Romain Mesnil 
email: romain.mesnil@enpc.fr
  
Cyril Douthe 
  
Olivier Baverel 
  
Bruno Léger 
  
Morphogenesis of surfaces with planar lines of curvature and application to architectural design

Keywords: super-canal surface, fabrication-aware design, cylidic net, architectural geometry, structural morphogenesis, façade

This article presents a methodology to generate surfaces with planar lines of curvature from two or three curves and tailored for architectural design. Meshing with planar quadrilateral facets and optimal offset properties for the structural layout are guaranteed. The methodology relies on the invariance of circular meshes by spherical inversion and discrete Combescure transformations, and uses parametrisation of surfaces with cyclidic patches. The shapes resulting from our methodology are called super-canal surfaces by the authors, as they are an extension of canal surfaces. An interesting connection to shell theory is recalled, as the shapes proposed in this paper are at equilibrium under uniform normal loading. Some applications of these shapes to architecture are shown.

Introduction

Constructive geometry in architecture

The construction of architectural shapes is subject to technological constraints that highly impact the economy of the cladding and structure. The study that aims at expressing technological requirements as geometrical constraints is often referred to as fabrication-aware design in the computer science community, whereas architects or engineers speak of shape rationalization or constructive geometry. This topic, takes root in the eighteenth century and stereotomy, and the work of Gaspard Monge [START_REF] Sakarovitch | Gaspard Monge founder of constructive geom-801 etry[END_REF].

In glass or metal envelopes, the planarity of the panels is regarded as one of the most significant aspect in the design of technogically-feasible solutions, and motivated the creation of tailor-made morphogenesis strategies by engineering office Schlaich Bergermann und Partner [START_REF] Schlaich | Glass Roof for the Hippo Zoo at Berlin[END_REF] and always covered with planar facets, but their high node va-18 lence makes the fabrication of the structure complicated 19 [START_REF] Liu | 815 Geometric Modeling with Conical Meshes and Developable Sur-816 faces[END_REF]. They are also considered less transparent than quadri-20 lateral layouts [START_REF] Glymph | 809 A parametric strategy for free-form glass structures using 810 quadrilateral planar facets[END_REF]. Developable panels are also of interest 21 because cold-bending technologies for glass can be used at 22 a reasonable cost, as illustrated by some projects of engi-23 neering office RFR [START_REF] Blassel | La gare de Strasbourg[END_REF]6]. [START_REF] Dutta | Cyclides in surface and solid 891 modeling[END_REF] The geometry of the supporting structure is another 25 indicator of the complexity of fabrication in free-form ar-26 chitecture. The most economical solution is to build with 27 planar beams that meet exactly along axes. This topic is 28 well-known by gridshell builders [7] and is covered from a 29 mathematical perspective in [8], with a tool called 'mesh 30 parallelism'. Building a support structure with planar 31 beams implies indeed the existence of a mesh which has 32 all its edges parallel to the initial mesh.
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These two construction constraints (planarity of panels and planarity of beams) can be integrated in the design of free-form architecture, either in top-down [START_REF] Liu | 815 Geometric Modeling with Conical Meshes and Developable Sur-816 faces[END_REF]6,9] or in bottom-up approaches [10,11,12,13,14]. The latter approaches generate design spaces where the fabrication requirements are fulfilled. They offer thus the possibility to integrate constraints of a different nature early in the design process, like structural behaviour or energy consumption. This is particularly important in the context of architectural design: fabrication is only one of the many criteria that should be rationalised or optimised in a building envelope.

