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Abstract

This article presents a methodology to generate surfaces with planar lines of curvature from two or three curves and

tailored for architectural design. Meshing with planar quadrilateral facets and optimal offset properties for the structural

layout are guaranteed. The methodology relies on the invariance of circular meshes by spherical inversion and discrete

Combescure transformations, and uses parametrisation of surfaces with cyclidic patches. The shapes resulting from our

methodology are called super-canal surfaces by the authors, as they are an extension of canal surfaces. An interesting

connection to shell theory is recalled, as the shapes proposed in this paper are at equilibrium under uniform normal

loading. Some applications of these shapes to architecture are shown.

Keywords: super-canal surface, fabrication-aware design, cylidic net, architectural geometry, structural

morphogenesis, façade

1. Introduction1

1.1. Constructive geometry in architecture2

The construction of architectural shapes is subject to3

technological constraints that highly impact the economy4

of the cladding and structure. The study that aims at5

expressing technological requirements as geometrical con-6

straints is often referred to as fabrication-aware design in7

the computer science community, whereas architects or en-8

gineers speak of shape rationalization or constructive ge-9

ometry. This topic, takes root in the eighteenth century10

and stereotomy, and the work of Gaspard Monge[1].11

In glass or metal envelopes, the planarity of the panels12

is regarded as one of the most significant aspect in the de-13

sign of technogically-feasible solutions, and motivated the14

creation of tailor-made morphogenesis strategies by engi-15

neering office Schlaich Bergermann und Partner [2] and16
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later by Gehry Technologies [3]. Triangular meshes are17

always covered with planar facets, but their high node va-18

lence makes the fabrication of the structure complicated19

[4]. They are also considered less transparent than quadri-20

lateral layouts [3]. Developable panels are also of interest21

because cold-bending technologies for glass can be used at22

a reasonable cost, as illustrated by some projects of engi-23

neering office RFR [5, 6].24

The geometry of the supporting structure is another25

indicator of the complexity of fabrication in free-form ar-26

chitecture. The most economical solution is to build with27

planar beams that meet exactly along axes. This topic is28

well-known by gridshell builders [7] and is covered from a29

mathematical perspective in [8], with a tool called ’mesh30

parallelism’. Building a support structure with planar31

beams implies indeed the existence of a mesh which has32

all its edges parallel to the initial mesh.33

These two construction constraints (planarity of panels34
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and planarity of beams) can be integrated in the design35

of free-form architecture, either in top-down [4, 6, 9] or36

in bottom-up approaches [10, 11, 12, 13, 14]. The latter37

approaches generate design spaces where the fabrication38

requirements are fulfilled. They offer thus the possibility39

to integrate constraints of a different nature early in the40

design process, like structural behaviour or energy con-41

sumption. This is particularly important in the context of42

architectural design: fabrication is only one of the many43

criteria that should be rationalised or optimised in a build-44

ing envelope.45

1.2. Geometrically-constrained shape generation46

A natural way to deal with construction constraints is47

to generate a design-space of shapes that satisfy the most48

critical fabrication-constraints. This approach, known as49

”geometrically-constrained design strategy” [15] has been50

used extensively in the history of architecture. Methods51

that guarantee planar quads include surfaces of revolution,52

surfaces of translation [2], scale-trans surfaces [3], mould-53

ing and Monge surfaces [16, 17, 18]. These surfaces can be54

generated using two curves and a rule of transformation,55

either translation or sweeping along Bishop’s frame. The56

designer controls the overall shape and its discretisation57

simultaneously, which makes all these shapes easily un-58

derstandable and usable [19]. Accordingly, geometrically-59

constrained approches using two curves like surfaces of60

translation are very popular in the community of struc-61

tural engineers [20].62

Table 1 shows the correspondance between shape gen-63

eration techniques using two or three curves and their64

fabrication-aware counterpart. For example extrusion65

along a curve that yields surfaces of translation and sur-66

faces of revolution are good examples of fabrication-aware67

shapes. Monge surfaces, that can be generated by sweep-68

ing a planar curve called generatrix along a rail curve,69

are also very interesting for architectural shape design. It70

can be noticed that the sweep 2 rails command has no71

fabrication-aware equivalent.72

CAD generation process Fabrication-aware shape

Extrusion along curve Surface of translation

Revolve Surface of revolution

Rail Revolve Scale-trans surface

Sweep 1 rail
Monge surface*

Isoradial mesh

Sweep 2 rails -

Table 1: Kinematic method to generate free-form surfaces and their

fabrication-aware equivalent, surfaces marked with asterisks are sub-

ject to additional constraints.

