q = 0, for any n 0 ∈ L 1 (B 2 ). So, for all γ > 0 and all n 0 ∈ L 1 (B 2 ), there exists T > 0 such that 4γ e t∆ H n 0 X T,q < 1.

Boundedness of B(n, n).

Next we shall study the continuity of B(n, n) on X T,q . By using successively Lemma 3.2 and the Hölder inequality, we obtain

B(n, n) X T,q sup [0,T ] t (1-1 q ) t 0 1 (t -s) 1 p -1 q + 1 2 n(s)∇ H ∆ -1 H n(s) L p (B 2 ) ds sup [0,T ] t (1-1 q ) t 0 1 (t -s) 1 p -1 q + 1 2 n(s) L q (B 2 ) ∇ H ∆ -1 H n(s) L r (B 2 ) ds,
with 1 r = 1 p -1 q and p ≤ q. By using Lemma 3.

3 with c = -∆ -1 H n, we have sup [0,T ] t (1-1 q ) t 0 1 (t -s) 1 p -1 q + 1 2 n(s) 2 L q (B 2 ) ds, with 1 r = 1 q -1 2 .
Thus for 1 ≤ p ≤ q such that 1 p = 2 q -1 2 and hence q ≥ 4 3 , we have

(3.7) B(n, n) X T I 1 n 2 X T , where (3.8) I 1 = sup [0,T ] t (1-1 q ) t 0 1 (t -s) 1 p -1 q + 1 2 1 s 2(1-1 q )
ds. By using the change of variables s = tw, we find

I 1 = sup [0,T ] t (1-1 q ) 1 0 1 t 1 p -1 q + 1 2 (1 -w) 1 p -1 q + 1 2 t dw t 2(1-1 q ) w 2(1-1 q ) = 1 0 1 (1 -w) 1 q 1 w 2(1-1 q )
dw assuming 1 q < 1 i.e. q > 1 and 2(1 -1 q ) < 1 i.e. q < 2, we ensure I 1 < ∞ and hence

(3.9) B(n, n) X T,q I 1 n 2 X T,q , for 4 3 ≤ q < 2.
1.3. Conclusion. By using Lemma 3.6 with X = X T,q with T > 0 given by Step 1.1, (3.6) and (3.9), we find a solution of (1.1) in X T,q i.e for Keller-Segel problem with initial data n 0 in L 1 for T sufficiently small.

Step

2. Proof of n ∈ L ∞ ([0, T ], L 1 (B 2
)) and Conclusion. Since by Lemma 3.1 we have

(3.10) e t∆ H n 0 L ∞ ([0,T ],L 1 (B 2 )) ≤ n 0 L 1 (B 2 ) , it remains to estimate B(n, n) L ∞ ([0,T ],L 1 (B 2 )
. By using successively Lemma 3.2 and the Hölder inequality, we obtain

B(n, n) L ∞ ([0,T ],L 1 (B 2 )) sup [0,T ] t 0 1 (t -s) 1 2 n(s)∇ H ∆ -1 H n(s) L 1 (B 2 ) ds sup [0,T ] t 0 1 (t -s) 1 2 n(s) L q (B 2 ) ∇ H ∆ -1 H n(s) L q (B 2 ) ds.
Thus we have (3.11)

B(n, n) L ∞ ([0,T ],L 1 (B 2 )) sup [0,T ] t 0 1 (t -s) 1 2 s 1-1 q ∇ H ∆ -1 H n(s) L q (B 2 ) ds n X T,q .
By Lemma 3.3 we have

∇ H ∆ -1 H n(s) L q (B 2 ) n(s) L η (B 2 ) , with 1 η = 3 2 - 1 q .
Since 4 3 < q < 2, we obtain that 1 < η < q and hence we can use the following interpolation inequality

n(s) L η (B 2 ) n(s) θ L 1 (B 2 ) n(s) 1-θ L q (B 2 ) , with θ = ( 3 2 -2 q ) (1 -1 q )
to obtain (3.12)

B(n, n) L ∞ ([0,T ],L 1 (B 2 )) sup [0,T ] t 0 1 (t -s) 1 2 s 1-1 q n(s) θ L 1 (B 2 ) n(s) 1-θ L q (B 2 ) ds n X T,q .
Thus we have

(3.13) B(n, n) L ∞ ([0,T ],L 1 (B 2 )) I 2 n θ L ∞ ([0,T ],L 1 (B 2 )) n 2-θ X T,q
, where (3.14)

I 2 = sup [0,T ] t 0 1 (t -s) 1 2 1 s (2-θ)(1-1 q ) ds = sup [0,T ] t 0 ds (t -s) 1 2 s 1 2
.

As before, by using the change of variables s = tw, we find

I 2 = sup [0,T ] 1 0 tdw t (1 -w) 1 2 w 1 2
which is finite. This yields

n L ∞ ([0,T ],L 1 (B 2 )) n 0 L 1 (B 2 ) + n θ L ∞ ([0,T ],L 1 (B 2 )) n 2-θ
X T,q , with 0 < θ < 1. By using the Young inequality we have

n L ∞ ([0,T ],L 1 (B 2 )) n 0 L 1 (B 2 ) + n 2-θ 1-θ X T,q , which proves that n ∈ L ∞ ([0, T ], L 1 (B 2 )) ∩ X T,q . By a classical argument we deduce that n ∈ C([0, T ], L 1 (B 2 )) ∩ X T,q .
We can also deduce the uniqueness of n ∈ C([0, T ], L 1 (B 2 )) ∩ X T,q from similar arguments. This produces automatically local well-posedeness result.

Similar to Theorem 3.4, we shall obtain the next result of existence and uniqueness of the solution of the Keller-Segel system (1.1) with initial data n 0 in L q (B 2 ) for all q such that 4 3 ≤ q < 2 and a uniform positive lower bound on the existence time T independent of the initial data n 0 in any fixed ball of L q . Theorem 3.7. For every n 0 ∈ L q (B 2 ) and 4 3 ≤ q < 2, there exists T > 0 such that there exists a unique solution n ∈ C([0, T ], L q (B 2 )) of the Keller-Segel system (1.1). Moreover for every R > 0 there exists T (R) > 0 such that T ≥ T (R) for every n 0 L q (B 2 ) ≤ R.

