
HAL Id: hal-01899200
https://hal.science/hal-01899200

Submitted on 19 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sensitivity of predictive controllers to parameter
variation in five-phase induction motor drives

Cristina Martin, Mario Bermudez Guzman, Federico Barrero, Manuel R.
Arahal, Xavier Kestelyn, Mario Javier Duran

To cite this version:
Cristina Martin, Mario Bermudez Guzman, Federico Barrero, Manuel R. Arahal, Xavier Kestelyn, et
al.. Sensitivity of predictive controllers to parameter variation in five-phase induction motor drives.
Control Engineering Practice, 2017, 68, pp.23-31. �hal-01899200�

https://hal.science/hal-01899200
https://hal.archives-ouvertes.fr


Sensitivity of Predictive Controllers to Parameter Variation in Five-Phase Induction

Motor Drives
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Abstract

Model predictive control techniques have been recently proposed as a viable control alternative for power converters
and electrical drives. The good current tracking, flexible control design or reduced switching losses are some of the
benefits that explain the recently increased attention on finite-control-set model predictive control. The performance of
the predictive model of the drive, which is the core of the predictive control, highly depends on the parameters of the
real system. In this context, most research works assume good agreement between electrical parameters of the predictive
model and the real machine, on the basis of nominal values. Nevertheless, this is far from being a real assumption,
where non-modeled variables (i.e. the temperature, the magnetic saturation or the deep-bar effect) produce a detuning
effect between the real system and its model, which can harm the control performance. The influence of parameter
variations on the predictive control has barely been investigated in recent research works, where only conventional
three-phase power converter configurations and permanent magnet drives have been taken into account. However, there
is a lack of knowledge when different technologies like induction machines or multiphase drives are considered. It is
worth highlighting the interest of the industry in induction motors as a mature technology or in multiphase drives as a
promising alternative in applications where high overall system reliability and reduction in the total power per phase are
required. This paper attempts to fill this gap by examining the impact of parameters mismatch on the finite-control-set
predictive control performance of a five-phase induction motor drive, one of the multiphase electromechanical conversion
systems with greatest impact in the research community. An exhaustive experimental sensitivity analysis of the close
loop system performance based on more than three hundred trials in a test bench is presented.

Keywords: Multiphase drives, induction machines, predictive control, finite-control-set controller, sensitivity analysis.

1. Introduction

The research interest in Model Predictive Control
(MPC) has appeared in recent times highly influenced by
the development of modern microprocessors, whose high
computational power has favored the implementation of
complex and time-consuming controllers in power convert-
ers and electrical drives (Kouro et al., 2015). In this area
of application, Finite-Control-Set MPC (FCS-MPC) is the
most used predictive technique and appears as a promising
alternative to conventional Field Oriented Control (FOC)
and its principal competitor, the Direct Torque Control
(DTC), due to its simplicity and flexibility to incorporate
different control objectives, as well as the exhibited ex-
cellent dynamic performance (Lim et al., 2013; Rodriguez
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et al., 2013; Wang et al., 2014). Its extension to mul-
tiphase drives has been satisfactorily assessed in recent
research works providing fast torque response and better
transient performance than conventional FOC (Lim et al.,
2014) and an improvement in the torque controllability
with lower torque ripple comparing to the DTC (Riveros
et al., 2013), since more than two system variables can be
controlled at the same time.

The FCS-MPC technique is an optimization based con-
trol method, which selects at every sampling time the op-
timal control action (a switching state of the power con-
verter among a finite number of possibilities) that mini-
mizes a predefined cost function. The main challenge of
FCS-MPC in real applications is the required computa-
tional burden of the optimization process, which is par-
ticularly critical in novel technologies based on multilevel
converters (Vatani et al., 2015) or multiphase drives (Ara-
hal et al., 2009; Mart́ın et al., 2016a). On the other hand,
predictive controllers are, by definition, a model based con-
trol technique and its formulation relies on the knowledge
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of a model of the real system. When applied to the control
of electrical drives, the model depends on the electrical pa-
rameters of the electrical machine, which are usually esti-
mated using off-line techniques, such as the ones described
in Chai et al. (2013), Yepes et al. (2012) and Riveros et al.
(2012). However, their values usually change during the
normal operation of the drive due to thermal, saturation
or deep-bar effects, among others. It is well known that
parameter detuning can have an important effect on the
drive performance, and in Young et al. (2014) and Mart́ın
et al. (2016b) it is shown that the operating point and
the model design can highly affect the performance of the
system. For this reason, it is important to evaluate the
parameter sensitivity of predictive controller in order to
guarantee its usefulness under different operating points
and conditions.
The effect of parameters mismatch in MPC has been

