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ABSTRACT

The Copernicus Sentinel-2 program now provides mul-
tispectral images at a global scale with a high revisit rate.
In this paper we explore the usage of convolutional neural
networks for urban change detection using such multispectral
images. We first present the new change detection dataset that
was used for training the proposed networks, which will be
openly available to serve as a benchmark. The Onera Satellite
Change Detection (OSCD) dataset is composed of pairs of
multispectral aerial images, and the changes were manually
annotated at pixel level. We then propose two architectures to
detect changes, Siamese and Early Fusion, and compare the
impact of using different numbers of spectral channels as in-
puts. These architectures are trained from scratch using the
provided dataset.

Index Terms— Change detection, supervised machine
learning, convolutional neural networks, multispectral earth
observation.

1. INTRODUCTION

Change detection is an integral part of the analysis of satellite
imagery, and it has been studied for several decades [1, 2]. It
consists of comparing a registered pair of images of the same
region and identifying the parts where a change has occurred,
e.g. vegetation evolution or urban changes. A label is as-
signed to each pixel: change or no change. The nature of the
changes that are detected may vary with the desired applica-
tion, such as vegetation changes or urban changes (artificial-
ization). Change detection is a crucial step for analysing tem-
poral Earth observation sequences in order to build evolution
maps of land cover, urban expansion, deforestation, etc.

With the rise of open access Earth observation from pro-
grams such as Copernicus and Landsat, large amounts of data
are available. The Sentinel-2 satellites generate time series of
multispectral images of Earth’s landmasses with resolutions
varying between 10m and 60m. Despite the abundance of
raw data, there is a lack of open labelled datasets using these
images which can be used for quantitative comparison and
evaluation of new proposed change detection algorithms. La-
belled datasets are also necessary for developing supervised

learning methods, which have in the last few years been used
to achieve the state-of-the-art results in many problems in the
areas of computer vision and image processing. Machine
learning techniques such as Convolutional Neural Networks
(CNNs) have been on the rise not only due to the exponential
growth of the available computing power, but also to the in-
creasingly large amounts of available data. These techniques
can not be adequately applied to the problem of change detec-
tion while there is a lack of data that can be used for training
these systems.

1.1. Related Work

Change detection has a long history. The first techniques that
were proposed used manually crafted processes to identify
changes, while later methods have proposed using machine
learning algorithms in different ways [1, 2, 3, 4]. Recent
advances in machine learning algorithms for image analysis
have not yet taken over the area of change detection due to the
lack of large amounts of training data. Thus, some methods
have been proposed recently to use transfer learning to cir-
cumvent this problem [5]. While transfer learning is a valid
option, it may limit the reach of the proposed methods. For
example, the vast majority of the large CNNs trained on big
datasets use RGB images, while the Sentinel-2 images con-
tain 13 useful bands, most of which would need to be ignored
when using such a system. Moreover, the recently proposed
deep learning algorithms for change detection have mostly
been designed to generate a difference image which is man-
ually thresholded [6]. This avoids end-to-end training, which
tends to achieve better results and faster execution. Related to
change detection, deep learning techniques have been devel-
oped for computer vision applications with the aim of com-
paring image pairs [7].

1.2. Contributions

The aim of this paper is twofold. The first contribution that
is presented in this paper is the development of an urban
change detection dataset of image pairs and pixel-wise la-
bels to be used for training, testing and comparing change
detection algorithms: the Onera Satellite Change Detection
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(OSCD) dataset will be openly available on the internet1.
This dataset was created using the multispectral images taken
by the Sentinel-2 satellites of places with different levels of
urbanization in several different countries that have experi-
enced urban growth and/or changes. The second contribution
presented in this paper is the proposal of two different CNN
architectures that aim to learn end-to-end change detection
from this dataset in a fully supervised manner.

This paper is structured as follows. Section 2 describes
the methods and challenges for creating the urban change de-
tection dataset, as well as information about what is contained
in it. Section 3 describes the proposed supervised learning
methods used for change detection. Section 4 presents the re-
sults for different tests which explore the reach and limitations
of both the dataset and the proposed methods.

2. DATASET

The objective of the OSCD dataset is to provide an open
and standardized way of comparing the efficacy of different
change detection algorithms that are proposed by the sci-
entific community, available to anyone who is interested in
tackling the change detection problem. The dataset is fo-
cused on urban areas, labelling as Change only urban growth
and changes and ignoring natural changes (e.g. vegetation
growth or sea tides). Examples of image pairs and the asso-
ciated change maps can be seen in Figs. 1 and 2. The dataset
provides a comparison standard for single band, colour or
multispectral change detection algorithms that are proposed.
Since it contains pixel-wise ground truth change labels for
each location on each image pair, the dataset also allows for
more elaborate supervised learning methods to be applied to
the problem of change detection.

