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This paper concerns the direct approach control synthesis using the shallow water partial differential equations (pde) description of irrigation canals. The purpose of this paper is to gives an alternative solution for the standard regulation of irrigation canals control problem. This regulation control problem is stated as a boundary control design with a particular form of Internal Model Control (IMC) structure. Moreover, the internal model takes into account the dynamic of the gate of canal, and the inhomogeneous case is considered i.e. all parameters of the equilibrium point are space dependent. Simulation using the nonlinear model, and experimental results are given with this approach.

Introduction

Irrigation canals regulation problem presents an economic and environment interest and many research are done in this area. These works have been done with different approach concerning the class of model and the class of the control synthesis ( [START_REF] Dos | Commande optimale et robuste des équations aux dérivées partielles[END_REF], [START_REF] Malaterre | Le Contrôle automatique des Canaux d'Irrigation: Etat de l'Art et Perspectives[END_REF]). This paper deals with the class of the partial differential equations, which describe the canal by the shallow water equations, also called Saint Venant equations. The regulation problem is addressed by the direct methods, which means that the control design is based directly on the infinite dimensional system theory ( [START_REF] Pohjolainen | Robust multivariables PI-controller for Infinite Dimensional Systems[END_REF], [START_REF] Sakawa | Feedback Stabilization of a Class of Distributed Systems and Construction of a State Estimator[END_REF], [START_REF] Toure | An extension of IMC to Boundary Control of Distributed Parameter Systems[END_REF], [START_REF] Xu C-Z | A robust PI-controller for Infinite Dimensional Systems[END_REF]). In this work, the internal model control structure is used for the synthesis of a robust control of a boundary control, for the irrigation canal regulation problem, in the inhomogeneous case. This internal model boundary control (IMBC), which is introduced in [START_REF] Toure | An extension of IMC to Boundary Control of Distributed Parameter Systems[END_REF] for parabolic system with an exponentially stable semigroup, is extended here for an hyperbolic space varying stable system. In the next section, the control problem is stated as a boundary control of linear system. The nonlinear system and the linear boundary control system are given. In section three, the abstract boundary control system is stated with infinite dimensional systems state space representation. The well-posedness of the open loop system is done with the semigroup approach following Fattorini's abstract boundary control system approach ( [START_REF] Fattorini | Boundary Control Systems[END_REF]). Then, we show that the open loop system has a stable semigroup. The IMBC structure is studied as an extended state space system of a closed loop system with an integral type feedback control. Then, we just show that the closed loop can be viewed as a bounded perturbation of open loop system by the control parameters ( [START_REF] Kato | Pertubation Theory for Linear Operators[END_REF], [START_REF] Pohjolainen | Robust multivariables PI-controller for Infinite Dimensional Systems[END_REF]). So, previous stability results ( [START_REF] Kato | Pertubation Theory for Linear Operators[END_REF], [START_REF] Pohjolainen | Robust multivariables PI-controller for Infinite Dimensional Systems[END_REF], [START_REF] Toure | An extension of IMC to Boundary Control of Distributed Parameter Systems[END_REF]) are used to give sufficient conditions for control synthesis parameters. In the last section, simulation results and experimental data are given for a stable tracking problem around an equilibrium state. [START_REF] Curtain | An introduction to Infinite Dimensional Linear Systems[END_REF] The canal regulation problem: a boundary control system Let's consider the following class of canal represented in Figure 1, for one reach (n) which follows another one (n -1), where

• Q(x, t) denotes the water-flow,

• Z(x, t) the water height in the canal,

• L the length of the part of the canal to be controlled between the upstream reservoir (x = 0) and the downstream (x = L) of the canal.

• U 0 (t) denotes the gate control level at abscisse 0.

Figure 1: Canal scheme

The regulation problem is the stabilization of the water-flow and/or the height, around an equilibrium behaviour denoted (z e , q e ). So a linearized model can be involved to describe the deviations around the non linear equilibrium behaviour. These models are recalled.

