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This paper deals with the regulation problem of irrigation channels with a multi-objective control. The control problem is stated as a boundary control of hyperbolic Saint-Venant Partial Differential Equations (pde). Regulation is done around an equilibrium state and spatial dependency of the operator parameters is taken into account in the linearized model. In this paper previous stability results are generalized using perturbation theory in infinite dimensional Hilbert space, including more general hyperbolic systems. The Internal Model Boundary Control (IMBC) used in a direct approach allows to make a control parameters synthesis by semigroup conservation properties, like the exponential stability. Simulation and experimental results from Valence experimental micro-channel show that this approach shoud be suitable for more realistic situations.

INTRODUCTION

Open surface hydraulic systems were studied by different approaches [START_REF] Georges | Automatique pour la Gestion des Ressources en Eau. IC2, Systèmes automatisés[END_REF][START_REF] Malaterre | Le contrôle automatique des canaux d'irrigation : Etat de l'art et perspectives[END_REF] in modelling or control for mono and multireaches. The usual model is the Saint-Venant equations with regard to the control. In this area, two approaches are currently used: indirect approach in finite dimension (the pde's are approximated) and the direct one in infinite dimension (methods and tools directly relate to pde's).

This paper belongs to the second approach, using directly partial differential equations for control synthesis [START_REF] Pohjolainen | Robust multivariables pi-controller for infinite dimensional systems[END_REF][START_REF] Pohjolainen | Robust controller for systems with exponentially stable strongly continuous semigroups[END_REF][START_REF] Touré | Controller design for distributed parameter systems[END_REF]. The internal model boundary control is investigated for control synthesis for multireach regulation. The spatial dependency of variables is taken into account. Conservation properties of semigroup stability give the control synthesis, using some previous perturbations theory results [START_REF] Kato | Pertubation Theory for Linear Operators[END_REF][START_REF] Pohjolainen | Robust multivariables pi-controller for infinite dimensional systems[END_REF][START_REF] Pohjolainen | Robust controller for systems with exponentially stable strongly continuous semigroups[END_REF]. In the first section, the non linear model for a rectangular channel is given in order to define a linear regulation model around an equilibrium state. The equations include lateral flow perturbations. The regulation problem is then defined for a channel composed of reaches in cascade.

Then, the control synthesis is studied. In the third section, the boundary control model is well posed to set up the essential properties of the open loop system to be conserved. Previous stability results are developed in order to consider a more general class of hyperbolic operators. In the fourth part, the closed loop system, considered as a structural perturbation of the open loop one, is associated to a particular form of the internal model control structure [START_REF] Touré | Controller design for distributed parameter systems[END_REF]. The internal control law is taken as a multivariable integral controller or a proportional integral one. Then, synthesis parameters obtained by a direct application of some previous results [START_REF] Kato | Pertubation Theory for Linear Operators[END_REF][START_REF] Pohjolainen | Robust multivariables pi-controller for infinite dimensional systems[END_REF] are recalled. In the last part, lateral flow simulations and manual perturbation experimentations are given in mono and multireaches case for water level control.

THE CANNAL REGULATION PROBLEM:

A BOUNDARY CONTROL SYSTEM

Non Linear Multireach Model

The hydraulic system considered in this paper is a cascade of p reaches separated by underflow gates and ended with an overflow as represented in Fig. 1. Considering a reach, e.g. i th one, the following notations are used:

• L i is the reach length, • Q i (x, t) denotes the water-flow, x ∈]0 i , L i [, t > 0, Q i ∈ L 2 , • Z i (x, t) is the water level, x ∈]0 i , L i [, t > 0, Z i ∈ L 2 , • U i (t)
is the opening of the (i) th gate.

Fig. 1. Channel scheme: multireaches in cascade

The shallow water non linear pde for a rectangular channel can be written as follows for a given reach [START_REF] Georges | Automatique pour la Gestion des Ressources en Eau. IC2, Systèmes automatisés[END_REF][START_REF] Malaterre | Le contrôle automatique des canaux d'irrigation : Etat de l'art et perspectives[END_REF]:

∂ t Z i = -∂ x Q i b + q l,i (t) (1) 
∂ t Q i = -∂ x ( Q 2 i bZ i + 1 2 gbZ 2 i ) + f i (x, t) (2) 
Z i (x, 0) = Z 0,i (x), Q i (x, 0) = Q 0,i (x), ( 3 
)
where b is the channel width, g the gravity constant. The function

f i (x, t) = gbZ i (I i -J i ) + kq l,i Q i bZ i
stands for friction perturbations, where I i is the bottom slope, J i the slope's friction expressed with the Manning-Strickler expression and R i the hydraulic radius:

J i = n 2 Q 2 i (bZ i ) 2 R 4/3 i , R i = bZ i b + 2Z i . (4) 
The function q l,i (t) represents a lateral flow by unit length (m 2 .s -1 ), q l,i > 0 for supply (rain), negative for loss (evaporation), k = 0 if q l,i > 0 and k = 1 if q l,i < 0. Each underflow gates imposes a boundary condition of the form:

Q i (0 i , t) = U i (t)Ψ 1,i (Z i (0 i , t)), (5) 
with Ψ 1,i (Z(x, t)) = K i 2g(z up -Z(x, t)), Z < z up and z up is the water level before the upstream gate. K i is the product of (i) th gate (or overflow) width and water-flow coefficient of the gate.

In addition for the last reach, the downstream boundary condition is:

Z(L p , t) = Ψ 2,p (Q(L p , t)), (6) with Ψ 2,p (Q(x, t)) = ( Q(x,t) 2 2gK 2 p ) 1/3 + h s , h s is the overflow height.
The control problem is the stabilization of the height and/or the water-flow, around an equilibrium behavior for each considered reach. The output to be controlled in this paper is the water level at each downstream.

A Regulation Model

Let (z e (x), q e (x)) be an equilibrium state for a given reach. A linearized model with variable coefficients can be involved to describe the variations around this equilibrium behavior. This equilibrium state of the system satisfies the following equations, when q l = 0:

∂ x z e = gbz e (I + J e + 4 3 J e 1 1+2ze/b ) gbz e -q 2
e /bz 2 e ∂ x q e = 0 (7)

Considering one equilibrium state for the i th reach, the linearized system around an equilibrium state (z e,i (x), q e,i ) is,

ξ i = z i q i t ∈ X i = L 2 (0 i , L i ) × L 2 (0 i , L i ): ∂ t ξ i (t) = (∂ t z i (t) ∂ t q i (t)) t = A 1,i (x)∂ x ξ i (x) + A 2,i (x)ξ i (x) (8) ξ i (x, 0) = ξ 0,i (x) (9) 
Boundary limits for an upstream gate are:

q i (0 i , t) -u i-1,e ∂ z Ψ 1 (z e,i (0 i ))z i (0 i , t) = u i-1 (t)Ψ 1 (z e,i (0 i )) (10)
-for a downstream overflow:

z p (L p , t) -∂ q Ψ 2 (q e )q p (L p , t) = 0 (11)
where u i-1,e , u i,e are respectively the i th gate upstream and downstream equilibrium state opening. u i-1 , u i are the opening variations at upstream and downstream. Moreover

A 1,i (x) = 0 -a 1,i (x) -a 2,i (x) -a 3,i (x) , (12) 
A 2,i (x) = 0 0 a 4,i (x) a 5,i (x) , (13) 
with

a 1,i (x) = 1 b , a 2,i (x) = gbz e,i (x) - q 2 e bz 2 e,i (x) , a 5,i (x) = - 2gbJe,i(x)ze,i(x) qe ,a 3,i (x) = 2qe bze,i(x) , a 4,i (x) = gb(I + J e,i (x) + 4 3 Je,i(x) 1+2ze,i(x)/b
). The overall linearized system around an equilibrium state is then written as:

∂ t ξ(t) = A e (x)∂ x ξ(x) + B e (x)ξ(x) (14) ξ(x, 0) = ξ 0 (x) (15) F (ξ, u e ) = G(u(t)), (16) 
where ξ = (z 1 q 1 z 2 q 2 . . . z p q p ) t ∈ X and 16) represents the boundary conditions ( 10)-( 11). Operators A e (x) and B e (x) are the generalization of operators A 1,i (x) and A 2,i (x) respectively:

X = p i=1 L 2 (0 i , L i ) × L 2 (0 i , L i ) . Equation (
A e = diag(A 1,i ) 1≤i≤p , B e = diag(A 2,i ) 1≤i≤p . (17)
Output variable y is the water levels variation around the equilibrium behaviour at each

x j = L j , 1 ≤ j ≤ p, y(t) = Cξ(t) ∈ Y = R p , t ≥ 0
where C is a bounded operator (representation of the measurement):

Cξ = (diag(C i )) 1≤i≤p ξdx, µ > 0,
and

C i ξ = 1 2µ xi+µ xi-µ 1 xi±µ 0 ξdx, µ > 0, with 1 xi±µ (x) = 1 [xi-µ,xi+µ] (x) the function that equals 1 if x ∈ [x i -µ, x i + µ], else 0, and µ > 0.
The control is given by u

(t) ∈ U = R p , u ∈ C α ([0, ∞], U ) (Regularity coefficient is generally taken as α = 2.
). The control problem is to find the variations of the control action u(t) such that the water levels at each downstream reach x = L i (i.e. the output variables) track reference signals r i (t), different for each reach. The reference signal r i (t) is chosen, for all cases, constant or no persistent (a step stable response of a non oscillatory system).

