
Computational Mechanics manuscript No.
(will be inserted by the editor)

An asymptotic numerical method to solve compliant Lennard-Jones-
based contact problems involving adhesive instabilities

Shuimiao Du · Hachmi Ben Dhia

Received: date / Accepted: date

Abstract For compliant adhesive contact problems based
on the Lennard-Jones (LJ) potential, the non-convexity of
the latter leads to jump-in and jump-off instabilities which
can hardly be traced by using classical algorithms. In
this work, we combine an adapted Asymptotic Numerical
Method (ANM) and the multiscale Arlequin method to trace
efficiently these instabilities. The ANM is used to trace the
entire unstable solution path in a branch-by-branch manner.
The Arlequin method is used to achieve a refined resolu-
tion in the vicinity of the contact surface and to reduce pos-
sible spurious numerical oscillations due to coarse surface
discretizations. Numerical results, validated by comparison
with available ones, reveal the accuracy, efficiency and ro-
bustness of the proposed global methodology.

Keywords Adhesive contact · Lennard-Jones potential ·
Instability · Asymptotic numerical method · Multiscale ·
Arlequin method

1 Introduction

Adhesion plays an important role in many applications
involving mechanical contacts at small length scales, such
as that in designing and fabricating Microelectromechanical
Systems (MEMS), in studying the reliability and lifetime
of an Atomic Force Microscopy (AFM) probe as well as
in better understanding many biological adhesive systems,
to name only a few. Classical adhesion theories such as the
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Bradley theory [7], the JKR theory [22] and the DMT the-
ory [14] provide analytical solutions for simple adhesive
contact problems with idealized geometries. However, for
most of the contact problems in both academic and engi-
neering practice, the analytical solutions cannot been ob-
tained in closed form due to various complexities. There-
fore, one should resort to numerical computational methods
among which the most commonly used is the Finite Element
Method (FEM) in the framework of continuum mechanics
combined with numerical algorithms applied for the solu-
tion of Lennard-Jones (LJ) based contact problems (see [29,
15,26,35,24,6]). For an enlarged review of the numerical
modeling methods, readers are referred to the recent survey
by Sauer [28].

From a theoretical and numerical points of view, four
difficulties have been pointed out in [6] regarding the reso-
lution of the LJ-based adhesive contact problem. They are
directly related to the intrinsic multi-scale, unbounded, un-
defined (in presence of interpenetrations) and non-convex
natures of the LJ potential. The first three difficulties have
been dealt with in [6] where the multiscale aspect was ad-
dressed by using the Arlequin method (see [4,5]) and the un-
bounded and undefined aspects were addressed by a conver-
gent model-adaptivity method. The fourth difficulty is ad-
dressed in this work.

The nonconvexity of the LJ potential may lead to non-
uniqueness of the solution, giving rise to the jump-in and
jump-off adhesive instabilities (see [2,19]), especially for
compliant contact problems. These adhesive instabilities
have a significant influence on the measurement of the con-
tact stiffness and surface toughness in a real experiment (see
[20]), for instance. Thus they have to be accurately traced by
an advanced numerical method, having in mind that this task
cannot be achieved efficiently by using classical prediction-
correction methods (PCMs), such as the Newton-Raphson
method.



2 Shuimiao Du, Hachmi Ben Dhia

In this regard, the ultimate goal of the present work is
to provide a computationally efficient and numerically ro-
bust method to solve LJ-based adhesive contact problems
in linear elasticity. To this end, the asymptotic numerical
method (ANM) proposed by Damil and Potier-Ferry [13]
is adapted here to trace the jump-in and jump-off instabil-
ities. Moreover, the Arlequin multiscale framework is em-
ployed to prevent spurious oscillations of the numerical so-
lution due to coarse contact surface discretizations (see e.g.
[27]) and to reduce computational costs. As a matter of fact,
the combination of the ANM and the Arlequin method has
been used to accurately capture instabilities in the buckling
of rolled thin sheets under residual stresses (see [23]). In this
work, the ANM-Arlequin methodology is adapted, for the
first time, and tested for the solution of LJ-based unstable
nonlinear and non-convex adhesive contact problems.

The paper is structured as follows. In the next section,
general formulations of an obstacle-elastic frictionless con-
tact problem based on the LJ interaction are recalled. The
failure of a classical PCM in tracing instabilities of the solu-
tion of the adhesive contact problem is illustrated by a sim-
ple flat contact benchmark. In section 3, the classical ANM
is adapted for the LJ-based contact problem: by introducing
appropriate auxiliary fields defined on the contact surface,
the strongly nonlinear and non-convex formulation of the
LJ contact problem is transformed to a multifield quadratic
one. An automatic continuation technique is defined to ap-
ply the ANM in a branch-by-branch manner. To enhance the
global performance, a local branch dependent tolerance cri-
terion on the relative residual norm is suggested to correct,
when necessary, the accumulated equilibrium errors by dis-
tinguishing critical ending points of local branches from non
critical ones. In section 4, the proposed ANM is incorpo-
rated within the Arlequin multiscale framework to improve
its accuracy and efficiency. In section 5, our global solution
strategy is tested for three adhesive contact problems. Con-
cluding remarks are given in the last section.

2 An LJ-based adhesive contact model

2.1 Local and weak formulations

Consider the frictionless contact between a solidB occu-
pying the closure of a bounded and regular domain Ω in RNd

(Nd = 2 or 3) and a rigid regular obstacle O (see figure 1).
The boundary ofΩwhose unit outward normal is denoted by
n, is partitioned into classical parts (say, a clamped part Γu

and a part Γt where a surface traction t is prescribed) and a
part Γc where contact may occur. The interiors of these parts
are assumed to be pairwise disjoint. The solid B is assumed
to undergo linear elastic deformations. The potential contact
surface of the rigid obstacle is denoted by Γoc. Under small
perturbations hypotheses and neglecting friction effects, the

c
Γ

Ω

Ο

Fig. 1: An obstacle contact problem

local boundary-value problem governing the behavior of the
considered mechanical system reads:

div(σ) + f0 = 0 in Ω
σ = Rε in Ω

ε = 1
2 (▽▽▽u + (▽▽▽u)T ) in Ω
u = 0 on Γu

σn = t on Γt

σn = pn on Γc

(1)

where σ, f0,R, ε and u denote the stress tensor, the volume
density of external force, the elasticity moduli, the linearised
strain tensor and the displacement field, respectively.

Since the contact pressure p is unknown, eq. (1) has to
be supplemented with a specific contact law. In this work,
we use the pressure-based LJ interaction which reads:

p(d) =
8∆γ
3de

[
(
de

d
)9 − (

de

d
)3
]

(2)

where ∆γ denotes the relative surface energy of the con-
tacting surfaces, d denotes the signed-distance between two
contacting surfaces and de < 0 denotes the equilibrium
signed-distance. The LJ interaction pressure p(d) is pre-
sented in fig. 2 by the solid curve.

The signed-distance d is calculated as follows. Let x de-
note the initial position of a material point in Γc. Then,

d = ((x + u) − (x̄ +w)) · n
= (u −w) · n − g0

(3)

where w is a constant displacement prescribed to the rigid
obstacle and x̄ refers to the paired point of x which is clas-
sically defined as the nearest point to x on Γoc. The initial
gap g0 is defined by: g0 = (x̄ − x) · n.

For the approximation of this problem by means of
FEM, its weak formulation is needed. It can be formally de-
rived from eqs. (1) and (2) and reads:
Find u ∈ V;∀v ∈ V,

l(v) + a(u,v) + pnl(u,v) = 0 (4)
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Fig. 2: The LJ potential and pressure

where V is the kinematically admissible field for the dis-
placement and the quantities l, a and pnl are linear, bilinear
and nonlinear forms related to virtual works of internal, ex-
ternal and contact forces, respectively, defined by:

l(v) = −
∫
Ω

f0 · v −
∫
Γt

t · v (5a)

a(u,v) =
∫
Ω

σ(u) : ε(v) (5b)

pnl(u,v) = −
∫
Γc

p(d(u))n · v (5c)

Now, a question arises: how to solve the problem defined
by eqs. (2), (4) and (5) efficiently? This issue is treated in
what follows.