The objective of this work is thus to enrich the de-73

sign space accessible with geometrically-constrained design74

strategies by proposing new shapes constructed from two75

and three curves. The shapes can be generated in real-76

time on standard computers, which eases the exploration77

of this design space.78

The second section of this paper discusses thus the gen-79

eral methodology that generates super-canal surfaces, a80

new family of shapes for fabrication-aware design in ar-81

chitecture, as well as a new algorithm for the fast com-82

putation of parallel meshes. Applying the results of [21],83

we also show that super-canal surfaces are remarkable with84

respect to shell theory: their lines of curvatures are lines of85

principal stress under uniform normal loading. This work86

thus meets fabrication with equilibrium, two major aspects87

of architectural design. A new method for the generation88

of canal surfaces from two contour curves is presented in89

Section 4. The fifth Section introduces some inverse prob-90

lems solved in with super-canal surface. A brief discussion91

and conclusion sum up the contributions of the present92

article.93
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2. Methodology94

2.1. Möbius geometry and cyclidic nets95

The present methodology for shape generation relies96

on a more general framework proposed recently for archi-97

tectural design [22] in the following of previous work de-98

velopped in [23, 24, 25, 26]. The main concept is to link99

discrete objects, namely circular meshes, with a smooth100

underlying surface. All the shapes are thus described as101

coarse circular meshes, which support portions of Dupin’s102

cyclides. Among remarkable features of cyclides, one may103

mention that their lines of curvature are circles and that104

a patch delimited by four lines of curvature on a Dupin105

cyclide has its four vertices inscribed within a circle. The106

formal potential of this framework is shown in [26], where107

various fitting problems on complex shapes are solved.108

Cyclidic nets provide thus a natural way to cover com-109

plex shapes with circular quadrilateral meshes. Moreover,110

as transformations mapping circular quadrilaterals to cir-111

cular quadrilaterals also preserve cyclidic nets and the un-112

derlying parametrisation, such transformations are of par-113

ticular interest. Two of those will be studied in the follow-114

ing: Möbius transformations in Section 2.3 and Combes-115

cure transformations in Section 2.4. Starting from surfaces116

easily described with cyclidic nets, the application of these117

transformations creates new shapes for fabrication-aware118

design in architecture.119

2.2. Geometrical properties of canal surface120

Canal surfaces are a fundamental family of surfaces in121

the context of Möbius geometry, as this family is indeed122

invariant by Möbius transformations. Canal surfaces are123

defined as envelopes of spheres. They are commonly used124

as blending surfaces, either by using contour curves [27] or125

by joining spheres that can be manipulated by the designer126

[28].127

Alternatively, canal surfaces can be defined as surfaces128

such that lines of curvatures are circles. The invariance of129

canal surfaces under Möbius transformations is obvious,130

because inversions preserve lines of curvatures and circles.131

Another way to look at it is that Möbius transformations132

preserve both spheres and angles, therefore an envelope of133

spheres is preserved by inversions. Notice that the shape-134

generation of canal surfaces with Dupin cyclides has been135

studied in [29]. We use an optimisation approach intro-136

duced in [26] to obtain shapes with smooth parametrisa-137

tions.138

Figure 1: Canal surface as an envelope of spheres whose centers are

on a curve.

These surfaces are very easily parameterised by cyclidic139

patches, as Dupin cyclides are particular cases of canal140

surfaces. The C1 continuity and generalisation to C0 con-141

tinuity is insured by reflections according to the method142

described in [25].143

2.3. Möbius transformations144

The transformation at the core of the framework using145

cyclidic nets is the Möbius transformation or inversion,146

which is a very simple non-linear map. We recall here some147

of its elementary properties, and introduce the notations148

used in the following of this paper.149

Möbius transformations preserve locally angles, and

are thus conformal maps. They also preserves circles.

Möbius transformations are compositions of translation,
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scaling and spherical inversions. The latter transforma-

tion is defined by a center and a ratio. Consider a point

C, later called center of inversion, and a real number k.

The inversion of center C and ratio k applied to a point

M is a point M′ defined by the well-known equation:

CM′ =
k

‖ CM ‖2
·CM (1)

In the complex plane, the inversion of ratio k with center

C (complex number zC) reads as:

fk,C (z) = zC +
k

z − zC
(2)

An elementary property of inversions is that they are in-150

volutions, which means that Möbius transformations are151

their own inverse transformations. This property is used152

in many applications shown in this paper (see Section 4).153

It can finally be noticed that the ratio k is nothing more154

than a scaling factor. The position of the point C is the155

parameter that has a true impact on the shape deforma-156

tion.157

2.4. Combescure transformations158

It has just been seen that Möbius transformations al-159

low to modify the overall appearance of circular meshes by160

preserving the circumcircles of all quads. Another trans-161

formation that has the same property is the mesh par-162

allelism transformation. Two meshes are said parallels163

if they have the same connectivity and if all their edges164

are parallel. The transformation mapping one mesh to165

the other is called a Combescure transformation [8]. By166

definition, Combescure transformations preserve discrete167

angles. Therefore they map circular meshes to circular168

meshes. Combined with Möbius transformations, they of-169

fer a range of possibilities to deform circular meshes.170

Two meshes related by a Combescure transformation,171

with respective edges (ei) and (e′i), have to satisfy a linear172

equation:173

∀i, ei ∧ e′i = 0 (3)

Solutions for this equation are usually found using Singu-174

lar Value Decomposition (SVD) [8]. We introduce here175

a different original approach, restricted to quadrilateral176

meshes, but that offers a better performance than SVD.177

This technique takes inspiration from the one employed178

in [14], which is applied to the form-finding of planar-179

quadrilaterals meshes.180

2.5. Efficient computation of Combescure transformations181

Let us consider two parallel quadrilaterals, like the ones

shown in Figure 2. Up to a translation, prescribing the

lengths of two sides l0 and l3 (thick lines on the figure)

is sufficient to determine a unique quadrilateral with in-

ternal angles α,β,γ,δ. The last point C (white dot on the

figure) is found by intersecting two lines (dashed lines on

the figure). For the sake of simplicity, we consider planar

quadrilaterals in the reference plane (ABD): the equa-

tions are written in a frame centred in A and represented

by the blue arrows in the figure. The intersection is found

by solving the following equation:l0 + l3 cosα

l3 sinα

 =

 cosβ cos (α− δ)

− sinβ sin (α− δ)

 ·
l1
l2

 (4)

A B

C

D

l0

l3

l1

l2

A'
B'

C'
D'

l0

l3 l1

l2

α β

γ
δ

α β

γ
δ

Figure 2: Two quads related by a Combescure transformation.