OPEN LOOP CHARACTERIZATION

The system is first written as a classical boundary control system. Associated to the internal model structure, the closed loop system is described as an open loop perturbation.

The control problem can be expressed as a stabilization problem around an equilibrium state, defined e.g. as ∂ t ξ = 0. The linearized boundary control model can be formulated as follows:

∂ t ξ(t) = A d (x)ξ(t), x ∈ Ω, t > 0 (18) F b ξ(t) = B b u(t), on Γ = ∂Ω, t > 0 (19) ξ(x, 0) = ξ 0 (x) ( 20 
)
where

A d (x) = A e (x)∂ x + B e (x)
is an hyperbolic operator.

The Abstract Boundary Control System

The abstract boundary control system is obtained by a change of variables and operators [START_REF] Fattorini | Boundary control systems[END_REF]) and the system ( 18)-( 20) becomes:

.

ϕ (t) = Aϕ(t) -D . u (t), ϕ(t) ∈ D(A), t > 0 ϕ(0) = ξ(0) -Du(0) (21) 
where:

ϕ(t) = ξ(t) -Du(t) ∀t ≥ 0. ( 22 
)
D is a bounded operator from U → X, such that: The classical solution of system ( 21) is:

Du ∈ D(A d ) and
ϕ(t) = T A (t)ϕ 0 - t 0 T A (t -s)D . u (s)ds
where .

u is assumed to be a continuous time function and A is an infinitesimal generator of a C 0 -semigroup T A (t) such that the solution ϕ(t) = T A (t)ϕ 0 exists and belongs to D(A).

In this order, A has to be a closed, densely defined operator, generator of a C 0 -semigroup. Previous results have been given to characterize those properties and the stability of the system, for q l = 0 in (1)-( 3) and ( 14)-( 16). The aim is to generalize those results to a larger class of operators.

Open Loop Properties

The system is well defined i.e. it is a densely defined and closed operator (Dos Santos, 2005a;[START_REF] Dos Santos | Régulation de canaux d'irrigation : Approche par contrôle frontière multivariable, et modèle interne d'edp[END_REF].

Well defined operator

Previous results give: Proposition 1. [START_REF] Dos Santos | Régulation de canaux d'irrigation : Approche par contrôle frontière multivariable, et modèle interne d'edp[END_REF] Open loop system is well posed, i.e. generator of a C 0 -semigroup if A e (x) and B e (x) are bounded and A e (x) inversible, ∀x ∈ (0, L).

This proposition can be generelized under hypothesis:

(H)

-B e (x) is A e (x)∂ x -bounded
with b < 1 in Hilbert spaces, and with b < 1/2 in Banach spaces, -A e is inversible and densely defined, and A -1 e is bounded.

Recall that A is T -bounded if it exits two constant a and b such that:

Au ≤ a u +b T u , u ∈ D(T ).
The second hypothesis allows to get that A e (x)∂ x is a closed and densely defined operator within the same proof [START_REF] Dos Santos | Régulation de canaux d'irrigation : Approche par contrôle frontière multivariable, et modèle interne d'edp[END_REF]). Its inverse is still an integral operator, e.g. for ξ(0) = 0:

(A e (x)∂ x ) -1 y = x 0 A -1 e (s)y(s)ds.
For all cases, it is proved that under hypothesis (H):

(A e (x)∂ x ) -1 y -z L 2 (0,L) ≤ ǫ → 0.
Then, A e (x)∂ x + B e (x) is a closed operator using the following theorem:

Theorem 2. Let A and T two operators in X such that A is T -bounded with b < 1, then: S = T + A is closed if and even if T is closed.

Thus, A e (x)∂ x + B e (x) is a generator of a C 0semigroup as it is still a bounded and inversible transformation of the operator ∂ x .

Open Loop Stability

Recall that the open loop system, without control is: verifies ℜe(σ(A e (x)∂ x )) < 0 and B e (x) bounded, i.e. B e (x) ∈ L(X), ∀x ∈ Ω. Assume that:

φ(t) = Aϕ(t) t > 0, x ∈ Ω ϕ(0) = ϕ 0 ∈ D(A(x
i) B e (x) is semi-definite negative, ii) 0 ∈ ρ(A(x)) = ρ(A e (x)∂ x + B e (x)).
Then, A(x) is generator of a C 0 -semigroup exponentially stable.