The Model

The canal is supposed to have a sufficient length, L, such that an uniform movement can be assumed, in the lateral direction. The shallow water's pde, for a rectangular canal are then non linear and can be written as follow [START_REF] Georges | Automatique pour la Gestion des Ressources en Eau, IC2, Systèmes automatisés[END_REF], [START_REF] Malaterre | Le Contrôle automatique des Canaux d'Irrigation: Etat de l'Art et Perspectives[END_REF]:

∂ t Q = -∂ x ( Q 2 bz + 1 2 gbZ 2 ) + gbZ(I -J), (2.1) 
∂ t Z = -∂ x Q b , (2.2) 
Z(x, 0) = Z 0 (x), Q(x, 0) = Q 0 (x), (2.3) 
The equation of the upstream boundary is given by

Q(0, t) = U 0 (t)Ψ 1 (Z(0, t)), (2.4) 
The other boundary condition is a downstream overflow (Fig. 1):

Z(L, t) = Ψ 2 (Q(L, t)), (2.5) 
where

Ψ 1 (Z) = K 1 2g(z am -Z), Ψ 2 (Q) = ( Q 2 2gK 2 
2

) 1/3 + h s ,
and U 0 (t) is the upstream control, b the canal widht, I is the slope of the bottom, and J the slope's rubbing, expressed with the Manning-Strickler expression, R is the hydraulic radius

J = n 2 Q 2 (bZ) 2 R 4/3 , R = bZ b + 2Z , (2.6) 
see [START_REF] Georges | Automatique pour la Gestion des Ressources en Eau, IC2, Systèmes automatisés[END_REF], [START_REF] Malaterre | Le Contrôle automatique des Canaux d'Irrigation: Etat de l'Art et Perspectives[END_REF]. Note that the output to be controlled is the level at x 0 = L.

A regulation model

The previous system (2.1)-(2.5) is linearized around the equilibrium state:

∂ x q e = 0 ∂ x z e = gbz e I + J e + 4 3 J e 1 1+2ze/b gbz e -q 2 e /bz 2 e , (2.7) 
and the fluvial case is considered: z e > 3 q 2 e /(gb 2 ).

(2.8)

Note that, q e is constant but z e is space dependent. The linearized system is:

∂ t ξ(t) = (∂ t z(t) ∂ t q(t)) t = A 1 (x)∂ x ξ(x) + A 2 (x)ξ(x) (2.9) ξ(x, 0) = ξ 0 (x) q(0, t) = u 0,e ∂ z Ψ 1 (z e (0, t))z(0, t) + u 0 (t)Ψ 1 (z e (0, t)) z(L, t) = ∂ q Ψ 2 (q e )q(L, t)
where u 0,e is the gate control level corresponding to the equilibrium point and

A 1 (x) = 0 -a 1 (x) -a 2 (x) -a 3 (x) , A 2 (x) = 0 0 a 4 (x) -a 5 (x) , (2.10) 
with

a 1 (x) = 1/b, a 2 (x) = gbz e (x) - q 2 e bz 2 e (x)
, a 3 (x) = 2q e bz e (x) a 4 (x) = gb(I + J e (x) + ), a 5 (x) = 2gbJ e (x)z e (x) q e .

The control problem is to find the variations of the control u 0 (t) at the boundary x = 0, such that the output variations at the boundary x = L (measured variable), becomes zero or tracks a reference no persistent signal r(t) (a step stable response of a non oscillatory single system, for example).

3 Control synthesis: the IMBC structure

The state space representation allows us to use the semigroup approach which is well suited for infinite dimensional systems. The abstract boundary control system is stated first ( [START_REF] Fattorini | Boundary Control Systems[END_REF]) and the extended control system is stated in the IMBC structure according an integral control law.

The abstract boundary control system

The linearized boundary control model can be formulated as follow:

∂ t ξ(t) = A d (x)ξ(t), x ∈ Ω =]0, L[, t > 0 (3.11) F b ξ(t) = B b u(t), on Γ = ∂Ω, t > 0 ξ(x, 0) = ξ 0 (x) (3.12)
where

A d (x) = A 1 (x)∂ x + A 2 (x).
The output is measured at x 0 = L in one reach case:

y(t) = Cξ(t), t ≥ 0 (3.13)
where C is a bounded operator representation of the measurement:

C = 1 2µ x0+µ x0-µ 1 x0±µ 0 , µ > 0
The abstract boundary control system follows the change of variables and operators ( [START_REF] Fattorini | Boundary Control Systems[END_REF]).