Proof. We shall again use Lemma 3.6 to solve (1.1). We can always assume that T ≤ 1 such that in the following we will use Lemma 3.1 and Lemma 3.2 with c(t) = C/t. We have

(3.15) e t∆ H n 0 C([0,T ],L q (B 2 )) ≤ n 0 L q (B 2 ) .
To study the continuity of B(n t , n t ) on C([0, T ], L q (B 2 )) we use successively Lemma 3.2 and the Hölder inequality

B(n, n) C([0,T ],L q (B 2 )) sup [0,T ] t 0 1 (t -s) 1 p -1 q + 1 2 n(s)∇ H ∆ -1 H n(s) L p (B 2 ) ds sup [0,T ] t 0 1 (t -s) 1 p -1 q + 1 2 n(s) L q (B 2 ) ∇ H ∆ -1 H n(s) L r (B 2 ) ds, with 1 r = 1 p -1 q , p ≤ q. By using Lemma 3.3 with c = -∆ -1 H n, we have sup [0,T ] t 0 1 (t -s) 1 p -1 q + 1 2 n(s) 2 L q (B 2 ) ds, with 1 r = 1 q -1 2 , so 4 3 ≤ q < 2. Thus for 1 ≤ p ≤ q such that 1 p = 2 q -1 2 , we have (3.16) B(n, n) C([0,T ],L q (B 2 )) I 3 n 2 C([0,T ],L q (B 2 ))
, where (3.17)

I 3 = sup [0,T ] t 0 1 (t -s) 1 p -1 q + 1 2 ds.
As before, by using the change of variables s = tw, we find

I 3 = sup [0,T ] 1 0 tdw t 1 p -1 q + 1 2 (1 -w) 1 p -1 q + 1 2 = sup [0,T ] t (1-1 q ) 1 0 1 (1 -w) 1 q
dw which is finite for q > 1. Hence there exists a constant C 1 > 0 independent of T and n such that

(3.18) B(n, n) C([0,T ],L q (B 2 )) ≤ C 1 T (1-1 q ) n 2 C([0,T ],L q (B 2 ))
for any q such that 4

3 ≤ q < 2. Let X = C([0, T ], L q (B 2 )) and γ := C 1 T (1-1 q )
. Imposing the conditions 0 < T ≤ 1 and (3.15). By using Lemma 3.6 with u 1 := e t∆ H n 0 and Duhamel formula (3.4), we obtain a unique solution n ∈ C([0, T ], L q (B 2 )) of the Keller-Segel system (1.1). This produces automatically local well-posedeness result.

4C 1 T (1-1 q ) n 0 L q (B 2 ) < 1, this implies 4γ e t∆ H n 0 C([0,T ],L q (B 2 )) < 1 by
We now prove the uniformity result. Choose T (R) := (8C 1 R)

-q
q-1 such that T (R) ≤ 1 for R positive and large enough. The same arguments as above prove the existence of a unique solution n defined on the fixed interval [0, T (R)] for all initial conditions n 0 ∈ L q (B 2 ) such that n 0 L q (B 2 ) ≤ R. This finishes the proof of our theorem.

Blow-up

In the case of R 2 , the blow-up for the Keller-Segel system is quite easy to prove. In fact, under the assumption R 2 (1 + |x| 2 )n 0 (x) dx < ∞, we have the following "virial" type identity

(4.19) R 2 |x| 2 n(t, x) dx = R 2 |x| 2 n 0 (x) dx + 4M 8π (8π -χM )t, ∀t > 0,
where M = R 2 n 0 (x) dx. If χM > 8π and t large enough, the right-hand side of (4. [START_REF] Senba | Applied analysis[END_REF]) is negative, contradicting the non-negative left-hand side of the equation. Thus the solution cannot exist for t > T * for some finite T * .

In this section, our goal is to study the blow-up phenomenon for the solution of (1.1) on B 2 . Because of the geometry of the hyperbolic space, our main difficulty here is to find an appropriate weight to obtain a "virial" type argument for blow-up. Thanks to our choice of a weight of exponential type, we are able to replace the identity (4.19) by the inequality (4.22) below. This inequality will allow to prove blow up for M = B 2 n 0 (x) dV > 8π/χ under an additional condition on the moment, with a suitable weight p of exponential type, B 2 p n 0 dV . As noted before, an additional condition for blow-up on the 2-moment R 2 |x| 2 n 0 dx was also needed in [START_REF] Calvez | The parabolic-parabolic Keller-Segel model in R 2[END_REF][Thm.1.2 eq.(1.

2)] where in particular the Keller-Segel system on R 2 with the Laplacian replaced by the operator -∆ + α, α > 0 was studied. Let us recall the expression of the weight p that we shall use in our blow-up argument

(4.20) p(ρ) := p(x) := 2|x| 2 1 -|x| 2 = 2 sinh 2 (ρ/2) = cosh ρ -1 ≥ 0, x ∈ B 2 .
Note that the expression of the weight p = 2 sinh 2 (ρ/2) = cosh ρ -1 is the same in any isometric representation of the Poincaré disk (for instance in the Poincaré upper-half space model). Next, we shall need the following relations p 2 + 1 = 

B 2 p n t dV + M 2 ≤ B 2 p n 0 dV + M 2 - χ 8π M 3 e 4t + χ 8π M 3 , with M = B 2 n 0 (x) dV x . (2 
  M 2 8π (χM -8π) χM 3 8π -M + B 2 p n 0 dV 2 -1   .
In particular, a smooth solution n t does not exist for t > T bl .

Proof. 1. Let I(t) = B 2 p n t dV . Formally, the derivative of I(t) is given by

I (t) = B 2 p ∂ ∂t n t (x) dV = B 2 p ∆ H n t (x) dV x -χ B 2 p∇ H • (n t (x)∇ H c t (x)) dV x = B 2 ∆ H p n t (x) dV x + χ B 2 g x (∇ H p(x), n t (x)∇ H c t (x)) dV x .
The second integral has been integrated by parts. Thus we obtain

I (t) = B 2 ∆ H p n t (x) dV x + χ B 2 2 1 -|x| 2 2 ∇ H p(x) • ∇ H c t (x)n t (x) dV x .
Here again X • Y denotes the Euclidean scalar product. We express the hyperbolic gradient with the Euclidean gradient and get

I (t) = B 2 ∆ H p n t (x) dV x + χ B 2 1 -|x| 2 2 2 ∇ e p(x) • ∇ e c t (x)n t (x) dV x .
Using the Green kernel G H of -∆ H to express c t , we obtain for the second integral