2.2 Contact instabilities and failure of the Newton-Raphson
method

The LJ potential φ(d) from which the LJ pressure eq. (2)
is derived reads:

φ(d) = −8∆γ
3

[
1
8

(
de

d
)8 − 1

2
(
de

d
)2
]

(6)

This potential is non-convex (see the dashed curve in fig. 2),
leading to possible non-uniqueness of solutions for the prob-
lem of optimization of the total potential energy from which
is derived eq. (4). As a matter of fact, in a real experiment
with fixed-load apparatus or in a numerical resolution with
load-control technique, the non-uniqueness of solution is
characterized by the onset of jump-in and jump-off instabil-
ities occurring at the limit points on the loading and unload-
ing branches, respectively (see e.g. [2,19,9]). Actually, these
instabilities are associated with dynamic jumps which take
place in a very short time until new equilibrium is reached.

The energy loss due to the instabilities has significant in-
fluence on the measurement of contact stiffness and surface
toughness (see [20]). Therefore, it is of particular interest
to use a numerical method able to follow statically the en-
tire equilibrium path and detect accurately the localization
of limit points. Incidentally, this cannot be easily achieved
by using classical PCMs as illustrated here by studying the
following toy contact benchmark.

x

y

0
gwy

u

Fig. 3: A flat contact problem

Consider the adhesive contact between an elastic rectan-
gular solid under plane strain conditions and two rigid flat
planes. Taking into account the problem symmetries, only a
quarter of the model is considered (see fig. 3). Let H and L
denote the height and length of the quarter of the rectangular
solid, E denote the Young’s modulus and let the Poisson’s
ratio of the material ν be equal to 0. The rigid plane is sepa-
rated by an initial gap g0 from the elastic body and is given
a constant displacement w in the downward y-direction. The
solution of this contact problem is governed by the follow-
ing implicit function:

f (w, d) = d + g0 −
8∆γ
3de

[
(
de

d
)9 − (

de

d
)3
]

H
E
− w = 0 (7)

By using the implicit-function theorem (see e.g. [31]),
one can find a critical value of the surface energy beyond
which the solution develops an instability. This critical value
is ∆γc =

15
72 ( 2

15 )−
2
3

Ed2
e

H . If ∆γ < ∆γc, the adhesive interaction
is too weak to produce an instability while if ∆γ > ∆γc,
the adhesion is strong enough to make the solution branch
unstable.

Figure 4a shows the analytical force-load curve for three
values of surface energy: ∆γ = 0.5∆γc, ∆γc and 2∆γc. The
contact force F is calculated by integrating the contact pres-
sure along the contact surface. In this test, the geometrical
and material parameters are taken as follows: H = 10nm,
L = 20nm, g0 = 5nm, E = 100GPa, de = −1nm. The critical
surface energy is ∆γc = 7.98J/m2. By a simple calculation,
one can find that in the case where ∆γ = 2∆γc, the jump-in
instability occurs at w = 2.4946nm while the jump-off insta-
bility occurs at w = 2.1417nm.
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Now let us solve this contact problem numerically. For
this, it is approximated by means of FEM. Note that due to
the geometrical simplicity of the domain and neglecting the
Poisson’s effect, the considered test can be reduced to a one-
dimensional problem. However, we solve it here as a two-
dimension problem to test the nonlinear solution method in a
more general finite element framework. To this end, bilinear
finite elements are used to discretize the problem (see fig. 3).

The resulting nonlinear and non-convex discrete prob-
lem is solved here by using a Damped Newton-Raphson
Method where the damping technique is expected to reduce
the singularity of the tangent matrix in the vicinity of the
limit points. Figures 4b to 4d show the force-load curves
for loading and unloading processes. It can be seen that
when the solution is stable, the Newton’s method can follow
the whole loading and unloading paths. However, difficul-
ties arise when the solution is unstable (see figs. 4c and 4d),
even when very small incremental loads are used. Actually,
the convergence is very slow in the zone close to the critical
points. If we take the ultimate load (i.e. the one for which a
convergence of the Newton algorithm can be achieved), then
we find that the jump-in and jump-off instabilities occur at
2.40nm and 2.21nm, respectively. A significant discrepancy
between the obtained values and the theoretical predictions
can be observed. More importantly, the S -shaped unstable
branch is missing: the Newton’s method fails to trace it.

In the following section, we present an Asymptotic Nu-
merical Method (ANM) aimed to overcome the difficulty in-
duced by these contact instabilities.

3 An asymptotic numerical method to trace adhesive
instabilities

The ANM was originally developed to investigate the
post-buckling of imperfect thin elastic structures (see [13]).
It has a quite different philosophy with that of a classical
PCM, in the sense that the latter is a pointwise scheme whilst
the former is a branch-wise one. This numerical method
has been used later for many other mechanical problems
with moderate degree of nonlinearity. Moreover, it proves to
be efficient (by comparison with more classical algorithms)
in tracing statically unstable solution branches of problems
with moderate nonlinearities (see e.g. [11,34,3]). Here we
adapt this method to solve the LJ-based nonlinear and non-
convex adhesive contact problems.

In the following sections, we will develop all the steps
for adapting the ANM to our LJ-based contact problem. In
section 3.1, a "quadratic-recasting" technique is presented
to transform the strongly nonlinear LJ contact problem to
a quadratic one. Then, the classical ANM is applied to the
resulting augmented quadratic nonlinear problem in sec-
tion 3.2 and section 3.3.

3.1 Quadratic recasting of the LJ-based adhesive contact
problem

For problems with a very high degree of nonlinearity,
the derivation of the asymptotic formulations can be quite
complex and tedious. Therefore, a process called "quadratic-
recasting" (see [12]) is necessary to transform the highly
nonlinear problem to a quadratic one. Here, taking advan-
tage of the fact that the LJ pressure eq. (2) has the form of a
polynomial fraction, one can reduce its nonlinearity hierar-
chically by introducing auxiliary fields.

Indeed, by defining the following set of supplementary
fields θ(x) = [s(x), x(x), y(x), z(x)], where ∀x ∈ Γc,


s(x)d(x) = de

x(x) = s(x)2

y(x) = x(x)2

z(x) = y(x)2

(8)

the LJ interaction eq. (2) can be recast to a quadratic expres-
sion of the components of θ as follows:

p(u) = p̂(θ) = −8∆γ
3de

(sz − sx) (9)

Then, the adhesive contact problem, governed by a
strong nonlinear equation with respect to u, can be trans-
formed to a system of multifield quadratic equations with
respect to (u,θ). It reads:



l(v) + a(u,v) + q(θ,v) = 0 ∀v ∈ V
s((u − λw) · n − g0) − de = 0 on Γc

x − s2 = 0 on Γc

y − x2 = 0 on Γc

z − y2 = 0 on Γc

(10)

where q(θ,v) is an operator related to the virtual work of
contact forces defined by:

q(θ,v) = −
∫
Γc

p̂(θ)n · v (11)

and λ is a loading parameter.
Now let ū = (u,θ) denote the new vector of unknowns

containing both the original unknown u defined in the bulk
and the auxiliary unknown θ defined on the contact surface.
Then the multifield quadratic problem composed of eqs. (10)
and (11) can be reformulated as follows:

c̄0(v) + l̄1(ū,v) + q̄(ū,v) = λl̄2(ū,v), ∀v ∈ V (12)

with,
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Fig. 4: Solutions of the flat contact test with three different surface energies ∆γ tested, (a): analytical solution and (b)-(d):
numerical solutions by using the Newton’s method.

c̄0(v) =



l(v)
de

0
0
0


l̄1(ū,v) =



a(u,v)
sg0

x
y
z


l̄2(ū,v) =



0
−sw · n

0
0
0


q̄(ū,v) =



q(θ,v)
−su · n
−s2

−x2

−y2


(13)

The continuous problem composed of eqs. (12) and (13)
is discretized by using the standard finite element method
to approximate the displacement field u and a collocation
method to approximate the auxiliary field θ. For this, let
Th denote a regular triangulation of the domain Ω and Γch

denote the discrete potential contact surface. Let U denote

the nodal value vector of the displacement field u, which
is a vector with Nn × Nd entries, where Nn denotes the to-
tal number of nodes in Th. Each component of the auxil-
iary field θ is approximated by using a collocation method.
Let {p j}16 j6Np be a finite collection of points in Γch, which
are tightly linked to the set of quadrature points. Let θ j =

[s j, x j, y j, z j] denote the value of θ at the collocation point
p j. By using quadrature formula based on the collocation
points, the surface integration eq. (11) is numerically ap-
proximated by:

−
∫
Γc

p̂(θ)n · v � 8∆γ
3de

Np∑
j=1

w j(s jz j − s jx j)n(p j) · v(p j) (14)

where w j is a weight associated with the collocation point
p j.