-Consider the operator A defined as:

D(A) = {ϕ ∈ D(A d ) : F b ϕ = 0} = D(A d ) ∩ Ker(F b )
and

Aϕ = A d ϕ ∀ϕ ∈ D(A).
A is assumed closed and densely defined in the state space X = L 2 (0, L) × L 2 (0, L).

-Consider the change of variables:

ξ(t) = ϕ(t) + Du(t) ∀t ≥ 0 (3.14)
where D is a bounded operator from the control space U to X, such that

Du ∈ D(A d ) F b (Du(t)) = B b u(t) ∀u(t) ∈ U
Note that without loss of generality, this operator D can be chosen to leave the operator A d unchanged (i.e. Im(D) ⊂ Ker(A d )).

Then the system (3.11)-(3.12) is equivalent to:

φ(t) = Aϕ(t) -D u(t), ϕ(t) ∈ D(A), t > 0 ϕ(0) = ξ(0) -Du(0)
which has the classical solution:

ϕ(t) = T A (t)ϕ 0 - t 0 T A (t -s)D u(s)ds
where u is assumed to be a continuous time function and A is supposed to be an infinitesimal generator of a C 0 semigroup T A (t) such that the solution ϕ(t) = T A (t)ϕ 0 exists and belongs to D(A).

In the monovariable control case, which is considered here, u(t) ∈ U , U = R and:

D(A d ) = {ξ ∈ X : ξ a.c., ξ ∈ X et z(L, t) = ∂ q Ψ 2 (q e )q(L, t)}, Ker(F b ) = {ξ ∈ X : ξ a.c., ξ ∈ X et q(0, t) = u 0,e ∂ z Ψ 1 (z e )z(0, t)} (3.15) Proposition 3.1
The open loop system is well-posed, i.e. it's a generator of a C 0 -semigroup.

Proof . A(x) = A 1 (x)∂ x + A 2 (x),
A is a linear and densely defined operator. It is just necessary to prove that A 1 (x)∂ x is a closed operator.

Recall that a closed operator T verifies

T : X → Y, ∀Z n (x) → Z(x), T Z n → y, ∀x ∈ (0, L) ⇒ Z ∈ D(T ) and T Z = y. (3.16) For A 1 (x)∂ x , let define f , so that A 1 (x)∂ x f = Y i.e. f (ξ) = (A 1 (x)∂ x ) -1 Y , with: (A 1 (x)∂ x ) -1 y 1 y 2 = x 0 a3(s) a1a2(s) y 1 (s)ds - x 0 y2(s) a2(s) ds - x 0 y1(s) a1 ds . Then, f -Z = f -Z n + Z n -Z ≤ f -Z n + Z n -Z f -Z n = L 0 |f 1 -z n | 2 + |f 2 -q n | 2 dx ≤ L 0 | x a 3 (s) a 1 a 2 (s) y 1 (s)ds - x y 2 (s) a 2 (s) ds -z n | 2 + | - x y 1 (s) a 1 ds -q n | 2 dx ≤ L 0 | x a 3 (s) a 1 a 2 (s) y 1 (s) - y 2 (s) a 2 (s) -z n ds| 2 + | x - y 1 (s) a 1 -q n ds| 2 dx ≤ L 0 1 (0,x) a 1 a 2 (x) 2 L2(0,L) a 3 y 1 (s) -a 1 y 2 -a 1 a 2 z n 2 L2(0,L) + 1 (0,x) a 1 2 L2(0,L) -y 1 -a 1 q n 2 L2(0,L) dx ≤ C → 0 So f = Z
, and the operator is closed from (3.16). Finally, following the expression of A 1 (x) in (2.10), for all x ∈ [0, L] and (2.8), the operator A(x) can be written as follow:

A(x) = A 1 (x)∂ x + A 2 (x) = A 1 (x)(∂ x + A 1 (x) -1 A 2 (x)).
A 1 (x) and A 2 (x) are compact operators with the hypothesis (2.8), as all these components depend on z e (x). The operator T = ∂ x is generator of a C 0 -semigroup ( [START_REF] Kato | Pertubation Theory for Linear Operators[END_REF]) and the perturbations theory ( [START_REF] Kato | Pertubation Theory for Linear Operators[END_REF], [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF]) by bounded linear operators, can be applied to T .

Proposition 3.2

The open loop system has a stable semigroup.