B 2 1 -|x| 2 2 2 ∇ e p(x) • ∇ e c t (x)n t (x) dV x = B 2 B 2 1 -|x| 2 2
2 ∇ e p(x) • ∇ x e G H (x, y)n t (x)n t (y) dV x dV y , where we recall that

G H (x, y) = -k 1 log [tanh(ρ(x, y)/2)] = - k 1 2 log |T x (y)| 2 , k 1 = 1 2π .
To simplify our notation, we set H(x, y) = log |T x (y)| 2 , where T x (y) is the Möebius transformation (see Section 2). This leads to the following

I (t) = B 2 ∆ H p n t (x) dV x - χk 1 2 B 2 B 2 1 -|x| 2 2 2 ∇ e p(x) • ∇ x e H(x, y) dµ(x, y),
where dµ(x, y) is the symmetric measure given by dµ(x, y) := n t (x)n t (y) dV x dV y . Note that µ = µ t depends on t. For the second integral, we set

J := B 2 B 2 1 -|x| 2 2 2 ∇ e p(x) • ∇ x e H(x, y) dµ(x, y).
By changing the role of x and y in the integral (using the symmetry of the measure and the fact that |T x (y)| = |T y (x)|), we also have

J = B 2 B 2 1 -|y| 2 2 
2 ∇ e p(y) • ∇ y e H(x, y) dµ(x, y).

Hence, by symmetrization, the derivative of I(t) takes the next form

I (t) = B 2 ∆ H p n t (x) dV x - χ 0 2 (2J),
with χ 0 := χk 1 2 and 2J = L(x, y) dµ(x, y), where

L(x, y) := 1 -|x| 2 2 2 ∇ e p(x) • ∇ x e H(x, y) + 1 -|y| 2 2 
2 ∇ e p(y) • ∇ y e H(x, y).

Computation of ∇

x e H(x, y). We write the square of the Euclidean norm of the Möebius transformation as

|T x (y)| 2 = |x -y| 2 V , with V = V (x, y) := 1 -2x • y + |x| 2 |y| 2 = |x -y| 2 + (1 -|x| 2 )(1 -|y| 2 ).
By a straightforward computation, we have

∇ x e |T x (y)| 2 = 2 V 2 (1 -|x| 2 )(1 -|y| 2 )(x -y) + |x -y| 2 (1 -|y| 2 )
x . Hence, we obtain

∇ x e H(x, y)| 2 = ∇ x e |T x (y)| 2 /|T x (y)| 2 = 2(1 -|x| 2 )(1 -|y| 2 ) |x -y| 2 V (x -y) + 2(1 -|y| 2 )x V .
We deduce that L has the following simple form with the choice of p given by (4.20)

L(x, y) = 2 V 1 -|x| 2 |y| 2 .
Note that, in the Euclidean case R 2 , the function L is a positive constante (and ∆ e |x| 2 also) and leads immediately to the blow-up equation (4.19). On the Poincaré disk, besides the fact that L is not a constant, we have to deal with a new difficulty i.e. inf L = 0. Finally, we have

I (t) = B 2 ∆ H p n t (x) dV x -χ 0 B 2 B 2 2 (1 -|x| 2 |y| 2 ) V dµ(x, y).
By the relation ∆ H p = 2p+2, the function I(t) satisfies the following differential equation (4.26)

I (t) = 2 I(t) + 2M -χ 0 B 2 B 2 2 (1 -|x| 2 |y| 2 ) V dµ(x, y).
3. Dealing with K. Let K :=

B 2 B 2 (1-|x| 2 |y| 2 )
V dµ(x, y). In order to obtain an upper bound on I (t) in (4.26) i.e. a lower bound on K, we use the fact that

V = V (x, y) := 1 -2 x • y + |x| 2 |y| 2 ≤ (1 + |x||y|) 2 . Hence, we have K ≥ B 2 B 2 (1 -|x| 2 |y| 2 ) (1 + |x||y|) 2 dµ(x, y) = B 2 B 2 1 -|x||y| 1 + |x||y| dµ(x, y).
Then, by Cauchy-Schwartz inequality, we obtain

M 2 = B 2 B 2 n t (x)n t (y) dV x dV y = B 2 B 2 dµ(x, y) = B 2 B 2 1 -|x||y| 1 + |x||y| 1/2 1 + |x||y| 1 -|x||y| 1/2 dµ(x, y) ≤ B 2 B 2 1 -|x||y| 1 + |x||y| dµ(x, y) 1/2 B 2 B 2 1 + |x||y| 1 -|x||y| dµ(x, y) 1/2
.

Finally, we have

(4.27) M 2 ≤ √ K B 2 B 2 1 + |x||y| 1 -|x||y| dµ(x, y) 1/2
.

To obtain an upper bound on I (t) in (4.26) i.e. a lower bound on K (since -χ 0 < 0), it remains to prove an upper bound on

Q := B 2 B 2 1 + |x||y| 1 -|x||y| dµ(x, y)
as follows. Using the fact that for any x, y ∈ B 2

1 -|x||y| ≥ 1 -|x| 2 1 -|y| 2 ,
we deduce that

Q ≤ B 2 B 2 1 1 -|x| 2 1 -|y| 2 dµ + B 2 B 2 |x||y| 1 -|x| 2 1 -|y| 2 dµ.
Now, we can introduce again the weight p(x) = 2|x| 2 1-|x| 2 using the two next formulae

p/2 = |x| 1 -|x| 2 , p/2 + 1 = 1 1 -|x| 2 .
This implies for

Q Q ≤ B 2 p 2 + 1 n t 1 2 √ n t dV x 2 + B 2 p n t 2 √ n t dV x 2 .
Again by Cauchy-Schwarz inequality applied on both integrals, we have

Q ≤ M B 2 p 2 + 1 n t dV x + B 2 p 2 n t dV x = M B 2 pn t dV x + M = M (I(t) + M ) .
From (4.27), we finally get

M 4 ≤ KQ ≤ KM (I(t) + M ) ,
or equivalently a lower bound on K (4.28) K ≥ M 3 I(t) + M .

4.

A differential inequality for I(t). From (4.26) and (4.28), we deduce a differential inequality for I(t) = B 2 p n t dV ,

I (t) ≤ 2(I(t) + M ) -χ 0 K ≤ 2(I(t) + M ) -χ 0 M 3 I(t) + M .
We set ϕ(t) = I(t) + M , the preceding inequality reads as

ϕ (t) ≤ 2ϕ(t) -χ 0 M 3 ϕ(t)
.