assessed in recent research works. Thus, parameter un-
certainty in a three-phase permanent magnet synchronous
machine fed by a Voltage Source Inverter (VSI) is ana-
lyzed in Morel et al. (2009), Zhang et al. (2016) and Siami
et al. (2016) for different MPC control schemes. Simula-
tion and experimental results conclude that machine in-
ductance variations are related to current ripple, whereas
resistance and flux linkage variations affect to steady state
errors and dynamic responses. Resistance and inductance
of the predictive model of a three-phase active front end
drive are detuned in Kwak et al. (2014) when it is con-
trolled by a finite-control-set predictive controller, and an
experimental analysis of the controlled system reports that
inductance variations produce high current ripples and
steady state errors, being negligible the effects if resis-
tances are disturbed. A sensitivity analysis in three-phase
inverters is also shown in Young et al. (2016), where it
is stated that the steady state performance of the FCS-
MPC is degraded when parameters are incorrect, being the
load resistance in relation with steady state errors whereas
changes in the load inductance increase the current ripple.
All in all, previous works present a wide analysis of the
predictive control dependence on the electrical parameters
of the system model for different conventional power con-
verters and drives. There is however a lack of knowledge
regarding FCS-MPC applied to multiphase drives, which
represent an interesting research field (Levi et al., 2016)
and promising industry technology (Jung et al., 2012; Liu
et al., 2014). The model of multiphase machines involves
more electrical parameters and the phase currents are de-
composed into more subspaces due to the higher number
of degrees of freedom, making more difficult the sensitive
analysis with respect to the three-phase case.
The purpose of this paper is therefore the experimen-

tal investigation of the parameter detuning impact on the
performance of a controlled five-phase induction machine
(IM), one of the most interesting multiphase drives (Bar-
rero and Duran, 2016; Levi, 2016). The FCS-MPCmethod
is used to control the stator currents, and an outer PI con-
trol loop regulates the machine speed. This speed con-

troller is based on a conventional Indirect Rotor Field
Oriented Control (IRFOC) where the usual four inner PI
current regulators are replaced by the FCS-MPC current
control. Each electrical parameter of the machine will
be individually tested for several operating points in or-
der to identify the system variables principally affected by
each parameter. The rest of the paper is organized as fol-
lows. The model of the five-phase IM drive is presented
in Section 2. Then, the general control scheme, which
is composed by a FCS-MPC based current controller and
an outer speed control, is shown in Section 3. Section
4 presents the principles for the sensitivity analysis and
the obtained experimental results are shown in Section 5.
Conclusions are summarized in the last section.

2. Modeling of the multiphase system

A five-phase IM with distributed windings equally dis-
placed (ϑ = 2π/5) and fed by a five-phase two-level VSI
constitutes the system under study. A schematic layout
of the drive is presented in Fig. 1, where the VSI gating
signals are represented by (Sa, ..., Se) together with their
complementary values (S̄a, ..., S̄e). The modeling of the
five-phase machine and the VSI are presented in the fol-
lowing subsections.

2.1. Five-phase IM model

During the modeling process, some simplifications are
normally made in the machine equations to facilitate the
real-time implementation of the control technique. Thus,
the following standard assumptions are made: uniform air
gap, symmetrical distributed windings, sinusoidal MMF
distribution, and negligible core losses and magnetic satu-
ration. Following the Vector Space Decomposition (VSD)
approach and taking into account the previous simplifica-
tions, the machine model can be represented in state space
matrix form in two orthogonal subspaces (Levi et al., 2007)
as follows

dx(t)

dt
= A(ωr(t))x(t) +Bv(t)

y(t) = Cx(t) (1)

where the α − β and x − y stator currents and
the α − β rotor flux are selected as state variables
x = (isα, isβ , isx, isy, ψrα, ψrβ)

T , the input signals are
the applied stator voltages v = (vsα, vsβ , vsx, vsy)

T ,
and the output signals are the stator currents y =
(isα, isβ , isx, isy)

T . The α − β subspace corresponds to
the fundamental flux and the generated electrical torque,
while the x − y subspace is related to the losses. A zero
sequence current component in the z-axis also exists, but
it does not flow due to the star-winding connection in the
machine. In (1) matrices A and B depend on the rotor
electric speed ωr and the electrical machine parameters as
it will be shown in the next two equations. The electrical
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parameters of the machine are the stator and rotor resis-
tances Rs and Rr, stator and rotor inductances Ls and
Lr, stator and rotor leakage inductances Lls and Llr and
mutual inductance Lm.

