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Efficiency Degradation Model of Lithium-ion
Batteries for Electric Vehicles
Eduardo Redondo-Iglesias, Pascal Venet, Serge Pelissier

Abstract— The purpose of this paper is to analyse ef-

ficiency degradation of lithium-ion batteries. Two lithium-

ion cell technologies are considered under calendar ageing.

It is well known that ageing mechanisms have an impact in

cells’ performances. Most of studies focus on capacity fade

and impedance rise but efficiency is less frequently studied.

However, from the application point of view, battery

efficiency degradation directly impacts the system energy

efficiency. Results reveal the importance of considering

battery ageing in the design phase of electric vehicles,

not only for capacity but also for efficiency reasons:

efficiency degradation depends of the technology, so when

comparing two technologies one must take into account

the cells’ performances not just when cells are fresh but

during the whole lifespan. Another finding reported in this

paper is the high correlation between capacity fade and

energy efficiency for the tested technologies. Finally, two

empirical models for energy efficiency degradation were

developed in both technologies: the first one is based on

Eyring relationships and the second one lies on the existing

correlation between capacity fade and efficiency. Quality

of each model is reported for both model types and battery

technologies.

Index Terms—Efficiency model; Energy storage systems;

Lithium-ion batteries; Accelerated ageing; Modelling

I. INTRODUCTION

Battery Electric Vehicles (EV) are much more efficient
than ICE Vehicles (ICEV). EV’s and ICEV’s powertrain
efficiency are about 70% and 20% respectively but this
difference can significantly decrease when considering
primary energy efficiency [1]. For this reason, every ele-
ment in the energy conversion chain should be optimised:
from power generation and distribution to vehicle energy
use.

The battery is probably the most sensitive element
in the EV powertrain system because of its cost and
lifespan. Lithium-ion is nowadays the main technology
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for traction batteries because of its higher energy density
and energy efficiency compared to previous existing
technologies.

Ageing mechanisms are responsible of performance
degradation of batteries: decrease of the amount of
storable energy (capacity fade) and power availability
(impedance increase). Depending on ageing path and
battery composition, each ageing mechanism may act in
a different magnitude. Hence, there is not always a direct
correlation between impedance increase and capacity
fade [2–4].

Within SIMCAL project a vast campaign of calendar
ageing tests of commercial lithium-ion cells was con-
ducted [5–12]. In [6], a study of capacity and imped-
ance degradation of LFP cells from SIMCAL project is
done. Some of these cells were analysed in post-mortem
studies [8] demonstrating that main ageing mechanism is
LLI (loss of lithium inventory) due to Solid Electrolyte
Interphase(SEI) formation and growth.

In [13], a similar ageing campaign to SIMCAL was
carried out: capacity and impedance were analysed. Post-
mortem studies confirmed that LLI was again the main
ageing mechanism. An empirical capacity fade model
with an Eyring relationship was developed. This model
was validated with dynamic calendar ageing conditions
(periods of different temperatures and states of charge).
In [14] a combined cycling/calendar capacity fade model
for LFP cells was developed.

On one hand, previous works on lithium-ion ageing
dealt with modelling capacity fade [9, 12, 15–18], im-
pedance rise [2, 7, 19] or both [11, 20–23]. On the other
hand, some authors dealt with efficiency [24–26] and
its dependence of current rate. But efficiency evolution
throughout battery’s lifespan was not often considered.

Some authors shown interest about efficiency evolu-
tion throughout battery’s lifespan. For example, [10]
made a first analysis of the performance evolution of
cells from SIMCAL project. This analysis was made on
a subset of SIMCAL ageing tests for each technology.
Efficiency degradation was also mentioned in [27], where
the authors included some values of energy efficiency for
LFP cells for various current rates and states of ageing.

Battery efficiency is often considered in the design
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phase of vehicles, for example for battery sizing. This
characteristic is age dependent: it will degrade over
time like other characteristics (capacity, impedance, etc.).
Efficiency varies over state-of-charge (SoC), thus the
battery use should be optimized to operate in the highest
efficient SoC levels. Consequently, for a better consid-
eration, efficiency degradation over time must be taken
into account.