In the same way, prescribing the lengths of all edges on182

two intersecting lines, as shown in Figure 3 is sufficient to183

determine the entire parallel mesh. In this image, the thick184

lines correspond to edges which have prescribed lengths.185

Starting from a quadrilateral with two prescribed lengths,186

it is possible to apply equation (4) and find the last point of187

the quadrilateral (white dot). It is then possible to apply188
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Figure 3: Propagation method for the computation of a Combescure

transformation with quadrangles.

this procedure to the next quadrangle in the same row,189

and so forth, up to completion of each strip.190

This iterative procedure is computationally efficient.191

The number of operations and the use of memory is pro-192

portional to the number of faces in the mesh, as the solu-193

tion of the propagation requires NM applications of equa-194

tion (4) for a mesh of N times M facets. The computation195

time also varies linearly with the number of faces, as dis-196

cussed in [14]. This technique is thus more efficient than197

SVD, which requires assembling of matrices. The com-198

putational gain is especially important for large meshes199

and makes the method proposed in this paper suited for200

real-time applications.201

2.6. Super-canal surface202

We call super-canal surfaces the surfaces that are203

images of canal surfaces by arbitrary compositions of204

Combescure transformations and Möbius transformations.205

This name recalls the term supercyclide to name projec-206

tive transforms of Dupin cyclides by Pratt [30]. We choose207

to use the same prefix even if the transformations at stake208

in this paper are different from the ones studied by Pratt.209

The image of a circular quad-mesh by Combescure210

transformations and inversions remains a circular quad-211

mesh, but both transformations affect differently the over-212

all shape, creating interesting formal possibilities. The two213

operations do not commute, so specifying the order of ap-214

plication of Combescure and Möbius transformation has215

an influence on the properties of the final shape.216

Hence, the methodology proposed in the following is to217

reconstruct a super-canal surface from two curves assum-218

ing a composition of applications of inversions or Combes-219

cure transforms. Rather than playing with canal surfaces220

and transformations, the principle of the method relies221

on a reverse approach which aims at finding an initially222

unknown canal surface that would satisfy two prescribed223

boundaries (see Section 5.1).224

3. Super-canal surfaces225

3.1. A general framework for shape generation226

The method exposed above translates into a simple227

framework that requires two perpendicular curves as in-228

put. Indeed, canal surfaces do not have umbilical points229

(except poles), and consequently, their lines of curvature230

are necessary perpendicular. The designer thus chose a231

rule of construction for the surface, i.e. a specific combina-232

tion of Combescure and Möbius transformations. The con-233

catenation of transformations provides more design free-234

dom to the end-user than the utilization of one specific235

transformation: this is discussed in the next sections. The236

identified families are proposed in Figure 4. The nomen-237

clature for the different surfaces follows:238

• the letter C denotes that the initial shape was sub-239

jected to a Combescure transformation;240

• the letter M denotes that the initial shape was sub-241

jected to a Möbius transformation;242

• the order of the letters gives the order of composition243

of the transformations: CM means that the initial244

shape was subject to a Möbius transformation, then245

a Combescure transformation;246

• the name of the initial shape subject to the trans-247

formations stands at the end: for example a248

M−revolution surface is an inversion of a surface of249

revolution.250

Many surfaces well-identified in the literature can be251

generated with this method as illustrated in Figure 4. All252

the common surfaces used for geometrically-constrained253
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Canal surfaces

Surfaces of revolution
M-revolution

Pipe

C-Canal surfaces

Moulding surfaces (C-revolution)
CM-revolution

Monge’s surface

Super canal surfaces

M-Moulding surfaces
MCM-revolution

M-Monge’s surface

1

Figure 4: Super canal surfaces

methods mentioned in Section 1.2 fall into the category254

of super-canal surfaces, with the exception of scale-trans255

surfaces. The curves used in surfaces of translation and256

scale-trans surfaces do not correspond in general to lines of257

curvatures and cannot be approached by circular meshes.258

Therefore, they do not have any specific offset properties.259

It appears that moulding surfaces and Monge sur-260

faces discussed in [17] are a subset of the shapes gen-261

erated by Combescure transformations of canal surfaces.262

From a practical point of view, shapes with a family of263

planar curves are of great interest in construction. For264

that reason, we restrict the examples of application to265

CM−surfaces, where the families of circles are trans-266

formed into planar curves.267

3.2. Input for design with super-canal surfaces268

In the following of [3], we propose to design super-canal269

surfaces from two curves. The simplest way to parame-270

terise a canal surface is to take a strip of circles as input271

parameters, as pictured in Figure 5. A two parameters272

family of cyclidic nets can be supported on the circular273

mesh: the choice of those parameters can be done to fulfill274

some design requirements, like the shape smoothness, eval-275

uated with conformal Willmore energy [31, 22]. In the ex-276

ample of Figure 5, eight circles in the same plane are used277

to generate a canal surface. Only the portion of the canal278

surface above the construction plane is shown. Note also279

that the resulting surface, made of cyclidic patches, is a280

C1 surface with curvature discontinuities between patches.281

(a) Circular strip supported on

a given curve (red)

(b) One of the cyclidic nets

supported on the circular strip

Figure 5: A canal surface created from a coarse circular strip

To define the strip of circles, the user can draw manu-282

ally a collection of circles, or entirely parametrised it by a283

boundary curve and the radii of circles or a target length284

for each border. The latter parametrisation is depicted in285

Figure 6, whose input data follows:286

1. a list of points on a curve in space;287

2. one point P in space defining the first circle;288

3. a function describing the lengths of each edge cross-289

ing the strip (thick orange lines on Figure 6).290

It is then possible to construct one unique circular strip291

passing through the input points by propagation, in the292

manner of [32]. The construction of a circular strip re-293

stricts the two boundaries to be lines of curvature of the294

resulting surface. Section 4.1 will show how this condition295
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L
P

+

P

=

Figure 6: Parameters creating a circular strip that can support a canal surface

can be relaxed, while keeping the parametrisation of the296

shapes by cyclidic nets and circular strips.297

3.3. Shape smoothing298

Some input data might lead to visually unpleaseant re-

sults, therefore we use the strategy proposed in [26] and

take the position of the vertices and the orientation of the

normal vector to the cyclidic net at one node as variables

for smoothness optimisation. The objective is to fit exactly

one input curve. To this end, the points on this curves are

parametrised by the vector u. The other parameters gov-

erning the shape of the canal surface are the lengths of

the edges crossing the circular strip L (see Figure 6). The

cyclidic net is then generated by the choice of an orthog-

onal frame, parametrised by two angles λ and θ, which

are angles defining a spherical coordinate system. The

smoothness functional F is finally defined as a quadratic

function of the radii of the edges of the cyclidic net Redge:

F (u,L, λ, θ) =
∑
edges

1

R2
edge (u,L, λ, θ)

(5)

The computation of the function is not hard, and its min-299

imisation gives satifying results and is done in real-time.300

The user can specify additional constraints, like the angle301

made by the normal and a reference plane. In the latter302

case, the degrees of freedom λ and θ become coupled, and303

the normal rotates along a cone.304

Practically, the minimisation is here done by the means305

of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-306

rithm. Figure 7 shows the smoothing of a canal surface307

based on the proposed energy. The parameters are the308

circle radii. Note that only local changes are introduced309

after optimisation, and that the areas where the facets310

were degenerated have disappeared.311

(a) Before optimisation (b) After optimisation

Figure 7: Optimisation of the smoothness of a canal surface.