Thus, we have 1 2 ϕ 2 (t) ≤ 2ϕ 2 (t) -χ 0 M 3 .
Now, by setting ψ(t) = ϕ 2 (t), we deduce the following simple differential inequality

ψ (t) -4ψ(t) ≤ -2χ 0 M 3 .
By multiplying the last inequality by e -4t , we obtain

e -4t ψ(t) ≤ 1 2 χ 0 M 3 e -4t .
We integrate on (0, t) and we get for any t ∈ (0, T * )

e -4t ψ(t) -ψ(0) ≤ 1 2 χ 0 M 3 e -4t -1 .
This leads to the following

(4.29) ψ(t) ≤ ψ(0) - 1 2 χ 0 M 3 e 4t + 1 2 χ 0 M 3 .
Since ψ(t) = (I(t) + M ) 2 , where I(t) = B 2 p n t dV and k 1 = (2π) -1 (χ 0 = χ(4π) -1 ), we get (4.22), i.e.

B 2 pn t dV + M 2 ≤ B 2 pn 0 dV + M 2 - χ 8π M 3 e 4t + χ 8π M 3 .

5.

Blow-up conditions. Now assume that the solution n t exists for any t > 0 (i.e. T * = +∞) and assume also that (4.30)

B 2 pn 0 dV + M 2 - χ 8π M 3 < 0
holds true. We obtain a contradiction since the right-hand side term of (4.22) tends to -∞ as t → +∞ and B 2 pn t dV + M 2 remains non-negative for any t > 0.

Then we say that a blow-up appears i.e. the solution does not exist globally in time (i.e. T * < +∞).

Remark 4.2. The inequality (4.30) is equivalent to

(4.31) 0 ≤ B 2 p(x)n 0 (x) dV x < M χM 8π -1 := λ * (M ).
In fact, the inequality (4.30) implies two conditions. First, the right-hand side of the equation above should be positive i.e. χM > 8π and, secondly, the p-moment at the initial time t = 0 should satisfy (4.31). Note that M > 8π/χ is the same condition for blow-up than the Euclidean case R 2 . But here, as pointed out before, it appears the additional condition (4.31) for blow-up on our weighted moment.

6. Estimate of the blow-up time T bl . In case of blow-up i.e. under the conditions M > 8π/χ and (4.31), the existence time T * of any solution (n t ) of the Keller-Segel system is bounded by the next bound T bl obtained as follows. From (4.29) and

M 2 ≤ ψ(t) = (I(t) + M ) 2 ,
we have

M 2 ≤ - 1 2 χ 0 M 3 -M + B 2 p n 0 dV 2 e 4t + 1 2 χ 0 M 3 ,
or, equivalently for any t < T * with

1 2 χ 0 = χ 8π , t ≤ T bl := 1 4 log   M 2 8π (χM -8π) χM 3 8π -M + B 2 p n 0 dV 2 -1  
which leads to (4.25). This completes the proof of Theorem 4.1.

A priori control of the Entropy of a positive solution

In this section, we prove lower and upper bounds of the entropy of the solution of the Keller-Segel problem (1.1) on the hyperbolic space. In particular, we shall prove that n t log n t ∈ L 1 is locally uniformly bounded in time under the condition χM < 8π. The main ingredients in our proof are the use of the upper bound of the p-moment (4.22) and the logarithmic Hardy-Littlewood-Sobolev inequality on B 2 (5.39).

5.1.

Lower bound on the Entropy of the solution of Keller-Segel system. We prove a lower bound on the entropy of the solution of the Keller-Segel problem (1.1) on the hyperbolic space by using the tool of relative entropy as in [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solution[END_REF].

Lemma 5.1. Assume that a function f : B 2 → [0, +∞) is such that M := B 2 f
dV and B 2 pf dV are finite. Then, for all s > 0, we have

(5.32) B 2 f log f dV ≥ - 1 s B 2 pf dV + M log M 2πs .
Here p = p(ρ) = 2 sinh 2 (ρ/2) denotes the weight defined in (4.20).

Proof. Let s > 0 and define

q(x) := q s (x) = 1 2πs exp - p(x) s = 1 2πs exp -2 sinh 2 (ρ/2) s .

5.2.1.

Logarithmic Hardy-Littlewood-Sobolev type inequality on B 2 . We start by recalling a Hardy-Littlewood-Sobolev type inequality proved recently on the hyperbolic space B n by G. Lu and Q. Yang, see [START_REF] Lu | Hardy-Sobolev-Maz'ya inequalities for higher order derivatives on half-spaces[END_REF].

Theorem 5.3. [START_REF] Lu | Hardy-Sobolev-Maz'ya inequalities for higher order derivatives on half-spaces[END_REF]. Let n ∈ N * , 0 < λ < n and p = p(λ) = 2n 2n-λ . For all f, g ∈ L p (B n ), we have

(5.35) B n B n |f (x)g(y)| [2 sinh(ρ(x, y)/2)] λ dV x dV y ≤ C n,λ ||f || L p (B n ) ||g|| L p (B n ) ,
where C n,λ is given by

(5.36) C n,λ = π λ/2 Γ(n/2 -λ/2) Γ(n -λ/2) Γ(n/2) Γ(n) -1+λ/n
and ρ(x, y) is the hyperbolic metric.

By the same derivation argument at λ = 0 used by Carlen and Loss [START_REF] Carlen | Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on S n[END_REF], we deduce the following version of logarithmic Hardy-Littlewood-Sobolev inequality on B n .

Theorem 5.4. Let n ∈ N * . For all f ∈ L 1 (B n ) with f ≥ 0, we have (5.37) B n f (x) log f (x) dV x + n M B n B n f (x)f (y) log [2 sinh(ρ(x, y)/2)] dV x dV y ≥ -C n (M ), with M := B n f (x) dV x and C n (M ) = -M log M + nM d dλ C n,λ | λ=0 = -M log M + nM 1 2 log π + 1 n log Γ(n/2) Γ(n) + 1 2 (Ψ(n) -Ψ(n/2)) ,
where Ψ is the logarithmic derivative of the Gamma function. In particular, C 2 (M ) := M log(eπM ).

