
HAL Id: hal-01898868
https://hal.science/hal-01898868v2

Submitted on 12 Feb 2019 (v2), last revised 8 Jul 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coherent confluence modulo relations and double
groupoids

Benjamin Dupont, Philippe Malbos

To cite this version:
Benjamin Dupont, Philippe Malbos. Coherent confluence modulo relations and double groupoids.
Journal of Pure and Applied Algebra, 2022, 226 (10), pp.107037. �10.1016/j.jpaa.2022.107037�. �hal-
01898868v2�

https://hal.science/hal-01898868v2
https://hal.archives-ouvertes.fr


Coherent confluence modulo relations
and double groupoids

Benjamin Dupont – Philippe Malbos

Abstract – A coherent presentation of an n-category is a presentation by generators, relations
and relations among relations. Completions of presentations by rewriting systems give coherent
presentations, whose relations among relations are generated by confluence diagrams induced by
critical branchings. This article extends this construction to presentations by polygraphs defined
modulo a set of relations. Our coherence results are formulated using the structure of n-category
enriched in double groupoids, whose horizontal cells represent rewriting sequences, vertical cells
represent the congruence generated by relations modulo and square cells represent coherence cells
induced by confluence modulo. We illustrate these constructions for rewriting modulo commutation
relations in monoids and isotopy relations in pivotal monoidal categories.
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Introduction
Coherence and rewriting modulo

Coherence by confluence. A coherent presentation of a 1-category extends the notion of presentation of
the category by globular cells that generate all the 2-syzygies of the presentation. Explicitly, a coherent
presentation is defined by a directed graph X, a set R of globular relations on the free category on X, and
an acyclic set Γ of 2-spheres of the free (2, 1)-category R> generated by the presentation (X, R). The
acyclicity property means that the quotient of the (2, 1)-category R> by the congruence generated by Γ
is aspherical. This notion of coherent presentation extends to (n − 1)-categories, for n > 1, presented
by n-polygraphs: a coherent presentation is an n-polygraph Pn extended by an acyclic cellular extension
Pn+1 of the free (n,n − 1)-category on Pn. When the n-polygraph is convergent, that is confluent and
terminating, it can be extended into a coherent presentation by adding generating (n + 1)-cells defined
by a family of confluence diagrams of the form

v f ′

##

Af,g��
u

f 00

g --

w

v ′ g ′

<<

for every critical branching (f, g) of the n-polygraph Pn. Coherent presentations constructed in this
way generalize rewriting systems by keeping track of the cells generated by confluence diagrams. This
construction was initiated by Squier in [31] for monoids and generalized to n-categories in [16].

Rewriting modulo. The aim of this article is to extend these constructions to rewriting systems defined
modulo a set of fixed relations. Rewriting modulo appears naturally in algebraic rewriting when studied
reductions are definedmodulo the axioms of an ambiant algebraic structure, eg. rewriting in commutative,
groupoidal, linear, pivotal, weak structures. Furthermore, rewriting modulo facilitates the analysis of
confluence. In particular, rewriting modulo a set of relations makes the property of confluence easier to
prove for two reasons:

− the family of critical branchings that should be considered in the analysis of coherence by confluence
is reduced,

− non-orientation of a part of the relations allows more flexibility when reaching confluence.

In Section 3 we introduce the notion ofn-polygraph modulo as a data (R, E, S)made of ann-polygraph R,
whose generatingn-cells are called primary rules, ann-polygraph E such that Ek = Rk for k 6 n−2 and
En−1 ⊆ Rn−1, whose generating n-cells are called modulo rules, and S is a cellular extension of R∗n−1
depending on both cellular extensions Rn and En. In this way, a presentation modulo is split into two
parts: oriented rules in the set Rn and non-oriented equations in the set En.

The most naive approach of rewriting modulo is to consider the rewriting system ERE consisting
in rewriting on congruence classes modulo E. This approach works for some equational theories, such
as associative and commutative theory. However, it appears inefficient in general for the analysis of
confluence. Indeed, the reducibility of an equivalence class needs to explore all the class, hence it

2



requires all equivalence classes to be finite. Another approach of rewriting modulo has been considered
by Huet in [20], where rewriting sequences involve only oriented rules and no equivalence steps, and the
confluence property is formulated modulo equivalence. However, for algebraic rewriting systems such
rewriting modulo is too restrictive for computations, see [22]. Peterson and Stickel introduced in [29]
an extension of Knuth-Bendix’s completion procedure, [26], to reach confluence of a rewriting system
modulo an equational theory, for which a finite, complete unification algorithm is known. They applied
their procedure to rewriting systems modulo axioms of associativity and commutation, in order to rewrite
in free commutative groups, commutative unitary rings, and distributive lattices. Jouannaud and Kirchner
enlarged this approach in [21] with the definition of rewriting properties for any rewriting systemmodulo S
such that R ⊆ S ⊆ ERE. They also proved a critical branching lemma and developed a completion
procedure for rewriting systems modulo ER, whose one-step reductions consist in application of a rule in
R using E-matching. Their completion procedure is based on a finite E-unification algorithm. Bachmair
and Dershowitz in [1] developed a generalization of Jouannaud-Kirchner’s completion procedure using
inference rules. Several other approaches have also been studied for term rewriting systems modulo to
deal with various equational theories, see [27, 33].