A =



















a1 0 0 0 a2 ωra3
0 a1 0 0 −ωra3 a2
0 0 − Rs

Lls

0 0 0

0 0 0 − Rs

Lls

0 0
LmRr

Lr

0 0 0 −Rr

Lr

−ωr

0 LmRr

Lr

0 0 ωr −Rr

Lr



















B =

















b1 0 0 0
0 b1 0 0
0 0 1

Lls

0

0 0 0 1
Lls

0 0 0 0
0 0 0 0

















C =









1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0









(2)

a1 = −
RsL

2
r +RrL

2
m

Lr(LrLs − L2
m)

a2 =
RrLm

Lr(LrLs − L2
m)

a3 =
Lm

LrLs − L2
m

b1 =
Lr

LrLs − L2
m

Ls = Lls + Lm

Lr = Llr + Lm (3)

2.2. Five-phase two-level VSI model

The machine model must be completed with the VSI
equations. Each leg of the inverter is composed by two
semiconductors operating only in two states, cutoff and
saturation (see Fig. 1). Consequently, there exists a
finite number of possible combinations of the switching
states. For the case of the 5-phase VSI, there are 25

possible switching states represented by the vector Sj =
(Sa, Sb, Sc, Sd, Se) with j = 0, . . . , 31.
Ideally, the inverter converts the switching state into

phase stator voltages that can be projected into α−β−x−y
axes following the next equation, where Vdc is the DC-
link voltage and M is the coordinate transformation ma-
trix that considers the spatial distribution of the machine
windings.









vsα
vsβ
vsx
vsy









=
1

5
Vdc M













4 −1 −1 −1 −1
−1 4 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4

























Sa

Sb

Sc

Sd

Se













(4)

M =
2

5









1 cosϑ cos 2ϑ cos 3ϑ cos 4ϑ
0 sinϑ sin 2ϑ sin 3ϑ sin 4ϑ
1 cos 2ϑ cos 4ϑ cosϑ cos 3ϑ
0 sin 2ϑ sin 4ϑ sinϑ sin 3ϑ









(5)

Vdc

isa
�

�
vsb vsa

��

�

vsc

�

vse�

�

�

vsd

�

Sb Sc Sd SeSa

n

isc

ise

VSI
5-PHASE IM

isb

isd

SeSdScSbSa

Figure 1: Schematic diagram of the five-phase IM drive.
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Figure 2: Space vector representation in the α−β and x−y subspaces
of the possible voltage vectors of the two-level five-phase VSI.

Fig. 2 shows all voltage vectors that can be obtained
from the possible switching states. Each vector is identi-
fied using the decimal number corresponding to the binary
code of the switching state. Equation (4) completes the
model of the five-phase IM drive.

3. Speed and current control of the five-phase

drive

The general scheme of the proposed control strategy is
presented in Fig. 3. It is formed by an IRFOC-based
outer speed control loop and an inner FCS-MPC current
controller. In following subsections the basis of both con-
trollers are presented.

3.1. IRFOC-based speed controller

Conventional IRFOC technique is composed by an outer
speed control loop in the rotating reference frame d−q, be-
ing the d-axis aligned to the rotor flux component. In this
situation, torque and flux production are independently
controlled, being the d-current responsible of the rotor
flux regulation, while q-current is related to the electrical
torque production. In our case, the machine is fluxed by
setting a constant value of d-current reference i∗sd, which
corresponds with the rated flux of the machine, while i∗sq
is obtained from a PI controller. These references in the
rotating reference frame are rotated into α−β plane using
the inverse of the Park transformation

D-1 =

(

cos θe − sin θe
sin θe cos θe

)

(6)
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Figure 3: General scheme of the proposed controller composed by an outer IRFOC-based speed loop and an inner FCS-MPC current loop.

being θe the angle of the rotating reference frame, which
corresponds to the rotor flux angle. This angle is obtained
from the measured speed ωm and the estimated slip speed
ωsl in the following way

θe =

∫

(ωsl + P ωm) dt =

∫ (

Rr

Lr

i∗sq
i∗sd

+ P ωm

)

dt (7)

where P is the number of pole pairs. The obtained α− β
stator current references are inputs in the predictive cur-
rent control, as it is observed in Fig. 3. In order to be im-
plemented in a microprocessor, equation (7) is discretized
using the trapezoidal rule using past values of the variables
in the following way

θe[k + 1] = θe[k] + Ts (ωsl[k] + P ωm[k]) (8)

being Ts the sampling time and considering that the slip
and the mechanical speed are constant throughout the pre-
diction horizon.

