
HAL Id: hal-01899204
https://hal.science/hal-01899204

Submitted on 23 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fabrication-aware shape parametrisation for the
structural optimisation of shell structures

Romain Mesnil, Cyril Douthe, Christiane Richter, Olivier Baverel

To cite this version:
Romain Mesnil, Cyril Douthe, Christiane Richter, Olivier Baverel. Fabrication-aware shape parametri-
sation for the structural optimisation of shell structures. Engineering Structures, 2018, 176, pp.569 -
584. �10.1016/j.engstruct.2018.09.026�. �hal-01899204�

https://hal.science/hal-01899204
https://hal.archives-ouvertes.fr


Fabrication-aware shape parametrisation for the structural optimisation of shell
structures

Romain Mesnila,b,∗, Cyril Douthea, Christiane Richtera, Olivier Baverela
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Abstract

The difficulty to construct mechanically optimal shells may limit the use of structural optimisation in practice. The
objective of this paper is to propose a new parametric representation of doubly curved shapes suited for structural
optimisation of architectural shells that inherently considers fabrication constraints. We focus on a common construction
constraint: the covering of building envelopes with planar facets. This paper proposes to implement the so-called
marionette technique as a Computer-Aided-Design tool that guarantees covering of free-form shapes with planar quad-
rilateral facets.

General considerations on the size and nature of the optimisation space created with this method are made. It
is demonstrated through different case-studies that the quality of the parametrisation for shape optimisation of shell
structures is similar to the one offered by Bézier surfaces, an ubiquitous modelling technique. The proposed method
conciliates thus fabrication and structural performance.

Keywords: Shape optimization, Shell structures, Free-form architecture, Fabrication-aware design, PQ-Mesh, NURBS,
Marionette method

1. Introduction

1.1. Motivation

Structural optimisation is a powerful tool that aims
at minimising some functional describing the mechanical
behaviour of a structure. It has been popularised in ar-
chitecture by the concept of form-finding by optimisation
for shell structures [1]. This approach considers the shape
of a shell structure as the result of a structural optimisa-
tion process. It shares some similarities with mechanical
form-finding approaches, which have been used since the
introduction of the force density method for the computa-
tion of tensile structures [2]. Optimisation overcomes the
limitations of form-finding methods, because it can con-
sider different load cases or non-linear analysis [3].

Despite numerous contributions to the research on
shape optimisation of shell structures, applications to the
construction industry remain scarce [4]. For Borgart [5],
one of the main limiting factors for practical application
of optimisation is that a structurally optimal design is not
necessarily constructible. The construction of shell struc-
tures in architecture is indeed subject to strong econom-
ical constraints linked to fabrication, as well as architec-
tural imperatives. Fabrication constraints are particularly
demanding when doubly curved shells are considered, as
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many properties of the constitutive elements of the build-
ing (facets planarity, rational offset of the structural lay-
out, repetition of elements) are lost.

A structural optimisation problem consists of three as-
pects: the first one, the geometrical definition, is directly
related to the constructibility of the structure. The sec-
ond aspect is the mechanical modelling, which sets the
objective functions, the boundary conditions and the type
of analysis. The last aspect is the mathematical solution
of the optimisation problem, which involves the selection
of the proper numerical scheme, either based on gradi-
ent descent or meta-heuristic. This article focuses thus on
the aspect of geometrical definition for structural optimi-
sation and proposes the definition of design spaces with
embedded fabrication constraint for shape optimisation.
In the following, the authors consider the covering of sur-
faces with planar quadrangles to be the main fabrication
constraint. This constraint has been identified in previous
research on glazed gridshells [6, 7], and it is of interest for
the rationalisation of formwork for concrete shells. Other
fabrication related to the surface parameterisation, like the
aspect ratio of the panels or the size of their bounding box
should be considered in practice.

1.2. Previous work on fabrication-aware structural optimi-
sation

Precedent of fabrication-driven design of shells or grid-
shells include most of the work of master builders from
the twentieth century. The definition of analytical shapes
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allowed them to build a deep understanding of the doubly-
curved shells they were constructing before computer-
aided design methods were available [8]. Franz Dischinger
[9] designed thin shells described by surfaces of revolution,
for which he developed analytical solutions. Felix Candela
is well-known for his shells based upon ruled surfaces [10].
More recently, Jörg Schlaich, Hans Schober [11] and their
team designed glass-covered gridshells based upon surfaces
of translation.

Fabrication-aware design used in the context of struc-
tural optimisation is less common. Structural optimi-
sation of gridshells covering surfaces of translations was
performed by [12, 13], but the design space offered by
those shapes remains quite restricted. The same can be
inferred for other families of surfaces covered by planar
facets, like Monge surface [14] or canal-surfaces. Fujita
and Ohsaki[15] considered the optimisation of shell by im-
posing constraints on surfaces invariants (for example a
zero gaussian curvature and developable surfaces). This
point of view is different from the one adopted in architec-
tural geometry, which considers that surface parametrisa-
tion is the key problem to be addressed for construction
rationality. Moreover, engineers generally aim at introduc-
ing double curvature in shells to increase their stiffness, so
that the design space offered by developable surfaces can
be considered to be suboptimal for structural optimisation.
The integration of conjugate curve networks can also be
performed on a surface found by the means of structural
optimisation, as proposed in [16]. However, the topology
of the network of lines of curvatures is not known before-
hand, which complicates the dialogue between contractors,
engineers and architects. Furthermore, many structural
systems based on quadrilateral patterns are orthotropic
[17, 18]: shape optimisation using shell elements can be
generalised to discrete periodic structural patterns, but
require to respect local symmetries of the parameterisa-
tion.

The generation of a large design space with planar
facets suited for structural optimisation is thus an issue
that remains to be further explored.

1.3. Previous work on parametrisation of shape optimisa-
tion for shells

The description of the geometrical design space is a cru-
cial step for the optimisation process, even when fabrica-
tion constraints are not considered. Appropriate descrip-
tion of parametric space for the structural optimisation of
shells is an active topic research. Different approaches are
used in recent research: node-based optimisation, CAD-
based optimisation, linear combination of mode shapes,
etc.

In node-based optimisation approaches, the coordi-
nates of each node is seen as a design variable. It offers
the broadest design space, but the results become mesh
dependent. Regularisation methods must be employed,
examples of such techniques can be found in [19], [20] and
[21].

In CAD-based parametrisation, the parameters con-
trolling the CAD become the design variables. This re-
stricts the size of the design space and makes the com-
putation more efficient. The reduced number of variables
can however make the solution suboptimal. This approach
was introduced by Braibant and Fleury [22] and has been
successfully used, for example for the maximisation of stiff-
ness of shell structures under self-weight by [23]. The de-
velopment of isogeometric analysis, which was proposed by
Hughes [24], has considerably enriched this field of study,
as integration of equations of elasticity can be performed
on curved elements. Isogeometric analysis generally out-
performs classical finite element analysis, and was adapted
both to NURBS and T-splines [25].

1.4. Research objectives

As geometries are often generated with CAD tools,
CAD-based optimisation can naturally be used in the con-
text of real-life projects. The exploration of the design
space is also eased by the lower number of variables, which
is interesting when structural optimisation is used at early
stages of design or for multiple optimisation criteria. Non-
uniform rational basis splines (NURBS) are commonly
used for shape modelling, but they do not take into ac-
count basic fabrication constraints. Their extension, T-
splines, suffer from the same limitations.