3.4. Mechanical properties of super-canal surfaces312

This Section discusses briefly the mechanical behaviour313

of super-canal surfaces. C-canal surfaces play indeed a314

particular role in shell theory, as Rogers and Schief proved315

that their lines of curvatures are also lines of principal316

stresses under a uniform external load [21]. This result317

was also proven for canal surfaces before in [33].318

This induces two remarkable features for the behaviour319

of the shapes previously presented:320

• principal stresses lines following principal curvature321

lines, the natural mesh of C-canal surfaces is an op-322

timal mechanical layout for a grid structure;323

• all closed shapes generated by this method are in324

equilibrium under uniform pressure and therefore325

suited for pneumatic structures.326
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Before showing the shape generation framework, we327

should make a comment on potential applications for shal-328

low roof structures. A normal pressure load is surely very329

close to a uniform distributed load for surfaces with mod-330

erate curvature. It can be concluded that shallow canal331

surfaces are close to funicular shapes under uniformly dis-332

tributed load. This kind of consideration has been docu-333

mented for shallow arches: shallow circular arcs, parabola334

or catenary have similar geometry and mechanical be-335

haviour, especially buckling capacity. For more comments336

on this topic, the reader can refer to [34].337

Furthermore, it should be recalled that in practice,338

temporary actions are not negligible compared to the self-339

weight of a structure, and gridshells or thin shells are often340

designed with respect to non-symmetrical loads, for which341

lines of curvature are not principal stress lines. The finding342

of a structural optimum for different load cases combina-343

tions is far from obvious, but its computation is not nec-344

essarily a practical design objective: just like fabrication,345

structural performance is not the only criterion taken into346

account by the architects and engineers. The integration347

of principal stress under self-weight can be seen as a sim-348

ple way to generate a good, but not necessarily optimal349

structural pattern, while creating a rich design narrative350

referring to pioneering works of structural artists. Lines351

of principal stress have been used by Pier Luigi Nervi for352

the design of concrete ribbed slabs. Nervi did not solve353

an optimisation problem, but used a simple guiding prin-354

ciple for his design, which resulted indeed in highly effi-355

cient structures [35]. The meshing of super-canal surfaces356

by their lines of curvatures combines thus constructability357

with structural efficiency.358

4. Application to shape modelling359

4.1. Generation of canal surfaces360

The previous section discussed how canal surfaces can361

be parametrised with circular strips supporting cyclidic362

nets. This generation method leads however to a strong363

formal restriction, as it forces the two boundaries of the364

strip to be lines of curvature of the resulting canal sur-365

face. The practical consequence is that the second curve366

is restricted to be on a developable surface passing through367

the first curve, whereas the designer would prefer to define368

it independently. This section introduces thus an original369

algorithm for the shape generation of canal surfaces from370

two curves where only one of the two curves is a line of371

curvature of the canal surface. The problem is illustrated372

in Figure 8 and it will be shown that it admits a one pa-373

rameter family of solutions.374

Figure 8: Input data for the curve-fitting problem. Line of curvature

(orange), line to fit (red), and surface (white) containing the centers

of the spheres.

Preliminary considerations375

The relevant definition of canal surfaces in this case is376

to consider them as the envelope of a family of spheres.377

Remarkable properties of canal surfaces, and of lines of378

curvature in general can be mentioned:379

1. Canal surfaces are envelopes of spheres, and as such,380

the spheres generating the surface meet tangentially381

with any curve of a canal surface.382

2. The envelope of the lines directed by the normal of383

the surface along a line of curvature is a developable384

surface.385

From remark 1, we get that the locus of the centers of386

the spheres generating the canal surface is on the surface387

8



generated by the normals of the surface. From remark388

2, we get immediately that this is a developable surface.389

Actually, it is a specific case of Monge surface [17]: once390

one normal has been chosen, the other normals are de-391

termined uniquely so that the envelope is indeed a devel-392

opable surface. The locus of the centres of the spheres is393

therefore controlled by one orientation parameter. This394

is illustrated in Figure 9: choosing the orientation of the395

normal is equivalent to choosing a surface tangent to the396

resulting canal surface.

Figure 9: Line of curvature: one developable surface containing the

centres of the spheres (white). The developable surface perpendicular

to it (blue) is tangent to the resulting canal surface (not shown in

the Figure).

397

Computation of the locus of centres398

Consider now that a normal vector and a line of curva-399

ture have been specified for the canal surface. The locus400

of centres is on a developable surface. So far we did not401

use any property of the second curve. We notice however402

that the centres of the spheres are on the bisector surface403

of the two curves. Such surface is defined as the envelope404

of the points which are equidistant to both curves. They405

have been studied in [36] for example.406

Therefore, the centres of the spheres can be found by407

intersecting the bisector surface of the two curves and the408

developable surface constructed from the normals. Both409

surfaces are not bounded, and it seems intuitive that they410

will have an intersection in non-degenerate cases. The411

construction of the whole bisector surface is however not412

necessary, as it is meaningful to consider a finite collec-413

tion of spheres that will construct the cyclidic net that414

parametrise the canal surface.415

Consider hence the first curve discretised with n sub-

divisions, as depicted in Figure 10. The centres of the

spheres belong to n lines on the developable surface. Let

Pk be the kth point on the first curve, Ck the centre of

the bi-tangent sphere on the corresponding line and C′k

the closest point to Ck on the second curve. By default,

Ck is not on the bisector surface. Therefore, the following

functional is introduced and minimised.