In [28], the authors aimed to perform a life cycle
analysis of LFP cells for use in second life application.
The authors of this paper were interested in efficiency
evolution of LFP cells, but a lack of efficiency evolu-
tion data led them to make the following assumption:
efficiency evolution would follow the same trend that
capacity fade. This is a very strong assumption: an
efficiency degradation model would be a useful tool to
obtain more precise results.

The present paper is an extended and updated version
of the conference paper [29]. In this work, we intent
to analyse all ageing tests from SIMCAL for two tech-
nologies (LFP and NMC). That includes 27 different
combinations of T and SoC for two technologies.

In part II an analysis of efficiency as a function of
SoC is provided, this could be used to better assess the
best SoC regions to use depending on both ageing and
efficiency.

In part III we develop an efficiency degradation model
by two approaches: by using an Eyring relationship and
by exploiting the existence of the correlation between
capacity and efficiency fades.

A comparison of the results of two approaches of mod-
elling is provided as a brief discussion about suitability
of each considered lithium-ion technology depending of
temperature for an example of application.

II. MEASURING CAPACITY AND EFFICIENCY FADE

A. Experimental setup

In the SIMCAL project, more than a hundred lithium-
ion cells from different manufacturers and positive elec-
trode compositions were tested in calendar ageing [5].
The calendar ageing tests consisted in a full test matrix
with three different temperatures and three different
SoC levels i.e. a full factorial design 32 (2 factors, 3
levels per factor). Lithium-ion manufacturers recommend
not to use this technology over 60°C, thus this is the
higher limit of temperature for ageing tests. Higher
temperatures may induce thermal runaway even in rest
conditions [30].

Accelerated ageing tests consisted in storing each cell
at a fixed temperature (30, 45 or 60°C) in a climate
chamber at a fixed initial SoC (30, 65 or 100%). Three

ACRONYMS

CC Constant Current
CE Coulombic Efficiency
CV Constant Voltage
EV Electric Vehicle
HEV Hybrid Electric Vehicle
ICEV Internal Combustion Engine Vehicle
LFP Lithium Iron Phosphate
NMC Nickel Manganese Cobalt
RPT Reference Performance Test

NOMENCLATURE

DoD Depth of Discharge (DoD(p.u.) = 1− SoC(p.u.))
I Cell current
C C-rate (1C = current discharging the cell in 1 hour)
OCV Open Circuit Voltage
Pr Probability
Q Capacity
SoC State of Charge
T Temperature
t time
U Cell voltage
W Energy (Work done)
Wnet Net energy
Ẇ Power
ε Error (estimated value - measured value)
η Efficiency
ηen Energy efficiency (cycle efficiency)

SUBSCRIPTS, SUPERSCRIPTS AND ACCENTS

x0 Initial value of x
x̂ Estimated value of x
x Mean value of x
xF Fade of x (current value - initial value)
xcharge x during charge
xdischarge x during discharge

cells were tested at each test condition for each lithium-
ion technology in order to improve the representativeness
of results. Two technologies were tested: NMC cells
are from Kokam (SLPB 70205130P, 12Ah pouch cells),
whereas LFP cells are from A123 (ANR26650M1A,
2.3Ah, cylindrical cells).

The cells’ characteristics were periodically measured
at 25°C by the means of RPT (Reference Performance
Test) using Biologic potentiostats with electrochemical
impedance spectroscopy capability. RPT’s (figure 1) are
composed of 4 phases:

(A) a full discharge to measure the remaining charge in
the cell,

(B) two full-charge/full-discharge cycles to measure the
cell capacity,

(C) a partial-discharge/partial-charge cycle with cell im-
pedance measurements at 5 SoC levels,

(D) a full charge followed by a partial discharge to
restore the SoC to a value in agreement with the
ageing test conditions.
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Figure 1: Voltage during first RPT for LFP (up) and NMC
(bottom) cells.
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Figure 2: Zoom in last cycle (LFP cell).