Geometrically-constrained shape generation

A natural way to deal with construction constraints is to generate a design-space of shapes that satisfy the most critical fabrication-constraints. This approach, known as "geometrically-constrained design strategy" [START_REF] Bagneris | Structural Mor-859 phology issues in Conceptual Design of Double Curved Systems[END_REF] has been used extensively in the history of architecture. Methods that guarantee planar quads include surfaces of revolution, surfaces of translation [START_REF] Schlaich | Glass Roof for the Hippo Zoo at Berlin[END_REF], scale-trans surfaces [START_REF] Glymph | 809 A parametric strategy for free-form glass structures using 810 quadrilateral planar facets[END_REF], moulding and Monge surfaces [START_REF] Pottmann | Architectural 863 Geometry[END_REF][START_REF] Mesnil | Isog-865 onal moulding surfaces: A family of shapes for high node con-866 gruence in free-form structures[END_REF][START_REF] Krivoshapko | Encyclopedia of analytical surfaces[END_REF]. These surfaces can be generated using two curves and a rule of transformation, either translation or sweeping along Bishop's frame. The designer controls the overall shape and its discretisation simultaneously, which makes all these shapes easily understandable and usable [START_REF] Mesnil | Structural exploration of fabrication-aware design 872 spaces for non-standard architecture[END_REF]. Accordingly, geometricallyconstrained approches using two curves like surfaces of translation are very popular in the community of structural engineers [START_REF] Schober | Transparent shells -form topology structure[END_REF].

Table 1 shows the correspondance between shape generation techniques using two or three curves and their fabrication-aware counterpart. For example extrusion along a curve that yields surfaces of translation and sur- Table 1: Kinematic method to generate free-form surfaces and their fabrication-aware equivalent, surfaces marked with asterisks are subject to additional constraints.

The objective of this work is thus to enrich the de- 

Möbius geometry and cyclidic nets

The present methodology for shape generation relies on a more general framework proposed recently for architectural design [START_REF] Mesnil | Generalised cyclidic 884 nets for shape modelling in architecture[END_REF] in the following of previous work developped in [START_REF] Martin | Cyclide surfaces in com-888 puter aided design[END_REF][START_REF] Dutta | Cyclides in surface and solid 891 modeling[END_REF][START_REF] Bobenko | Curvature line parametrized 895 surfaces and orthogonal coordinate systems: discretization with 896 Dupin cyclides[END_REF][START_REF] Bo | Surface fit-899 ting with cyclide splines[END_REF]. The main concept is to link discrete objects, namely circular meshes, with a smooth underlying surface. All the shapes are thus described as coarse circular meshes, which support portions of Dupin's cyclides. Among remarkable features of cyclides, one may mention that their lines of curvature are circles and that a patch delimited by four lines of curvature on a Dupin cyclide has its four vertices inscribed within a circle. The formal potential of this framework is shown in [START_REF] Bo | Surface fit-899 ting with cyclide splines[END_REF], where various fitting problems on complex shapes are solved. 

Geometrical properties of canal surface

Canal surfaces are a fundamental family of surfaces in the context of Möbius geometry, as this family is indeed invariant by Möbius transformations. Canal surfaces are defined as envelopes of spheres. They are commonly used as blending surfaces, either by using contour curves [27] or by joining spheres that can be manipulated by the designer The inversion of center C and ratio k applied to a point M is a point M defined by the well-known equation:

CM = k CM 2 • CM (1) 
In the complex plane, the inversion of ratio k with center C (complex number z C ) reads as:

f k,C (z) = z C + k z -z C (2) 
An elementary property of inversions is that they are involutions, which means that Möbius transformations are their own inverse transformations. This property is used in many applications shown in this paper (see Section 4).

It can finally be noticed that the ratio k is nothing more than a scaling factor. The position of the point C is the parameter that has a true impact on the shape deformation.

Combescure transformations

It In the same way, prescribing the lengths of all edges on 182 two intersecting lines, as shown in Figure 3 is sufficient to 183 determine the entire parallel mesh. In this image, the thick 184 lines correspond to edges which have prescribed lengths.