The purpose of this paper is therefore to introduce a
CAD-based shape generation framework integrating the
constraint of facets planarity. Practical applications are
the rationalisation of formworks for reinforced concrete
shells, but also steel glazed gridshells. The proposed
method uses NURBS and Bézier splines, but is not a sub-
space of NURBS. It is therefore not possible to conclude
on its suitability to structural optimisation a priori.

The proposed parametrisation method is applied to the
structural optimisation of a shell on three supports in-
spired by the Kresge Auditorium at MIT and by the roof
of the French National Centre for Innovation and Tech-
nology (CNIT), the largest spanning concrete shell to this
day. This shape has been used as a benchmark in numer-
ous studies, including [26, 23, 27]. A dome supported on
an elliptic boundary inspired by [3] is also studied. Differ-
ent load cases and performance metrics are considered.

The first Section introduced relevant literature on
shape optimisation in architecture and an overview of
fabrication-aware design. The second Section presents a
new method for shape generation with planar facets as
well as the general methodology for fabrication-aware de-
sign space exploration. The third Section presents a study
for shells supported on three supports. Design guidelines
and assessment of the results are then proposed.

2. Methodology

2.1. Mathematical background of structural optimisation

A typical optimisation problem is written as the min-
imisation of an objective function f for a given set of design
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variables x under design constraints. The mathematical
definition follows:

min
x
f (x)

subject to:
∀i ∈ [1;ne] gi (x) = 0

∀i ∈ [1;ni] hi (x) ≥ 0

∀i ∈ [1; d] xLi ≤ xi ≤ xUi
(1)

The minimisation is usually done under equality and
inequality constraints. The design variables are in a
bounded domain, for the ith design variable, xLi is the
lower bound and xUi is the upper bound. In equation (1)
he number d is the number of design variables, later called
dimension of the design space in the followings of this pa-
per; ne is the number of equality constraints and ni is the
number of inequality constraints.

In the followings of this paper, the function f to min-
imise is either the maximal displacement (δ) or the strain
energy E under a given load, or the opposite of the minimal
buckling load (−pcr). Strain energy is a well-known metric
in structural optimisation, for mathematical and physical
reasons: this quantity considers both stress and strain and
is more regular than a performance metric based on max-
imal displacements. However, in practice, building codes
impose deflection criteria based on the maximal displace-
ments. A constrained optimisation problem solved with
the penalty method would include a function of the max-
imal displacement so that the unconstrained optimisation
of displacement solved in this article gives some insight on
its solution.

Shapes generated with the marionette technique sat-
isfy exact facet planarity, which corresponds to an equal-
ity constraint. For any quadrilateral facet F i, with vertices(
Fi

0,F
i
1,F

i
2,F

i
3

)
, the facet planarity reads as:

det
(
Fi

1 − Fi
0,F

i
2 − Fi

0,F
i
3 − Fi

0

)
= 0 (2)

Equation (2) is a nonlinear function of the nodal coor-
dinates, making it a non-trivial constraint to handle. In
the building industry, envelopes are discretised with up to
thousands of components, so that the optimisation is done
with thousands of constraints.

2.2. Design-space exploration by structural optimisation

Figure 1 recalls the three aspects of structural optimi-
sation and the way they will be addressed in the proposed
methodology. The geometry is defined with the so-called
marionette technique presented in Section 2.3, the mechan-
ical model considers isotropic shell modelled with the finite
element technique. The optima are found with derivative-
free algorithms. Two families of exploration strategies are
envisioned to demonstrate the possibilities offered by Mar-
ionette meshes.

The first one considers a unique optimisation crite-
rion and compares the results of optimisation both for the

NURBS and Marionette method. Having a unique crite-
rion makes the comparison of both design strategies more
straightforward and some tendencies can be derived from
this study.

The second strategy considers several optimisation cri-
teria. In real-life projects, engineers have indeed to deal
with different constraints and have often opposing objec-
tives. Solutions that satisfy all optimisation criteria at
once do not generally exist, but design belonging to Pareto
fronts are the most preferable options in practice. In con-
ceptual design, global optimisation can be preferred to
generate possibly unexpected efficient designs.

Shape generation

Structural analysis

Single-objective
optimisation
Section 4.1

Multi-objective
optimisation
Section 2.7

Marionette
Method

Finite Element
Method

Gradient-free
optimisation

Figure 1: Framework for the shape optimisation of shells

2.3. The marionette method as a CAD tool

This article extends the marionette technique [28],
which generates exact PQ-Meshes by specifying a plane
view and several elevations and by solving a linear sys-
tem of equations. Indeed, it can be noticed that once
the coordinates in the (x, y) plane are chosen, equation
(2) becomes a linear equation with respect to the z com-
ponents of the points Fi

j. Writing ∆zi = zi − z0 and
dij = ∆xi ·∆yj−∆xj ·∆yi, equation (2) becomes equation
(3).

∆z1 · d23 + ∆z2 · d31 + ∆z3 · d12 = 0 (3)

For a quadrilateral with a given plane view, there is thus
one unique planarity constraint defined by a linear equal-
ity. The linear constraints can then be assembled in a
matrix form, and an efficient solution is found in [28]: the
plane view is determined by the designer, and the altitudes
of the nodes are found so that the planarity constraint is
satisfied.

Figure 2 illustrates a basic situation handled by the
marionette technique: one plane-view and two elevations
highlighted in blue and orange in the figure, are sufficient
to determine a unique mesh covered with planar quadri-
laterals. At the intersection of the elevation curves, the
quad has three prescribed altitudes and can thus be ’lifted’
according to equation (3): the new point is highlight in
black on the left of Figure 2. The lifting method can then
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be applied to two other quads (middle of Figure 2), and
propagated iteratively throughout the whole mesh (right
of Figure 2). This example is treated in detail in [28],
where it is shown that the ’lifting’ of the in-plane view is
equivalent to the solution of a Cauchy-type problem. The
two elevations do not have to be on the boundary of the
quadrilateral mesh, in fact, any set of intersecting curves
can be used as elevation curves. More complex topologies
and patterns can be modelled with the method, as shown
in [28]. The marionette technique is a real-time tool be-
cause it is based upon the solving of a linear system of
equations. For the sake of simplicity, only the vertical
component of the nodal coordinates are considered, writ-
ten x, the planarity constraint can be written as follows:

A · x = 0,x ∈ Rnv ,A ∈M (nc, nv) (4)

Where nv is the number of vertices, and nc the number
of planarity constraints. When the mesh is constituted of
quadrilaterals only, nc is equal to the number of facets.
Admissible design with planar facets are found by com-
puting the kernel of A. A basis can be computed, for
example with SVD, and writing N a matrix in M (nv, d)
that contains vectors of the basis in its columns. A vector
xP belonging to the kernel of A can be written as:

xP = N.x̃ (5)

The components of the matrix N depend on the prescribed
plane view. With the algorithm proposed in [28] for the
solution of the marionette problem, the solution takes typ-
ically 5 milliseconds for a mesh with 1000 facets.