3.2. FCS-MPC current controller

The applied FCS-MPC current controller is a discrete
time algorithm that determines at every sampling time the
most adequate switching state Sopt that must be applied

to track the stator current references i*s (see Fig. 3). For
this purpose, a discrete model of the real system, named
predictive model, is employed to predict the future values
of the stator currents ips . This prediction is computed for
all possible switching states Sj making use of measured
values of the rotor speed ωr and the stator currents ims .
The most adequate voltage vector is then selected by min-
imizing a cost function J that relates the current references
and predictions. The optimum gating signal is applied to
the VSI during the next sampling instant, being this an
iterative process repeated every sampling period.
The construction of the prediction model must be done

taking into account two important aspects, the discretiza-
tion method and the delay compensation. The cost func-
tion is selected depending on the control objectives.

3.2.1. Discretization process

IM machine equations (1) together with the inverter
model (4) define a nonlinear set of equations that repre-
sents the real system. These equations must be discretized
in order to be implemented in a digital processor. Several
discretization alternatives appear, being the first-order for-
ward Euler approximation the most common technique.
However, this method is not sufficient under some circum-
stances, e.g. low sampling frequencies, order of the model
higher than one or high pass filters in the plant (Kouro
et al., 2015). In those cases, it is better to apply a bilinear
discretization or the exact discretization technique, based
on the Cayley-Hamilton theorem (Miranda et al. (2009);
Rojas et al. (2014)).

In this work, the exact discretization method is applied
since it produces better tracking and prediction results in
the FCS-MPC performance (Mart́ın et al., 2016b; Miranda
et al., 2009). Thus, using a sampling time Ts and assuming
that the input is generated by a zero-order hold and ma-
trix A is constant during the sampling period, the discrete
predictive model is given by

xp[k + 1|k] = Φ xm[k] + Γ v[k]

yp[k + 1|k] = Cxp[k + 1|k] (9)

where Φ = eATs and Γ =
∫ Ts

0
eAt B dt. Superscripts p

andm represent predicted and measured variables, respec-
tively, being xp[k+1|k] the one-step ahead prediction of the
system state computed at current sample time k. Notice
that matrix A depends on the instantaneous value of the
rotor electric speed ωr, thus the above predictive model is a
time-variant linear system. However, the dynamics of the
mechanical system is slower than the electrical one, so the
speed within a sampling period can be assumed constant.
Consequently, it is necessary to update the instantaneous
value of the matricesΦ and Γ every sampling interval with
the measured value of the rotor speed.

In order to simplify the implementation of the equations,
some off-line calculations can be done. Firstly, matrix A
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is separated in a constant part and a speed dependent (or
time dependent) part, as follows

Φ = eATs = e(Ac+Aω)Ts = eAcTs eAωTs (10)

Since all components of matrix eAcTs are constant, it
can be obtained off-line. However, matrix eAωTs must be
evaluated every sampling period. A simple definition of
this matrix can be obtained using the Cayley-Hamilton
theorem, as it is shown in the following equation, where
cω = cos(ωrTs) and sω = sin(ωrTs).

eAωTs =

















1 0 0 0 a3(1− cω) a3sω
0 1 0 0 −a3sω a3(1− cω)
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 cω −sω
0 0 0 0 sω cω

















(11)

Regarding matrix Γ, it can be approximated using the
expression in (12) assuming that the time-dependent terms
are canceled (eAωTsB = B) when a small enough sampling
time Ts is used (Rojas et al., 2014). However, a simpler
approximation of this matrix can be done using the right
Riemann sum method in a time interval equal to a sam-
pling period, and assuming again that the sampling time
is small enough (13). Notice that the dependence with the
rotor speed disappear, being possible to obtain matrix Γ

by off-line calculations.