-sin β sin (α -δ)   •   l 1 l 2   (4) A B C D l 0 l 3 l 1 l 2 A' B' C' D' l 0 l 3 l 1 l 2 α β γ δ α β γ δ
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Starting from a quadrilateral with two prescribed lengths, 186 it is possible to apply equation ( 4) and find the last point of 187 the quadrilateral (white dot). It is then possible to apply this procedure to the next quadrangle in the same row, 

Input for design with super-canal surfaces

In the following of [START_REF] Glymph | 809 A parametric strategy for free-form glass structures using 810 quadrilateral planar facets[END_REF], we propose to design super-canal surfaces from two curves. The simplest way to parameterise a canal surface is to take a strip of circles as input parameters, as pictured in Figure 5. A two parameters family of cyclidic nets can be supported on the circular mesh: the choice of those parameters can be done to fulfill some design requirements, like the shape smoothness, evaluated with conformal Willmore energy [START_REF] Bobenko | Discrete Willmore Flow[END_REF][START_REF] Mesnil | Generalised cyclidic 884 nets for shape modelling in architecture[END_REF]. In the ex- 

F (u, L, λ, θ) = edges 1 R 2 edge (u, L, λ, θ) (5) 
The computation of the function is not hard, and its minimisation gives satifying results and is done in real-time.

The user can specify additional constraints, like the angle made by the normal and a reference plane. In the latter case, the degrees of freedom λ and θ become coupled, and the normal rotates along a cone.

Practically, the minimisation is here done by the means of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Figure 7 was also proven for canal surfaces before in [START_REF] Soyuçok | Infinitesimal deformations of surfaces and the stress distribution on some membranes under constant inner pressure[END_REF]. 
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From remark 1, we get that the locus of the centers of 386 the spheres generating the canal surface is on the surface 387 generated by the normals of the surface. From remark 2, we get immediately that this is a developable surface.

Actually, it is a specific case of Monge surface [START_REF] Mesnil | Isog-865 onal moulding surfaces: A family of shapes for high node con-866 gruence in free-form structures[END_REF]: once one normal has been chosen, the other normals are determined uniquely so that the envelope is indeed a developable surface. The locus of the centres of the spheres is therefore controlled by one orientation parameter. This is illustrated in Figure 9: choosing the orientation of the normal is equivalent to choosing a surface tangent to the resulting canal surface. 

Computation of the locus of centres

Consider now that a normal vector and a line of curvature have been specified for the canal surface. The locus of centres is on a developable surface. So far we did not use any property of the second curve. We notice however that the centres of the spheres are on the bisector surface of the two curves. Such surface is defined as the envelope of the points which are equidistant to both curves. They have been studied in [START_REF] Elber | The bisector surface of rational space curves[END_REF] for example.

Therefore, the centres of the spheres can be found by intersecting the bisector surface of the two curves and the developable surface constructed from the normals. Both surfaces are not bounded, and it seems intuitive that they will have an intersection in non-degenerate cases. The construction of the whole bisector surface is however not necessary, as it is meaningful to consider a finite collection of spheres that will construct the cyclidic net that parametrise the canal surface. 5. Minimise Equation(6) with Newton's method.
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The result is a collection of points corresponding to sphere 432 centres. The radius R k of each sphere is given by the surface if and only if the discrete guide curve is a pseudospherical curve (it is parallel to a curve which has all its vertices inscribed within a sphere). The second condition corresponds to the possibility of drawing the last circle of the strip. Consider Figure 14: the first circle of the strip is written C 0 , the penultimate circle C f , the initial point P and the first and last point of the curve P 0 and P f respectively. There are two cases:

P k P k+1 V k V k+1 C k C k+1
• C 0 and C f belong to the same sphere, then the circle going through P, P 0 and P f intersects the circle C f in two points. This circle is the solution we are looking for and is represented with dashed lines on In particular, we discuss here of a particular subset of 'super-surfaces of revolutions', where the center of inversion and the axis of revolution are in a horizontal plane, as shown in Figure 19. It is clear that the parallels of the surface of revolution are vertical in this case. Since inversions preserve circles and angles, we can deduce that this family of curvature lines remain vertical after inversion.

Combescure transformations preserve planarity: applying another Combescure transformation yields a surface with planar arches. This additional property is particularly interesting for applications to structural system with continuous arches and secondary structure. A specific method has therefore been developed to generate these surfaces.

It consists of solving the inverse problem detailed in the following.