Now, let Θ = [θ1,θ2, · · · ,θNp ]T , a vector of 4Np en-
tries, denote the global nodal value vector of θ at all colloca-
tion points. Le us also introduce the global unknown vector
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(or the generalized coordinate vector) Ū = [U ,Θ]T whose
length is Nn × Nd + 4Np.

Then, the discrete formulation of the adhesive contact
problem reads:

C̄0 + L̄1(Ū ) + Q̄(Ū , Ū ) = λL̄2(Ū ) (15)

where C̄0, L̄1, L̄2 and Q̄ denote the vector-valued operators
related to the discretization of c̄0, l̄1, l̄2 and q̄, respectively.
In what follows, the ANM is applied to the discrete problem
given by eq. (15).

3.2 Series expansion and sequential computing

The ANM follows the equilibrium path in polynomial
branch-wise manner. So, assume that we have solved the
problem eq. (15) for a given number of branches and de-
note by λ0 the ending load of the last branch and by Ū0 the
solved displacement corresponding to λ0. Observe that when
necessary, a Newton-Raphson correction (see section 3.3) is
applied to correct the value of (Ū0, λ0) in order for the latters
to satisfy (with a given tolerance) the equilibrium eq. (15).
Then, we solve for the next branch by treating the possibly
corrected (Ū0, λ0), still denoted by (Ū0, λ0), as the starting
point. Now, based on a perturbation technique, the ANM as-
sumes that the solution for the next branch (Ū , λ) can be rep-
resented by a polynomial expansion with respect to a path
parameter a in the vicinity of the starting point (Ū0, λ0):Ū (a) = Ū0 + Ū1a + Ū2a2 + · · · + ŪNaN

λ(a) = λ0 + λ1a + λ2a2 + · · · + λNaN (16)

where N is a truncation order.
Substituting eq. (16) into eq. (15) yields a set of alge-

braic equations with respect to the path parameter a. Each
equation has a polynomial form. By equating the powers of
a for all orders 0 6 n 6 N, we obtain the following algebraic
system with respect to (Ūn, λn):

Oder 0 : C̄0 + L̄1(Ū0) + Q̄(Ū0, Ū0) = λ0L̄2(Ū0) (17a)

Oder 1 : L̄t(Ū1) = λ1L̄2(Ū0) (17b)

Oder 2 : L̄t(Ū2) = λ2L̄2(Ū0) + λ1L̄2(Ū1) − Q̄(Ū1, Ū1)
(17c)

...

Oder n > 3 : L̄t(Ūn) = λnL̄2(Ū0)

+

n−1∑
i=1

λiL̄2(Ūn−i) −
n−1∑
i=1

Q̄(Ūi, Ūn−i)

(17d)

where L̄t denotes the linear tangent operator at the starting
point (Ū0, λ0) and is defined as L̄t(·) = L̄1(·) + 2Q̄(Ū0, ·) −
λ0L̄2(·).

Since (Ū0, λ0) satisfies eq. (15) by construction, the al-
gebraic system eq. (17) is solved sequentially (for 1 6
n 6 N), i.e. in an order-by-order manner. The starting point
(Ū0, λ0) is substituted into the first-order equation to solve
for (Ū1, λ1). Then, the latter is substituted into the second-
order equation to solve for (Ū2, λ2). This procedure is con-
tinued until the truncation order is reached.

Incidentally, it can be seen that the linear problem at
each order 1 6 n 6 N is underdetermined since it consists
of Nn × Nd + 4Np + 1 unknowns but only of Nn × Nd + 4Np

algebraic equations. To complete the problem at each order,
an additional constraint equation is introduced which relates
the path parameter a with the unknowns (Ū , λ). In general,
the path parameter a can be defined in a variety of ways.
By varying the definition of a, traditional load-control and
displacement-control techniques can be recovered as partic-
ular cases. In this work, we use the approach introduced in
[11]. It consists of the projection of the increment on the
tangent of the solution path and reads:

a =
1
s2

a
⟨Ū − Ū0, Ū1⟩ + (λ − λ0)λ1 (18)

where sa is a strictly positive scaling parameter. Let us note
that by using eq. (18), the path parameter a is defined in
an arc-length sense, thus both the load and displacement are
controlled simultaneously (see [30,26] for the use of the arc-
length method to solve LJ-based contact problems with ad-
hesive instabilities).

Substituting the asymptotic expansion eq. (16) into
eq. (18) and equating the powers of a yields the following
additional equations:

Oder 1 : ⟨Ū1, Ū1⟩ + λ2
1 = s2

a (19a)

Oder 2 6 n 6 N : ⟨Ūn, Ū1⟩ + λnλ1 = 0 (19b)

According to Equation (19), the first-order solution refers to
an increment of length sa in the tangent direction whereas
the n-th order solution refers to increments perpendicular to
the first-order solution. The latters can be viewed as consec-
utive higher order corrections to the linear prediction.

Grouping eq. (17) and eq. (19), we obtain for each order
1 6 n 6 N a set of linear equations and a set of quadratic
(for order 1) and linear (for order 2 6 n 6 N) constraints.
They read:

Oder 1 :


[
Kt(Ū0, λ0)

] {
Ū1

}
= λ1

{
Fw(Ū0, λ0)

}
{
Ū1

}T {
Ū1

}
+ λ2

1 = s2
a

(20a)

Oder n :


[
Kt(Ū0, λ0)

] {
Ūn

}
= λn

{
Fw(Ū0)

}
+

{
F n

nl

}
{
Ūn

}T {
Ū1

}
+ λnλ1 = 0

(20b)
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where
[
Kt(Ū0, λ0)

]
is the global tangent stiffness matrix es-

timated at the starting point Ū0,
{
Fw(Ū0, λ0)

}
is the global

"force" vector related to external loads and
{
F n

nl

}
is the global

"force" vector referring to a measure of the accumulated
nonlinear terms of preceding orders.

The global tangent matrix is calculated as follows:

Kt =KE +Kc (21)

where KE denotes the elastic stiffness matrix of the con-
tacting body and Kc denotes the tangent matrix related to
contact interaction defined by:

Kc =

0Nu×Nu KUΘ

KΘU KΘΘ

 (22)

where KUΘ and KΘU are coupling matrices linking U and
Θ and KΘΘ is the matrix linking the auxiliary fields with
each other. The matrices and vectors in eq. (20) are calcu-
lated by a classical matrix assembling technique:

[KUΘ] = A
e=1,Ne

[KUΘ]e

[KΘU] = A
e=1,Ne

[KΘU]e

[KΘΘ] = A
e=1,Ne

[KΘΘ]e

{Fw} =


0Nu×1

A
e=1,Ne
{Fw}e

 , {
F n

nl

}
=


A

e=1,Ne
{F n

u }e

A
e=1,Ne
{F n
θ }e

 (23)

where Ne denotes the number of contact elements on the
contact surface, [KUΘ]e, [KΘU]e, [KΘΘ]e denote elemen-
tary tangent matrices and {F n

u }e, {F n
θ }e denote elementary

force vectors, respectively. The symbol A refers to a classi-
cal matrix (or vector) assembling operator. The calculation
of the above elementary matrices and vectors is detailed in
appendix A for a two-node linear contact element.

Now the problem eq. (20) can be solved sequentially as
follows:

Oder 1 :



solve
[
Kt(Ū0, λ0)

] {
ŪL

}
=

{
Fw(Ū0, λ0)

}
λ1 =

sa√
1 +

{
ŪL

}T {
ŪL

}
{
Ū1

}
= λ1

{
ŪL

} (24a)

Oder n :


solve

[
Kt(Ū0, λ0)

] {
ŪNL

}
=

{
F n

nl

}
λn = −λ1

{
ŪNL

}T {
Ū1

}
{
Ūn

}
=
λn

λ1

{
Ū1

}
+

{
ŪNL

} (24b)

It can be seen that for each ANM step, only one global tan-
gent matrix inversion is needed for all orders, leading to
a significant gain in the computational cost compared to a
classical Newton-Raphson method, for which the global tan-
gent matrices need to be updated at each iteration.