B. Methodology to measure efficiency

Efficiency can be measured by several ways. The most
common one consists in calculating the whole cycle
efficiency of a full-charge/full-discharge cycle. For ex-
ample, the International Organization for Standardization
(ISO) defines a protocol to characterize efficiency in this
way [31].

US-DOE (the United States Department of Energy)
method [32] is based on the performance of 100 charge
balanced power profiles at specified SoCs. Any variation
in the SoC of the batteries under test enables to estimate
the energy efficiency at this specified SoC. The main
disadvantages of this method are the test duration and
the difficulty to avoid excessive SoC drift during the
tests.

Kang et al. [24] proposed a method to measure

efficiency of battery cells under constant current (CC)
charges or discharges. This method lies on the definition
of the net energy of a cell as a function of I , OCV (open
circuit voltage) and SoC.

Firstly, OCV must be characterized by a pseudo-
OCV or an incremental-OCV approach [33]. Pseudo-
OCV is obtained by cycling the battery at very low
current rates and averaging Ucharge and Udischarge.
Incremental-OCV is obtained by partial charges and
discharges followed by rest periods.

Once OCV as a function of SoC is known, net energy
is easily obtained by integration :

Wnet =

∫ SoCf

SoCi

I ·OCV · dSoC (1)

. Charge and discharge energy are obtained in the same
way with Ucharge and Udischarge respectively:

Wcharge =

∫ SoCf

SoCi

I · Ucharge · dSoC (2)

Wdischarge =

∫ SoCf

SoCi

I · Udischarge · dSoC (3)

Finally, charge and discharge energy efficiencies are
the relation between charge and discharge energy and
net energy [24, 25]:

ηen,charge =
Wnet

Wcharge
(4)

ηen,discharge =
Wdischarge

Wnet
(5)

Energy efficiency of a battery under charge and dis-
charge can be expressed as:

ηen = ηen,charge · ηen,discharge =
Wdischarge

Wcharge
(6)

RPT design in SIMCAL project was originally intended
for measuring capacity and impedance, not for efficiency.
In this work, we analyse efficiency in a similar way
to [24]. Unlike Kang’s method, we do not attempt
to separate charge and discharge efficiencies because
SIMCAL RPTs do not offer a reliable measure for OCV
(absence of pseudo-OCV phase), i.e. we focus on battery
efficiency (equation 6).

For each RPT, the efficiency of last discharge-charge
cycle (figure 1, t1 to t4) is calculated. From t1 to t2
battery is discharged with CC at 1C, from t2 to t3
battery is in rest condition and from t3 to t4 battery is
charged with CC at 1C (figure 2). Obviously, full charge
is not reached during CC charges and a subsequent CV
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(constant voltage) phase is performed from t4 to t5 to
ensure full charging of the cell. We will only consider
CC phases for efficiency (t1 to t4).

Efficiency obtained by equation 6 is the average
efficiency over a charge/discharge cycle. But in many
applications such as electrical vehicles (EV) and hybrid
electrical vehicles (HEV), batteries are often used in a
partial SoC zone. As SoC is an important factor of
battery ageing, efficiency characterisation as a function
of SoC is necessary. This would help to determine the
best SoC zone to operate in optimal conditions of energy
efficiency and minimal ageing. Equation (7) expresses
efficiency as a function of SoC:

η(SoC) =
|Ẇdischarge(SoC)|
|Ẇcharge(SoC)|

(7)

As in each RPT charge and discharge current rates are
equal (1C), equation (7) can be simplified [29]:

η(SoC) =
Udischarge(SoC)

Ucharge(SoC)
(8)

Equation (8) is an approximation to power efficiency
as the ratio between Udischarge and Ucharge. This equa-
tion is valid for applications such as battery pack di-
mensioning or battery technology benchmarking. For a
fine estimation of energy losses, other models are more
suitable like, for example, equivalent circuit models.

C. Experimental results

Figure 3 shows charge and discharge curves of these
two cells and efficiency calculated by eq. (8), obtained
from the first RPT (fresh cells). Efficiency of NMC
cells is monotonically increasing with SoC. In contrary,
LFP cells’ efficiency decreases rapidly in the extremities
(0 and 100% SoC). LFP efficiency has also a local
minimum at 30% SoC.