The input data for the problem are displayed in Fig-

ure [START_REF] Mesnil | Structural exploration of fabrication-aware design 872 spaces for non-standard architecture[END_REF]. The user prescribes one planar curve, one circle in the same plane comprising the ends P 1 and P 4 of the curve, and two points P 2 and P 3 on this circle. The objective is here to reconstruct the initial surface of revolution, therefore the problem is to find a center of inversion C so that the image of the quadrangle P 1 P 2 P 3 P 4 is an isosceles trapezoid.

Isosceles trapezoids are the only cyclic quadrilaterals that have parallel opposite edges. Notice that the problem is planar and can thus be formulated with complex numbers. The parallelism corresponds to the fact the direction vectors are co-linear (identical up to a scaling by a real number t). Assigning the complex numbers z 1 , z 2 , z 3 and z 4 to the points P 1 , P 2 , P 3 and P 4 , and writing z j,C the complex number associated to the image of z j by an inversion of center C, we obtain equation (7): 

z 2,C -z 1,C z 3,C -z 4,C = t ∈ R (7) 
We can use the equation ( 2) to express equation ( 7) with 591 respect to the z j and obtain equation (8). It is independent 592 of the ratio of inversion k: the position of the center of 593 inversion is the only value of interest in this problem.

594 z 2 -z 1 (z 1 -z C ) (z 2 -z C ) z 3 -z 4 (z 3 -z C ) (z 4 -z C ) = t ∈ R (8) 
After simplifications, this equation leads to a second order equation in z C . The general form of (8) can be written as:

A t z 2 C + B t z C + D t = 0 (9) with                A t = z 2 -z 1 + t • (z 4 -z 3 ) B t = -(1 + t) z 1 z 3 + (t -1) z 1 z 4 + (1 + t) z 2 z 4 + (1 -t) z 2 z 3 D t = z 3 z 4 (z 2 -z 1 ) + tz 1 z 2 (z 4 -z 3 )
The case of A t = 0 can occur only when the quad On this image, all the facets are inscribed within circles.

The free-form shape is thus covered with planar facets and torsion-free nodes. Since the circle shown in Figure 20 is in the horizontal plane, it is noticed that one family of lines of curvature consists of planar vertical arches. The solution proposed here can easily be extended to the case of a spherical guide curve with two successive inversions.

Likewise, it is possible to apply this method to moulding or Monge surfaces. 

C-canal surfaces

We proposed an extension of the generation method proposed in section 4.1 by adding a Combescure transform so that the can be any planar curve, and that the final surface is a C-canal surface. Figure 21a can be used to minimise the error:

E (L k ) = k (L k -L k ) 2 ( 10 
)
The optimisation is done for each L k successively. This number of faces for applications in architecture. Notice that no pre-factorisation is required for the computation of the Combescure transformation: the computation time are the one experienced by the user. This is in accordance with the will to offer a maximal flexibility for the design.

Applying successive Combescure transformations is therefore possible in real-time applications with our algorithm. 

Shape explorations: potential and limitations

The generation super-canal surfaces is subject to modelling limitations discussed in this section. These examples also highlight some limitations of super-canal surfaces. Consider for example the shape in Figure 25, where there is a noticeable shrinkage of panels.

This concentration of lines of curvature is linked to the properties of the evolute of the guiding curve. 

  faces of revolution are good examples of fabrication-aware shapes. Monge surfaces, that can be generated by sweeping a planar curve called generatrix along a rail curve, are also very interesting for architectural shape design. It can be noticed that the sweep 2 rails command has no fabrication-aware equivalent.

73Section 4 .

 4 sign space accessible with geometrically-constrained design 74 strategies by proposing new shapes constructed from two 75 and three curves. The shapes can be generated in real-76 time on standard computers, which eases the exploration 77 of this design space. 78 The second section of this paper discusses thus the gen-79 eral methodology that generates super-canal surfaces, a 80 new family of shapes for fabrication-aware design in ar-81 chitecture, as well as a new algorithm for the fast com-82 putation of parallel meshes. Applying the results of [21], 83 we also show that super-canal surfaces are remarkable with 84 respect to shell theory: their lines of curvatures are lines of 85 principal stress under uniform normal loading. This work 86 thus meets fabrication with equilibrium, two major aspects 87 of architectural design. A new method for the generation 88 of canal surfaces from two contour curves is presented in 89 The fifth Section introduces some inverse prob-90 lems solved in with super-canal surface. A brief discussion 91 and conclusion sum up the contributions of the present