In this article, the marionette technique is adapted into
a CAD tool similarly to NURBS. It is proposed here to
parametrise the plane view by NURBS (or T-splines) and
to use Bézier splines or NURBS curves for the elevation
curves. The main addition of this article compared to pre-
vious implementations of the marionette technique is the
possibility to use different degrees and number of control
poits for the elevation curves and in-plane view, which al-
lows for a tailor-made parametrisation.

The shape generation is stepwise: first the in-plane
view is constructed by meshing the planar NURBS patch
along its iso-parametric curves; the 3D mesh with planar
facets is then reconstructed by using the marionette tech-
nique according to equation (5). The designer controls
thus the plane view and elevation curves. This method
is illustrated in Figure 3, where the plane view is con-
trolled by a NURBS patch with nine control points. The
two elevations are Bézier splines with four and five control
points respectively. Notice that the marionette method
naturally decouples the description of in-plane and out-of
plane views. The number of control points used for the ele-
vations and the in-plane view do not have to be consistent,
like in the example of Figure 3. The number of shape pa-
rameters dMarionette of a pseudo-NURBS marionette mesh
for a patch with N ×M control points is thus:

dMarionette = 2NM +N1 +N2 − 1 (6)

where N1 and N2 are the number of shape parameters for
each elevation curve, for example, the number of control
points of a Bézier spline. The number of shape parameters
dNURBS offered by NURBS modelling is simply given by:

dNURBS = 3NM (7)

In our example, N = M = 3, N1 = 4 and N2 = 5:
there are thus 18+4+5−1 = 26 shape parameters for the
marionette mesh, which is close to the number of shape
parameters of a NURBS patch with nine control points.
Notice however that the two design spaces are different,
since discretizations of NURBS do not usually yield pla-
nar quadrilaterals. This decoupling of horizontal and ver-
tical description of the shape is a difference with NURBS
modelling and can be an opportunity for structural opti-
misation.

It is noticed that the planarity constraint is satisfied
exactly on all the facets. Gridshells or formworks are typ-
ically constituted of thousands of faces. The introduction
of the marionette technique for CAD-based optimisation
modifies the initial formulation of a constrained optimisa-
tion into an unconstrained optimisation: using the nota-
tions of equations (5) and (4), the optimisation problem
reads as:

min
Ax=0

f (x) = min
x̃
f (Nx̃) (8)

This high number of constraints and the non-linearity of
equation (2) would make the use of optimisation under pla-
narity constraint difficult in practice for other CAD based
approaches. The marionette framework guarantees thus a
proper parametrisation of a CAD design space with fabri-
cation constraint.

Because the proposed CAD-based approach for mar-
ionette mesh relies on NURBS or B-splines, it bene-
fits from some of its advantages, like the possibility to
perform degree elevation, through degree elevation of
the control mesh and guiding curves. This allows for
nested parametrisation of CAD-based Marionette tech-
nique, where degree elevation can be performed while pre-
serving a given shape. The technique of nested parame-
terisation is successfully used in the context of NURBS-
based shape optimisation in [29]. In the followings, all
the weights of NURBS patches are uniform, so that the
surfaces considered in the study are Bézier surfaces. The
weight could however be added as shape parameters in the
structural optimisation process.

2.4. Mesh uniformity and re-parametrisation

Facet planarity is not the only fabrication constraint
depending on a surface parametrisation. The aspect ratio
of panels should also be controlled in order to ensure con-
structability of the envelope. The marionette technique
as described in [28] can yield meshes subject to undesir-
able aspect ratios. This is illustrated in Figure 4: a reg-
ular plane view yields an irregular mesh, as the discreti-
sation of the elevation curves is not uniform. It is indeed
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z

z
P1

P2

Figure 2: The Marionette method applied to a mesh (from left to right: steps 1,2 &3): the prescription of two elevation curves allows to
iteratively determine a mesh with planar facets.

z
z

P1

P2

Figure 3: The Marionette method as an alternative to NURBS.

easy to notice that the change of length implied by the
lift is proportional to 1

cosα , where α is the slope of the
edge with respect to the horizontal plane. A method is

Figure 4: Two parametrisations for a marionette mesh: on the left,
a regular plane view yields an irregular mesh, while the plane view
on the right yields a mesh with constant length.

proposed here to control the aspect ratio of marionette
meshes. The plane view is re-parametrised so that the
elevation curves have a constant-length discretisation, as
shown on the right of Figure 4. Unless specific cases are
considered, the edge-length cannot be a constant on the
whole mesh, so that the procedure is applied to all the
possible elevation curves. The best suited elevation curve
is selected as the minimiser of the variance of lengths on
the whole mesh.

2.5. Mechanical model

Mechanical assumptions. In the following, shells are mod-
elled as Kirchhoff-Love shells. Indeed, only thin shells,
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where the contribution of shear to the total strain energy
can be neglected, are considered. Writing L the span of
the structures, the shells have a constant thickness d so
that d

L = 1
400 for the dome and d

L = 1
250 for the shell on

three supports. The shell element used is the TRIC shell
element [30]. The number of elements is chosen according
to a convergence study. The material is similar to con-
crete C25/30, with a Young’s modulus of E = 30GPa and
a specific weight of 25kN/m3.

The number of facets is chosen according to a conver-
gence study shown in Figure 5 and 6, which display strain
energy and buckling load factor with respect to the number
of elements for the initial configuration of the marionette
meshes in section 3. With 6400 triangular elements, the
relative errors on strain energy and buckling loads are be-
low 2.5%. The computation time is of 800ms on average
for linear analysis, while the generation of geometry with
planar facets with the marionette technique requires less
than 10ms, with a processor with 2.4GHz and 2Gb mem-
ory.
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Figure 5: Convergence study on strain energy.
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Figure 6: Convergence study on buckling load.

Translations of supports are fully restrained, whereas
rotations are allowed. Therefore, the boundary conditions
do not satisfy assumptions made in membrane shell theory
which restricts translations only in the osculating plane.
An immediate consequence is that bending inevitably oc-
curs in the shells. The assumption made for boundary

conditions is justified by practical considerations for fab-
rication of the supports.

Loads. Two load cases are considered in the present study.
The first one corresponds to the self-weight of the struc-
ture. The second is a non-symmetrical vertical load (point-
ing downwards) of 1kPa applied to the coloured sectors of
Figure 7. Such load case represents an idealised snow load.
In reality, a snow load or a wind load would have a sym-
metrical component. A non-symmetrical load is chosen to
highlight the structural behaviour of the shell under vari-
ous load conditions.

+
+

Figure 7: Non-symmetrical load distribution pattern.

2.6. Implementation of the single-objective optimisation

This article uses a classical numerical procedure for
structural optimisation, where optimisation variables are
the design variables only. This approach is the conven-
tional approach in structural optimisation [27]:, it is also
called Nested Analysis And Design (NAND) [31].

1. Initialisation of the variables;

2. Generation of the FE model;

3. Calculation of the structural response;

4. Evaluation of the objective function;

5. Computation of the updated parameters after nu-
merical optimisation;

6. Iterate from step 2.

As mentioned in the introduction, the authors explore
here the geometrical aspect of structural optimisation.
Commercially-available or open-source software for opti-
misation exist: for the mathematical solution, the NLOpt
library [32], which implements gradient-free optimisation,
is used. This library was used in structural optimisation
by [4], where a comparison of the relative performance of
all the algorithms is performed. A discussion on the rel-
ative performances of optimisation algorithms for shape
optimisation of shell structures is also made in [33].