Proof . See the complete prove in annexe 6.1.

Recall that the open loop abstract boundary control system is

φ(t) = Aϕ(t) t > 0 ϕ(0) = ϕ 0 in D(A)
and ϕ(t) = T A (t)ϕ 0 (according to proposition 3.1 where T A (t) is the C 0 semigroup generated by the operator A(x) defined in this section:

A(x) = A 1 (x)∂ x + A 2 (x).
Let us consider the two parts of this operator: A 2 (x) is semi-definite negative, following the fact that its spectral set is:

σ(A 2 (x)) = {0} ∪ {-a 5 (x)/a 5 (x) > 0 ∀ 0 ≤ x ≤ L}.
The spectral set of A 1 (x)∂ x is defined as follows ( [START_REF] Kato | Pertubation Theory for Linear Operators[END_REF]):

σ(A 1 (x)∂ x ) = σ p (A 1 (x)∂ x ) = {µ n : µ n (x) = µ(x) + 2iπn Lθ(x) , n ∈ Z, θ(x) > 0}. (3.17)
It can be prove that e(σ(A 1 (x)∂ x )) is strictly negative (µ(x) < 0 for all x ∈ [0, L] see annexe 6.1). So, according the fact that A 1 (x)∂ x has a compact resolvent and the spectral growth property, one can get:

A 1 (x)∂ x ϕ, ϕ ≤ 0.
Finally, for all ϕ(x)

∈ D(A), A 2 (x)ϕ, ϕ ≤ 0 and A 1 (x)∂ x ϕ, ϕ ≤ 0.
Now let V (t) be the following Lyapunov function,

V (t) = 1 2 ϕ(t) 2 L2(0,L) = 1 2 T A (t)ϕ 0 2 L2(0,L) , then V (t) = A 1 (x)∂ x ϕ, ϕ + A 2 (x)ϕ, ϕ and V (t) ≤ 0.
According to the Lyapunov approach, the open loop system is a completely stable system, i.e. T (t) < +∞, ∀t > 0.

The control objective can be now achieved by a simple control law in the IMBC control structure.

The IMBC structure

This control structure is a particular case of the classical IMC structure since it contains an internal feedback on the linear system. Moreover the control acts simultaneously on the linear control system and the nonlinear model (which represent the real system) [START_REF] Josserand | PI-controller in IMC structure for Distribued Parameter System[END_REF]. The reference filter (M r ) Tracking model M r is a stable finite dimension system such that, in the classical case of constant reference, it allows to get a dynamic tracking towards this fixed reference. It is also named reference filter.

This phenomena is modeled by following equations:

ẋr (t) = A r x r (t) + B r v(t), v(t) ∈ R p , r(t) ∈ R p , (3.18) r(t) = C r x r (t) x r (0) = 0.
Low pass filter (M f ) Filter M f is a linear finite dimension system, which aim is to filter the error signal e(t) = y s (t)-y(t), difference between the system output and the model one. This signal, suppposed no persistent and bounded is representative of the not mensured perturbations added at the system output, as of the modelisation and parameters. It is written as:

ẋf (t) = A f x f (t) + B f e(t), e(t) ∈ R p , y f (t) ∈ R p , (3.19) y f (t) = C f x f (t) x f (0) = x f 0 .
Internal model control structure is used for its robusteness and tracking qualities. The low pass filter (M f ) allows to go throught perturbations created by direct noises of the mesurement or the model uncertainties represented by e(t), or both, in order to decrease their influence on the control.

The control law is chosen as an integral type feed back control

u(t) = ακξ(t) (3.20) 
with ξ(t) = ε(t) and where

ε(t) = r(t) -y(t) -e(t)
which can be used with a perfect model (i.e. e(t) ≡ 0, ∀t) for control synthesis: 

if e(t) ≡ 0 y(t) = y s (t), ε(t) = r(t) -y s (t) if e(t) = 0 ε(t) =
ẋa (t) = A(α)x a (t) + B(α)r(t) x a (0) = x a0 (3.23)
where

A(α) = A 0 -G 0 + α DκC 0 0 -κCD + α 2 0 κ 2 DCD 0 0 , (3.24) 
B(α) = -αDκ 1 .
A(α) can be viewed as a bounded perturbation of A ([6]):

A(α) = A e + αA (1) e + α 2 A (2) e ,
where A

e and A

e are bounded operators.