The constants C n,λ and C n (M ) are sharp and exactly the same as in the Euclidean space R n , see [START_REF] Lu | Hardy-Sobolev-Maz'ya inequalities for higher order derivatives on half-spaces[END_REF] and [START_REF] Carlen | Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on S n[END_REF]. Now recall that, for non-negative functions on R 2 , the classical logarithmic Hardy-Littlewood-Sobolev inequality can be expressed as

(5.38) R 2 f (x) log f (x) dx - 4π M R 2 R 2 f (x)f (y)G e (x, y) dxdy ≥ -M log(eπM ), with M = R 2 f (x)
dx and the Euclidean Green kernel given by G e (x, y) = -1 2π log |x -y|.

In particular, note that the classical inequality (5.38) involves naturally the Green kernel, which is the important link with the Keller-Segel system on R 2 . Here, because the expression of the Green kernel G H on B 2 is given by

G H (x, y) = - 1 2π log [tanh(ρ(x, y)/2)] ,
the inequality (5.37) is not enough to be connected with the Keller-Segel system (1.1). So, in the following Theorem, we state a suitable logarithmic Hardy-Littlewood-Sobolev inequality on B 2 , which allow us to obtain upper bound estimates for the entropy of the solution of the Keller-Segel system (1.1).

Theorem 5.5. For all f ∈ L 1 (B 2 ) with f ≥ 0, we have

(5.39) B 2 f (x) log f (x) dV x - 4π M B 2 B 2 f (x)f (y)G H (x, y) dV x dV y ≥ -K 2 (M ) -2 B 2 ρ(x)f (x) dV x ,
with M := B 2 f (x) dV x and K 2 (M ) := M log(4eπM ). Proof. Let d = ρ(x, y) to avoid confusion with ρ(x) := ρ(x, 0). From Theorem 5.4 with n = 2, we have

B 2 f (x) log f (x) dV x + 2M log 2 + 2 M B 2 B 2 f (x)f (y) log [sinh(d/2)] dV x dV y ≥ -C 2 (M ) because 2 M B 2 B 2 f (x)f (y) log 2 dV x dV y = 2M log 2.
This can be rewritten as (5.40)

B 2 f (x) log f (x) dV x + 2 M B 2 B 2 f (x)f (y) log [tanh(d/2)] dV x dV y + 2 M B 2 B 2 f (x)f (y) log [cosh(d/2)] dV x dV y ≥ -C n (M ) -2M log 2.
Now by using the triangle inequality for the metric ρ, we have the following

log [cosh(ρ(x, y)/2] ≤ ρ(x, y)/2 ≤ ρ(x, 0)/2 + ρ(y, 0)/2 = 1 2 [ρ(x) + ρ(y)] ,
by multiplying the last inequality by 2 M f (x)f (y) ≥ 0, integrating over B 2 × B 2 and using Fubini's Theorem, we obtain

(5.41) 2 M B 2 B 2 f (x)f (y) log [cosh(ρ(x, y)/2] dV x dV y ≤ 1 M B 2 B 2 f (x)f (y) [ρ(x) + ρ(y)] dV x dV y = 2 M B 2 f (y) dV y B 2 ρ(x)f (x) dV x = 2 B 2 ρ(x)f (x) dV x .
Then the inequality (5.39) follows from inequalities (5.40) and (5.41) above. This completes the proof.

5.2.2.

Entropy upper bound. The next results are used for the study of the entropy upper bound of the solution of the Keller-Segel system (1.1). Here, we consider the Lyapunov functional defined by

F [n t ] = B 2 n t log n t dV - χ 2 B 2 n t c dV
similar to the Euclidean one given in [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solution[END_REF].

From now we shall perform a priori estimates in the setting of smooth enough solutions, the one constructed in Theorem 3.7. In particular, for such a solution we can define T * as the maximal existence time which is characterized by if T * < +∞, then sup t∈[0,T * [ n(t) L q (B 2 ) = +∞. Now, we shall control the ρ-moment of the solution n t of the Keller-Segel system (1.1) B 2 ρ n t dV , which appears in the lower bound of our logarithmic Hardy-Littlewood-Sobolev inequality on B 2 (5.39) with f = n t . Proposition 5.9. For any solution n t of the Keller-Segel system (1.1) with T * ≤ +∞, we have

0 ≤ B 2 ρ n t dV ≤ K + + 2M t, 0 < t < T * , with M = B 2 n 0 dV , ρ = ρ(x, 0) is the distance from x ∈ B 2
to the center 0 of B 2 and

K + = 2M log sup 2 C + 2M , 2 λ * + (M ) 2M + 1 ,
with C + given by (5.43) of Proposition 5.7 .

Proof. We apply Jensen's inequality with Φ(u) = sinh(u) as convex function and dµ = nt M dV as probability measure. For any 0 < t < T * ≤ +∞, we get

B 2 ρ n t dV ≤ 2M sinh -1 1 √ 2M B 2 p n t dV 1/2
.

By using the inequality sinh -1 (u) ≤ log(2u + 1), u ≥ 0 and Proposition 5.7, we obtain

B 2 ρ n t dV ≤ 2M sinh -1 C + 2M e t + λ * + (M ) 2M ≤ 2M log 2 C + 2M e t + 2 λ * + (M ) 2M + 1 ≤ K + + 2M t, with K + = 2M log sup(2 C + 2M , 2 λ * + (M )
2M + 1) . The proof is completed.

The following Lemma is nothing else than the Lemma 8 of [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solution[END_REF] written in a general measure theory context. Lemma 5.10.

(1) Let (E, ν) be a measure space. Assume that u, q : E → [0, +∞[ satisfy the following conditions M := u dν, u log u dν < and (-log q)u dν < ∞ are finite. The measure qdV is a density of probability i.e. q dν = 1. Then for v = u1 0≤u≤1 , we have u| log u| dν ≤ u log u dν + 2 e + 2 (-log q)v dν.

(2) Let E = B 2 and ν = dV the hyperbolic measure. Let p the weight given by (4.20).

Then, we have for any s > 0

(5.44)

B 2 u| log u| dν ≤ B 2 u log u dν + 2 e + 2M log(2πs) + 1 s B 2 pu dν.
Finally, we prove the upper bound of the entropy of a positive solution. Note that, we are able to prove that n t log n t ∈ L 1 is locally uniformly bounded in time under the condition χM < 8π. Proposition 5.11. Let n t be a positive solution of Keller-Segel system (1.1) and T * the maximal existence time of the solution. Assume that B 2 p n 0 dV and F [n 0 ] are finite.