Figure 4(a) shows the efficiency versus SoC for a
NMC cell during ageing at 60°C and 100% SoC. At
the beginning of ageing tests mean efficiency was 96%,
but after 190 days the mean efficiency went down 87%
and the capacity fade reached 37%.

Ageing tests were carried on LFP cells during 378
days (figure 4(b)). Despite of capacity fade, efficiency
was almost constant during the ageing tests: initial
efficiency was 95% and decreased only 1% (to 94%)
at end of life.

D. Discussion on experimental results

In this work we have considered two different lithium-
ion technologies: NMC and LFP. NMC batteries have
several advantages compared to LFP, mainly they have a
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Figure 3: Charge and discharge voltages (left y-axis) and
efficiency (right y-axis) of fresh cells.
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Figure 4: Efficiency degradation of cells under calendar ageing
conditions (60°C, 100% SoC).

higher energy density (125 and 106 kWh/kg respectively
for the considered cells in this paper). However, LFP
batteries are good candidates for long life and high
current rate applications.

Power efficiency (η(SoC)) was calculated for both
technologies at different states of degradation. The res-
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ults reveal that the shape and degradation rate of η(SoC)
are very different depending of technology. Efficiency
appears to degrade much faster in NMC cells than in LFP
cells. For example, for 60°C and 100% SoC (figure 4),
we can see that NMC efficiency decreases under 90%
after 120 days while LFP efficiency stays much less
significant even after 300 days.

Concerning the shape of η(SoC) (figure 3), in NMC
cells it is monotonically increasing with SoC. In LFP we
can discern three regions: at lower SoC levels efficiency
decreases rapidly; at medium SoCs efficiency is mainly
flat with a local minimum at approximately SoC = 30%;
finally, at higher SoCs efficiency decreases again.

The main reason behind the existing difference in
shape of η(SoC) is the difference in shape of positive
electrode equilibrium potentials (both negative electrodes
are graphite based).

On one hand, NMC electrode’s potential is monoton-
ically decreasing with the proportion of lithium, i.e. it is
monotonically increasing with SoC. As charge and dis-
charge voltage curves of NMC cells are increasing with
SoC and the distance between them is quite constant
(see figure 3), η(SoC) increases with SoC (equation 8).

On the other hand, LFP electrode’s potential is con-
stant at approximately 3.43 V vs. Li+ except in very low
SoC (<5%) and very high SoC (>95%) [34]. Graphite
electrode’s potential decreases rapidly in the first stages
of lithiation (low proportion of lithium, lower SoCs) and
it decreases slowly from 0.13 to 0.08 V vs. Li+ in the
last stages of lithiation (from 20 to 100% SoC) [35, 36].
LFP-graphite cell’s OCV is the difference between LFP’s
and graphite’s potentials, so in the medium SoCs OCV
increases slowly from 3.3 to 3.35 V. As charge and
discharge voltages follow the same trends, η(SoC) is
mainly flat from SoC = 10 to 90% (figure 3).

The local minimum of η(SoC) found at SoC = 30%
in LFP cells is probably due to a graphite phase transition
(from LiC12 to LiC6) [35, 36]. This phase transition also
occurs in NMC cells because they have also a graphite
negative electrode, but it is not reflected in η(SoC) by
a local minimum because the NMC positive electrode
potential is not constant with SoC.

III. MODELLING CAPACITY AND EFFICIENCY FADE

Energy and power capabilities of lithium-ion batteries
degrade over time in calendar ageing as a function of
SoC and T . Energy and power degradation can be
assimilated respectively to capacity and efficiency fade
(QF and ηF ). In previous works [12, 37] capacity fade of
lithium-ion cells in calendar ageing has been modelled
by using the Eyring relationship.