Closed loop: stability and regulation study

According to open loop system stability, the stability of the closed loop operator A(α) can be achieved simply ( [START_REF] Toure | An extension of IMC to Boundary Control of Distributed Parameter Systems[END_REF]) using a stable perturbation gain for α and κ.

Proposition 3.3 A sufficient condition of the closed loop system stability is given by:

0 < α < min λ∈Γ (a R(λ, A e ) + 1) -1 with a = max( A (1) e , A (2) e 
), Γ ∈ ρ(A e ), e(σ(-κCD)) < 0.

Proof . see [START_REF] Toure | An extension of IMC to Boundary Control of Distributed Parameter Systems[END_REF] Proposition 3. [START_REF] Georges | Automatique pour la Gestion des Ressources en Eau, IC2, Systèmes automatisés[END_REF] The system and model are supposed to check the non persistent assumption (for function e(t) = y s (t) -y(t)). As the closed loop system operator à is the infinitesimal generator of an holomorph semigroup exponentially stable, the controlled system has the following asymptotic behaviour:

lim t-→∞ [y s (t) -v(t)] = 0.
Proof . see annexe 6.2

Simulation and application

For those first studies, filters M f and M r are supposed equal to one.

To take into account a more realistic dynamic of the gate, a second order system is written:

ü(t) + 2ℵω n u(t) + ω 2 n u(t) = kω 2 n v(t) ⇔ u1 = u 2 u2 = -2ℵω n u 2 -ω 2 n u 1 + kω 2 n v(t)
and can be viewed as following: 

Simulation results

Theorical results give a majoration of the coefficient α i is given in order to preserve the exponential stability of the closed loop C 0 -semigroup. Example given, the condition of proposition 3.3

0 ≤ α i < α i,max = min λ∈Γ (a R(λ; A e ) + 1) -1
implies that α i < 1, this condition is sufficient to the stability, but it is not necessary. Those values depend on the equilibrium state.

The reference signal is a step response of a first order system. Initial conditions are given by: z e (0) = 1.017dm, q e = 1dm 3 .s -1 , u e = q e K 1 2g(z am -z e (0)) = 0.097dm,

h s = z e (L) - q 2/3 e (2gK 2 
2 ) 1/3 = 0.919dm. Control parameter is α i = 1, even if α i,max = 2.10 -3 by previous theory. Remember that the condition are sufficient bu t not necessary.

For the shallow water model used, the output variable is Z ( [START_REF] Kurganov | Central-Upwind Schemes for the Saint-Venant System Mathematical Modelling and Numerical Analysis[END_REF]). The reference is given below, with r 0 = z e (L) = 1.146dm: time r(t) 0 ≤ t ≤ 130 r(t) = r 0 = 1.146dm 130 ≤ t ≤ 650 r(t) = 1.14 * r 0 = 1.306dm 650 ≤ t ≤ 1000 r(t) = 0.95 * r 0 = 1.09dm

The variation of the height and the control are as follows (Figure 4): 

Application to the Valence pilote canal

The Valence micro canal is an experimental process (length=8 m, width=0.1 m), with a rectangular basis, a variable slope, and with three gates (two reaches). In the overflow case (cf. Figure 5), the flow, the upstream height, the opening of the upstream gate at equilibrium are given:

Q e = 2dm 3 /s, z e (0) = u e = 0.205dm.
The reference signal is to reach a level of +10% (r(t) = 0.968dm) up to the equilibrium of the downstream (output). 

Conclusion

The above simulation and experimental results show the well-suitability of the infinite dimensional system approach for regulation of the canals. The robustness of the IMBC is also an interesting property, since the control which is synthesis on a linearized system act well on the nonlinear, and on the real system (3.21). Moreover, notice that multivariable approach allows, more easily, to take into account the more realistic situation with lateral leak or supply and the connection with more numerous canals with the regulation of all. One can notice that the infinite dimensional state representation is also suitable to deal with. 