The operator of the open loop system, A(x) = A e (x)∂ x + B e (x) in ( 14)-( 16), is generator of a C 0 -semigroup exponentially stable. This operator verifies propositions 3 and 4 using fluvial condition

z e (x) > 3 q 2 e /(gb 2 ) = z c , ∀x ∈ Ω. ( 23 
)
In the same way, proposition 4 can be generalized under hypothesis (H) if proposition 3 is verified.

Proof uses definition 5 and proposition 6.

Definition 5. [START_REF] Kato | Pertubation Theory for Linear Operators[END_REF] The set of all operators T satisfying the conditions:

i) T is a closed operator with domain D(T ) dense in X, ii) Let the semi-infinite interval ξ > β belongs to the resolvent set of -T and let:

(T +ξ) -k ≤ M (ξ-β) -k , ξ > β, k = 1, 2, 3, ...
will be denoted by G(M, β).

-T is the infinitesimal generator of a contraction semigroup if and only if T ∈ G(1, 0). Proposition 6. [START_REF] Kato | Pertubation Theory for Linear Operators[END_REF] Let T and A belong to G(1, 0) and let A be relatively bounded with respect to T with T -bound < 1/2 (b < 1 for a Hilbert space). Then T + A ∈ G(1, 0) too.

The control objective can be now achieved by a simple control law employed in the IMBC control structure.

THE IMBC STRUCTURE: CLOSED LOOP

The Internal Model Boundary Control (IMBC) structure is an extension of the classical IMC structure with an additional internal feedback on the model (Fig. 2).

ql(t)

Fig. 2. IMBC structure

The tracking model M r and the low pass filter model M f are stable systems of finite dimension (states x r (t) and x f (t) are associated to matrices A r , A f resp.).

A multivariable proportional-integral feedback control is chosen for the control law:

u(t) = α i κ i ε(s)ds + α p κ p ε(t) = α i κ i ζ(t) + α p κ p . ζ (t), (24) with 
.

ζ (t) = ε(t).
Moreover, ε(t) = y d (t)-y(t) acts like an integrator compared to the "real" measured output, indeed:

ε(t) = r(t) -y(t) -y f (t).
The exogeneous signals r(t) and q l (t) are supposed to be no persistent, i.e.: ∀ǫ > 0, ∃ t 0 > 0 : ||r(t) -r(t 0 )|| < ǫ, ∀t > t 0 , idem for q l (t).

Closed Loop State Space

Let x a (t) = (ϕ(t) ζ(t)) t the new state space then, . x a (t) = A(α)x a (t) + Bv(t) x a (0) = x a0 (25) 
As the extended IMBC state space X a (t) = x r (t) x f (t) x a (t) t does not improved the comprehension and has yet been discussed (Dos Santos, 2005a), we only focus on (25).

A(α) can be viewed as a bounded perturbation of A:

A(α) = A e (α) + α i A (1) e (α) + α 2 i A (2) e (α), (26) 
and where A e (α) = (I + D κp C)A 0 -(I -CDW κp )C 0 contains open loop operator A. W is the left pseudo inverse of (I + α p κ p CD), such that W (I + α p κ p CD) = I and κp = α p κ p , κi = α i κ i , α = (α i , α p ). A

(1) e and A

(2) e are bounded operators as C, D, CD. Following the stability of both tracking and filter models (M r and M f ), matrices A r and A f can be choosen as stable Hurwitz ones. So the stability of the global system depends on the stability study of A(α) in (26).

Closed Loop Stability Results

Now the perturbation theory, from Kato's works [START_REF] Kato | Pertubation Theory for Linear Operators[END_REF], for control problem of infinite dimensional system [START_REF] Pohjolainen | Robust multivariables pi-controller for infinite dimensional systems[END_REF][START_REF] Pohjolainen | Robust controller for systems with exponentially stable strongly continuous semigroups[END_REF] can be used. For the multireach operator, assumptions needed to preserve the open loop stability for the closed loop one are [START_REF] Dos Santos | Multivariable boundary control approach by internal model, applied to irrigation canals regulation[END_REF]:

-rank(CD) = p, rank(CDW ) = p, -κ p = [CD] ‡ ( ‡ is the right pseudo inverse), -κ i = -θ[CD] ‡ , 0 < θ < 1, Re(σ(CDWκ i )) < 0, -0 ≤ α i < α i,max = min λ∈Γ (a R(λ; A e ) + 1) -1 , -(I + α p κ p CD) is inversible and its inverse is W = k(I -α p κ p CD), with k = (1 -α 2 p ) -1 and a = Dκ p C , such that: 0 ≤ α p < α p,max = (sup λ∈Γ a R(λ; A) ) -1 .