The result of optimisation depends usually on the ini-
tialisation, but also on the numerical scheme used for solv-
ing step 5. For this reason, two types of optimisation al-
gorithms are used: a local optimisation algorithm, which
is expected to converge towards a local minimum of the
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objective function, and a global algorithm, that is to con-
verge towards the global minimum. Local optimisation al-
gorithms are important in practice, since formal freedom
is usually restricted in shape optimisation for construction
and one often looks for an optimal design in the vicin-
ity of a sketch provided by the architect and structural
engineers. Some global optimisation algorithms, like the
one used in this article, converge towards the global min-
imum. In the present article, global optimisation is used
as a reference to find the global minimum of the objective
function. The two algorithms used follow:

COBYLA: it is an algorithm for constrained optimi-
sation problems. Powell defines his algorithm in [34]
as follows: ’The COBYLA software [35] constructs linear
polynomial approximations to the objective and constraint
functions by interpolation at the vertices of simplices (a
simplex in n dimensions is the convex hull of n+ 1 points,
n being the number of variables).’ At each step of the
optimisation, a linear programming problem is solved, its
result is then evaluated and its value is used to improve
the linear approximation.

DIRECT: this algorithm samples the search space
and creates hyper-rectangle, based on function evalua-
tions, it identifies potentially optimal hyper-rectangles and
decides where to subdivide for the next step [36]. DIRECT
is a global algorithm and eventually converges to the global
optimum. The number of function calls can however be
important, but it remains an efficient algorithm in its cat-
egory [37].

Optimisation algorithms usually run uninterruptedly
if a stopping criterion is not set. Such criterion can be
based on a maximal running time or a maximum number
of iterations. In the present study, the optimisation time
is restricted to 15 minutes for one optimisation run based
on elastic linear analysis and 30 minutes for linear buck-
ling analysis with a computer with a standard computer
(2.4GHz and 2GB memory). An additional convergence
criterion on the relative change of the optimum between
two optimisation steps is set to 0.001. The maximal run-
ning time considers practical applications: in conceptual
design stages, an engineer cannot spend much time on
analysis and requires a quick feedback. COBYLA reg-
ularly converges under 10 minutes, but global algorithms
converge much more slowly because they explore the whole
design space.

2.7. Multi-objective optimisation

In the followings, for multi-objective optimisation, an
evolutionary algorithms using the hypervolume method is
used with the HypE reduction and HypE mutation meth-
ods that address specific issues linked to the computation
of hypervolumes in high dimension, although this article
deals mainly with few objectives [38]. The software used
is Octopus for Grasshopper, which implements those
algorithms.

In practice, the maximal displacements and the buck-
ling loads are constraints imposed by serviceability limit

states (SLS) and ultimate limit states (ULS) requirements,
and can be handled with constrained optimisation. Multi-
objective optimisation (MOO) is useful when dealing with
competing objective (for example minimisation of struc-
tural mass vs. acoustics or thermal performance). It
is used here as a tool to compare in detail two design
spaces by providing a cartography of their respective per-
formances. The population size is set to 200 indiviuals,
with 150 generations, which represents 30,000 individual
evaluations, which guarantees a good representation of the
Pareto front.

3. Shape optimisation of a dome

3.1. Geometric and mechanical constraints

The first case-study is a shell supported on a closed
curve defined as a quadratic Bézier spline. Its topology is
represented in Figure 8. It has a width of L = 40 meters
and a length of 57 meters. Because the focus is set here on
shape parametrisation, the thickness is not considered as a
variable, although it could be easily done, a constant shell
thickness d is used, so that d

L = 1
400 . The problem has two

axis of symmetry, so that the definition of the geometry
can be simplified by focusing on one quarter of the struc-
ture (analysis are performed on the whole geometry). The
NURBS model is generated with two NURBS patches and
the plane view of the marionette mesh with two NURBS
patches as well. The elevation curves of the marionette
mesh are represented in light orange in the middle of Fig-
ure 8. The parametrisation is kept as simple as possible:
the two NURBS patches have both 3 × 3 control points
and they share a common boundary, so that there are 15
control points in total. Uniform weights are used, so that
only the position of the control points are used as shape
parameters. The NURBS surface is thus a Bézier surface.
The notations for the control points are given in Figure 8.

A0

B0

C0

D0

E0

x

y
A1 A2

B1

B2

C1

C2

D1

D2

E1

E2

Figure 8: Parametrisation of the elliptic dome

Normal discontinuities are not allowed in the defini-
tion of the geometry the target surfaces are C1, except for
the domains depending on the control points D0E0 and
E0E1, where alignment of the control points from both
sides of the patches junction cannot be ensured, so that
some constraints on the positions of the control points
arise. Table 1 shows the shape parameters for the NURBS
and Marionette technique. The geometry of the contour
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is considered as a given constraint. All the points with
the subscript 2 are fixed, both in the NURBS and Mari-
onette models, and are not shown in the table. The sign
− indicates a constraint enforced by the symmetries of the
problem. For example, the points B1,C1,D1 have to be
aligned in order to guarantee a C1 continuity of the sur-
face parametrisation. There are 6 shape parameters in the
plane view for both models and two shape parameters on
the elevation for the NURBS.

Marionette NURBS
A0 Fixed z
A1 x x,A0.z
B0 y, z y, z
B1 A1.x,B0.y A1.x,B0.y,B0.z
C0 y,B0.z y, z
C1 x,C0.y,C0.z x,C0.y,C0.z
D0 y y
D1 − −
E0 y y,−
E1 y y,−

Table 1: Shape parameters for the marionette and NURBS model in
the dome problem.

The elevation curves of the marionette mesh are repre-
sented in orange in Figure 8. One elevation is constrained
by the boundary. The other elevation is a curve cross-
ing the boundary. It is represented as a quadratic Bézier
spline. The continuity between patches creates one shape
parameter. The marionette mesh model has 7 shape pa-
rameters, whereas the NURBS model has 8 shape param-
eters. They are therefore expected to have similar perfor-
mances.

3.2. Initialisation

The two models are initialised with similar geometry
and similar performance criteria. The initial value is ex-
pected to be efficient: it has a parabolic section with
a moderate rise-over span ratio ( hL = 25%). Figure 9
shows the initial geometries for the NURBS and mar-
ionette meshes. The two shape parameterisation tech-
niques have no reason to yield the same surfaces. In order
to have initial geometries that are as close as possible,
the initial geometry of the NURBS is set by generating a
structured grid based on the initial marionette mesh and
by solving a fitting problem [39]. The two initial shapes
are visually very close and their mechanical performances
are similar within a range of 15%. Note that only the
local optimisation algorithm COBYLA is sensitive to the
initialisation.

3.3. Results of single objective optimisation

The results of single objective optimisation are shown
in Figures 10, 12 and 13. Figure 10 illustrates the result
of minimisation of the maximal displacement under self-
weight. The local optimisation yields a marginally better

(a) Marionette mesh (b) NURBS

Figure 9: Initial geometries for the domes.

result for the marionette design space, but optima of com-
parable quality are found with the global algorithm.

Figure 10: Maximal displacement under self-weight.