Annexe

Stability

φ(t) = Aϕ(t) t > 0 ϕ(0) = ϕ 0 in D(A)
and ϕ(t) = T A (t)ϕ 0 (according to proposition 3.1 where T A (t) is the C 0 semi-group generated by the operator A defined in this section:

A(x) = A 1 (x)∂ x + A 2 (x).
Let us consider the two parts of this operator: A 2 (x) is semi-definite negative, following the fact that its spectral set is:

σ(A 2 (x)) = {0} ∪ {-a 5 (x)/a 5 (x) > 0 ∀ 0 ≤ x ≤ L}.
The spectral set of A 1 (x)∂ x is defined as follows ( [START_REF] Kato | Pertubation Theory for Linear Operators[END_REF]):

σ(A 1 (x)∂ x ) = σ p (A 1 (x)∂ x ) = {µ n : µ (x) = µ(x) + 2iπn Lθ(x) , n ∈ Z, θ(x) > 0} (6.25)
If λ is an eigenvalue of A 1 (x)∂ x then:

A 1 (x)∂ x φ = λφ A 1 (x)φ = λφ ⇔ φ = λA -1 1 φ ⇔ φ φ -1 = λA -1 1 1 1 z /z q /q = λ(x) 1-ba3 a2 b so q (x)/q(x) = bλ(x) ⇒ log | q(L) q(0) | = L 0 bλ(x)dx and z (x)/z(x) = λ(x) 1 -ba 3 (x) a 2 (x) ⇒ log | z(L) z(0) | = L 0 λ(x) 1 -ba 3 (x) a 2 (x) dx.
The boundary conditions can be expressed as follows:

z(L) = α L q(L), z(0) = α 0 q(0), with α i constant. Consequently, log | z(L) z(0) | = log | q(L) q(0) | + log | α L α 0 | L 0 λ(x) 1 -ba 3 (x) a 2 (x) dx = L 0 bλ(x)dx + log | α L α 0 | L 0 λ(x) 1 -ba 3 (x) -ba 2 (x) a 2 (x) dx = log | α L α 0 | = C L 0 λ(x)θ(x)dx = C (6.26) So if µ is another eigenvalue of A 1 (x)∂ x , different from λ, it checks (6.26), and exp L 0 λ(x)θ(x)dx = exp L 0 µ(x)θ(x)dx , thus ∃n ∈ Z: L 0 λ(x)θ(x)dx = L 0 µ(x)θ(x)dx + 2inπ = L 0 µ(x)θ(x) + 2inπ L dx.
Proving that:

• θ(x) has a constant sign,

• λ(x) < µ(x), ∀x ∈ (0, L), then (6.25) is proved as

λ(x) = µ(x) + 2inπ Lθ(x) p.p.
The second item is proved as follows:

If an α ∈ (0, L) exists so that λ(α) = µ(α) then a φ exists such as

A 1 (x)∂ x φ(α) = λ(α)φ(α) = µ(α)φ(α) i.e. φ ∈ Ker(A 1 (x)∂ x -λ) ∩ Ker(A 1 (x)∂ x -µ).
However, Kato's theory ( [START_REF] Kato | Pertubation Theory for Linear Operators[END_REF], ch. III) tells us that in the case where the eigenvalues are isolated with finite multiplicity, the spectrum can be decomposed in an orthogonal sum of eigenspaces. The lemma ([2], p.616 lemma A.4.19, [START_REF] Kato | Pertubation Theory for Linear Operators[END_REF], p.140, theorem III.6.29) can be applied to

A 1 (x)∂ x .
Of course, A -1 exists and it's compact as it's composed of integral operators and all the coefficients a i (x) are non null and bounded according to the hypothesis (2.8). Moreover 0 ∈ ρ(A 1 (x)∂ x ). If not, if 0 is an eigenvalue then z and q are null, and it's the unique solution. The null vector isn't a eigenvector, there's a contradiction. The inverse of A 1 (x)∂ x is given by:

(A 1 (x)∂ x ) -1 y 1 y 2 = x 0 a3(s) a1a2(s) y 1 (s)ds - x 0 y2(s) a2(s) ds - x 0 y1(s) a1 ds . Applying the lemma, if φ ∈ Ker(A 1 (x)∂ x -λ) ∩ Ker(A 1 (x)∂ x -µ)
it implies φ = 0 and the second inequality is checked.