(1) For any 0 < t ≤ T < T * and χM < 8π, we have the following estimate (5.45)

B 2 n t log n t dV ≤ 1 - χM 8π -1 C(n 0 , T ), with C(n 0 , T ) := F [n 0 ] + χM 8π (K 2 (M ) + 2K + + 4M T ) ,
where K 2 (M ) and K + are defined respectively in Proposition 5.9 and Theorem 5.5. (2) Moreover, for all 0 < t ≤ T < T * , s > 0 and χM < 8π, we have

(5.46) B 2 n t | log n t | dV ≤ 1 - χM 8π -1 C(n 0 , T ) + 2 e + 2M log(2πs) + 1 s B 2 p n t dV
and its consequence

(5.47)

B 2 n t | log n t | dV ≤ 1 - χM 8π -1 C(n 0 , T ) + 2 e + 2M log(2πs) + s -1 C + e 2T + s -1 λ * (M ),
with C + = C + (p, n 0 ) given by (5.43).

Proof. 1) The proof follows the same lines as in Lemma 7 (upper bound) of [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solution[END_REF]. We provide the details.

Step 1: Use of the decay of the functional F [n t ]. From Proposition 5.6, we have

F [n t ] ≤ F [n 0 ] for all 0 < t ≤ T < T * i.e. F [n t ] = B 2 n t log n t dV - χ 2 B 2 n t c t dV ≤ F [n 0 ]
which can be written as

B 2 n t log n t dV - χ 2 < n t , (-∆ H ) -1 n t > ≤ F [n 0 ],
with < f, g >= B 2 f g dV . Then we deduce the following inequality (5.48)

1 - χM 8π B 2 n t log n t dV + χM 8π B 2 n t log n t dV - 4π M < n t , (-∆ H ) -1 n t > ≤ F [n 0 ].
Step 2: Use Logarithmic of Hardy-Littlewood-Sobolev inequality on B 2 . From logarithmic Hardy-Littlewood-Sobolev inequality on the hyperbolic space proved in Theorem 5.5 with f = n t , we have

B 2 n t log n t dV - 4π M B 2 B 2 n t (x)n t (y)G H (x, y) dV x dV y ≥ -K 2 (M ) -2 B 2 ρ n t dV.
This can be written as (5.49)

B 2 n t log n t dV - 4π M < n t , (-∆ H ) -1 n t >≥ -K 2 (M ) -2 B 2
ρ n t dV, Combining (5.48) and (5.49), we obtain

1 - χM 8π B 2 n t log n t dV ≤ F [n 0 ] + χM 8π K 2 (M ) + 2 B 2
ρ n t dV .

Proof. We mention only the main steps. The first idea is to prove a differential inequality of the form (6.52) φ (t) ≤ c 1 φ(t) + c 2 for φ(t) := ||(n t -K) + || q L q (B 2 ) for K large enough (c 1 > 0) and apply Gronwall lemma from which we deduce that

φ(t) ≤ φ(0) + c 2 c 1 e c 1 t - c 2 c 1 ≤ φ(0) + c 2 c 1 e c 1 T - c 2 c 1 , 0 ≤ t ≤ T < T * .
Step 1. Reduction to φ(t) estimate. From theoretical measure theory considerations, we easily obtain

||n t || q L q (B 2 ) = nt<λK n q t + nt≥λK n q t ≤ (λK) q-1 M + nt≥λK n q t
for all K, λ > 1 and 0 ≤ t ≤ T < T * . So, by using n q t ≤ λ λ-1 q-1 (n t -K) q when n t ≥ λK, we get

||n t || q L q (B 2 ) ≤ (λK) q-1 M + λ λ -1 q-1 B 2 (n t -K) q + dV.
Step 2. To bound ||n t || q L q (B 2 ) , we only have to deal with the second term by proving (6.52). We set φ(t) := ||(n t -K) + || q L q (B 2 ) . We use multipliers method to estimate φ (t). After integrations by parts, we get

φ (t) = -4(q -1) q B 2 |∇ H (n t -K) q/2 + | 2 dV + (2q -1)χK B 2 (n t -K) q + dV (6.53) +qχK 2 B 2 (n t -K) q-1 + dV + (q -1)χ B 2 (n t -K) q+1 + dV.
As shown in [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solution[END_REF], we have

B 2 (n t -K) q-1 + dV ≤ M K + B 2
(n t -K) q + dV.

Thus, we get φ (t) ≤ (2q -1)χK + qχK 2 φ(t) + qχKM

+ -4(q -1) q B 2 |∇ H (n t -K) q/2 + | 2 dV + (q -1)χ B 2 (n t -K) q+1 + dV .
Step 3. Use of Gagliardo-Nirenberg inequality. In order to show (6.52), it remains to show that R(n t ) := -4(q -1) q

B 2 |∇ H (n t -K) q/2 + | 2 dV + (q -1)χ B 2 (n t -K) q+1 + dV ≤ 0
for K large enough and uniformly for any 0 ≤ t ≤ T < T * . For that purpose, we use Gagliardo-Nirenberg inequality valid on the hyperbolic space (see [START_REF] Mugelli | Sobolev inequalities in 2-dimensional hyperbolic space[END_REF], [START_REF] Varopoulos | The heat kernel on Lie groups[END_REF] , [START_REF] Hebey | Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities[END_REF] ), for every 1 < q ≤ 2 we have

B 2 |v| 2(1+1/q) dV ≤ κ p B 2 |∇ H v| 2 dV B 2 |v| 2/q dV .
This inequality applied to v = (n t -K)

q/2 + leads to B 2 (n t -K) q+1 + dV ≤ κ q B 2 |∇ H (n t -K) q/2 + | 2 dV M t (K), M = B 2 n t dV = B 2 n 0 dV
, where (n t ) 0<t<T * is the non-negative solution of the Keller-Segel system (1.1). Proposition 8.1. Let (n t ) 0<t<T * be a non-negative solution of the Keller-Segel system (1.1), where T * ≤ +∞ is the maximal existence time of the solution. Then

(1) For all t ∈ (0, T * ), we have We conclude that (8.54) holds true.

(
2) Since I(n t ) ≥ 0 and χM ≤ 4π, from (8.54) we obtain ∂ ∂t Ent(n t ) ≤ -χM 2 4π Then the conclusion is obtained by integration.

3) W. Beckner proved in [START_REF] Beckner | Geometric asymptotics and the logarithmic Sobolev inequality[END_REF] that the following Log-Sobolev inequality holds on the hyperbolic space with ||u|| L 2 (B This differential inequality is easily integrated and leads to (8.56). This completes the proof of the proposition.