The minimisation of strain energy under self-weight
shows the same tendency, the difference between the min-
ima of the two design spaces being inferior to 1%.

Figure 11: Strain energy under self-weight.

Figure 12 illustrates the result of minimisation of the
maximal displacement under non-symmetrical loads. The
optima found in the marionette space clearly outperform
the ones of the NURBS design space for both local and
global optimisation. This tends to highlight a difference
between the two design spaces.
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Figure 12: Maximal displacement under non-symmetrical load.

Figure 13 illustrates the result of maximisation of the
linear buckling load under self-weight. The optima in both
design have similar performance, especially for the global
optimisation (DIRECT algorithm).
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Figure 1 – Optimal values found for the minimisation of the maximal displacement under self-weight.
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Figure 2 – Optimal values found for the minimisation of the maximal displacement under non-symmetrical
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Figure 3 – Optimal values found for the maximisation of linear buckling load under self-weight.

1

Figure 13: Linear buckling load under self-weight.

The results of local optimisation highlight a better per-
formance of optimisation in the marionette design space.
The initialisation has however a better performance in the
marionette design space, so that the gap observed in the
performances of Marionette and NURBS design spaces can
be attributed to this difference of initialisation. Note that
the NURBS model does not yield planar facets in gen-
eral, so that having the same geometry in the NURBS
and Marionette design space is usually not possible. Re-
sults of global optimisation tend to reduce the differences,
except for the non-symmetrical load.

The best optima found for the marionette and NURBS
design spaces are shown in Figure 14. The optima of the
NURBS and Marionette design spaces are visually similar.
The minimisation of displacement under non-symmetrical
load leads in both cases to an increase of the rise, the
rise-over-span ratio reaching finally 50%. This noticeable
change in the geometry might explain the various perfor-
mances of the different optimisation algorithms. In other
optimisations, the rise-over-span ratio remains limited to
25%. The in-plane parametrisation changes between the
different optima, although it is not as immediate to see its
influence. The most simple parameter to interpret is the

position of the umbilical point, which tends to move away
from the support after optimisation.

3.4. Results of multi-objective optimisation

Single-objective optimisation gives a partial informa-
tion about the performances of a design. For example, a
solution that minimises the strain energy does not neces-
sarily have a high buckling load. This section represent the
results of multi-objective optimisation in order to highlight
areas of compromise for the two design spaces. Optimi-
sation is studied for following criteria: the minimisation
of the maximal displacement and maximisation of linear
buckling load. Figure 15 represents the Pareto front found
by evolutionary algorithm for the marionette framework
together with the optima found by single objective opti-
misation which have been discussed before. Those optima
are close to the Pareto frontier.
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Figure 15: Pareto front for the objectives ’maximal displacement’
and ’linear buckling load’ for the marionette design space.

Figure 16 shows the Pareto front for the same ob-
jectives and the NURBS design space. The shape and
amplitude of the Pareto front are comparable with the
one of the Marionette design space. The optimal values
of single-objective optimisation with the NURBS design
space are also shown. It can be noticed that those optima
are far away from the Pareto front compared to what is
observed in Figure 15. This confirms our interpretation
stating that ’true’ optima of the marionette design space
are not necessarily better, but they are easier to reach by
single-objective optimisation algorithms in the case of the
ellipsoidal dome.

The comparison of the two Pareto fronts is shown in
Figure 17. The two fronts are close to each other for low
values of δ0: the NURBS front dominates then the front
of the marionette design space (for pcr between 80kPa and
95kPa).The front of the marionette design space dominates
the front of the NURBS design space for high values of pcr.
The vertical dashed line represents the maximal buckling
load found in the NURBS design space.

The multi-objective optimisation demonstrates that
the two design spaces have similar performance, and that
a variety of designs can be selected following the structural
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(a) Marionette, optimal δ0 (b) Marionette, optimal δ1 (c) Marionette, optimal buckling

(d) NURBS, optimal δ0 (e) NURBS, optimal δ1 (f) NURBS, optimal buckling

Figure 14: Geometry of the best optima for each objective for the dome. Quads of the marionette design space are all planar, quads of the
NURBS design space are not.
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Figure 16: Pareto front for the objectives ’maximal displacement’
and ’linear buckling load’ for the NURBS design space.
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Figure 17: Comparison of the Pareto fronts (pcr, δ0) of the two design
spaces.

imperatives. A second example is studied in the next sec-
tion in order to confirm these first observations on optimal
shell design.

4. Shape optimisation of a shell on three supports

4.1. Geometric and mechanical constraints

The second case study focuses on a shell supported
on three corners. The geometry of the shell is illustrated
by Figure 18. The shell has a span arbitrarily set to 130
meters. Its thickness is not a parameter of the optimisa-
tion, and is set so that t

L = 1
250 . The geometry has six

planes of symmetry and can be decomposed into six do-
mains without singularity, where the marionette technique
can be applied. The symmetry is chosen here to simplify
the modelling and reduce the number of variables. The
NURBS models are built from patches of degree 2 with 9
control points. The plane view of the marionette meshes
is built with the same kind of patch, whose control points
are shown in Figure 18. The orange area shows the admis-
sible area for the supports of the structure (where z = 0).
The shapes are trimmed with a horizontal plane.

Like for the dome, the symmetry and continuity re-
quirements impose constraints on the position of the con-
trol points: the NURBS and Marionette patches are C0

along the curve A0C0 and C0C2 on Figure 18. C1− con-
tinuity could be enforced by adding additional alignment
constraints of points along junction of patches, as already
discussed in [1], where continuity patches are introduced
to guarantee sufficient continuity. The constraints are re-
called in Table 2. NURBS and marionette parametrisa-
tions have the same number of shape parameters in the
plane, but that the planarity constraint reduces the num-
ber of parameters encoding vertical position of control
points.
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Figure 18: Parametrisation of the CNIT problem with the marionette
technique

Marionette NURBS
A0 t t
A1 x, y x, y
A2 Fixed Fixed
B0 t t, z
B1 x, y x, y, z
B2 x, y x, y, z
C0 Fixed z
C1 x x, z
C2 C2.x = B2.x C2.x = B2.x, C2.z = B2.z

Table 2: Shape parameters for the marionette and NURBS model in
the CNIT problem.

The marionette and NURBS models have 9 shape pa-
rameters in the horizontal plane respectively. The eleva-
tions of the marionette mesh are controlled with quadratic
and cubic Bézier splines drawn in Figure 19. In plane P2,
horizontal tangency at the crown is necessary to preserve
C1 continuity, which leaves two shape parameters: the
height of the crown h and the slope at A2. There are no
restrictions on tangency in plane P1, which leaves three
shape parameters: the height of three control points. A
cubic spline with control points (Pi) and parameter t (be-
tween 0 and 1) is given by following equation:

B (t) = (1− t)3 P0 + t · (1− t)2 P1 + t2 · (1− t)P2 + t3P3

(9)
For marionette meshes, the (x, y) components are deter-
mined by the planar view. Equation (9) has to be modi-
fied. The corresponding u value of each raised point on the
NURBS patch is retrieved, while a normalised parameter
u between 0 and 1 is created. The altitudes of the con-
trol points are written zi, so that for each point to raise
(x (u) , y (u) , 0), an elevation can be assigned:

z (u) = (1− u)
3 ·z0 +u · (1− u)

2
z1 +u2 · (1− u) z2 +u2 ·z3

(10)
In total, the marionette mesh and NURBS model both

have 16 and 15 parameters respectively. The size of the

P2

z

P1

h h
h2A2

C2C2
C0

h1 h0

Figure 19: Parametrisation of elevations for the marionette method.

design space of the marionette design space is superior due
to enrichment of the description of the elevations for the
marionette technique seen in Figure 19.