The first item is proved by studying the function f (x) = θ(x) • a 2 (x):

f (x) > 0 ⇔ 1 -ba 3 (x) -ba 2 (x) > 0 ⇔ 1 -2 q e z e -gb 2 z e + q 2 e z 2 e > 0
⇔ q 2 e -2q e z 2 e -gb 2 z 3 e + z 2 e > 0 then ∆ = 4gb 2 z 3 e > 0 and with (2.8) ∃ε > 0, gb 2 z 3 e = q e + ε: 0 < q e < z e -gb 2 z 3 e or q e > z e + gb 2 z 3 e = z e + q e + ε So, the second choice isn't possible as it implies that z e + ε < 0, and the first one is always done ; 0 < q e < z e -gb 2 z 3 e = z e -q e -ε ⇔ 0 < 2q e < z e -ε ⇔ 0 < gb 2 z 3 e < z e + ε 2

⇐ 4gb 2 z 2 e -z e -2ε < 0 ⇔ 0 < z e < 1 + 1 + 32gb 2 ε 8gb 2
This condition is always true.

Let's prove that e(σ(A 1 (x)∂ x )) < 0.

The real part of each eigenvalues verifies the two equations using (6.25):

-a 1 q = µz, -a 2 z -a 3 q = µq. (6.27)

The first one gives :

-a 1 (q(x) -q(x )) =

x x µz, ∀x, x ∈ (0, L) (6.28)

According to the boundary conditions in D(A), z and q have opposite sign at x = 0, and the same sign at x = L. So, there's two possibilities, 1. z is null for at least one x, and q is null too in this point, 2. q is null for at least one x, but z is not necessary null in this point).

Let's consider the two possibilities:

1. let x ∈ (0, L) be the smaller x, not null, so that z(x ) = 0 and q has a constant sign in the new interval obtained, then

a 1 q(0) = x 0 µ(x)z(x)dx
and z < 0 over [0, x ), so q > 0 over [0, x ) and

x 0 µ(x)z(x)dx > 0 ⇒ µz ≥ 0 p.p.
⇒ µ ≤ 0 p.p.; µ = 0 over [0, x ), since µ has constant sign. It is also true if z > 0 and q < 0.

2. In the same way, let x ∈ (0, L) be the smaller x so that q(x ) = 0. Since z has a constant sign over this interval, (indeed, it would imply the existence of an x < x , where z is null, idem for q, and x is not the smaller one.) then, the calculations are the same. Now, suppose that there's an x = α ∈]0, L[, such that µ(α) is null, then it's an extremum of µ and so µ (α) = 0. Moreover, it implies that if µ

(n) (α) = 0 then (q ) (n) (α) = 0 and (z ) (n) (α) = 0. Using those relations in µ(x) = -q (x) bz (x) 
(expression found using the equalities (6.27)), contradictions appears. Consequently, µ < 0, ∀x ∈ (0, L), so e(σ(A 1 (x)∂ x )) < 0.

Finally, let's prove that

e(σ(A 1 (x)∂ x )) < 0 ⇒ A 1 (x)∂ x ϕ, ϕ ≤ 0.
Indeed, it verifies the spectral growth assumption since A 1 (x)∂ x has a compact resolvent ( [START_REF] Toure | An extension of IMC to Boundary Control of Distributed Parameter Systems[END_REF], [START_REF] Triggiani R | On the stability problem in Banach space[END_REF]), and w 0 = sup{Re(λ) : λ ∈ σ(A 1 (x)∂ x )} < 0, as e(σ(A 1 (x)∂ x )) < 0. Consequently, for ω = 0, (sI -A) -1 ∈ H ∞ (L(X)) by theorem (theorem 5.1.6, [START_REF] Curtain | An introduction to Infinite Dimensional Linear Systems[END_REF], p223), it implies that the semigroup T (t) is exponentially stable by the theorem (theorem 5.1.5, [START_REF] Curtain | An introduction to Infinite Dimensional Linear Systems[END_REF], p222), i.e.