Γ =

∫ Ts

0

eAct B dt = A−1
c (eAcTs − I)B (12)

Γ =

∫ Ts

0

eAct B dt = eAcTs BTs (13)

Both approximations, (12) and (13), can be applied
without loss of generality since they produce similar re-
sults when the sampling time is small. In this case, the
second one is applied in order to simplify the calculations.

3.2.2. Delay compensation

In any digitally implemented controller, such as FCS-
MPC, the calculation time of the control signal can be
significant compared with the sampling time. In this case,
there will be an important delay between the instant when
system variables (stator currents) are measured and used
for prediction, and the instant when the next control ac-
tion is released. As a result, the optimal control action is
not applied in the correct instant producing a bad tracking
of the currents, which can present a high ripple. This ef-
fect and its consequences are properly explained in Cortes
et al. (2012) for a three-phase converter controlled by the
FCS-MPC. In order to correct this effect, some compen-
sation methods have been proposed in the literature. The
most simple one consists in waiting until the next sampling
time to release the computed switching state based on a
prediction model for the instant k+2 (Cortes et al. (2012);

Arahal et al. (2009)). Taking this into account, the con-
trol algorithm is changed to reflect that the control action
computed at time k will not affect the system output until
time k+2. This is achieved applying two prediction steps:
a first one uses (9) to compute the current prediction for
k + 1, and a second one computes the second-step ahead
prediction as

xp[k + 2|k] = Φ xp[k + 1|k] + Γ v[k + 1] (14)

The optimization process of the cost function will be then
implemented taking into account the current prediction in
k + 2 for all possible voltage vectors v[k + 1].

3.2.3. Cost function

As stated before, the cost function must be defined ac-
cording to the control objective, which consists in tracking
the stator current references. In the case of multiphase IM
drives, the following expression is usually employed

J = ‖i∗sαβ[k+2]−i
p
sαβ [k+2|k]‖2+λxy‖i

p
sxy[k+2|k]‖2 (15)

where isαβ = (isα, isβ), isxy = (isx, isy) and α − β refer-
ences are the ones obtained as outputs of the PI controller.
The error between the predicted stator currents and their
references is then minimized, and the weighting factor λxy
is introduced to give more or less importance to the sec-
ondary x−y plane with respect to the primary α−β plane.
This parameter must be properly adjusted in order to favor
a good flux/torque production but with reasonably small
current ripple in the x− y currents.
The selection of the weighting factor is also closely re-

lated to the number of possible switching states employed
in the optimization process. In Lim et al. (2014) a good
analysis on this issue is realized, concluding that the re-
duction in the available voltage vectors interferes in the
selection of λxy, since the control performance can change
significantly. In this work, the weighting factor is set to
0.5, since it has been proved to produce a good trade-
off between current ripple in the primary plane and the
secondary one when all possible VSI switching states are
available (Lim et al., 2014). Additional terms can be in-
cluded in the cost function in order to improve other fea-
tures such as reducing the VSI losses or the Total Har-
monic Distortion (THD) (Kouro et al., 2009).

4. Basis of the sensitivity analysis

An experimental testbench has been constructed to
study the impact of the electrical parameters in the devel-
opment of the proposed controller. The components of the
testbench are depicted in Fig. 4. The principal element is a
five-phase IM, whose parameters have been experimentally
obtained following the method described in Yepes et al.
(2012) and Riveros et al. (2012) and are summarized in
Table 1. Two three-phase inverters from Semikron fed the
five-phase machine using an independent DC power sup-
ply of 300 V as DC-link voltage. The control algorithm is
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Figure 4: Experimental testbench diagram. The real system is based
on two conventional three-phase VSIs, an electronic control board, a
DC motor drive, an IM and a DC motor.

Table 1: Parameters of the analyzed five-phase IM.

Parameter Value

Stator resistance Rs0(Ω) 19.45

Rotor resistance Rr0(Ω) 6.77

Stator leakage inductance Lls0(mH) 100.7

Rotor leakage inductance Llr0(mH) 38.6

Mutual inductance Lm0(mH) 656.5

Mechanical nominal speed ωn(rpm) 1000

Nominal torque Tn(N·m) 4.7

Pole pairs p 3

deployed in a TM320F28335 DSP placed on a MSK28335
Technosoft board. The measurement of the mechanical
rotor speed is carried out by a GHM510296R/2500 digital
encoder together with the enhanced quadrature encoder
pulse (eQEP) peripheral of the DSP. Finally, a DC motor
directly coupled to the shaft of the multiphase IM intro-
duces a variable load torque in the system.