Supports. Small changes of the shape of the support can
radically change the behaviour of a shell. This optimi-
sation parameter is studied in this article by defining an
area of possible support location. Some shapes generated
with the NURBS or marionette method do not fit within
the prescribed domain (delimited by a line). This issue is
treated with a penalty method. For a shell with parame-
ter x, we have a constraint on the support d (x) ≤ 0. A
quadratic penalty is added to the initial objective function
to minimise f (x):

f∗ (x) = f (x) + µg (x) (11)

where

g (x) =

{
0 if d (x) ≤ 0

d (x)
2

if d (x) > 0
(12)

The scalar µ is a penalty factor, which is set arbitrarily
to 1000. The initialisation is a feasible design, and it was
verified that all the algorithms converged indeed to feasible
designs.

4.2. Initialisation

Like in the previous section, the initial designs are cho-
sen so that they have similar performances in the NURBS
and Marionette parametrisations. The two initialisations
are shown in Figure 20. The initialisation is in both cases
a feasible design in the sense that g (x) = 0 in (12). There
is no curvature at the free-edges, so that local optimisa-
tion algorithm can either converge towards negatively or
positively curved edge. The structures shown in Figure
20 have a low gaussian curvature: structural optimisation
should lead to an increase of curvature and significantly
improve the efficiency of the initial design.

4.3. Results of single objective optimisation

The results of minimisation of displacement are shown
in Figure 21 and 23. The assumption t

L = 1
250 corresponds

to a thickness of 52 centimeters, which corresponds to a
self-weight of 13kPa. The load applied for the self-weight
load case in thus much bigger than the non-symmetrical
load. Relative values of displacement δ0 and δ1 should
thus be considered with this remark in mind. Notice that
this issue arises for large-span structures, where the self-
weight is not negligible. Beyond some critical span, single
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(a) Marionette mesh (b) NURBS

Figure 20: Initial geometries for the shells on three supports.

layer thin shells require too much material and other more
labour intensive structural systems should be used, like
ribbed shells or double-layer shells.

It appears that for all the objective functions, the opti-
misation drastically improves the performance of the shells
compared to the initial design: the maximal displacement
under self-weight are reduced by 89% for the marionette
design space and 82% for the NURBS design space. The
optimal values for displacement in the marionette and
NURBS design space are similar within a range of 10%.

Figure 21: Maximal displacement under self-weight.

Figure 22: Strain energy under self-weight.

The minimisation of strain energy yields similar results:
the reduction of strain energy is 74% and 72% for the
marionette and NURBS design space respectively. This is
comparable to the reduction observed by Marino et al. for
the optimisation of shells on three supports based on the
geometry of the Kresge auditorium at MIT [27].

Figure 23: Maximal displacement under non-symmetrical load.

Figure 24: Strain energy under non-symmetrical load.

The maximisation of the buckling capacity highlights
a better performance of the optimisation algorithm in the
marionette design space, where the relative performance is
indeed superior by 50%. This difference can be explained
with the visualisation of the optimal designs.

Figure 25: Linear buckling load under self-weight.

The best optimal results of the Marionette and NURBS
design spaces are shown in Figure 26. This overview of op-
timal design illustrates the variety of strategies that can
be used by designers to improve the performance of shell
structures. The solutions are indeed more diverse than
the optimal designs of the dome problem in Figure 14.
Optimisation algorithms explore different areas of the de-
sign space, so that several families of optimal design can
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(a) Marionette mesh, optimal δ0 (b) Marionette mesh, optimal δ1 (c) Marionette mesh, optimal buckling

(d) NURBS, optimal δ0 (e) NURBS, optimal δ1 (f) NURBS, optimal buckling

Figure 26: Geometry of the best optima for each objective. Quads of the marionette design space are all planar, quads of the NURBS design
space are not.

Figure 27: Displacement pattern under self-weigth in three structures obtained with NURBS patches, seen in plane view: the initial geometry
(left), the optimum for displacements (middle) and optimum for strain energy (right).

be identified. The optima of the NURBS and marionette
design space have a similar strategy for the minimisation
of displacement under self-weight: the rise over-span re-
mains approximately equal to 40%, and negative curva-
ture is introduced locally at the edge, in the manner of
some designs by Heinz Isler. The optimal designs for
the minimisation of displacement under non-symmetrical
load introduce negative curvature on the whole surface.
This solution recalls some shells designed by Felix Can-
dela. The shells maximising buckling have a very differ-
ent strategy: the marionette mesh introduces a crease and
the free-edge has a positive gaussian cuvature, whereas the
NURBS model has a very high negative curvature at the
free-edge.

The displacement pattern of some structures is shown
in Figure 27. The displacements are localised in the cen-
ter of the initial shape, while displacements in optimised
structures tend to be more evenly distributed.

4.4. Results of multi-objective optimisation

The Pareto fronts found by multi-objective optimisa-
tion for the marionette and NURBS design space are repre-

sented in Figure 28 and 29 respectively. In both parametri-
sations, two distinct clusters of optima appear and are
highlighted in the Figures.

In the marionette design space, the two clusters high-
lighted in Figure 28 are non distinguishable in the δ0/pcr
map, but have distinct values of δ1. If one considers the
maps δ0/pcr only, the white cluster dominates the black
one. In the two other maps, the black cluster largely dom-
inates the white cluster. This illustrate the interest of
considering various load cases.

In Figure 29, the cluster highlighted with white dots
features results with low displacements for both load cases,
but with low buckling load compared to the cluster in
black. This illustrates the importance of choosing the
appropriate design criterion for a thin-walled structure.
Structures optimised with respect to linear elasticity might
have poor performance when non-linearities are consid-
ered. Furthermore, our study only considered linear buck-
ling without geometrical imperfections and did not take
creep of concrete into account. The bearing capacity of
the considered shells is in fact much lower than the values
of pcr displayed in the graphs.
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Figure 28: Pareto front for three objectives for the marionette design
space. Two clusters, in two different colours can be identified.
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Figure 29: Pareto front for three objectives for the NURBS design
space. Two clusters, in two different colours can be identified.

5. Discussion and guidelines

5.1. Performance of the method

The marionette method provides a rich design space
for fabrication-aware shape generation. The performance
of optimisation algorithms is comparable to the one of
NURBS in the classical examples treated in this article,
and when single objective functions are considered, the
Marionette method occasionally outperforms NURBS in
the present study.

This might seem counter-intuitive, as NURBS offer a
wider design space and should feature better global op-
tima. However, the NURBS design space also has many
undesirable configurations. Meaningful values for engi-
neers, like rise-over-span ratio or the crease of free-edges
are controlled with several parameters with NURBS, in-
stead of one with Marionette meshes.