F =

n∑
k=0

(‖CkPk‖ − ‖CkC
′
k‖)

2
(6)

The positions of the Ck are encoded with independent416

unique parameters. Each term of the sum can thus be417

minimised individually by the means of Newton’s method.418

Pk

Ck

C′k

Figure 10: The curve fitting problem: the locus of the sphere centres

(in dark blue) belongs to the developable surface chosen by the user,

and each Ck belongs to a straight line of this surface. The locus of

centres is equidistant to both input curves.

Algorithm for spheres generation419

The algorithm for the generation of a canal surface420

from two curves follows:421

1. Select two curves, one of them being a line of curva-422

ture on the final surface.423

2. Choose an orientation of the canal surface: specify-424

ing one orientation restricts the locus of centres to425

be in a uniquely defined developable surface.426

3. Discretise the line of curvature with points Pk,427

and generate the lines containing the centres of the428

spheres on the developable surface.429
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4. Initialise the Ck with Ck = Pk.430

5. Minimise Equation(6) with Newton’s method.431

The result is a collection of points corresponding to sphere432

centres. The radius Rk of each sphere is given by the433

distance ‖CkPk‖.434

Generation of a supporting cyclidic net435

We have seen that given two curves and a supplemen-436

tary condition, it is possible to define one unique family437

of spheres that optimally fits the two curves. Consider438

now the circles Ck defined as the intersection of successive439

spheres Sk, Sk+1, like shown in Figure 11. Pk is the point440

of Ck on the input curve.441

Figure 11: A family of spheres (white) fitting two curves (red and

orange), and their successive intersection (blue).

It is clear that for any k, Ck and Ck+1 both belong442

to the sphere Sk+1. Consider Figure 12: choosing one443

point Vk on Ck there is exactly one point Vk+1 on Ck+1444

so that PkVkVk+1Pk+1 is inscribed within a circle. The

Pk
Pk+1

VkVk+1

Ck
Ck+1

Figure 12: Two circles Ck and Ck+1: by choosing one point Vk on Ck,

one defines a circle and a one parameter family of cyclidic patches.

445

process can be applied iteratively to generate a circular446

strip, supporting a cyclidic net. The circles Ck can be447

edges of the resulting cyclidic strip because they belong to448

the same sphere [25].449

Comment450

The proposed method allows for the construction of451

a canal surface that fits optimally two input curves. The452

surface can be parametrised instantly with cyclidic patches453

and covered with a circular mesh as detailed in [25]. Con-454

sider indeed the collection of circles (Cn), and two consecu-455

tive circles Cn and Cn+1. By construction, these circles are456

co-spherical, and thus, any planar quad with vertices on457

Cn and Cn+1 is also a circular quad. This simplifies greatly458

the meshing process. The meshing algorithm is illustrated459

in Figure 13.460

• Choose a discretisation of the first circle C1, the kth
461

point of the nth circle is noted Pn,k462

• The Pn,1 are chosen so that they all belong to the463

fitted curve which is a line of curvature of the result-464

ing surface;465

• Starting from k = 1 and n = 1, generate the plane466

P going through Pn,k, Pn,k+1 and Pn+1,k (step 1467

in Figure 13);468

• The point Pn+1,k is the intersection between P and469

Cn+1 (step 2 in Figure 13);470

• Iterate over k (step 3 in Figure 13);471

• Iterate on Cn+1 and Cn+2 (step 4 in Figure 13);472

The tool recalls the two-rails sweep commonly used in473

CAD software. One curve is a line of curvature of the re-474

sulting shape. It provides proper alignment of the mesh475

with the borders, which often dictate the mechanical be-476

haviour of the structure.477

4.2. Generation of closed canal surfaces478

The proposed construction can be extended to closed479

strips with several limitations. The first one has been dis-480

cussed in [22]: a closed cyclidic net gives a smooth closed481
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1 432

Figure 13: Meshing between two co-spherical circles (axonometry).

surface if and only if the discrete guide curve is a pseudo-482

spherical curve (it is parallel to a curve which has all its483

vertices inscribed within a sphere). The second condition484

corresponds to the possibility of drawing the last circle of485

the strip. Consider Figure 14: the first circle of the strip486

is written C0, the penultimate circle Cf , the initial point487

P and the first and last point of the curve P0 and Pf488

respectively. There are two cases:489

• C0 and Cf belong to the same sphere, then the circle490

going through P, P0 and Pf intersects the circle491

Cf in two points. This circle is the solution we are492

looking for and is represented with dashed lines on493

Figure 14.494

• In the other cases, the spheres (C0,Pf ) and (Cf ,P0)495

are distinct. Their intersection is a circle intersecting496

the circle C0 and Cf in two different points. This497

circle is the only solution that allows the closing of498

the circular strip, and it does not intersect C0 in P.499

In the first case, only the intersection of the last circle500

and Cf is unknown. In the second case, the position of P501

cannot be specified arbitrarily (as in section 2. for open502

strips). Compared to open strips, there is therefore a loss503

of at most two degrees of freedom for the control of the504

shape.505

Figure 15 shows a rendering of a facade covered with506

a canal surface (the structural system supporting the can-507

tilevering facade is not shown). Being able to model closed508

P
C0

Cf

P0
Pf

Figure 14: Problem of a closing strip

surfaces is crucial for architectural shapes, as façades are509

usually closed.510

4.3. Practical applications511

The method presented in this paper has been used dur-512

ing a one week workshop in 2015. Architecture and engi-513

neering students had to design and build a 30 m2 free-form514

pavilion, the only material available was polystyrene in515

flat rectangular sheets. The shape is a super-canal surface516

meshed with circular quadrilaterals. The pavilion, shown517

in Figure 16 is a grid structure with a torsion-free beam518

layout. The offset was computed with a reflection rule sim-519

ilar to the one generating cyclidic nets. An optimisation520

was performed in order to minimise the height gap at the521

nodes between beams of constant height. The fast compu-522

tation of the space of solutions was key to the success of523
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Figure 15: A visualisation of a façade as a canal surface, covered

with a circular mesh.

this operation within a limited time frame (5 days).524

Figure 16: A prototype built with torsion free-nodes on a super-canal

surface.