SIMULATION AND EXPERIMENTAL RESULTS

Simulations gave satisfactory results for a single reach (cf. [START_REF] Dos Santos | Régulation de canaux d'irrigation : Approche par contrôle frontière multivariable, et modèle interne d'edp[END_REF]) and for the multireach cases, too. Then, the proposed control law was implemented on the Valence (France) experimental channel. This pilot channel is an experimental process (length=8 m, width=0.1 m) with a rectangular basis, a variable slope and with three gates (three reaches and an overflow). Frictions are weak and the fluvial hypothesis ( 23) is ensured thanks to the variable slope.

Simulation: Rain and Infiltrations

Mono and multireach cases are treated for infiltrations and rain effects respectively.

Infiltrations: Initials conditions are:

-flow: Q e = 2dm 3 .s -1 , -gates opening: u 1 = 0.2045, u 2 = 0.1983, -reference to track: r 1 = 1.2918dm. The aim is to compare the behaviour of the system, accounting for lateral flows (as infiltrations here, q l = 2.10 -3 dm 2 .s -1 by unit length e.g.), and of the linearized model with q l = 0 (Fig. 3). 

Fig. 3. Simulation results with infiltration

Despite perturbations, the system tracks the desired reference.

Rain: Initials conditions are: -flow: Q e = 2dm 3 .s -1 , -gates opening: u 1 = 0.29, u 2 = 0.23, u 3 = 0.24dm. The reference is to stay at equilibrium in both reaches: r 1 = 1.44dm and r 2 = 0.87dm. Rain flow is given in Fig. 4, it is equivalent to +3.4mm.h -1 in the first reach and +2.6mm.h -1 in the second one (it represents real quantities). The closed loop system is clearly robust, and efficiently tracks the level references despite rain perturbations. Like those simulations, all simulations results obtained have shown the suitability of this approach, 

Experimentation: two reaches

In this experimentation, a multireach case is realized, and for which manual perturbations are done in the first reach at t = 440 (repercussions can also be seen in the second reach). Initials conditions for the second experimentation (two reaches) are: q e = 1dm 3 .s -1 , z e1 (0) = 1.02dm, z e2 (0) = 0.82dm.

Tracking reference is for the first reach r 0 = 1.32dm: r(t) = 0.88 * r 0 for 0s ≤ t ≤ 50s r(t) = r 0 for t ≥ 72s. Second reach, length equals 3.5dm and r L = 0.88dm: r(t) = r L dm for 0s ≤ t ≤ 75 and t ≥ 265 r(t) = 1.125 * r L for 85s ≤ t ≤ 190 r(t) = 0.88 * r L for 215s ≤ t ≤ 245 . All the experimental results show the suitability of this approach. Indeed, given an interval of ±20% around a given equilibrium state, results are still very satisfactory. However, if the desired variation is higher than ±20%, the error between the model and the system increases dramatically.

CONCLUSION

The direct approach, which has been developped in this work, seems to be suitable for the regulation of channel irrigation. In addition the main previous theorical results on open loop stability have been generalized to more general hyperbolic systems ( 18)-( 20). They are applied to multireach systems with lateral flow phenomena, with succes as shown by simulation results. They are actually developped with a view to irrigation channel networks. Simulation and experimentation results are encouraging for network applications.

  F b (Du(t)) = B b u(t) ∀u(t) ∈ U and Im(D) ⊂ Ker(A d )), without lost of generality. So D(A) = {ϕ ∈ D(A d ) : F b ϕ = 0} = D(A d )∩ Ker(F b ) and Aϕ = A d ϕ, ∀ϕ ∈ D(A) on X.

  )) and ϕ(t) = T A (t)ϕ 0 is the open loop state, where T A (t) is the C 0 -semigroup generated by A(x) = A e (x)∂ x + B e (x). Its stability demonstration uses both following propositions: Proposition 3. (Dos Santos, 2005a) Let assume that ℜe(σ(A e (x)∂ x )) < 0, ∀x ∈ Ω. Then, operator A e (x)∂ x is generator of a C 0semigroup exponentially stable. Moreover, A e (x)∂ x ϕ, ϕ ≤ 0, ∀ϕ ∈ D(A e (x)∂ x ). Proposition 4. (Dos Santos, 2005a) Let consider A(x) = A e (x)∂ x + B e (x), x ∈ Ω such that A e (x)∂ x

Fig. 5 .
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