The IRFOC-based speed and the FCS-MPC current
controllers have been implemented as stated in Section 3
using all possible voltage vectors and λxy = 0.5 in the op-
timization process, a sampling time of Ts = 66.67 µs and a
constant d-current reference of 0.57 A, which corresponds
with the rated flux of the five-phase IM. To reproduce the
parameter detuning, parameters in the predictive model
(14) in relation with the stator (Rs and Lls) and the mag-
netic coupling (Lm) are varied one at a time in order to
investigate the individual effect of each parameter in the
performance of the system. The rotor parameters (Rr and
Llr) are simultaneously varied, thus representing the effect
of the rotor branch in the control performance. In what fol-

lows, the nominal parameters will be called Rs0, Rr0, Lls0,
Llr0 and Lm0 (see Table 1), and the parameter variations
will be represented by ∆Rs = Rs/Rs0, ∆Rr = Rr/Rr0,
∆Lls = Lls/Lls0, ∆Llr = Llr/Llr0 and ∆Lm = Lm/Lm0.
Three different tests have been conducted varying the

operating condition of the multiphase drive, i.e. mechani-
cal speed ωm and the load torque TL, in order to study the
effect of these variables in the sensitivity analysis. Table
2 summarizes the operating conditions of each test, being
the load torque expressed as the percentage of the nomi-
nal one (Tn in Table 1). Two different values of the speed
and the load have been selected with enough distance be-
tween them in order to produce significant comparison re-
sults. Steady state operation is always achieved for all
tests. Root-Mean-Squared (RMS) error between the ref-
erence and the measured phase stator currents (RMSep),
and mean (µ) and standard deviation (σ) of the system
variables are used as performance indicators

RMSep =
1

5

e
∑

m=a

√

√

√

√

1

N

N
∑

j=1

(ism(j)− i∗sm(j))2 (16)

µ =
1

N

N
∑

j=1

var(j) (17)

σ =

√

√

√

√

1

N

N
∑

j=1

(var(j) − µ)2 (18)

where var represents the system variable whose mean and
deviation values are evaluated. Between 50 and 60 trials
have been reproduced for studying the Rs, Lls and Lm

mismatch, while around 90 trials were obtained to study
the variation of the rotor parameters.

5. Obtained results

The control performance in terms of the RMSep for the
three considered operating points is shown in Fig. 5 when
mutual inductance Lm, stator leakage inductance Lls and
stator resistance Rs are varied. From the obtained re-
sults it can be stated that Lm has a significant impact
in the phase current RMS error when the parameter is
incremented, although no impact in the RMSep value is
obtained when the used Lm value is lower than the nomi-
nal one (Lm0), see Fig. 5a. Moreover, when the operating
point is varied and the machine speed and load torque
are increased, the effect of Lm in the control performance
also increases. Thus, the current error rapidly raises above
∆Lm = 1.4 in Test 2 and ∆Lm = 1 in Test 3. On the con-
trary, current error begins to grow only after ∆Lm = 1.8
in Test 1 and a very high detuning in the mutual induc-
tance must be introduced to see a significant impact in
the current tracking for lower speed and torque operating
conditions.
Fig. 5b shows the impact of Lls variations, where a ∆Lls

value from 0.2 to 4 has been considered. It is observed that
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Table 2: Experimental conditions of the study.

Test ωm (rpm) TL (%)

1 600 40

2 600 60

3 800 40
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Figure 5: Obtained RMSep values for Tests 1, 2 and 3 when (a) Lm,
(b) Lls and (c) Rs are varied.