The tools presented in this paper were used for shape525

generation as well as fabrication. Hundreds of polystyrene526

elements were cut according to the 3D model and assem-527

bled. The planarity of the panels was considered for use528

as bracing elements and was validated on a 5m2 model,529

shown in Figure 17. Flat panels used as bracing elements530

improve the overall stability and stiffness 1.531

Another exploration was performed with a timber532

structure, shown in Figure18. The structure is a plated533

shell structures: the facets are connected along their edges,534

without additional stiffeners. The small-scale pavilion il-535

1More details and pictures can be found on

http://www.thinkshell.fr/building-freeform-2015/.

Figure 17: A model of a canal surface with planar quadrangles used

for bracing.

lustrates thus the potential offered by planar panels rather536

than offset properties of circular meshes, although the dis-537

crete normals of circular meshes have been used to gener-538

ate planar cuts between the plates.539

Figure 18: A timber plated shell structure covered with circular

quadrilaterals generated with the method proposed in this paper.

The construction of those prototypes validates the use540

of the numerical tools presented in this paper. The user541

feedback allowed us to identify the most relevant way to542

model super-canal surfaces. In particular, the students543

found important to control at least one boundary curve.544

This explains why the method of generation of canal sur-545

faces presented in this work focuses on the prescription of546

a boundary curve, and not on the curve supporting the547

centers of the sphere for example.548

5. Application to inverse problems549

5.1. Generation of M-revolution surfaces550

The most well-known canal surfaces are surfaces of rev-551

olution. They indeed correspond to the case of a straight552
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generatrix. Surfaces of revolutions have many interest-553

ing properties for applications in architecture. They are554

isothermic surfaces, which means that they can be discre-555

tised as Edge-Offset Meshes. Yet, isothermic surfaces are556

preserved by Combescure and Möbius transformations and557

they thus inherit this property.558

In particular, we discuss here of a particular subset of559

’super-surfaces of revolutions’, where the center of inver-560

sion and the axis of revolution are in a horizontal plane,561

as shown in Figure 19. It is clear that the parallels of the562

surface of revolution are vertical in this case. Since inver-563

sions preserve circles and angles, we can deduce that this564

family of curvature lines remain vertical after inversion.565

Combescure transformations preserve planarity: applying566

another Combescure transformation yields a surface with567

planar arches. This additional property is particularly in-568

teresting for applications to structural system with contin-569

uous arches and secondary structure. A specific method570

has therefore been developed to generate these surfaces.571

It consists of solving the inverse problem detailed in the572

following.573

The input data for the problem are displayed in Fig-574

ure 19. The user prescribes one planar curve, one circle575

in the same plane comprising the ends P1 and P4 of the576

curve, and two points P2 and P3 on this circle. The objec-577

tive is here to reconstruct the initial surface of revolution,578

therefore the problem is to find a center of inversion C so579

that the image of the quadrangle P1P2P3P4 is an isosceles580

trapezoid.581

Isosceles trapezoids are the only cyclic quadrilaterals582

that have parallel opposite edges. Notice that the prob-583

lem is planar and can thus be formulated with complex584

numbers. The parallelism corresponds to the fact the di-585

rection vectors are co-linear (identical up to a scaling by586

a real number t). Assigning the complex numbers z1, z2,587

z3 and z4 to the points P1, P2, P3 and P4, and writing588

zj,C the complex number associated to the image of zj by589

an inversion of center C, we obtain equation (7):590

P1

P2

P4
P3

C=?

Figure 19: Problem for the practical design with inversion of surfaces

of revolutions.

z2,C − z1,C
z3,C − z4,C

= t ∈ R (7)

We can use the equation (2) to express equation (7) with591

respect to the zj and obtain equation (8). It is independent592

of the ratio of inversion k: the position of the center of593

inversion is the only value of interest in this problem.594

(
z2 − z1

(z1 − zC) (z2 − zC)

)
(

z3 − z4
(z3 − zC) (z4 − zC)

) = t ∈ R (8)

After simplifications, this equation leads to a second order

equation in zC . The general form of (8) can be written as:

Atz
2
C +BtzC +Dt = 0 (9)

with 

At = z2 − z1 + t · (z4 − z3)

Bt = − (1 + t) z1z3 + (t− 1) z1z4

+ (1 + t) z2z4 + (1− t) z2z3
Dt = z3z4 (z2 − z1) + tz1z2 (z4 − z3)

The case of At = 0 can occur only when the quad595

P1P2P3P4 is already an isosceles trapezoid. In the other596

cases, for each value of t, there are two complex solutions597

giving two positions for the center of inversion in the com-598

plex plane. It is thus possible to solve this inverse problem599

with a straight-forward solution based on complex analy-600

sis.601
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An illustration of this problem is shown on Figure 20.602

On this image, all the facets are inscribed within circles.603

The free-form shape is thus covered with planar facets and604

torsion-free nodes. Since the circle shown in Figure 20 is605

in the horizontal plane, it is noticed that one family of606

lines of curvature consists of planar vertical arches. The607

solution proposed here can easily be extended to the case608

of a spherical guide curve with two successive inversions.609

Likewise, it is possible to apply this method to moulding610

or Monge surfaces.611

Figure 20: Surface generated by inversion of a surface of revolution

constructed from one curve and two points on a circle.