The Eyring relationship extends the Arrhenius law
(temperature dependence) to other stress factors (e.g.
pressure, current, voltage, etc.). Equation (9) is a general
form for a performance (y(t)) degrading over time under
two type of stresses (T and Si):

y(t, T, Si) = A · Tn · e(Ea/kT+BiSi+CiSi/kT ) · f(t) (9)

In the Eyring relationship, the influence of each addi-
tional stress (Si) is added to the exponential function
beside the thermal stress term (Ea/kT ). The direct
influence of a stress is BiSi while CiSi/kT represents
an interaction term between T and Si. The model para-
meters are: A, n, Ea, Bi and Ci, with k the Boltzmann
constant and f(t) the time degradation function of y(t).

In battery ageing, f(t) is typically a power of time
(e.g. t,

√
t) or a linear combination of both functions

(at + b
√
t). In calendar ageing of batteries, Si can be

SoC or DoD. Both quantities can be calculated relative
to initial or current capacity (Q0 or Q). For comparability
and simplicity reasons, in this work as for [37] we chosen
Si = DoD, with DoD relative to Q0.

As shown in figure 5, we can imagine two approaches
to model efficiency and capacity fades: the first one
consists in considering separate models (figure 5(a)). The
inputs of both sub-models are T and DoD.

The second approach is to model capacity fade and
then to model efficiency evolution as a function of
capacity fade (figure 5(b)). In this approach, the ageing
model is composed of two sub-models: a capacity fade
model and a efficiency fade model. The inputs for the
capacity fade model are T and DoD. The input for the
efficiency model is the estimated capacity fade (Q̂F ).

A. Eyring capacity fade model

Here, the main assumption is the linear evolution of
QF with the time (t) when the stress factors (T , DoD)
are constant. This is equivalent to consider

QF = CA(T,DoD) · t (10)

where CA is the acceleration coefficient depending of
the stress levels [37].

In this work, we will consider a modified Eyring
relationship to model CA (from [37]):

Q̂F =
(

A · e(−Ea
k·T

+B·DoD+C·DoD

k·T
) −D

)

· t (11)

Finally, the capacity evolution is obtained by subtract-
ing the estimated capacity fade (Q̂F ) from the initial
value of the capacity (Q0):

Q̂(t,DoD, T ) = Q0 − Q̂F (t,DoD, T ) (12)
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Figure 5: Two approaches to modelling: (a) separate models
(b) efficiency as a polynomial of capacity fade.

B. Eyring efficiency fade model

The efficiency ageing model can be formulated in the
same way as the capacity ageing model:

η̂en,F =
(

Aη · e
−Eaη

k·T
+Bη·DoD+

Cη·DoD

k·T −Dη

)

· t (13)

η̂en(t,DoD, T ) = ηen,0 − η̂en,F (t,DoD, T ) (14)

C. Polynomial efficiency model

Figure 6 shows the cycle efficiency versus capacity
fade for both technologies (NMC and LFP) and for all
the storage conditions. We can see that efficiency mainly
depends of capacity fade and the type of cell (NMC or
LFP): a strong correlation between capacity fade and
efficiency degradation exists.

In this approach, efficiency is formulated as a polyno-
mial of the capacity fade:

η̂en(Q̂F ) =

n
∑

i=0

ai · Q̂ i
F (15)

where capacity fade is estimated from eq. (11).
In this work we have chosen second degree polynomi-

als for LFP cells and first degree polynomials for NMC
cells.

The obtained model parameters for each model are in
table I. For each model, the parameter set has been iden-
tified with a least square minimisation of the difference
between model estimations and measurements.
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Figure 6: Efficiency versus capacity fade (a) NMC cells, (b)
LFP cells. Points are measurements at different ageing condi-
tions: red, green and blue for 60, 45 and 30°C respectively,
colour shades indicate SoC (30, 65 and 100% from light to
dark). The polynomial approximation is represented by a black
continuous line.

D. Modelling results

Figure 7 illustrates some simulations compared to
measurements of capacity and efficiency. In this ex-
ample, three simulations where performed at three SoC
levels: 30, 60 and 100% at 45°C for both cell types.