current tracking performance gradually degenerates when
∆Lls increases. On the contrary, when the Lls value is in-
ferior to the nominal one (∆Lls < 1), the obtained RMSep
value decreases until a minimum value appears (this mini-
mum depends on the operating condition, but it is always
close to ∆Lls = 0.5) to abruptly rise for lower Lls val-
ues. Notice however that the total variation of the RMSep
value is about 0.06 A in the considered ∆Lls range, con-
cluding that the impact of the stator leakage inductance
in the system performance is not relevant in comparison

with other parameters. As in the previous case, the cur-
rent error is higher for larger speed and load torque values
if ∆Lls < 1, but the tracking performance does not show
significant differences when ∆Lls increases.
Regarding the stator resistance, its influence is analyzed

in Fig. 5c. The ∆Rs ratio is varied from 0.2 to 4 for the
studied operating points. It is shown that the current con-
trol performance almost stays unaltered when the param-
eter is varied, being RMSep larger when the load torque
and the rotor speed increase, as in previous cases.
The effect of the rotor electrical parameters in the cur-

rent control performance is analyzed in Fig. 6. In this
case, Rr and Llr are simultaneously varied from 0.2 to 2
times their nominal values. Surface plots represent the
RMSep error in the considered operating points. It can
be concluded from the obtained results that Llr has not a
significant impact in the current control performance (the
curves mainly remain the same independently of the ∆Llr

value). On the contrary, the variation of the Rr parame-
ter has an important effect in the current tracking error,
particularly if Rr < Rr0, and larger speed and load torque
values increase the obtained RMSep value.
To provide a better insight of this sensitivity analysis,

the mean (µ) and standard deviation (σ) of system vari-
ables have been calculated using (17) and (18). The mean
value is used as an indicator of the tracking performance
while the standard deviation is related to the noise of the
electrical system. The analyzed variables are the mechan-
ical speed (ωm), d − q currents (id and iq), q-current ref-
erence (i∗q) and x − y currents (ix and iy). Figs. 7 to 10
present the obtained results where µ is depicted as a solid
line with square or circle markers and σ is represented as
solid vertical lines around the markers. Notice that only
one operating point is shown for simplicity reasons (similar
plots are obtained for different operating points).
Results when parameter Lm is varied are presented in

Fig. 7. It can be noticed that the current control is de-
graded when ∆Lm increases, which agrees with Fig. 5a.
The electrical noise remains the same in the primary d− q
plane. However, an important deviation of µ values ap-
pears, particularly in the q-axis. Currents in the secondary
x− y plane fit their references, but σ increases with ∆Lm,
as well as the electrical noise in the x− y components and
the harmonic content and copper losses of the system. It
is important to note that a mismatch in the Lm parameter
of the predictive model also affects the position estimator
of the IRFOC-based speed loop (7), which disarranges the
outer speed control loop. This effect can be appreciated in
the speed controller output (i∗q value) that increases when
Lm differs from Lm0. Despite this, the speed tracking is
good and it is not affected in the studied ∆Lm range.
Fig. 8 summarizes the obtained results when a variation

in the Rr parameter is considered. In this particular case,
the speed regulation offers a similar response than in the
previous case, when Lm is varied, but the current perfor-
mance in the d− q and x− y planes is the opposite. The
current control performance when ∆Rr is increased is then
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Figure 6: Obtained RMSep values for simultaneous Rr and Llr variation for (a) Test 1, (b) Test 2 and (c) Test 3.
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Figure 7: Control performance when the applied Lm differs from the nominal one (Lm0). (a) Mean and standard deviation of the measured
stator d-current (µd, σd) and the imposed stator d-current reference (i∗

d
), (b) mean and standard deviation of the measured stator q-current

(µq , σq) and the generated stator q-current reference (µ∗

q , σ
∗

q ), (c) mean and standard deviation of x- and y- currents (µx, σx, µy , σy), and
(d) mean and standard deviation of ωm (µω , σω) and its reference (ω∗

m).

similar to the situation when ∆Lm is decreased and vice
versa, being this result in agreement with those obtained
in Fig. 6 and Fig. 5a.

The effect of the Lls variation is depicted in Fig. 9. As
in previous cases, the speed regulation is not altered by the
parameter mismatch, but the current control performance
is distorted. While the d-current mean (µd) remains close
to its reference when ∆Lls is higher than one, the stan-
dard deviation (σd) increases as a consequence of larger

electrical noises. The opposite behavior is observed when
∆Lls is lower than one, but µd and i∗d values pull apart.
On the other hand, the q-current tracking performance
and the x − y current noise are slightly degraded when
∆Lls increases and decreases from ∆Lls = 0.5 (this value
corresponds to the minimum RMSep value in Fig. 5b).
Notice however that the variation in the current perfor-
mance due to the Lls uncertainty is minimum in compari-
son with other parameters and can be neglected. Note also
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Figure 8: Control performance when the applied Rr differs from the nominal one (Rr0). (a) Mean and standard deviation of the measured
stator d-current (µd, σd) and the imposed stator d-current reference (i∗