  Cyclidic nets provide thus a natural way to cover complex shapes with circular quadrilateral meshes. Moreover, as transformations mapping circular quadrilaterals to circular quadrilaterals also preserve cyclidic nets and the underlying parametrisation, such transformations are of particular interest. Two of those will be studied in the following: Möbius transformations in Section 2.3 and Combescure transformations in Section 2.4. Starting from surfaces easily described with cyclidic nets, the application of these transformations creates new shapes for fabrication-aware design in architecture.

[Figure 1 :

 1 Figure 1: Canal surface as an envelope of spheres whose centers are on a curve.
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 23 Möbius transformations 144The transformation at the core of the framework using 145 cyclidic nets is the Möbius transformation or inversion, 146 which is a very simple non-linear map. We recall here some 147 of its elementary properties, and introduce the notations 148 used in the following of this paper. 149 Möbius transformations preserve locally angles, and are thus conformal maps. They also preserves circles. Möbius transformations are compositions of translation, scaling and spherical inversions. The latter transformation is defined by a center and a ratio. Consider a point C, later called center of inversion, and a real number k.

180 2 . 5 .

 25 figure) is found by intersecting two lines (dashed lines on the figure). For the sake of simplicity, we consider planar quadrilaterals in the reference plane (ABD): the equations are written in a frame centred in A and represented by the blue arrows in the figure. The intersection is found by solving the following equation:   l 0 + l 3 cos α l 3 sin α

Figure 2 :

 2 Figure 2: Two quads related by a Combescure transformation.
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Figure 3 :

 3 Figure 3: Propagation method for the computation of a Combescure transformation with quadrangles.
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  and so forth, up to completion of each strip. 190 This iterative procedure is computationally efficient. 191 The number of operations and the use of memory is pro-192 portional to the number of faces in the mesh, as the solu-193 tion of the propagation requires N M applications of equa-194 tion (4) for a mesh of N times M facets. The computation 195 time also varies linearly with the number of faces, as dis-196 cussed in [14]. This technique is thus more efficient than 197 SVD, which requires assembling of matrices. The com-198 putational gain is especially important for large meshes 199 and makes the method proposed in this paper suited for 200 real-time applications.

201 2 .

 2 6. Super-canal surface 202 We call super-canal surfaces the surfaces that are 203 images of canal surfaces by arbitrary compositions of 204 Combescure transformations and Möbius transformations. 205 This name recalls the term supercyclide to name projec-206 tive transforms of Dupin cyclides by Pratt [30]. We choose 207 to use the same prefix even if the transformations at stake 208 in this paper are different from the ones studied by Pratt. 209 The image of a circular quad-mesh by Combescure 210 transformations and inversions remains a circular quad-211 mesh, but both transformations affect differently the over-212 all shape, creating interesting formal possibilities. The two 213 operations do not commute, so specifying the order of ap-214 plication of Combescure and Möbius transformation has 215 an influence on the properties of the final shape. 216 Hence, the methodology proposed in the following is to 217 reconstruct a super-canal surface from two curves assum-218 ing a composition of applications of inversions or Combes-219 cure transforms. Rather than playing with canal surfaces 220 and transformations, the principle of the method relies 221 on a reverse approach which aims at finding an initially 222 unknown canal surface that would satisfy two prescribed 223 boundaries (see Section 5.1). 224 3. Super-canal surfaces 225 3.1. A general framework for shape generation 226 The method exposed above translates into a simple 227 framework that requires two perpendicular curves as in-228 put. Indeed, canal surfaces do not have umbilical points 229 (except poles), and consequently, their lines of curvature 230 are necessary perpendicular. The designer thus chose a 231 rule of construction for the surface, i.e. a specific combina-232 tion of Combescure and Möbius transformations. The con-233 catenation of transformations provides more design free-234 dom to the end-user than the utilization of one specific 235 transformation: this is discussed in the next sections. The 236 identified families are proposed in Figure 4. The nomen-237 clature for the different surfaces follows: 238 • the letter C denotes that the initial shape was sub-239 jected to a Combescure transformation; 240 • the letter M denotes that the initial shape was sub-241 jected to a Möbius transformation; 242 • the order of the letters gives the order of composition 243 of the transformations: CM means that the initial 244 shape was subject to a Möbius transformation, then 245 a Combescure transformation; 246 • the name of the initial shape subject to the trans-247 formations stands at the end: for example a 248 M -revolution surface is an inversion of a surface of 249 revolution. 250 Many surfaces well-identified in the literature can be 251 generated with this method as illustrated in Figure 4. All 252 the common surfaces used for geometrically-constrained 253