For NMC (figure 7(a)) some cells seem to regener-
ate their capacity (i.e. negative capacity fade) at the
beginning of the tests (e.g. SoC = 65 or 30% for T
= 45°C). As explained in [37], this phenomenon is
probably due to an initial decrease of impedance in the
firsts stages of SEI formation. Capacity measurements
are strongly dependent of impedance when they are
performed at medium/high rates as in SIMCAL project
(1C). By performing capacity measurements at low rates,
for example C/5 or lower, distortion due to this initial
decrease of impedance is minimised [38, 39].
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Figure 7: Results of ageing at 45°C. (a) Capacity fade and (b) efficiency versus time of NMC cells. (c) Capacity fade and (d)
efficiency versus time of LFP cells. Points are measurements, continuous lines are simulations of QF and ηen Eyring models,
dashed lines are simulations of ηen polynomial model. Colour shade indicates SoC (30, 65, 100%) from light to dark.

In this example (T = 45°C), the model overestimates
capacity fade at SoC = 100% for LFP cells (figure 7(c)).
Notice that this couple of ageing conditions represent the
worst case for this model in terms of precision. As shown
in table II, overall quality of LFP’s QF model is good
(mean absolute error of 1.3%, R2 > 0.9).

Results shown in figure 7(b) and 7(d) reveal that
the different approaches of efficiency modelling (Eyring
relationship versus polynomial of capacity fade) have
different behaviours.

For example, for NMC cells (figure 7(b)), the effi-
ciency fade (and also the capacity fade) is quite similar
at lower levels of SoC (30, 65%) being much faster
at 100% SoC. In this example, the model based on
a polynomial of QF is better compared to the Eyring
based one. The reason is that the polynomial based
efficiency model fits in the same manner that capacity
fade: that is degradation at 100% SoC is much faster
than at other SoC levels. On the other hand, when

performing simulations with the Eyring based efficiency
model, the differences between SoC 100% and the lower
SoC levels (30, 65%) are less significant than for the
polynomial one.

For LFP cells (figure 7(d)), the errors of efficiency
simulations are comparable for both approaches (Eyring
versus polynomial). However, while the polynomial
model leads to parabolic evolutions, the Eyring efficiency
model leads to linear evolutions that can diverge from
measurements with time.

Figure 8 shows the cumulative distribution of er-
rors Pr(|ε|) for all simulations at the nine possible
combinations of T (30, 45, 60°C) and SoC (30, 65,
100%) for both technologies (NMC, figure 8(a) and LFP,
figure 8(b)). This figure confirms that both approaches
to efficiency fade modelling have a similar precision.

More detailed results about the quality of these models
can be found in table II. The mean absolute errors |ε|
of the capacity fade model simulations are 1.48% and
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Figure 8: Cumulative distribution of errors.

1.28% for the NMC and the LFP cells respectively and
R2, the coefficients of determination, are 0.895 (NMC)
and 0.925 (LFP). These two quantities confirm that the
precision of the capacity fade model is satisfactory.

For NMC cells the polynomial model of efficiency is
more satisfactory than the Eyring based one. At higher
values of Pr (probability), the lowest absolute error
corresponds to the polynomial model. The value of R2

is also substantially higher for this model compared to
the Eyring based model (table II.a).

For LFP cells the polynomial and the Eyring based
models have both similar values of errors for each value
of Pr and similar values of R2 (table II.b). Notice that
R2 is very low (about 0.34) which indicates a bad quality
of modelling for both types of models. In fact, as shown
in figure 6(b), the efficiency fade is very low in LFP cells.
The range of variation of the efficiency over the lifespan
in LFP cells is of the same magnitude that the variability
between different cells, which explains a lower value of
R2 compared to NMC cells.