Once the generalized coordinate vector Ū and the
loading parameter λ at all orders are solved by using
eq. (24), the current ANM branch is re-constructed ana-
lytically with eq. (16) as expressions of the path parameter a.

A pure displacement formulation
It can be seen that due to auxiliary fields, the number

of unknowns have increased compared with the number of
Dofs for the displacement fields. Actually, by applying the
same asymptotic expansion procedure to all the auxiliary
fields, the relation between the contact force and the aux-
iliary fields at each order can be transformed back to a vir-
tual linear interface law, leading to a purely displacement-
based (still quadratic) formulation. Then, the auxiliary fields
Θ are not treated directly as unknowns. They are only com-
puted and stored intermediately for the construction of the
global tangent matrix and the nonlinear RHS residual terms.
The derivation of the purely displacement-based formula-
tion is straightforward. It is not detailed here. Let us refer
to Method-1 and Method-2, in the sequel, the ANM corre-
sponding to the formulation with auxiliary fields Θ and the
purely displacement-based one.

3.3 An automatic continuation technique

The solution of eq. (24) can only approximate the real
solution path in the vicinity of the starting point. This is
because the asymptotic expansion eq. (16) has a finite range
of validity. This issue is illustrated by a simple test in ap-
pendix B. Therefore, an automatic continuation technique is
used here to apply the ANM in a branch-by-branch manner
to trace the whole solution path. It mainly consists of three
parts: the estimation of the range of validity, the estimation
of the travelling direction and when necessary, the use of
a Newton-Raphson correction. Moreover, an instability
detection technique is also integrated herein to capture the
location of the jump-in and jump-off instabilities. These
points are detailed below.

Estimation of the range of validity
Two methods are commonly used to estimate the range

of validity of the local asymptotic expansion eq. (16). One
is based on the displacement (or generalized displacement)
field. Another one is based on the residual truncation error
of the equilibrium path. Throughout the present work, we
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adopt the necessary displacement criterion proposed in [11],
which reads:

|amax| =
ϵ

∥∥∥Ū1
∥∥∥∥∥∥ŪN

∥∥∥


1
N−1

(25)

where ϵ is a tolerance number and ∥·∥ refers to the Euclidean
norm.

Table 1: Estimated ranges of validity for one local branch of
the solution of eq. (51). See appendix B for details.

Method-1 Method-2
d̄0=4 d̄0=1.3 d̄0=4 d̄0=1.3

N=3 0.0042 0.0007 0.0593 0.0002
N=5 0.1212 0.0395 0.4058 0.0081
N=10 0.7665 0.2778 1.2991 0.0512
N=15 1.2875 0.4846 2.1728 0.0840
N=20 1.6314 0.6189 2.0827 0.1052

Table 1 shows the estimated ranges of validity for
the problem considered in appendix B with a tolerance
ϵ = 10−7. The obtained results reveal a strong dependence
of the range of validity on the truncation order, the starting
point and whether auxiliary fields are treated as independent
unknowns or not. Particularly, it can be seen that in the
critical zones, Method-1 has a superior performance over
Method-2 (see figs. 20b and 20d for a comparison of the
quality of approximations close to the critical point).

Estimation of the travelling direction
The estimation of the range of validity eq. (25) only

gives the absolute value of the path parameter but its sign
remains to be determined. Indeed, the ANM solution travels
towards its tangent direction (or direction of the first-order
solution) if the path parameter a is positive, while it travels
in the inverse direction if a is negative. Therefore, after pass-
ing a critical point, across which the tangent vector changes
its direction, the sign of a should also be inverted to avoid a
trace-back to the path of the previous solution step.

Figure 5 shows the fist 15 ANM branches of the solution
of eq. (51), obtained with a truncation order N = 10 and
a tolerance ϵ = 10−7. The polynomial series are computed
using Method-1 and the range of validity is estimated with
criterion eq. (25). An oscillation between trace-forward and
trace-back can be observed in a zone close to the critical
point. This is due to a change of direction of the tangent
vector (see the path from branch 9 to branch 10 and that from
branch 10 to branch 11). As a consequence, the solutions
are locally trapped and the critical point cannot be passed
across, no matter how many branches are computed.

1 2 3 4 5

d̄

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

p̄

reference

ANM

1.15 1.2 1.25 1.3

-0.39

-0.385
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-0.37
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7
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10
11

12

13

14

15

critical point

Fig. 5: Change of travelling direction in the vicinity of a
critical point.

To overcome this drawback, one can reverse the trav-
elling direction according to the sign of the product of all
eigenvalues (or the determinant) of the global tangent ma-
trix. However, in high dimensional problems, this method
may be computationally inefficient. In this work, we use
a method proposed in [11], which consists in evaluating
the angle between the increment of the last branch and
the tangent vector of the current branch. Let (Ū j

+, λ
j
+) =

(Ū (a j
max), λ(a j

max)) denote the ending point of the j-th so-
lution branch. Let |a j+1

max| be the absolute value of the range
of validity of the next branch, which is estimated by eq. (25).
Then the travelling direction of the next branch can be eval-
uated as follows:

sign(a j+1
max) = sign(⟨Ū j

+ − Ū
j−1
+ , Ū

j+1
1 ⟩ + λ

j+1
1 (λ j

+ − λ
j−1
+ ))

(26)

where (Ū j+1
1 , λ

j+1
1 ) denotes the first-order solution of the

branch j + 1.

Newton-Raphson correction
In most cases, the estimation of the range of validity

leads to a sufficiently accurate approximation of the true
equilibrium branch, provided that the tolerance ϵ is cho-
sen to be small and enough terms of the expansions are re-
tained (see [11]). Nevertheless, it is possible that the error
accumulates progressively from branch to branch and thus
the approximate solution deviates more and more from the
true equilibrium path. Therefore, it is necessary to estimate
the global relative residual norm at the end of each ANM
branch and apply a correction technique whenever it is nec-
essary. However, as can be theoretically anticipated and has
been checked numerically (see section 5), the ANM solu-
tion is only error-sensitive in the very vicinity of the criti-
cal points but not elsewhere. Taking into account this obser-



An asymptotic numerical method to solve compliant Lennard-Jones-based contact problems involving adhesive instabilities 9

vation, a local branch dependent tolerance criterion on the
relative residual norm is introduced here for the correction
technique, instead of using a global one (as is done in [32]).
It reads:

ζ j = |a j
max|ζg (27)

where ζ j denotes the tolerance of the correction at the end of
branch j and ζg is a global constant tolerance. In the vicinity
of a critical point, |a j

max| is small (i.e. orders of magnitude
smaller than 1) and the tolerance is small compared to the
global one. In zones far away from a critical point, |a j

max| is
relative large (i.e. of the order O(1)) and the tolerance is of
the same order as the global one.

The convergence criterion for the correction phase reads:

R j
+ 6 ζ

j (28)

whereR j
+ is the relative global residual norm:

R j
+ =

∥∥∥∥L̄0 + L̄1(Ū j
+) + Q̄(Ū j

+, Ū
j
+) − λ j

+L̄2(Ū j
+)

∥∥∥∥∥∥∥∥λ j
+L̄2(Ū j

+)
∥∥∥∥ (29)

Whenever eq. (28) is not satisfied, the quantities
(Ū j
+, λ

j
+) are corrected by using the Newton-Raphson

method with an arc-length controlling technique (see [32]).
The linearized system in a matrix form at each iteration i
reads: K ji

+ −F
ji
+

(Ū j
1 )T λ

j
1


δŪ

ji
+

δλ
ji
+

 =
−r

ji
+

0

 (30)

whereK ji
+ , F ji

+ and r ji
+ denote the tangent matrix, the exter-

nal loading vector and the global residual vector estimated
at iteration j, respectively. The quantities δŪ ji

+ and δλ ji
+ de-

notes the iterative increments of δŪ j
+ and δλ j

+ at iteration j,
respectively. The corrected value of (Ū j

+, λ
j
+) is treated as a

new starting point for the next branch.
The global solution strategy based on the ANM for the

LJ adhesive contact problem is presented in algorithm 1.