5.2. Size of the design spaces

In our case-study, the size of the Marionette and
NURBS design spaces are similar, up to one shape param-
eter, although the Marionette design space is limited by
the planarity constraint for its facets, as seen in equation
(6).

It appears that the refinements of the control grid has
an influence of the relative sizes of the NURBS and Mari-
onette design spaces. Consider equation (6) with N0 = N
and N1 = M , the ratio of the sizes of the design spaces
nMar

nNURBS
is given by equation (13).

nMar

nNURBS
=

2NM +N +M − 1

3NM
(13)

The values of this ratio are plotted in Figure 30. Lower
values of N and M yield higher values of nM

nN
and less dif-

ferences between the marionette and NURBS design space.
Likewise, patches with a unidirectional refinement (for ex-
ample with N remaining small while M increases) show
little difference between the size of the marionette and
NURBS parametrisations.
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Figure 30: Relative size of the marionette and NURBS design space
for one patch of size N ×M
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The choice of problems with few control points made
in this article(3 × 3 patches) is thus beneficial to the
marionette technique. Structural optimisation problems
parametrised with a refinement of the control grid might
show more diversity, and thus potentially better optima in
the NURBS design space. Although refinement techniques
can be used with the CAD-based marionette technique,
the benefits are therefore expected to be of lesser impor-
tance than with NURBS-based structural optimisation. It
should however be recalled that CAD-based methods are
precisely used in order to simplify the optimisation proce-
dure. Geometries parametrised with relatively few control
points are therefore more likely to be used in practice.

5.3. Extensions

This paper focuses on applications to shell design, but
it should be noted that homogenisation approaches can be
used to approximate the behaviour of steel gridshells in
conceptual design stages. For example, [17] used equiva-
lent orthotropic shell element to find the optimal layout for
a quadrangular gridshell. Some patterns, like the kagome
grid pattern are isotropic and thus better described with
isotropic shell element used in this paper. In [18], it is
shown that kagome gridshells, composed of triangles and
planar hexagons can be constructed from a PQ-mesh. The
results of the present paper could thus be used for the
conceptual design of kagome gridshells, which have an
isotropic behaviour.

Additionally, smoothness requirements could be added
in our optimisation scheme. For example, it is possible
to optimise a smoothness metric of a shell under compli-
ance constraint, in the manner of [40], who proposed com-
bined mechanical and geometrical optimisation for shells
and ribbed structures.

5.4. Local explorations

It appears that some features, like the curvature of free-
edges affect drastically the structural behaviour of shell
structures. By aligning the mesh with the free-edge, it
is possible to control this value with only one parameter,
and eases the local exploration of the design space. More-
over, free edges are often visible and the alignment of the
panels layout with it can be considered more æsthetically
pleasing.

An example of extension is the creation of corrugated
shells, much like the CNIT. In NURBS modelling, normal
discontinuity would imply manipulation of the knot vec-
tor, which could be tedious to parametrise in practice. The
marionette technique can use different basis functions and
simplify the generation of corrugated structures. Intro-
ducing a crease in one elevation curve results in a global
corrugation of the surface. This is due to the intrinsic
properties of the marionette technique, which solves a dis-
crete version of a hyperbolic equation [28]: the discontinu-
ities of the boundary is propagated throughout the whole
surface. Therefore, by controlling the smoothness of one

profile curve only, the engineer or architect can modulate
the corrugation of the whole surface.

To highlight this point, the elevation curve of the shells
on three supports is modified into a non-smooth profil.
Equation 10 can be enriched as follows:

z′ (u) = z (u) + h· | sin (Nπu) | (14)

The plot of the crease function of one elevation added in
14 is plotted in Figure 31.

P1

Figure 31: Profile of the crease function, with (N = 6)

In equation 14, two additional parameters are intro-
duced: the number of undulations N and the crease am-
plitude h. Figure 33 shows the influence of the crease am-
plitude on the three performance metrics studied in the
present paper for a shell on three supports. Some struc-
tures are represented in Figure 32. Notice that the whole
surfaces are creased although only the elevation curve is
modified with our method.

The values are normalised with respect to the non-
corrugated shell. The configuration h = 0 corresponds
to the optimum for displacement under symmetrical load
found with the COBYLA algorithm. It is noticed that the
corrugation leads to an increase of the displacement un-
der symmetrical load and to an improvement of the struc-
tural behaviour for the non-symmetrical load and buck-
ling. Corrugation can indeed be interpreted as a mean to
increase the bending stiffness of a shell, although the struc-
ture transitions from a biaxial state of stress to a uni-axial
one [41]. Notice finally that local corrugation significantly
increases the critical buckling load of the shell. Our mod-
elling framework allows hence to quantify such statements
in a straightforward manner.
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Figure 33: Influence of corrugation amplitude on the performance of
a shell

6. Conclusion

This paper introduced a geometrical modelling tech-
nique for structural optimisation taking into account fab-
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Figure 32: Visualisation of some creased structures (from left to right: h
zmax

= 0; 0.1; 0.25; 0.5; 0.75). All facets are exactly planar.

rication constraints. The marionette method, which is
originally a mesh-based approach, is used here as a CAD-
based modelling tool. The plane-view and some elevations
of the resulting shape can be controlled using NURBS
and Bézier splines. The decorrelation between plane-view
and elevation allows for the selection of a different number
of control points, and thus specific refinement strategies.
Such strategies can be used for the geometrical descrip-
tion of free edges, as illustrated in a case-study with a
shell on three supports. A comparative study has shown
that the proposed framework yields optima similar to the
ones found with the ubiquitous NURBS parametrisation.
Unlike NURBS modelling, the proposed framework results
in meshes with planar quadrilateral facets only.

The authors believe, in the followings of Borgart
that fabrication constraints should be integrated within
the parametrisation of the search space of structural opti-
misation algorithms. The constraint of facet planarity is
demonstrated to be handled efficiently with the marionette
technique. Its potential for the design of glass-covered
gridshells seems promising, since the main technological
constraint for the envelope is the planarity of panels [42].
Similar work could be conducted for other fabrication con-
straints, like the proper offset of the support structure in
gridshells.
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Appendix A. Results

Appendix A.1. Elliptical dome

The parameter values for the dome structures can be
found in Tables A.5 and A.6.

Initial value
A0 (0, 0,−)
A1 (10.0, 0,−)
A2 (20.0, 0, 0.0)
B0 (0, 6.69,−)
B1 (10.38, 6.69,−)
B2 (20.07, 11.68, 0.0)
C0 (0.0, 13.197, 10.0)
C1 (8.65, 13.20, 10.0)
C2 (14.40, 20.53, 0.0)
D0 (0.0, 16.45, 0.0)
D1 (6.49, 22.01,−)
D2 (9.34, 28.42, 0.0)
E0 (0.0, 18.753,−)
E1 (0.0, 22.01,−)
E2 (0.0, 28.42, 0.0)

Table A.3: Initial nodal coordinates for the marionette design space
(values are expressed in meters).

Initial value
A0 (0, 0, 12.8)
A1 (10.0, 0, 12.8)
A2 (20.0, 0, 0.0)
B0 (0, 6.69, 12.8)
B1 (10.38, 6.69, 12.8)
B2 (20.07, 11.68, 0.0)
C0 (0.0, 13.197, 10.0)
C1 (8.65, 13.20, 10.0)
C2 (14.40, 20.53, 0.0)
D0 (0.0, 16.44, 8.60)
D1 (6.31, 22.01, 6.21)
D2 (9.34, 28.42, 0.0)
E0 (0.0, 18.75, 7.61)
E1 (0.0, 22.01, 6.21)
E2 (0.0, 28.42, 0.0)

Table A.4: Initial nodal coordinates for the NURBS design space
(values are expressed in meters).