The OSCD dataset was built using images from the
Sentinel-2 satellites. The satellite captures images of vari-
ous resolutions between 10m and 60m in 13 bands between
ultraviolet and short wavelength infrared. Twenty-four re-
gions of approximately 600x600 pixels at 10m resolution
with various levels of urbanization where urban changes were
visible were chosen worldwide. The images of all bands were
cropped according to the chosen geographical coordinates,
resulting in 26 images for each region, i.e. 13 bands for
each of the images in the image pair. These images were
downloaded and cropped using the Medusa toolbox2.

The high variability of the raw data that is available from
Sentinel-2 does not allow a completely scripted generation of
image patches. The downloaded images frequently contain
large sections of completely black pixels, and the correct im-
ages must be selected manually. Furthermore, for the genera-
tion of this dataset, it was desired to obtain images with no or
very few clouds present in the image. While the sentinelsat
API allows some control over the amount of clouds present

1http://dase.grss-ieee.org/
2https://github.com/aboulch/medusa_tb

in the images, this also requires manual verification of each
of the downloaded images to ensure the presence of clouds in
the downloaded image is not too large.

The pixel-wise ground truth labels were manually gen-
erated by comparing the true colour images for each pair. To
improve the accuracy of results, the GEFolki toolbox [8]3 was
used to register the images with more precision than the reg-
istration that is done by the Sentinel system itself. In all cases
the older image in the pair was used as reference, and the
newer one was transformed to perfectly align with it.

2.1. Challenges and limitations

While the dataset is a very valuable tool for methodically
comparing different change detection algorithms and for ap-
plying supervised learning techniques to this problem, it is
important to understand the limitations of this dataset. First
and foremost, the images generated by the Sentinel-2 satel-
lite are of a relatively low resolution. This resolution allows
the detection of the appearance of large buildings between the
images in the image pair. Smaller changes such as the appear-
ance of small buildings, the extension of existing buildings or
the addition of lanes to an existing road, for example, may not
be obvious in the images. For this reason, even the change
maps that are generated manually by different analysts may
differ.

One approach which was explored was using Open-
StreetMap data from different dates to generate the change
maps in an automated manner. OpenStreetMap provides open
map data, and by comparing the maps for the dates of the im-
ages in the pairs it is, in theory, possible to identify what
changes occurred in the area. This approach proved unsuc-
cessful for a few reasons. First, most of the changes in the
maps between the two dates were actually due to things being
added to the map, but which had not been built in the period
between the dates when the images were taken. Second, it
is not possible to have much precision when it comes to the
dates of the older maps, where in many cases only one map
was available for each year before 2017.

Finally, the Sentinel-2 satellite was launched in 2015, and
therefore the data that is available is not able to go further
in the past than June of 2015. This means that the changes
contained in the dataset are of a temporal distance of at most
two and a half years approximately, and less than that in many
cases. This also means that the images contain many times
more pixels labelled as no change than labelled as change.

3. CHANGE DETECTION METHODS

The aim of the methods presented in this section is to ap-
ply supervised deep learning methods to the change detec-
tion problem, training them only on the dataset presented in
Section 2. Unlike previous methods which only use CNNs

3https://github.com/aplyer/gefolki
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(a) Rio in 24/04/2016. (b) Rio in 11/10/2017. (c) Ground truth. (d) Early Fusion. (e) Siamese.

Fig. 1. Comparison between the results from the EF and Siamese architectures using 3 colour channels on the ”Rio” test image.

(a) 12/08/2015. (b) 30/10/2017. (c) Ground truth. (d) 3 channels. (e) 4 channels. (f) 10 channels. (g) 13 channels.

Fig. 2. Comparison of results of the EF network on the ”Montpellier” test image using 3, 4, 10 and 13 channels as input.

to build difference images which are later thresholded, our
networks are trained end-to-end to classify a patch between
two classes: change and no change. The patches are of size
15x15 pixels, and the networks attempt to classify the label
of the central pixel based on its neighbourhood’s values. The
networks should ideally be able to learn to differentiate be-
tween artificialization changes and natural changes, given that
only artificialization changes are labelled as changes on the
dataset. This goes further than computing a simple difference
between the images, as it involves a semantic interpretation
of the changes, and is therefore a harder problem.