Detection of contact instabilities
The jump-in and jump-off instabilities is detected by

seeking, among all ANM branches j = 1, 2, ..., the value
of the path parameter a j

c at which the tangent of λ j vanishes,
i.e. dλ j(a)

da |a=a j
c
= 0, which yields the following N-th order

polynomial equation:

Nλ j
N(a j

c)N−1+ (N−1)λ j
N−1(a j

c)N−2+ · · ·+2λ j
2a j

c+λ
j
1 = 0 (31)

This polynomial equation is solved by using a standard
root-searching code, while rejecting the roots with an imag-
inary part and those lying outside the interval [0, a j

max].

Algorithm 1 An algorithm based on ANM to solve the LJ
adhesive contact problem
1: define a truncation order N, a tolerance for ANM ϵ and a global

tolerance for Newton correction ζ.
2: give a first guess for the fundamental (or unloaded) solution

(Ū 0, λ0).
3: apply a Newton-Raphson correction to (Ū 0, λ0).
4: loop over ANM branches j = 1, 2, 3... until λ j

+ > 1

5: initialize the expansions with (Ū j
0 , λ

j
0) = (Ū 0, λ0).

6: compute the global tangent matrix Kt(Ū
j

0 , λ
N
0 ) and the force

vector Fw(Ū j
0 , λ

j
0) with eq. (21) and eq. (23).

7: solve for the first order using eq. (20a) −→ (Ū j
1 , λ

j
1).

8: loop over expansion order: n = 2, 3, ...N
9: compute the accumulated RHS term F jn

nl .
10: end loop
11: solve for the n-th order using eq. (20b) −→ (Ū j

n , λ
j
n).

12: estimate the range of validity |a j
max | using eq. (25).

13: determine the travelling direction sign(a j
max) using eq. (26).

14: compute the ending point of the current branch: (Ū j
+, λ

j
+) =

(Ū j(a j
max), λ j(a j

max)).

15: check residual error. Apply a Newton-Raphson correction if
necessary.

16: set (Ū 0, λ0) = (Ū j
+, λ

j
+) and continue for the next ANM branch.

17: end loop

The type of instability is determined by evaluating the
second-order derivative of λ j with respect to a at a j

c:


d2λ j(a)

da2 |a=a j
c
> 0 :−→ jump-in instability

d2λ j(a)
da2 |a=a j

c
< 0 :−→ jump-off instability

(32)

4 Incorporation of the ANM within the Arlequin
multiscale framework

As discussed in our previous work [6], due to the very lo-
calized zones of interest and their evolution with respect to
the external load, multiscale methods are highly demanded
to solve the LJ-based adhesive contact problems with a rea-
sonable computational cost. In this work, we employ again
the flexible multiscale Arlequin framework (see [4,5]) to
achieve this task.

Figure 6 shows an Arlequin model of the obstacle-
elastic contact problem presented in section 2. The domains
Ωg and Ωl refer to the "global" and "local" domains,
respectively. Their intersection is divided into Ωc and
Ω f , the former being the "coupling" zone and the latter
being the "free" zone. For simplicity, we assumed that
Γc ⊂ ∂Ω f which is to mean that only the free-zone of the
local domain is concerned by contact interactions. Then,
the weak form of the LJ-based contact problem within the
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cΓ

gΩ

lΩ
fΩ

cΩ

Ο

Fig. 6: Contact modeling in the Arlequin framework

Arlequin framework reads:

Find ug ∈ Vg, ul ∈ Vl, and ϕ ∈M;
∀vg ∈ Vg, vl ∈ Vl, and ψ ∈M;∑
i=g,l

Gint
i (ui,vi;αi) −

∑
i=g,l

Gext
i (vi; βi) −Gc(ul,vl)

+GArl(ug,vg,ul,vl,ϕ,ψ) = 0 (33)

where, for i = g, l, Vi denotes the kinematically admissi-
ble space for the displacement field in Ωi. The space M is
the mediator space composed of the Arlequin gluing forces
or volume-Lagrange multipliers ϕ introduced to enforce the
volume coupling between the superposed models in the glu-
ing zone Ωc. The quantities αi and βi refer to Arlequin
weighting functions forming a partition of unity. The quanti-
ties Gint

i and Gext
i refer to the weighted virtual work of inter-

nal and external forces, respectively. Gc refers to the virtual
work of contact forces and GArl refers to the term related to
the volume Arlequin coupling. They are calculated as fol-
lows (with prescribed surface traction being neglected): for
i = g, l,

Gint
i =

∫
Ωi

αiσ(ui) : ε(vi) (34a)

Gext
i =

∫
Ωi

βif0 · vi +

∫
Γt

∩
∂Ωi

βit · vi (34b)

Gc =

∫
Γc

p(d(ul))n · vl (34c)

GArl = C(ug − ul,ψ) +C(vg − vl,ϕ) (34d)

where C is an Arlequin coupling operator. In this work, it is
chosen to be an energy-like scalar product:

C(ϕ,u) =
∫
Ωc

E
κ2
ϕ · u + E▽▽▽ϕ : ▽▽▽u (35)

with E being the material Young’s modulus and κ being a
strictly positive parameter homogeneous to a length.

Following the same procedure as in the mono-model
case (see section 3.1), the strongly nonlinear problem
eq. (33) is transformed to a quadratic one and then dis-
cretized by the FEM and the collocation method. Let Ũ =
[Ug,Ul,Θl,Φ]T denote the vector of global unknowns of
the problem, where Ug and Ul denote the nodal values of
the global and local displacement field,Θl denote the vector
of the auxiliary fields and Φ denote the vector of the un-
known Arlequin multiplier. Then, the quadratic form of the
discretized problem reads:

C̃0 + L̃1(Ũ ) + L̃Arl(Ũ ) + Q̃(Ũ , Ũ ) = λL̃2(Ũ ) (36)

where C̃0, L̃1, L̃2 and Q̃ denote constant, linear and
quadratic operators similar to the ones defined in eq. (15).
The operator L̃Arl is a linear one related to the Arlequin cou-
pling and defined by:

L̃Arl(Ũ ) = [C1Φ,−C2Φ,0dim(Θ)×1,C1Ug −C2Ul]T (37)

where C1 and C2 denote the Arlequin coupling matrices
(see [6] for details).

The resulting multiscale problem in the Arlequin frame-
work can be solved using the ANM by following exactly the
same procedure as presented in section 3. We just give here
the global tangent matrixKt at each ANM branch:

Kt(Ũ , λ) =


Kg

E 0 CT
1

0 K l
E +K

l
c −CT

2

C1 −C2 0

 (38)

whereKg
E andK l

E denote the elastic matrices in Ωg and Ωl,
respectively. The matrixK l

c is the tangent matrix of contact
interaction evaluated in the same way as that in eq. (21).

Let us note that one of the main interests of the Arlequin
approach is its ability to allow for a local refinement in very
localized critical zones, there where an accurate resolution
is required, without alterating the global substrate model.

5 Numerical results

The methodology presented in this work, combining the
ANM and the Arlequin method, is assessed in this section
through three classical and relevant tests, for which either
analytical solutions can be derived or numerical solutions
are available in the literature.

5.1 Contact between flat surfaces

We re-consider the flat contact problem in section 2.2,
for which the analytical solution has been derived (see
eq. (7)) and for which it has been shown that the classi-
cal Newton-Raphson method fails to trace the jump-in and
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jump-off instabilities if the surface energy ∆γ exceeds the
critical value ∆γc. Here this problem is solved by using
the proposed ANM with a truncation order N = 10, an
ANM tolerance ϵ = 10−7 and a Newton-Raphson global
tolerance for the correction technique ζg = 10−6. Due to
its simplicity, this toy problem is solved in a mono-model
framework. Figure 7 shows the ANM solution of this con-

1 2 3 4 5
w= jdej

-1

-0.5

0

0.5

1

F
=(

L
"
.
)

Analytical solution
ANM solution
ending of ANM branch

5 40

35

30
25
20

15

10

Fig. 7: ANM solution for the flat contact test with ∆γ = 2∆γc

tact test in presence of contact instabilities (∆γ = 2∆γc).
The result is obtained by using Method-1. Open circles rep-
resent the ending points of ANM branches and they are la-
belled by the branch number for every 5 branches. The green
curve is the asymptotic approximation of the real equilib-
rium path reconstructed by the truncated polynomial expan-
sions eq. (16). A good agreement between the ANM solu-
tion and the analytical one is observed. Moreover, contact
instabilities are also accurately traced. The ANM algorithm
finds out, by using the stability detection method eqs. (31)
and (32), that the jump-in instability occurs at w = 2.4946nm
and the jump-off instability occurs at w = 2.1417nm, which
agrees exactly with the values predicted by analytical solu-
tions.