d
), (b) mean and standard deviation of the measured stator q-current

(µq , σq) and the generated stator q-current reference (µ∗

q , σ
∗

q ), (c) mean and standard deviation of x- and y- currents (µx, σx, µy , σy), and
(d) mean and standard deviation of ωm (µω , σω) and its reference (ω∗

m).
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Figure 9: Control performance when the applied Lls differs from the nominal one (Lls0). (a) Mean and standard deviation of the measured
stator d-current (µd, σd) and the imposed stator d-current reference (i∗

d
), (b) mean and standard deviation of the measured stator q-current

(µq , σq) and the generated stator q-current reference (µ∗

q , σ
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q ), (c) mean and standard deviation of x- and y- currents (µx, σx, µy , σy), and
(d) mean and standard deviation of ωm (µω , σω) and its reference (ω∗

m).
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Figure 10: Control performance when the applied Rs differs from the nominal one (Rs0). (a) Mean and standard deviation of the measured
stator d-current (µd, σd) and the imposed stator d-current reference (i∗
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Table 3: Qualitative obtained results of the sensitivity analysis.

Impact on the system ∆Lm ∆Rr ∆Lls ∆Rs ∆Llr

performance ∈ [0.3, 1] ∈ [1, 2] ∈ [0.2, 1] ∈ [1, 2] ∈ [0.2, 4] ∈ [0.2, 4] ∈ [0.2, 2]

Speed performance − − − − − − −

Phase current RMS error − ↑↑↑ ↑↑↑ − ↑ − −

d current performance − ↑↑ ↑↑ − ↑↑ ↑ −

q current performance − ↑↑↑ ↑↑↑ − ↑ ↑ −

x− y current performance − ↑↑↑ ↑↑↑ − ↑ − −

that a steady state error in the d− q current components
exists even when there is no mismatch in the model pa-
rameters, which is an inherent feature of predictive control
techniques that does not have an integral term to overcome
this error (Young et al., 2016).
The system performance under Rs variations is finally

detailed in Fig. 10. In this case, only the mean and the
deviation of the d − q currents are shown since the x − y
currents and speed performances are not affected by the
mismatch. Obtained results show that σ values in the
d − q plane are almost constant for all ∆Rs values. How-
ever, the current tracking is degraded in the d- and q-axis
when ∆Rs increases and decreases, respectively. These
contradictory effects counteract resulting in almost con-
stant current tracking performance, as it was shown in
Fig. 5c. Additionally, taking into account that a normal
variation of the stator resistance can be ±50% of the nom-
inal value due to thermal effects, its impact in the torque
and flux tracking can be considered not significant.
These results are summarized in Table 3 (the − sym-

bol means that the impact of the parameter is negligible),
where a qualitative analysis of the parameter mismatch
effect on different control aspects is presented. It can be
concluded that:

• The speed control performance is unaltered by the
parameter mismatch.

• The performance of the FCS-MPC controller in terms

of phase current tracking is degraded by the parame-
ter mismatch, being different the impact of each ma-
chine parameter and having the operating point a no-
table influence in the sensitivity analysis due to its
dependency on the electrical parameters of the ma-
chine. While Lm and Rr are highly influential, Lls

hardly affects the current tracking and the impact of
Rs and Llr is nearly negligible.

• The q-current tracking performance and the electrical
noise in the x − y plane are notably affected by Lm

and Rr mismatching.

• The current tracking performance in the d-axis is little
distorted by a variance in the Lls parameter, which
also produces some electrical noise in the x− y plane
and almost negligible q-current tracking distortion.

6. Conclusion

In this work, the impact of model parameter mismatch
on the performance of the FCS-MPC has been experimen-
tally assessed in five-phase IM drives. Obtained results
show that the best estimate of the mutual inductance and
the rotor resistance produces the lowest current control
degradation, current tracking error and electrical noise in
the x− y current components, which improves the torque
and flux control in the electrical drive and reduces the har-
monic content and copper losses in the system. Conversely,
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the influence of stator resistance and leakage inductances
in the close loop current control performance are not so
important, as long as the parameters are within a normal
range of variation. However, the speed regulation is robust
against parameter mismatch due to the outer PI regula-
tor. The experimental results also show that the operating
point can promote the parameter mismatch effects, and
higher steady-state errors are observed for higher motor
speeds and load torques.
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