5.2. C-canal surfaces612

We proposed an extension of the generation method613

proposed in section 4.1 by adding a Combescure trans-614

form so that the can be any planar curve, and that the615

final surface is a C-canal surface. Figure 21a shows the616

three input data for the generation of a C-canal surface,617

while Figures 21b and 21c show two possible outputs. Like618

canal surfaces, the user can specify one curve, a collection619

of lengths defining indirectly a second curve, and a planar620

cross-section that is obtained by Combescure transforma-621

tion of a circle. The inputs controlled by the designer are622

thus the same as the ones described in Figure 6, with the623

control of one curve in addition.624

The lengths of the edges is specified for the C-canal625

surface, but at the beginning, only the canal surface can626

be computed. An optimisation procedure is thus required627

to find the canal surface that will fit the input data after628

Combescure transformation.629

Writing L the target lengths for the curves crossing the

C-canal surface (see Figure 6), we generate first the canal

surface F (u,L). There is one Combescure transformation

f that maps the first circle of the canal surface to the

transverse input curves chosen while preserving one input

curve. After the Combescure transformation, the resulting

lengths L′ on the C-canal surface differ from L. However,

Figure 21 shows that a canal surface and a C-canal sur-

face related by a Combescure transformation have similar

boundaries, even if they do not perfectly coincide. There-

fore, a local optimization algorithm (in our case BFGS)

can be used to minimise the error:

E (Lk) =
∑
k

(L′k − Lk)
2

(10)

The optimisation is done for each Lk successively. This630

prevents from computing the whole Combescure transfor-631

mation at each iteration, but only the strip where the er-632

ror is evaluated. With this precaution, the computation633

remains lightweight and stable. This optimisation proce-634

dure can be extended to the fitting of two curves, like done635

in 4.1.636

5.3. Meshing of super-canal surfaces637

A key feature of the proposed method is that it oper-638

ates fundamentally on smooth surfaces. It is therefore in-639

dependent from the mesh density. Notice for example that640

the solution of equation (9) does not require any knowl-641

edge on the discretisation of the curves, but only the four642

prescribed points. Therefore, re-meshing of super-canal643

surfaces is extremely simple and detailed below.644

It has already been pointed out that inversions are in-645

volutions. Combescure transformations are linear maps646

and can easily be inverted with the algorithm proposed in647

Section 2.4. The computation of inverse transformation648

is thus extremely light. These properties are used exten-649

sively to remesh super-canal surface and is illustrated in650
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(a) Circular strip (b) A canal surface supported on the strip (c) A C-canal surface covered with D-strips

Figure 21: Generation of a C-canal surface

Figure 22. Given a discretisation on the guide curves, it is651

possible to find their image by a composition of Combes-652

cure and Möbius transformations f so that they fit with653

the boundaries of a canal surface. The meshing on the654

canal surface is done using cyclidic patches, like explained655

in Section 4.1. The inverse transformation f−1 is then656

computed and maps the mesh so that it fits the reference657

curves.658

Mobius transformation

Combescure transformation

¨

Reference curves Boundaries of canal surface

f

f      -1

Meshing

Inverse transformation

Final surface

Figure 22: Remeshing procedure for a super-canal surface.

6. Discussion659

6.1. Algorithmic performance660

The algorithms of shape generation have been im-661

plemented in GrasshopperTM, an environment of visual662

programming compatible with the modelling software663

RhinocerosTM. In this section, we discuss the performance664

of the three operations used in our method:665

• the computation of circular strips and the meshing666

of discrete canal surfaces;667

• the computation of Möbius transformations and the668

solution of the inverse problems;669

• the computation of Combescure transformations.670

Circular strips are defined using a propagation algo-671

rithm. The problem solved at each step is the intersection672

of a sphere and a circle. The resulting computation time673

varies linearly with the number of subdivisions of the guide674

curve.675

The computation of Möbius transformations is straight676

forward, as equation (1) is applied to each point of the677

mesh. Likewise the solution of equation (9) is obvious and678

requires no special numerical treatment. For that reason,679

Möbius transformations of meshes are as fast as the com-680

putation of simple affine transformations, like scaling or681

translation.682

A case-study for the computation of Combescure trans-683

formations was performed. Like discussed in Section 2.4,684

the computation time varies linearly with the number of685

panels in the structure. The computation time is inferior686

to 20 milliseconds for a mesh with 10, 000 faces, a high687
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Isothermic Planar curves Stress lines Circular mesh

Canal surface

revolution
Yes

Yes Yes

Yes

M-revolution

General case No

C-canal surface

C-revolution (moulding)
Yes

CM-revolution

General case No

MC-canal surface

M-moulding
Yes

No NoMCM-revolution

General case No

Table 2: Properties of super-canal surfaces.

number of faces for applications in architecture. Notice688

that no pre-factorisation is required for the computation689

of the Combescure transformation: the computation time690

are the one experienced by the user. This is in accordance691

with the will to offer a maximal flexibility for the design.692

Applying successive Combescure transformations is there-693

fore possible in real-time applications with our algorithm.694

Finally, we notice that Combescure transformations re-695

quire more time than the other operations and generally696

governs the overall performance of the method. Notice also697

that Combescure transformations and Möbius transforma-698

tions have to be applied twice in the reverse engineering699

methods presented in the previous section.700

6.2. Properties of the structural layout701

Table 2 sums up the different properties of the sur-702

faces created with our framework. As one applies Möbius703

and Combescure transformations and extends the formal704

freedom, some properties are lost a priori. All the shapes705

can nevertheless be parametrised as circular meshes. As706

an example, it can be noticed that the lines of curvature707

are not necessarily lines of principal stresses under uniform708

pressure for MC-canal surfaces. In the most general case,709

there is also no guaranty that there is a family of planar710

curves.711

Among other remarkable properties, it may be noticed712

that the images of surfaces of revolution are isothermic713

surfaces, so that it is possible to parametrise them with714

conformal squares. Optimisation of the parametrisation of715

isothermic surfaces towards visually pleasant meshes could716

thus be done in the manner of [37].717

Figure 23 shows a M-moulding surface. It was gener-718

ated to fit two input curves, in the manner of M-revolution719

surfaces. The shape is visually not different from C-canal720

surfaces, but the curves are not planar, which increases the721

complexity. The analysis of Table 2 shows that C-canal722

surfaces are probably the best trade-off between design723

freedom and properties of the structural layout.