Then, in the following proposition, we deduce some L q -estimates of the solutions of the Keller-Segel system (1.1). Proposition 8.2. Let (n t ) 0<t<T * be a non-negative solution of the Keller-Segel system (1.1) where T * ≤ +∞ is the maximal existence time of the solution. Then

(1) For all t ∈ (0, T * ) and all 1 < q < ∞, we have (8.58) 1 q(q -1) ∂ ∂t ||n t || q L q (B 2 ) ≤ -1 + χM 8π

(q + 1) 2 2q n q-2 t |∇ H n t | 2 dV.

(2) If χM ≤ 4πh(q) with h(q) = 4 q (q+1) 2 , then ∂ ∂t ||n t || q L q (B 2 ) ≤ 0. So, the map t → ||n t || q q is non-increasing on (0, T * ) and we have (8.59)

||n t || L q (B 2 ) ≤ ||n 0 || L q (B 2 )
for all t ∈ (0, T * ).

Proof. 1) By the classical multiplier method, we have that 1 q(q -1) 2) This is deduced from (8.58) of 1). The proof is completed.

∂ ∂t ||n t || q L q (B 2 ) = - B 2 n q-2
Remark 8.3. By using the second statement above, if χM ≤ 4πh(q) < 4π then in this case we have a L q -norm control of the solution of the Keller-Segel system (1.1), which allow us to obtain a global well-posedness on X T,q ∩C(R + , L 1 + (B 2 )) without weighted additional assumption on initial data in L 1 (B 2 ).

Theorem 1 . 1 . 2 p n 0 dV < M χM 8π - 1

 1121 There exists a weight p : B 2 → [0, +∞[ such that, if the following two conditions: χM > 8π, with M := B 2 n 0 dV , and B are satisfied, then a smooth solution n : [0, T * ) × B 2 → R + of the Keller-Segel system (1.1) with initial condition n 0 can exist only on a finite interval [0, T * ).

) 1 ,

 1 If the two conditions χM > 8π and are satisfied, then the solution n t can exist only on a finite interval [0, T * ) with (4.25) T * ≤ T bl := 1 4 log

  Theorem 4.1. Let n : [0, T * ) × B 2 → R + be a solution of the Keller-Segel system (1.1) with T * ≤ +∞ such that n ∈ C([0, T * ), L 1 + (B 2 , (1 + p)dV ). Then we have (1) For all t ∈ [0, T * ),

		1 1-|x| 2 and
	(4.21)	∆ H p = 2p + 2.
	Our blow-up result is the following statement.
	(4.22)	

  If χM ≤ 4π then t → Ent(n t ) is non-increasing on (0, T * ) and we have(8.55) Ent(n t ) ≤ -χM 2 4π t + Ent(n 0 ).for all t ∈ (0, T * ). In particular if T * = +∞, lim t→+∞ Ent(n t ) = -∞.(3) Under the condition χM < 4π, we have It can be shown that the inequality (8.56) is stronger than (8.55). But the asymptotic behavior of the upper bound is the same i.e. -χM 2 4π t as t → +∞ (if T * = +∞). Proof. 1). By multiplying the first equation in the Keller-Segel system (1.1) by log n t and integrating by parts, we get ∂ ∂t Ent(n t ) = -I(n t ) + χ By using the following Poincaré-Sobolev inequality of Mugelli-Talenti, with u = n t ,

	8.54)			∂ ∂t	Ent(n t ) ≤ -1 +	χM 4π	I(n t ) -	χM 2 4π	.
	(2) (8.56)								Ent(n t ) ≤ -	χM 2 4π	t
		-M log exp -	1 M	Ent(n 0 ) +	4πe M	4π χM	-1 1 -e -χM t
									B 2	n 2 t dV.
							2	2
	(8.57)			|u| dV				+ 4π	|u| 2 dV ≤	|∇ H u| dV	,
				B 2					B 2	B 2
	and by the Cauchy-Schwarz inequality, we deduce that
	M 2 + 4π	B 2	n 2 t dV ≤			
	Then, we have						
	∂ ∂t	Ent(n t ) ≤ -I(n t ) +	χ 4π	4π	B 2	n 2 t dV ≤ -I(n t ) +	χ 4π	M I(n

4π

. for all t ∈ (0, T * ).

Remark.

B 2 |∇ H n t | dV 2 ≤ B 2 n t dV I(n t ) = M I(n t ). t ) -M 2 .

  |∇ H u| 2 dV .We set u = n t /M and getB 2 n t log n t dV ≤ M log 1 4πe I(n t ) ,for all t ∈ (0, T * ). This implies that

					-I(n t ) ≤ -4eπ exp	1 M	Ent(n t ) .
	By using 1), we deduce that					
	∂ ∂t	Ent(n t ) +	χM 2 4π	t ≤ -1 +	χM 4π	I(n t ) ≤ -4eπ 1 -	χM 4π	exp	1 M	Ent(n t ) .
	We set Ψ(t) = Ent(n t ) + χM 2 4π t. Then Ψ satisfies
		Ψ (t) exp -	1 M	Ψ(t) ≤ -4eπ 1 -	χM 4π	exp -	χM 4π	t .
			B 2	|u| 2 log |u| dV ≤	1 2	log	1 πe B 2

2 ) = 1,

By using the volume element dV in spherical coordinates, we easily see that q s is a density of a probability measure on B 2 with respect to the mesure dV . A lower bound on the relative entropy of f with respect to q is given by

The last inequality is obtained by Jensen's inequality applied to the convex function Ψ(u) = u log u and the probability measure qdV . We deduce that

which is nothing else than (5.32).

By using this general Lemma 5.1 and the estimates (4.22) obtained in Section 4, we obtain the following lower bound on the entropy of the positive solution (n t ) of Keller-Segel system (1.1).

Then, for all 0 < t < T and s > 0 we have the following lower bound on the entropy of the positive solution (n t ) of Keller-Segel system (1.1) (5.33)

With s = e 2t , we deduce for all t > 0,

(5.34)

Proof. Set I(t) := B 2 pn t dV , by using the estimates (4.22) we have

Thus, we deduce the next upper bound on the p-moment I(t) for any t > 0,

pn 0 dV e 2t + M (e 2t -1).