3.1. Architectures

Two CNN architectures are compared for this work. These
architectures are inspired by the work of Zagoruyko et al. [7],
where similar architectures were used to compare image
patches, although not with the purpose of detecting changes.
These networks take as input two 15x15xC patches, where C
is the number of colour channels, which will be further dis-
cussed in Section 4. The output of the networks for each pair
of patches is a pair of values which are an estimation of the
probability of that patch belonging to each class. By choos-
ing the maximum of these two values we are able to predict
if a change has occurred in the central pixel of the patch.
Furthermore, we are able to threshold the change probability
at values other than 0.5 to further control the results, in case
false positives or false negatives are more or less costly in a
given application.

The first proposed architecture, named Early Fusion (EF),
consists of concatenating the two image pairs as the first step
of the network. The input of the network can then be seen
as a single patch of 15x15x2C, which is then processed by a
series of seven convolutional layers and two fully connected
layers, where the last layer is a softmax layer with two outputs

associated with the classes of change and no change.
The second approach is a Siamese (Siam) network. The

idea is to process each of the patches in parallel by two
branches of four convolutional layers with shared weights,
concatenating the outputs and using two fully connected
layers to obtain two output values as before.

3.2. Full image change maps

Once the networks have been trained, full image change maps
can be generated by classifying patches of the test images in-
dividually. To speed up this process, instead of taking a patch
centred in each pixel of the image, a larger stride was used for
extracting the patches and a voting system was implemented
to predict the labels of all pixels in the images. Each classi-
fied patch votes on the label of all the pixels it covered based
on the outputs of the network and with weight following a 2D
Gaussian distribution centred on the central pixel of the patch,
i.e. the closer a pixel is to the central pixel of a patch, the more
that patch’s vote will count when classifying that pixel.

4. RESULTS

The images of the OSCD dataset were split into two groups:
fourteen images for training and ten for testing. Since the
dataset is not very large, the training data was augmented by
using all possible flips and rotations in steps of 90 degrees of
the patches.

To deal with the problem of different resolutions in differ-
ent channels, the channels with resolutions lower than 10m
were upsampled to the resolution of 10m so that all channels
could be concatenated with aligned pixels.

As was mentioned in Section 2, the number of pixels
marked as having no changes is much larger than the number
of pixels labelled as change. Thus, at training, we apply a

3



Data Network Acc. Change acc. No change acc.
3 ch. Siam. 84.13 78.57 84.43

EF 83.63 82.14 83.71
4 ch. Siam. 75.20 74.71 75.23

EF 89.66 80.30 90.16
10 ch. Siam. 86.21 83.04 86.38

EF 89.15 82.75 89.50
13 ch. Siam. 85.37 85.63 85.35

EF 88.15 84.69 88.33
Img. diff. 76.12 63.42 76.82
Log-ratio 76.93 59.68 77.87

GLRT 76.25 60.48 77.11

Table 1. Evaluation metrics for each of the test cases. Ac-
curacy here is the number of true positives for a given class
divided by the total number of elements of that class on the
test dataset.

higher penalization weight for the change class, the weights
being inversely proportional to the number of examples of
each class.

To evaluate the influence of the number of input channels
in the classification, four cases were compared: color image
(RGB, 3 channels), layers with resolution of 10m (RGB +
infrared, 4 channels), layers with resolution up to 20m (10
channels), layers with resolution up to 60m (13 channels).

Table 1 explores eight variants of CNNs and shows their
superiority to the difference image methods presented in [3].
The first thing to observe in the results is that EF networks
tend to perform better than their correspondent Siamese net-
works. It is also important to note that the addition of colour
channels generally leads to an improvement in classification
performance, but this does not happen linearly and each ar-
chitecture reacts differently.

Figures 1 and 2 contain examples of change maps gener-
ated by some of the trained CNNs. They allow the compari-
son of results when using different architectures (Fig. 1) and
different numbers of input channels (Fig. 2). These images
indicate that the networks have succeeded in detecting urban
changes in the images.

5. CONCLUSION

In this paper, we presented the Onera Satellite Change Detec-
tion dataset, the first one for urban change detection made of
Sentinel-2 images and openly available. We also presented
two CNN approaches for detecting changes on image pairs of
this dataset. These networks were trained in a fully supervised
manner with no use of other image data and obtain excellent
test performances.

Perspectives for this work include enlarging the dataset
both in number of cities and imaging modalities, e.g. enrich-
ing it with Sentinel-1 satellites images. It is also a logical next

step to experiment with fully convolutional networks to auto-
matically generate labels for all pixels in the image, reducing
the patch effect of the presented methods. It would also be of
interest to extend this work to deal with semantic labelling of
changes, which would be of even more help in interpreting the
image pairs. Finally, it would be useful to be able to handle
image sequences for change detection instead of image pairs.
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