Table I: Model parameters.

a. Eyring capacity fade model

Parameter NMC cells LFP cells units

A 2.233 · 1010 2.563 · 1005 (p.u./day)
Ea 0.8690 0.5531 (eV)
B 37.19 12.34 (n.u.)
C −1.162 −0.3672 (eV)
D 1.5 · 10−05 0 (p.u./day)

b. Eyring efficiency fade model

Parameter NMC cells LFP cells units

Aη 1.419 · 1010 1.428 · 1008 (p.u./day)
Eaη 0.9021 0.8412 (eV)
Bη −8.371 −11.78 (n.u.)
Cη 0.1813 0.3585 (eV)
Dη 4.0 · 10−06 5.5 · 10−06 (p.u./day)

c. Polynomial efficiency model

NMC: ηen(QF ) = −0.2303 ·QF + 0.9582
LFP: ηen(QF ) = −0.1532 ·Q2

F + 0.003923 ·QF + 0.9530

Table II: Modelling results: mean absolute error (|ε|), error
for some probabilities of the cumulative distribution of errors
(|ε|(Pr)) and coefficient of determination (R2). The quantities
are expressed in p.u.

a. NMC cells

Model QF (Eyring) ηen (Eyring) ηen(polynomial)

|ε| 0.0148 0.00541 0.00551
|ε|(Pr = 0.50) 0.0102 0.00329 0.00385
|ε|(Pr = 0.90) 0.0294 0.0130 0.0142
|ε|(Pr = 0.95) 0.0455 0.0150 0.0175
|ε|(Pr = 0.99) 0.0791 0.0393 0.0219

R2 0.895 0.701 0.774

b. LFP cells

Model QF (Eyring) ηen (Eyring) ηen(polynomial)

|ε| 0.0128 0.00211 0.00215
|ε|(Pr = 0.50) 0.00878 0.00151 0.00148
|ε|(Pr = 0.90) 0.0329 0.00475 0.00503
|ε|(Pr = 0.95) 0.0413 0.00548 0.0062
|ε|(Pr = 0.99) 0.0580 0.00808 0.00743

R2 0.925 0.345 0.344

E. Discussion on modelling results

In this part, two approaches for modelling capacity
and efficiency degradation were presented.

The first approach is based on two independent Eyring
relationships: capacity and efficiency are modelled sep-
arately as functions of time and ageing factors (T and
SoC). Each Eyring relationship has 5 parameters, so for
this approach 10 parameters are needed.

The second approach consist in taking advantage of
the existing correlation between efficiency and capacity
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fades. In this approach, two models are cascaded: the
output of the capacity fade model is used as input for the
efficiency model. A polynomial relation η(QF ) has been
identified from experimental data with 2 or 3 parameters
depending of the technology. So for this model 7 to 8
parameters are needed.

The first approach is a priori supposed to be a better
solution in terms of accuracy. Firstly, because of the
higher number of parameters (higher degrees of free-
dom). Secondly, in the second approach capacity fade
estimation errors are propagated to efficiency.

The quality of results where analysed for both ap-
proaches in both technologies. Figure 8 and table II
show that there is no great difference in terms of quality
between both approaches: mean errors of efficiency
and their distributions are similar for NMC and LFP.
Nevertheless, there is a difference in R2 for NMC: 0.701
for the first approach, 0.774 in the second, indicating that
second approach would have some benefit over the first
one.

IV. CONCLUSIONS

In one hand, efficiency of batteries is usually con-
sidered in the design phase, for example, of electric
vehicles. On the other hand, capacity fade (sometimes
also impedance rise) throughout the lifetime is often
evaluated by the means of accelerated ageing tests.
Nevertheless, efficiency evolution over lifespan is not
often considered.

In this work, we intended to evaluate efficiency de-
gradation in accelerated calendar ageing for two lithium-
ion technologies: NMC and LFP.

Constant current phases of full charge/discharge cycles
allowed us to build the characteristic curves of efficiency
over SoC at each state of ageing. Characteristic curves
reveal the best SoC regions to operate in terms of
efficiency. LFP showed a particular behaviour with a
local minimum of efficiency at 30% SoC.

We also provide two approaches to efficiency degrada-
tion modelling: first one is based on the Eyring relation-
ship and second one is based on a polynomial expression
of capacity fade. The results of two approaches show
that second approach can be more convenient for two
reasons: simplicity (fewer number of parameters) and
precision (similar or higher R2).

Energy efficiency analysis within battery ageing offers
a simple but effective way to assess the adequacy of
batteries to an application during the whole lifespan.
These type of models can be used as decisional tools in
the design phase or in life cycle assessments of electric
vehicles.
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