Figure 4 :

 4 Figure 4: Super canal surfaces

ample of Figure 5 ,

 5 eight circles in the same plane are used to generate a canal surface. Only the portion of the canal surface above the construction plane is shown. Note also that the resulting surface, made of cyclidic patches, is a C 1 surface with curvature discontinuities between patches. 281 (a) Circular strip supported on a given curve (red) (b) One of the cyclidic nets supported on the circular strip

Figure 5 :

 5 Figure 5: A canal surface created from a coarse circular strip

287 2 .

 2 one point P in space defining the first circle; 288 3. a function describing the lengths of each edge cross-289 ing the strip (thick orange lines on Figure 6).

290Figure 6 :

 6 Figure 6: Parameters creating a circular strip that can support a canal surface

3. 3 .

 3 Shape smoothingSome input data might lead to visually unpleaseant results, therefore we use the strategy proposed in[START_REF] Bo | Surface fit-899 ting with cyclide splines[END_REF] and take the position of the vertices and the orientation of the normal vector to the cyclidic net at one node as variables for smoothness optimisation. The objective is to fit exactly one input curve. To this end, the points on this curves are parametrised by the vector u. The other parameters governing the shape of the canal surface are the lengths of the edges crossing the circular strip L (see Figure6). The cyclidic net is then generated by the choice of an orthogonal frame, parametrised by two angles λ and θ, which are angles defining a spherical coordinate system. The smoothness functional F is finally defined as a quadratic function of the radii of the edges of the cyclidic net R edge :

  Figure 7: Optimisation of the smoothness of a canal surface.

3. 4 .

 4 Mechanical properties of super-canal surfaces 312 This Section discusses briefly the mechanical behaviour 313 of super-canal surfaces. C-canal surfaces play indeed a 314 particular role in shell theory, as Rogers and Schief proved 315 that their lines of curvatures are also lines of principal 316 stresses under a uniform external load [21]. This result 317

318 4 .Figure 8 : 1 .

 481 Figure 8: Input data for the curve-fitting problem. Line of curvature (orange), line to fit (red), and surface (white) containing the centers of the spheres.

382 2 .

 2 The envelope of the lines directed by the normal of 383 the surface along a line of curvature is a developable 384 surface.

Figure 9 :

 9 Figure 9: Line of curvature: one developable surface containing the centres of the spheres (white). The developable surface perpendicular to it (blue) is tangent to the resulting canal surface (not shown in the Figure).

415( 2 ( 6 )Figure 10 :Algorithm for spheres generation 419 The algorithm for the generation of a canal surface 420 from two curves follows: 421 1 .

 26104194201 Figure 10: The curve fitting problem: the locus of the sphere centres (in dark blue) belongs to the developable surface chosen by the user, and each C k belongs to a straight line of this surface. The locus of centres is equidistant to both input curves.

423 2 . 3 .

 23 Choose an orientation of the canal surface: specify-424 ing one orientation restricts the locus of centres to 425 be in a uniquely defined developable surface. 426 Discretise the line of curvature with points P k , 427 and generate the lines containing the centres of the 428 spheres on the developable surface.

429 4 .

 4 Initialise the C k with C k = P k .

433 distance C k P k . 434 Generation of a supporting cyclidic net 435

 434435 Figure 11: A family of spheres (white) fitting two curves (red and orange), and their successive intersection (blue).