Figure 23: A M-moulding surface passing through two prescribed

curves (thick lines). Only the orange curve is rigorously planar.

724
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Figure 24: Canal surfaces obtained by fitting two planar curves, the orange curve is a line of curvature of the surface.

6.3. Shape explorations: potential and limitations725

The generation super-canal surfaces is subject to mod-726

elling limitations discussed in this section. Figure 24 dis-727

plays some canal surfaces generated by solving the two-728

curves fitting problem. The orange curve is a line of cur-729

vature of the resulting surface. The examples show that730

it is possible to properly fit a line with a doubly-curved731

shape, which should be of interest for practical applica-732

tions.733

These examples also highlight some limitations of734

super-canal surfaces. Consider for example the shape in735

Figure 25, where there is a noticeable shrinkage of panels.736

This concentration of lines of curvature is linked to the737

properties of the evolute of the guiding curve.

Figure 25: Concentration of lines of curvatures (circled in red) and

plane view

738

The evolute of a curve is the locus of the center of its739

osculating circles. The lines obtained by sweeping along a740

curve intersect along the evolute, as shown in Figure 25. In741

Figure 25, it appears that the second curve used as an in-742

put for the fitting problem (in blue) is close to the evolute743
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of the first curve (in orange). As a consequence, the planes744

containing the circles used for the shape generation (the745

grey lines in the top view) converge towards the evolute746

and result in panel shrinkage. This practical limitation747

also exists for more general super-canal surfaces. The de-748

signer must limit the curvature of the control curves in749

order to avoid self-intersections of the surface he or she is750

generating.751

7. Conclusion752

This paper presented a new family of shapes for the ra-753

tionalization of free-form structures and envelopes. It en-754

riches the formal vocabulary of geometrically-constrained755

design approaches, and has many relevant applications,756

from pneumatic structures to gelzed gridshells. A connec-757

tion to shell theory was recalled and showed that the sur-758

faces created with this method are at equilibrium under759

normal uniform load. Moreover, the lines of curvatures,760

that are used for discretisation of super-canal surfaces cor-761

respond to lines of principal stresses, making the meshes762

efficient for both fabrication and structural performance.763

The tools developed for the shape generation were used in764

the practical context of a workshop for architecture and765

engineering students.766

The methodology for shape generation relies heavily767

on Möbius geometry, the geometry of circles in space.768

It studies the transformations of shapes by Combescure769

and Möbius transformations, and in that sense, it is a770

generalisation of Möbius geometry, which is only inter-771

ested in the latter one. Like many other geometrically-772

constrained shapes, super-canal surfaces are generated773

from three curves. The underlying construction rule is774

more sophisticated than simple affine transformation, like775

translation or scaling. It also gives more degrees of free-776

dom than scale-trans surfaces. Lack of design tools for777

designers and architects for complex structures has been778

shown by William Baker in a plenary talk at the Sym-779

posium of the IASS in 2015, which is a real prejudice to780

the construction industry. Super-canal surfaces transcribe781

complex geometrical notions into tools easily usable as a782

design tool by architects and engineers as they provide in-783

sight on the buildability, the mechanical behavior under784

normal load of free-form structures. This illustrates the785

interest of using Möbius geometry for geometrical mod-786

elling in architecture. Other families of shapes could arise787

form this framework.788

The shapes proposed in this paper could be combined789

with more general modelling techniques, for example see790

[38], who studies deformations of circular meshes by com-791

bination of compatible Möbius transformations.792
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with Möbius transformations, ACM Transactions on Graph-945

ics (TOG) 34 (4) (2015) 55. doi:https://doi.org/10.1145/946

2766915.947

20

http://dx.doi.org/10.1016/0010-4485(94)90078-7
http://www.sciencedirect.com/science/article/pii/S016783969600057X
http://dx.doi.org/https://doi.org/10.1016/S0167-8396(96)00057-X
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2017.08.015
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2017.08.015
http://dx.doi.org/https://doi.org/10.1016/j.autcon.2017.08.015
http://www.sciencedirect.com/science/article/pii/0020722595001425
http://www.sciencedirect.com/science/article/pii/0020722595001425
http://www.sciencedirect.com/science/article/pii/0020722595001425
http://dx.doi.org/https://doi.org/10.1016/0020-7225(95)00142-5
http://dx.doi.org/https://doi.org/10.1145/269799.269801
http://dx.doi.org/https://doi.org/10.1007/978-3-7091-1251-9_20
http://dx.doi.org/https://doi.org/10.1007/978-3-7091-1251-9_20
http://dx.doi.org/https://doi.org/10.1007/978-3-7091-1251-9_20
http://dx.doi.org/https://doi.org/10.1145/2766915
http://dx.doi.org/https://doi.org/10.1145/2766915
http://dx.doi.org/https://doi.org/10.1145/2766915

	Introduction
	Constructive geometry in architecture
	Geometrically-constrained shape generation

	Methodology
	Möbius geometry and cyclidic nets
	Geometrical properties of canal surface
	Möbius transformations
	Combescure transformations
	Efficient computation of Combescure transformations
	Super-canal surface

	Super-canal surfaces
	A general framework for shape generation
	Input for design with super-canal surfaces
	Shape smoothing
	Mechanical properties of super-canal surfaces

	Application to shape modelling
	Generation of canal surfaces
	Generation of closed canal surfaces
	Practical applications

	Application to inverse problems
	Generation of M-revolution surfaces
	C-canal surfaces
	Meshing of super-canal surfaces

	Discussion
	Algorithmic performance
	Properties of the structural layout
	Shape explorations: potential and limitations

	Conclusion