In order for the external load to be fully applied, 42
ANM branches are calculated. Six Newton-Raphson itera-
tions are also involved in the correction phase, giving rise to
a total number of 48 tangent matrices inversions. We ob-
served that these Newton-Raphson corrections are essen-
tial for the proposed algorithm to pass critical points (in
the sense that no convergence of the methodology can be
achieved without these corrections). A possible drift error
accumulation in the vicinity of the critical point would oc-
cur otherwise. We also underline that, thanks to the new lo-
cal branch dependent tolerance criterion eq. (27), only the
branches in the vicinity of the critical points are concerned
by the correction phase. For instance, in the considered test,
the relative error at the end of branch 6 and branch 7 are

2.49213 2.49213004
-0.38877

-0.38876

-0.38875

-0.38874

F
=(

L
"
.
)

2.492295 2.492296 2.492297 2.492298
w= jdej

-0.39064

-0.39062

-0.3906

F
=(

L
"
.
)

Branch 6 Branch 7

Branch 7
Branch 8

Fig. 8: Newton-Raphson correction in the vicinity of the crit-
ical point

of the same order of magnitude (about 10−7). However, the
ending point of branch 6 is not corrected since it is not in the
very vicinity of a critical point. On the contrary, the ending
point of branch 7 is corrected since it is close to a jump-
in critical point (see fig. 8). In this test, only about 0.14
Newton-Raphson iterations per ANM branch on average are
involved as an extra computational cost: only about 1.14 ma-
trices inversions are involved in each ANM branch, which is
much more efficient than a standard Newton’s method (even
in the best scenarii for the latter).

Table 2: Number of matrix inversions for the flat contact test

∆γ = 0.5∆γc ∆γ = ∆γc ∆γ = 2∆γc

Method-1 21 27 48
Method-2 75 82 99

Table 2 shows the number of matrices inversions for the
flat contact test, which is obtained as a summation of ANM
branches and Newton-Raphson correction iterations. It can
be seen that Method-2 is less efficient than Method-1, es-
pecially in the absence of jump-in and jump-off instabili-
ties. This is further illustrated by fig. 9, where the estimated
ranges of validity for all ANM branches are displayed for
the two methods. A drop (about two orders of magnitude) of
the range of validity is observed for Method-1 at the posi-
tions where a jump-in or jump-off instability occurs. In the
absence of contact instabilities, no such abrupt drop of the
range of validity is observed. However, for Method-2, the
range of validity is considerably affected by another type of
critical points, namely those with a horizontal tangent vector
in the load-displacement plane. A sharp decrease (as much
as about three orders of magnitude) of the range of valid-
ity is observed in the vicinity of these other kind of criti-
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cal points, no matter contact instabilities are present or not,
which makes Method-2 less efficient.

As a matter of fact, the jump-in and jump-off instabilities
occur only in a load-controlled test while the critical points
with a horizontal tangent occur only in a displacement-
controlled test. The ANM involves a combination of both
of them in an arc-length manner (with the definition of the
path parameter by eq. (18)). As a consequence, any type of
critical points may have more or less influence on the local
performance of the ANM. These observations suggest that
Method-2 is to be preferred in the vicinity of the jump-in or
jump-off instabilities, while Method-1 is to be preferred in
the vicinity of a critical point with a horizontal tangent. For
performance considerations, one can switch between these
two methods to deal with all types of critical points. How-
ever, for more complicate problems (with many local insta-
bilities, for instance), a frequent switching between Method-
1 and Method-2 may lead to a loss of robustness and effi-
ciency of the global strategy. For this reason, in the sequel,
Method-1 is used for the whole path-following procedure
since globally it has a better performance (see table 2).

5.2 A spherical indentation problem: the Greenwood test

As a second test, we consider the "Greenwood test", con-
sisting in an adhesive contact between an infinite flat rigid
surface and an elastic sphere. This test has been numerically
investigated by many authors (see e.g. [25,2,19,16]). It is
well-known that the contact in this test is governed by the
Tabor parameter µ which is defined by:

µ =

(
R∆γ2

E∗2d3
e

) 1
3

(39)

where E∗ denotes the plane-strain modulus: E∗ = E
1−ν2 .

Indeed, for small values of µ, the contact is stiff and no ad-
hesive instabilities develop. But for large values of µ, the
contact is soft and jump-in and jump-off instabilities oc-
cur. In [16], the adhesive instabilities of this problem have
been captured by using an arc-length continuation method in
combination with analytical approaches, requiring geomet-
rical idealizations. Here, we use the ANM and the Arlequin
method to solve fully numerically this problem.

For symmetry reasons, only a quarter of the median
plane of the sphere is considered. The resulting two-
dimensional problem is assumed to be under axisymmetric
conditions. Symmetric boundary conditions are applied on
the left and bottom edges of the considered domain. The
radius of the disc is R = 10nm. The constitutive material
is assumed to be elastic, isotropic and homogeneous. The
Young’s modulus and the Poisson’s ratio are E = 100GPa
and ν = 0.3, respectively.

Let now δ denote the signed-distance (approach)
between the summit of the undeformed configuration of
the sphere and the rigid plane, the initial value being
δ0 = −2nm. A displacement u0 in the z−direction is pre-
scribed to the rigid plane surface. The equilibrium signed
distance of the LJ interaction is de = −0.25nm. Three tests
are carried out with µ = 0.02, 0.5 and 2, corresponding to
values of the surface energy ∆γ = 0.0123J/m2, 1.5358J/m2

and 12.2861J/m2, respectively, the other parameters being
fixed. Our numerical results obtained by the ANM are
compared to the Greenwood’s solutions and those obtained
by using the Newton-Raphson method that we also tested
here.

Stable scenarii
In a first step, the first two contact tests (µ = 0.02 and

µ = 0.5) are solved with monolithic approaches, using the
mono-model mesh presented in fig. 10. The meshsize on the
potential contact surface is about hg = 0.3nm. Classical lin-
ear finite elements are used for the approximation of the dis-
placement field and a two-node Newton-Cotes (trapezoidal)
scheme is employed for the numerical integration along the
contact surface (which implies that the auxiliary fields are
evaluated at the vertices of the discrete contact surface).

Figures 11a and 11b show the evolution of normalized
contact force resultant f̄c with respect to the normalized ap-
proach δ̄ for the Greenwood’s solutions and those obtained
by using the ANM and the Newton-Raphson method (de-
noted by "PCM" in the figure). The force resultant f̄c and
the approach δ̄ are normalized as follows:

δ̄ =
δ − de

|de|
, f̄c =

fc
2π∆γR

(40)

For these two tests, no adhesive instabilities are detected
and one can observe a good agreement between the ANM
solutions and the PCM solutions. Moreover, for Tabor’s pa-
rameter µ = 0.02, both the ANM and the PCM solutions
coincide with the Greenwood’s solution. But, when the con-
tact becomes softer (µ = 0.5), the discrepancy between the
numerical results and the Greenwood’s ones becomes larger.
This can be explained by the fact that the Greenwood’s
paraboloidal approximation of the real circular contact sur-
face is less accurate for large values of µ.
Unstable scenarii

The scenario becomes more complicated with µ = 2,
for which there is an onset of adhesive instabilities. Indeed,
in this case, the Newton-Raphson method fails to converge
by using the mesh presented in fig. 10 and we have used a
finer mesh (not presented here) than the former to achieve
convergence. By using the ANM, no convergence problem
is encountered with the mesh presented in fig. 10.

Figure 11c shows the force-approach curves for the
Greenwood’s solution, and the solution obtained by using
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Fig. 9: Comparison of ranges of validity for Method-1 and Method-2

Fig. 10: Mono-model mesh of the disk

the ANM and the Newton-Raphson method (with a finer
mesh). It can be seen that the physical instabilities, char-
acterized by an S -shaped curve, is captured by using the
ANM but not by the Newton-Raphson method. However,

the ANM solution exhibits many numerical instabilities
which are characterized by spurious oscillations around the
mean value of the curve. These numerical instabilities are
due to a too coarse contact surface discretization which
does not allow for a smooth transition between adhesive
and repulsive interactions. Incidentally, these numerical
oscillations can explain the failure of the Newton-Raphson
method in the test with the coarse mesh. They also lead
to a loss of efficiency of the ANM since as can be seen in
fig. 11c, an excessively large number of ANM branches are
used to trace the spurious oscillations.