Figure 12 :•••••

 12 Figure 12: Two circles C k and C k+1 : by choosing one point V k on C k , one defines a circle and a one parameter family of cyclidic patches.

477 4 . 2 .

 42 Generation of closed canal surfaces 478 The proposed construction can be extended to closed 479 strips with several limitations. The first one has been dis-480 cussed in [22]: a closed cyclidic net gives a smooth closed

Figure 13 :

 13 Figure 13: Meshing between two co-spherical circles (axonometry).

Figure 14 .•

 14 Figure 14. • In the other cases, the spheres (C 0 , P f ) and (C f , P 0 ) are distinct. Their intersection is a circle intersecting the circle C 0 and C f in two different points. This circle is the only solution that allows the closing of the circular strip, and it does not intersect C 0 in P.

Figure 15 Figure 14 :

 1514 Figure15shows a rendering of a facade covered with a canal surface (the structural system supporting the cantilevering facade is not shown). Being able to model closed

510 4 . 3 .Figure 15 :

 4315 Figure 15: A visualisation of a façade as a canal surface, covered with a circular mesh.

Figure 16 :

 16 Figure 16: A prototype built with torsion free-nodes on a super-canal surface.

Figure 17 :Figure 18 :

 1718 Figure 17: A model of a canal surface with planar quadrangles used for bracing.

548 5 . 5 . 1 .

 551 Application to inverse problems 549 Generation of M-revolution surfaces 550 The most well-known canal surfaces are surfaces of rev-551 olution. They indeed correspond to the case of a straight 552 generatrix. Surfaces of revolutions have many interesting properties for applications in architecture. They are isothermic surfaces, which means that they can be discretised as Edge-Offset Meshes. Yet, isothermic surfaces are preserved by Combescure and Möbius transformations and they thus inherit this property.

Figure 19 :

 19 Figure 19: Problem for the practical design with inversion of surfaces of revolutions.

595P 1 P 2 P 3 P 4

 1234 is already an isosceles trapezoid. In the other 596 cases, for each value of t, there are two complex solutions 597 giving two positions for the center of inversion in the com-598 plex plane. It is thus possible to solve this inverse problem 599 with a straight-forward solution based on complex analy-600 sis. 601 An illustration of this problem is shown on Figure 20.

Figure 20 :

 20 Figure 20: Surface generated by inversion of a surface of revolution constructed from one curve and two points on a circle.

  Figure 21 shows that a canal surface and a C-canal surface related by a Combescure transformation have similar boundaries, even if they do not perfectly coincide. Therefore, a local optimization algorithm (in our case BFGS)

630Figure 21 :Figure 22 .Figure 22 :Isothermic

 212222 Figure 21: Generation of a C-canal surface

Finally, we noticeFigure 23

 23 Figure23shows a M-moulding surface. It was gener-

Figure 23 :Figure 24 :

 2324 Figure 23: A M-moulding surface passing through two prescribed curves (thick lines). Only the orange curve is rigorously planar.

Figure 24

 24 displays some canal surfaces generated by solving the twocurves fitting problem. The orange curve is a line of curvature of the resulting surface. The examples show that it is possible to properly fit a line with a doubly-curved shape, which should be of interest for practical applications.

Figure 25 :Figure 25 ,752

 2525 Figure 25: Concentration of lines of curvatures (circled in red) and plane view

Table 2 :

 2 Properties of super-canal surfaces.

  780 the construction industry. Super-canal surfaces transcribe 781 complex geometrical notions into tools easily usable as a 782 design tool by architects and engineers as they provide in-783 sight on the buildability, the mechanical behavior under 784 normal load of free-form structures. This illustrates the Springer, 2014, pp. 95-108. doi:https://doi.org/10. Mesnil, C. Douthe, O. Baverel, Marionette Mesh: modelling 855 free-form architecture with planar facets, International Journal 856 of Space Structures 32 (3-4) (2017) 184-198. doi:https://doi. contour curves and blends bypassing the obstacles, Computer-904 Aided Design 64 (2015) 55-67. doi:10.1016/j.cad.2015.03.
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