By Lemma 5.1 with f = n t , we get

From the upper bound on I(t) just above, we immediately deduce (5.33) and its consequence (5.34) when choosing s = e 2t . 5.2. Upper bound on the Entropy of the solution of Keller-Segel system. The aim of this section is to obtain upper bound estimates for the entropy of the positive solution (n t ) of Keller-Segel system (1.1). To do so, we prove a suitable logarithmic Hardy-Littlewood-Sobolev inequality on B 2 , involving the entropy of the function and the Green kernel on B 2 . Proposition 5.6. Let n t be a solution of the Keller-Segel system (1.1) as above. Assume that F [n 0 ] is finite, then we have

Proof. The proof is similar to the Euclidean one and relies on the existence of an explicit expression of the Green kernel on B 2 .

Next, by using the inequality (4.22) we obtain an upper bound on the p-moment of the solution of the Keller-Segel system (1.1).

Proposition 5.7. Let n t be a solution of the Keller-Segel system (1.1) as above. Then, for all 0 < t < T * , we have the following upper bound of the p-moment (5.42)

, where λ * (M ) is given by (4.24) and M = B 2 n 0 dV . Proof. We recall here (4.22)

valid for all t ∈ (0, T * ) with T * ≤ +∞. By taking the square root on both sides and using the inequality

Hence, we have

So, we obtain

where C + (p, n 0 ) and λ * (M ) are given respectively by (5.43) and (4.24). This concludes the proof of the proposition.

Remark 5.8. Note that if B 2 pn 0 dV -λ * (M ) ≤ 0, it implies that λ * (M ) ≥ 0, hence χM ≥ 8π. Under the condition of blow-up or critical case we get C + (p, n 0 ) = 0 and so, we have the following uniform bounds in time of the p-moment

for any t ∈ (0, T * ).

Step 3. Upper bound on the ρ-moment. By Proposition 5.9, we have

from which we conclude that

for 0 < t ≤ T < T * and χM < 8π.

2) To prove (5.46), we apply 2) of Lemma 5.10 with u = n t and the first part of this proposition. To deduce (5.47), we use the upper bound of p-moment (5.42) of Proposition 5.7. Now, the proof is completed.

L q -bounds on solutions

The main argument of the proof of the L q -bounds of the solution (n t ) under the conditions n 0 ∈ L 1 + and n 0 log n 0 ∈ L 1 is the control of M t (K) := B 2 (n t -K) + dV for K large enough. More precisely, we have the next result. Proposition 6.1. Under the assumptions of Proposition 5.11, for any positive solution n t of Keller-Segel system (1.1), we have for all T < T * the following

for a positive continuous non decreasing function C(T ) on [0, +∞)

Proof. Let T < T * . We have, for any K > 1 and 0 ≤ t ≤ T , the following

So, by applying (5.47) of Proposition 5.11, we have

The function C(T ) is the bound of the inequality (5.47) (for any fixed s > 0). Now, we adapt Proposition 3.3 of [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solution[END_REF] to control the L q -bound of the solution (n t ).

Theorem 6.2. Assume that n 0 ∈ L 1 + (B 2 , (1 + p)dV ) and n 0 log n 0 ∈ L 1 (B 2 , dV ) with χM < 8π and the weight p given by (4.20). Assume in addition that n 0 ∈ L q (B 2 ) for some 1 < q ≤ 2. Then the solution n t of the Keller-Segel system (1.1) satisfies the following estimate sup

where T < T * and N q (T ) is a continuous function on [0, +∞).

and by using the inequality (6.51) of Proposition 6.1, we have

for all 0 ≤ t ≤ T < T * . Thus there exists K = K(T ) > 1 such that -4(q -1)

This implies the inequality (6.52) with

The proof is now completed.

Remark. Note that that the explicit value of the constant κ q > 0 in Gagliardo-Nirenberg inequality has no importance in our estimates as in [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solution[END_REF].

Global well-posedness

Next, we prove global existence in time of the solution under the subcritical condition χM < 8π. Let be p the weight defined as in (4.20).

Theorem 7.1. For every n 0 ∈ L 1 + (B 2 ), with I 0 = B 2 p n 0 dV < ∞ and χM < 8π we have global well-posedness on X T,q ∩ C(R + , L 1 + (B 2 , (1 + p)dV ) for every T > 0 of the Keller-Segel system (1.1).

Proof. By Theorem 3.4 if n 0 ∈ L 1 (B 2 ) there exists T > 0 such that there is a unique solution of the Keller-Segel system (1.1) n t ∈ X T,q ∩ C([0, T ], L 1 (B 2 )), where X T,q = {n t | sup t∈[0,T ] t (1-1 q ) n(t) L q (B 2 ) < +∞}, with 4 3 < q < 2. Then there exists T 1 ∈]0, T ] such that n(T 1 ) ∈ L q (B 2 ) ∩ L 1 + (B 2 ) for 4 3 < q < 2. We can take n(T 1 ) as initial data and we use Theorem 3.7 to continue the solution. From Theorem 3.7, we obtain a maximal solution on [T 1 , T * [ such that n t ∈ C([T 1 , T * [, L q (B 2 )). Moreover if T * < +∞, we must have sup t∈[T 1 ,T * [ n(t) L q (B 2 ) = +∞. Let us now assume that T * < +∞, it suffices to prove that sup t∈[T 1 ,T * [ n(t) L q (B 2 ) < +∞ to get a contradiction and thus obtain a global solution. Since n(T 1 ) ∈ L q (B 2 ) ∩ L 1 + (B 2 , (1 + p)dV ) for 4 3 < q < 2, B 2 n(T 1 ) log n(T 1 )dV is well-defined. Consequently, we can use Theorem 6.2 to obtain that sup 0≤t<T * ||n t || L q (B 2 ) ≤ N q (T * ) < +∞. This ends the proof. 8. A priori estimates of the entropy and L q -norms of solutions

In this section, we shall derive some interesting a priori estimates on the entropy and L q -norms of the solutions of the Keller-Segel system (1.1). To do so, we use the classical multiplier's method and some functional inequalities, as for example the Poincaré-Sobolev inequality by Mugelli-Talenti [START_REF] Mugelli | Sobolev inequalities in 2-dimensional hyperbolic space[END_REF] to have (8.55) and also Log-Sobolev inequality by Beckner [START_REF] Beckner | Geometric asymptotics and the logarithmic Sobolev inequality[END_REF] to prove (8.56). Let I(n) = dV be the Fisher information and the mass