Reduction of spurious numerical oscillations
To reduce the aforementioned spurious numerical os-

cillations, we increased, in a first attempt, the number of
quadrature points for the contact terms. Figure 11d shows
the solution obtained by using a three-node Simpson quadra-
ture scheme. A reduction of the amplitude of the numerical
oscillations can be readily observed. However, no further re-
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Fig. 11: Force-approach curves solved with different Tabor parameters. (a)-(b): accurate results obtained for stiff contact and
(c)-(d): inaccurate results obtained for soft contact due to coarse surface discretizations

ductions were obtained by further increasing the number of
quadrature points.

Considering that these numerical oscillations are due to
very localized adhesive zones for the considered test, we
switch to an h-refinement method (see e.g. [33] for an adap-
tive one). Bearing in mind that a monolithic h-refinement
method may be computationally expensive, we use here the
more flexible Arlequin multiscale framework to achieve this
task. For this, a circular-trapezoidal patch corresponding to
a central angle of 45o with a thickness of 0.5nm is superim-
posed to the global one. The meshsize hl of the local fine
patch is about 0.03nm in the vicinity of the potential con-
tact surface. The substrate and the patch are coupled in a
zone with a thickness equal to 0.25nm. The Arlequin weight
function αg is equal to 0.5 in Ωc and to 0.01 in Ω f , respec-
tively.

The remarkable improvement of the quality of the solu-
tion by using the Arlequin approach can be seen in fig. 13.

Furthermore, the number of ANM branches and matrices in-
versions required to follow the whole solution path is con-
siderably reduced: 522 and 358 matrices inversions were
necessary to obtain the solutions given in fig. 11c and
fig. 11d, respectively, whereas only 171 matrices inversions
are necessary for the one given in fig. 13.

5.3 Attachment and detachment of a rigid sphere from an
elastic wavy surface: the Guduru model

It is well-known that the adhesion forces decrease with
respect to surface roughness (see e.g. [18,10]). However,
it has been shown experimentally (see e.g. [8,17]) that in
some cases, the pull-off force during the detachment of
two nanoscopic contacting solids may first increase with re-
spect to their surface roughness before eventually decreas-
ing. Guduru ([20,21]) suggested a theory to investigate the
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Fig. 12: Arlequin modeling: local and global meshes
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Fig. 13: Force-approach curve solved within the Arlequin
framework: significant improvement can be observed

detachment of a rigid sphere from an elastic rough surface.
His theory confirmed that surface roughness has significant
influence on the stability behavior, which further affects the
measurement of the contact stiffness and surface toughness.
Here, in the last test, we assess the accuracy and efficiency
of our global methodology to trace these instabilities.

r

z

2A

δ
B

R

Fig. 14: Contact between a sphere and a wavy surface

In [20,21], the adhesive contact between a rigid sphere
and an infinite rough surface is considered. The latter is ide-

alized to be axisymmetric and in a form of single wavelength
cosine function in the radial direction (see fig. 14):

z = −A
(
1 − cos

(
2πr
B

))
(41)

where r and z are radial and vertical coordinates. The quan-
tities A and B are the amplitude and the wavelength of the
wavy surface. According to Guduru’s theory, the approach
and force are given by:

δ(la) =
l2a
R
+
π2A
B

laH0

(
2πla

B

)
−

√
2π∆γla

E∗
(42a)

fc(la) =
2E∗l3a

3

(
2
R
+

4π2A
B2

)
−

√
8πE∗∆γl3a

+ πE∗AlaH1

(
2πla

B

)
− 2E∗π2Al2a

B
H2

(
2πla

B

)
(42b)

where la denotes the macroscopic contact radius and
Hn(·) denotes the Struve function of order n (see [1]).

Here, two profiles of wavy surfaces are considered:
B/R = 0.1, A/B = 0.01 and B/R = 0.1, A/B = 0.05.
For both profiles, the other parameters are taken as fol-
lows: R = 10nm, de = −0.25nm and ∆γ = 12.5J/m2. Fig-
ure 15 shows the normalized force-approach curves (param-
eterized by la) predicted by the Guduru’s theory. The clas-
sical JKR theory for the contact between a rigid sphere and
a flat contact surface is also presented. It can be seen that
Guduru’s prediction exhibits alternating stable and unstable
local branches around the JKR prediction. Moreover, as the
surface becomes rougher (in terms of amplitude), the adhe-
sive instabilities are amplified.

Let us underline that the strong instabilities presented in
fig. 15b can hardly be traced accurately by using a classical
PCM. Here, we solve numerically the above problem by us-
ing the proposed ANM and the Arlequin multiscale method.
For this, a four-sided local patch with three straight sides
and one wavy side, is superimposed to a global rectangular-
shaped substrate (see Figure 16 for the global and local
meshes used for the simulation, in the case where B/R = 0.1,
A/B = 0.05). The substrate and the patch are coupled in a
zone with a thickness equal to 0.25nm. The Arlequin weight
function αg is equal to 0.5 inΩc. The paraboloidal punch, al-
though assumed to be rigid in Guduru’s theory, is also mod-
elled and discretized here in order to assess our global so-
lution method in a more general framework. The former is
associated with an elasticity modulus several orders of mag-
nitude larger than that of the elastic body with a wavy sur-
face, to approximate infinite rigidity.

Figure 17 shows the obtained force-approach relation
for the two tested cases. Rigorously speaking, our numer-
ical results are not directly comparable to Guduru’s results
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Fig. 15: Guduru’s solution for the wavy surface contact: (a) B/R = 0.1, A/B = 0.01, (b) B/R = 0.1, A/B = 0.05
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Fig. 16: Global and local finite element meshes for the wavy surface contact problem

(see appendix C) since in the latter, the atomistic interac-
tion distance de does not play any role, although this quan-
tity does have significant influence on the adhesive contact
behaviour. Nevertheless, for this test with the given parame-
ters, a good agreement between our numerical results and
Guduru’s theory can still be observed during the detach-
ment process for contact surface with moderate roughness
A/B = 0.01 (see fig. 21a and fig. 15a). As the surface rough-
ness increases (A/B = 0.05), the discrepancy between our
results and Guduru’s theory becomes significant. This is be-
cause Guduru’s theory assumes simply connected contact
regions inside the contact radius, an hypothesis which is
more stringent for stronger than weaker roughness. Addi-
tionally, it can be seen that our method gives more accurate
results than Guduru’s theory in both cases during the attach-
ment process, where the adhesive interaction increases pro-

gressively as the solids are brought together until they sud-
denly jump into contact (in the place where the first jump-in
instability occurs). On the other hand, similar to the JKR
theory, Guduru’s theory is only applicable to large-scale and
compliant contact problems, where the atomistic interaction
distance is much smaller than the characteristic length scale
of the geometry of the contacting bodies.

Observe also that, our numerical method follows the
whole equilibrium path continuously, which enables one, by
using a root searching procedure similar to the one used for
the detection of critical points, to determine the solution not
only at the ending point of each branch but also at any point
on the equilibrium path. For illustration, Figure 18 shows the
contact pressure and corresponding surface profiles (solid
lines for deformed profiles and dashed lines for undeformed
ones) at three possible equilibrium configurations labeled by
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Fig. 17: ANM solution for the wavy surface contact: (a) B/R = 0.1, A/B = 0.01, (b) B/R = 0.1, A/B = 0.05

A, B and C in fig. 21b for a given approach δ̄ = 1.8. It can be
readily seen that the non-uniqueness of the solution at a fixed
load does come from multiple equilibrium configurations
of the contact surfaces, especially at the macroscopic peel-
ing front. These instabilities cannot be traced statically by
using classical PCMs. For instance, for the classical incre-
mental Newton-Raphson method, even when convergence is
achieved, the configurations B and C cannot be captured in
the loading process and the configurations A and B cannot
be captured in the unloading process, leading to a failure
to trace continuously the whole equilibrium path. For the
proposed methodology, 197 matrices inversions are used to
solve the problem with moderate roughness (see fig. 21a)
and 363 matrices inversions are used to solve the one with
strong roughness (see fig. 21b). A rough comparison with
results reported in [6] where the Newton-Raphson method
was used to solve the contact between an elastic cylinder
and a rigid flat surface in absence of contact instabilities,
could show the gap between the two approaches in terms of
efficiency.