Appendix A.2. Shell on three supports

The parameter values corresponding to the optima
found in Section 4.3 are presented in Table A.9. The val-
ues preceded by a ∆ indicate a variation from the initial
position: there initial value is thus zero. Initial nodal co-
ordinates, in th (u, t) coordinate system are given.

Initial nodal coordinates for the NURBS design space
are given in Table A.8.
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Initial Optimal δ0 Optimal E0 Optimal pcr Optimal δ1 Optimal E1
COBYLA DIRECT COBYLA DIRECT COBYLA DIRECT COBYLA DIRECT COBYLA DIRECT

∆A1.Y 0 -0.1 0 1.5 1.9 1.4 3 -2.7 -1 -3 -3
∆B0.Y 0 0 -1.7 0.5 -1 0.2 -1 0.3 0.9 0 0.9
∆C0.Y 0 1.4 0 1 1.7 1.6 0 1.3 1.8 2.3 2.9
∆C1.X 0 0 0 1.2 0.9 2.1 3 -1.2 0 -0.8 -0.4
∆E0.Y 0 0.5 -2.7 -0.1 -2.1 2 3.6 3 3.9 2.2 3.9
∆E1.Y 0 0 1.3 1.3 2 1.4 1.2 1.2 1.9 1.1 2
h 10 14.81 15.65 13.38 13.06 10.58 12.5 20 19.91 20 19.91

Table A.5: Parameter values for dome in the marionette design space, bold numbers indicate parameters that can be changed by optimisation
(values are expressed in meters).

Initial Optimal δ0 Optimal E0 Optimal pcr Optimal δ1 Optimal E1
COBYLA DIRECT COBYLA DIRECT COBYLA DIRECT COBYLA DIRECT COBYLA DIRECT

∆A1.Y 0 0.6 0.7 1.9 2 0.7 2.9 -1 -1.7 0.4 0.3
∆B0.Y 0 0 -1.6 1.4 1.7 -1.7 -1 0.1 -0.3 -0.6 0.1
∆C0.Y 0 0.9 -0.9 2.5 2.2 -0.4 0.7 1.9 -1.7 -0.1 -1
∆C1.X 0 -0.5 -0.4 0.8 0.7 0.6 0 0.1 -2.4 0.6 0
∆E0.Y 0 -1 -3 -2.3 -2.6 -0.9 4 -1.1 -3.9 -0.9 -4
∆E1.Y 0 0.5 -1.9 1.4 0.6 0.2 1.9 -0.9 -1.9 -0.7 -1.8
h1 10 12.9 17.5 16.5 16.9 12.6 15 13.5 15.2 13.1 15.2
h2 10 9.8 14 12.7 13.3 9.8 12.7 10 13.6 10.2 12.8

Table A.6: Parameter values for dome in the nurbs design space, bold numbers indicate parameters that can be changed by optimisation
(values are expressed in meters).

Initial value
A0 (0, 0,−)
A1 (4.5, 0,−)
A2 (9, 0,−)
B0 (0, 42.5,−)
B1 (13.14, 36.21,−)
B2 (26.28, 29.93,−)
C0 (0.0, 85.0,−)
C1 (21.78, 72.43,−)
C2 (43.56, 59.85,−)

Table A.7: Initial nodal coordinates for the marionette design space
(values are expressed in meters).

Initial value
A0 (0, 0, 0)
A1 (4.5, 0, 0)
A2 (9, 0, 0)
B0 (0, 42.5, 55)
B1 (13.14, 36.21, 55)
B2 (26.28, 29.93, 55)
C0 (0.0, 85.0, 55)
C1 (21.78, 72.43, 55)
C2 (43.56, 59.85, 55)

Table A.8: Initial nodal coordinates for the marionette design space
(values are expressed in meters).
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Initial Optimal δ0 Optimal E0 Optimal pcr Optimal δ1 Optimal E1
COBYLA DIRECT COBYLA DIRECT COBYLA DIRECT COBYLA DIRECT COBYLA DIRECT

∆A1.U 0 2 4 2 4 -2 2 3 3 2 0
∆A1.T 0 5 10 4 10 4 -8 9 -6 7 -6
∆B0.T 0 8 10 6 10 -3 10 2 7 8 7
∆C1.X 0 6 -2 7 -2 3 9 10 6 9 -3
∆C2.X 0 5 3 -2 3 -6 -9 4 -9 0 -10
∆B1.U 0.0 8 1 4 -1 9 -8 3 -8 6 10
∆B1.T 0.0 7 15 6 15 4 -9 5 -9 11 -10
∆B2.Y 0.0 12 3 10 3 4 3 -14 3 -3 3

H0 60.0 54.5 53.1 63.4 53.1 72.9 52.5 74.9 67.5 74.5 73.8
H1 60.0 59.1 61.8 54.3 61.8 41.4 67.9 71.3 73.1 69.5 69.2
H2 60.0 58.8 57.5 57.1 57.5 74.9 61.4 58.5 57.5 62.5 45.7
H3 60.0 60.0 56.9 58.8 56.9 58.5 50.0 57 50.0 54.2 43.3
l 30.26 28.16 32.09 31.80 32.09 46.62 35.57 57.5 35.57 40.83 32.10

Table A.9: Parameter values for shell on three supports in the marionette design space (values are expressed in meters).

Initial Optimal δ0 Optimal E0 Optimal pcr Optimal δ1 Optimal E1
COBYLA DIRECT COBYLA DIRECT COBYLA DIRECT COBYLA DIRECT COBYLA DIRECT

∆A0.T 1 2 5 4 6 6 4 3 5 6 6
∆A1.U 0 0 3 2 4 0 1 0 0 1 1
∆A1.T 0 5 −6 6 10 -7 9 -9 9 -3 10
∆B0.T 0 5 0 7 1 6 7 6 0 10 10
∆C1.X 0 9 2 8 10 8 8 6 -2 12 -11
∆C2.X 0 −2 −2 −2 −10 -10 -9 4 0 -10 -10
∆B1.U 0.0 −1 11 2 11 6 11 6 5 -5 8
∆B1.T 0.0 0 3 8 6 -8 0 -3 14 -2 14
∆B2.Y 0.0 1 4 3 −4 10 -13 11 4 -4 9
B0.Z 53 50 50 51.1 50.7 41.6 43.3 50.7 43.3 52.0 40.4
B1.Z 55 60 55.6 50 50.1 59.1 43.3 49.7 50 60.0 41.1
C0.Z 53 66.2 52.5 52.5 52.5 46.9 67.5 74.2 52.5 30.0 52,5
C1.Z 53 70.5 52.5 51.2 52.5 57.9 52.5 60.6 52.5 75.0 45.8
C2.Z 52 63.4 52.5 53.1 54.2 44.6 67.5 74.9 74.2 60.0 74.2

Table A.10: Parameter values for shell on three supports in the NURBS design space (values are expressed in meters).
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