T (t) ≤ e -ωt , ∀ ω > w 0 ⇒ R(λ, A) ≤ 1 Re(λ) -ω ∀ Re(λ) > ω. (6.29) 
With ω = 0 in (6.29), the following inequality is obtained 

R(λ, A) ≤ 1 Re(λ) ∀ Re(λ) > 0, and 
ξ = R(λ, A)(λI -A)ξ ≤ R(λ, A) (λI -A)ξ ≤ (λI -A)ξ Re(λ) ⇔ Re(λ) ξ ≤ (λI -A)ξ ∀ Re(λ) > 0 ⇒ Re(< Aξ, ξ >) < 0 i.e. λ ξ ≤ (λI -A)ξ ∀ λ > 0 ⇒< Aξ, ξ >< 0, ( 6 
V (t) = 1 2 ϕ(t) 2 L2(0,L) = 1 2 T A (t)ϕ 0 2 L2(0,L) , then V (t) = A 1 (x)∂ x ϕ, ϕ + A 2 (x)ϕ, ϕ and V (t) ≤ 0.
According to the Lyapunov approach, the open loop system is a stable system.

Regulation

Proposition 6.2 The system and model are supposed to check the non persistent assumption (for the function e(t) = y s (t)-y(t)). As the closed loop system operator à is the infinitesimal generator of an holomorph semigroup exponentially stable, the controlled system has the following asymptotic behaviour:

lim t-→∞ [y s (t) -v(t)] = 0.
Proof . The permanent rate of the closed loop system must be expressed. The final value of the system solution is studied:

x a (t) = T A(α) (t)x a (0) + t 0 T A(α) (t -s) Bv(s)ds. (6.31) 
• Exponential stability of the C 0 -semigroup implies: lim t→∞ T A(α) (t)x a (0) → 0.

• By Hille-Yosida theorem [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF], [START_REF] Yosida | Functional Analysis[END_REF], A(α) -1 exists and is bounded, so an integration can be done: • Term A(α) -1 T A(α) (t) Bv(t) is asymptotically null by the stability of T A(α) (t).

• Integral component can be majored by an ε such that ε → 0 when t → ∞. Indeed:

• B is bounded as it is composed of bounded elements, so it exists a constant N positive such that: B < N.

• As the reference v(t) is supposed non persistent too, for each > 0, it exists a T > 0 such that: v(t) -v(s) < ω 2M N , for s, t ≥ T, where M and ω are given by exponential stability, i.e.:

T A(α) (t) ≤ M exp -ωt .

Previous inequalities imply: ≤ 2 v max M N ω exp -ω(t) (exp -ω(T ) -1) + 2 (1 -exp -ω(t-T ) ) -→ 0 when t → ∞ Function A(α) -1 Bv(t) is the only one which does not equal zero when t → ∞, in equation (6.32). Consequently, the limit when t → ∞ of the controlled system is: x a (t) = 0.

So, each component of .

x a (t) → 0, i.e.: thus, by the IMC structure, regulation of the system output y s (t) is assured, y s (t) converges to the variable reference v(t).
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 61 The open loop system has a stable semigroup.Proof .Recall that the open loop abstract boundary control system is

t 0 T 0 T 0 T 0 T 0 T

 00000 A(α) (t -s) Bv(s)ds = t A(α) (t -s) B[v(s) -v(t)]ds + t A(α) (t -s) Bv(t)ds = t A(α) (t -s) B[v(s) -v(t)]ds -A(α) -1 T A(α) (0) Bv(t) + A(α) -1 T A(α) (t) Bv(t) = t A(α) (t -s) B[v(s) -v(t)]ds -A(α) -1 Bv(t) + A(α) -1 T A(α) (t) Bv(t).(6.32)

t 0 T 0 T 0 T 2 ( 1 -

 00021 A(α) (t -s) B[v(s) -v(t)]ds ≤ N t A(α) (t -s) v(t) -v(s) A(α) (t -s) v(t) -v(s) ds + N t T T A(α) (t -s) v(t) -v(s) ds ≤ M N T 0 exp -ω(t-s) 2 v max ds + M N t T exp -ω(t-s) ω 2M N ds ≤ 2 v max M N exp -ω(t-T ) -exp -ω(t) ω + exp -ω(t-T ) )

  lim t→∞ x a (t) = -lim t→∞ A(α) -1 Bv(t),which can be expressed as:lim t→∞ A(α)x a (t) + Bv(t) = lim

  last one, by definition can be written:lim t→∞ ε(t) = lim t→∞ r(t) -y(t) -y f (t) = lim t→∞ r(t) -y(t) -e(t) = lim t→∞ r(t) -y s (t) = lim t→∞ v(t) -y s (t) = 0,(6.33)