6 Conclusions and perspectives

In this paper, the jump-in and jump-off contact insta-
bilities induced by the non-convexity of the Lennard-Jones
(LJ) potential are solve here by combining appropriately an
adapted Asymptotic Numerical Method (ANM) and the Ar-
lequin multiscale framework. The resulting global solution
methodology has been validated by comparing our numer-
ical results with an analytical solution for a flat indenta-
tion test, Greenwood’s solution for a spherical indentation
test and Guduru’s solution for a spherical detachment test
with wavy surfaces. These results reveal the efficiency and
robustness of the proposed methodology to trace complex

adhesive instabilities, at least under some appropriate hy-
potheses. Moreover, under the same hypotheses and as a
full numerical approach, the proposed methodology can of
course be applied to other LJ-based adhesive contact prob-
lems without being restricted by special forms of the contact
surfaces or other ad hoc assumptions.

Concerning numerical results, only 2D adhesive contact
problems have been solved in this paper. Nevertheless, by
sticking to the same hypotheses used in the paper, we be-
lieve that there are no additional methodological, technical
or implementation difficulties (in terms of feasibility) con-
cerning the stability analysis of 3D LJ-based adhesive inter-
action problems with the adapted ANM. Finally, we restrict
ourself to a couple of hypotheses such as small perturbations
that may influence the instabilities picture. We believe that
taking into account possible additional geometrical contact
nonlinearities (leading to the change of the pairing points
during the process, for instance) while keeping the ANM as
methodology of analysis of the instabilities is an issue that
deserves being examined farther.

A Elementary matrices and vectors for a linear element

Finite element node

Collocation point

( , )j ju θ

jn

1N 2N

1u 2u

Fig. 19: A two-node linear element

Here the elementary matrices and vectors in eq. (23) are derived
for a two-node linear contact element (see fig. 19). Let Npe denote the
number of collocation points in the considered element. Let us adopt
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the following notations:

u1 =
[
ux

1, u
y
1

]
, u2 =

[
ux

2, u
y
2

]
n j =

[
nx

j , n
y
j

]
, θ j =

[
s j, x j, y j, z j

]
, 1 6 j 6 Npe (43)

Let the unknowns associated with this element be arranged as fol-
lows:

{Ū }e =
[
u1,u2,θ1, · · · ,θNpe

]T
(44)

Then the elementary matrices and vectors are calculated as follows:

[KUΘ]e =

Npe∑
j=1

w j


N1 jnx

j ((z j)0 − (x j)0) −N1 jnx
j (s j)0 0 N1 jnx

j (s j)0

N1 jn
y
j((z j)0 − (x j)0) −N1 jn

y
j(s j)0 0 N1 jn

y
j(s j)0

N2 jnx
j ((z j)0 − (x j)0) −N2 jnx

j (s j)0 0 N2 jnx
j (s j)0

N2 jn
y
j((z j)0 − (x j)0) −N2 jn

y
j(s j)0 0 N2 jn

y
j(s j)0


(45)

[KΘU ]e =

Npe∑
j=1

w j
(s j)0

(d j)0


N1 jnx

j N1 jn
y
j N2 jnx

j N2 jn
y
j

0 0 0 0
0 0 0 0
0 0 0 0

 (46)

[KΘΘ]e =

Npe∑
j=1

w j


1 0 0 0

−2(s j)0 1 0 0
0 −2(x j)0 1 0
0 0 −2(y j)0 1

 (47)

{Fw}e =
Npe∑
j=1

w j


(s j)0/(d j)0w · n j

0
0
0

 (48)

{F n
u }e =

Npe∑
j=1

n−1∑
i=1

w j


((z j)n−i − (s j)i(x j)n−i)N1 jnx

j

((z j)n−i − (s j)i(x j)n−i)N1 jn
y
j

((z j)n−i − (s j)i(x j)n−i)N2 jnx
j

((z j)n−i − (s j)i(x j)n−i)N2 jn
y
j


(49)

{F n
θ }e =

Npe∑
j=1

n−1∑
i=1

w j


−(s j)i(d j)n−i/(d j)0

(s j)i(s j)n−i

(x j)i(x j)n−i

(y j)i(y j)n−i

 (50)

where w j is a weight associated with the collocation point p j, and (d j)i
is the signed-distance at point p j at order i. N1 and N2 are the standard
shape functions associated with the two nodes. In all expressions, for
1 6 j 6 Npe and 1 6 i 6 n, the subscript j indicates a quantity evalu-
ated at the collocation point p j and the subscript i outside a parenthesis
indicates a quantity evaluated at order i.

B A local ANM branch of the normalized LJ interaction

The ANM should be applied in a branch-by-branch manner be-
cause the solution of each local branch has a finite range of validity. To
illustrate this issue, let us apply the ANM to trace the equilibrium path
of the following single algebraic equation:

p̄ = (
1
d̄

)9 − (
1
d̄

)3 (51)

Equation (51) is a normalized form of the LJ interaction eq. (2), where
the signed-distance and the contact pressure are normalized as d̄ = d

de

and p̄ = p 3de
8∆γ , respectively. Two different initializations corresponding

to d̄0 = 4 and d̄0 = 1.3 are tested and different truncation orders N =
3, 5, 10, 15 and 20 are tested. Numerical experiments are conducted
separately using Method-1 and Method-2 depending whether auxiliary
fields are treated as independent unknowns or not.

Figure 20 shows the solution of one ANM branch, where in
figs. 20a and 20c, each curve is plotted for a varies from 0 to 3 and
in fig. 20b, a varies from 0 to 1.25 for all curves. However, in fig. 20d,
the values of a at the ending point for each curve is not the same (which
varies from 0.2 to 0.3) due to a too rapid deviation from the reference
curve. It can be seen that in all cases, the solution has a finite range of
validity since the approximation is only acceptable up to a finite value
of a. Beyond a certain step length a, the solution deviates rapidly from
the real solution path. All the factors considered (i.e. the truncation or-
der, starting point, whether Method-1 or Method-2 is used, etc.) have
significant influence on the range of validity. Indeed, the starting point
indicates the local nonlinearity of the equilibrium path. At the starting
point d̄0 = 4, the local nonlinearity is moderate since the contribution
of the term ( 1

d̄ )9 can be neglected, thus a large step size is adequate
for an accurate approximation. Moreover, in this case with a moder-
ate local nonlinearity, using Method-1 or Method-2 makes no large
difference on the solution. However, at the starting point d̄0 = 1.3, a
very strong local nonlinearity is encountered and the range of validity
is drastically reduced. In such a case with a strong local nonlinearity,
Method-1 is preferred to give a relatively large range of validity. In
all cases considered, augmenting the truncation order can increase the
range of validity. However, beyond order 15, continuing augmenting
the truncation order does not make much improvement of the solution
since very high-order corrections are too small in magnitude.

C Comparison of the ANM results with the Guduru
theory

Figure 21 shows the comparison of our numerical results, ob-
tained with the asymptotic numerical and the Arlequin methods, with
the results predicted within the Guduru theory for the weakly and the
strongly wavy surfaces, considered in section 5.3. One can see the sig-
nificant difference between the results obtained by the two approaches,
especially for strongly wavy surface. This stems clearly from the fact
that the model assumptions on which rely the two approaches are dif-
ferent. Actually, Guduru’s theory assumes, in particular, a continuous
contact zone. The latter hypothesis is not accurate, especially for the
strongly wavy surface. Moreover, since the Guduru theory is derived
from the JKR one, it does not include adhesive interaction for large
separations, as can be seen in fig. 21.
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Fig. 18: Contact forces and corresponding surface profiles for three different configurations indicated in fig. 21b.
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(b) d̄0 = 1.3, Method-1
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(c) d̄0 = 4, Method-2
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(d) d̄0 = 1.3, Method-2

Fig. 20: A single ANM branch to trace the normalized LJ interaction eq. (51)
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Fig. 21: Comparison of the ANM results with the Guduru theory: (a) B/R = 0.1, A/B = 0.01, (b) B/R = 0.1, A/B = 0.05
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