In Section 3, we define termination property for polygraphs modulo and we recall from [20] Huet’s
principle of double induction, that we use in many proofs in this article. We define confluence properties
on polygraphs modulo, as introduced by Huet in [20] and by Jouannaud and Kirchner in [21], and we
present a completion procedure for the n-polygraph modulo ER in terms of critical branchings that
implements inference rules for completion modulo given by Bachmair and Dershowitz in [1].

Confluencemodulo anddouble categories. We formulate the notion of coherencemodulo for an (n−1)-
category using the structure of (n − 1)-category enriched in double groupoids. The notion of double
category was first introduced by Ehresmann in [14] as an internal category in the category of categories.
The notion of double groupoids, that is internal groupoids in the category of groupoids, and its higher-
dimensional versions have been widely used in homotopy theory, [3, 5], see [4] and [2] for a complete
account on the theory. A double category gives four related categories: a vertical category, an horizontal
category and two categories of squares with either vertical or horizontal cells as sources and targets. A
square cell A is pictured by

u
f
//

e
��

v

e ′
��

u ′
g
// v ′

A
��

where f, g are horizontal cells, and e, e ′ are vertical cells. In [16], rewriting sequences with respect to
an n-polygraph are interpreted by n-cells in the free category generated by the polygraph. In Section 3,
we give an interpretation of confluence modulo for an n-polygraph modulo (R, E, S) in a free (n − 1)-
category enriched in double categories, where the horizontal cells are the n-cells of the free n-category
S∗ generated by the n-polygraph S and the vertical cells are the n-cells of the free (n,n − 1)-category
E> generated by the n-polygraph E. In this way, horizontal cells represent rewriting sequences modulo,
vertical cells represent the congruence generated by E and square cells represent coherence cells modulo.
We define a branching modulo E of an n-polygraph modulo (R, E, S) as a triple (f, e, g), where f and g
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are n-cells of S∗ and e is an n-cell of E>, that we picture as follows

u
f
//

e
��

u ′

v
g
// v ′

Such a branching is confluent modulo E if there exist n-cells f ′ and g ′ in S∗ and an n-cell e ′ in E> as in
the following diagram:

u
f
//

e
��

u ′
f ′
// u ′′

e ′
��

v
g
// v ′

g ′
// w ′′

Double coherence from confluence

Coherent confluence modulo. The notion of coherent presentation modulo introduced in this article
is based on an adaptation of the structure of polygraph known in the globular setting, [8, 30, 32], to a
cubical setting. We define a double (n + 1, n − 1)-polygraph as a data P = (Pv, Ph, Ps) made of two
n-polygraphs Pv and Ph with the same underlying (n− 1)-polygraph, and a square extension Ps made of
generating squares of the form

u
f
//

e
��

u ′

e ′
��

v
g
// v ′

where f, g are n-cells of the free (n,n − 1)-category (Pv)> generated by Pv and e, e ′ are n-cells of
the free (n,n − 1)-category (Ph)> generated by Ph. We define a double coherent presentation of an
(n − 1)-category C as a double (n + 1, n − 1)-polygraph P = (Pv, Ph, Ps) such that the coproduct
of the polygraphs Pv and Ph is a presentation of the category C and that the square extension Ps is
acyclic, that is for any square S constructed on the vertical (n,n− 1)-category (Pv)> and the horizontal
(n,n− 1)-category (Ph)>, there exists a square (n+ 1)-cellA in the free (n− 1)-category P

�

enriched
in double groupoids generated by P, defined in Subsection 2.2, whose boundary is S.

In Section 4, we define the notion of confluence modulo of an n-polygraph modulo (R, E, S) with
respect to a square extension Γ of the pair of n-categories (E>, S∗). Explicitly, we say that S is Γ -
confluent modulo E if for any branching (f, e, g) of S modulo E, there exist n-cells f ′, g ′ in S∗, e ′ in E>
and an (n+ 1)-cell

u
f
//

e
��

u ′
f ′
//

A
��

w

e ′
��

v
g
// v ′

g ′
// w ′
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in the free (n − 1)-category enriched in double categories generated by the square extension Γ and
an action of E on Γ as defined in Subsection 4.1. We deduce coherent confluence of an n-polygraph
modulo from local coherent confluence properties. In particular, Theorem 4.1.4 is a formulation of the
Newman lemma for confluence modulo. Explicitly, given ann-polygraph modulo (R, E, S) such that ERE
is terminating, and Γ a square extension of (E>, S∗), when S is locally Γ -confluent modulo E, we prove
that S is Γ -confluent modulo E. Finally, with Theorem 4.2.2 we give a coherent formulation of the critical
branching lemma modulo, deducing coherent local confluence from coherent confluence of some critical
branchings modulo.

Coherent completion modulo. In Section 5, we present several ways to extend a presentation of an
(n − 1)-category by a polygraph modulo into a double coherent presentation of this category. Starting
with an n-polygraph modulo, we show how to construct a double coherent presentation of the (n − 1)-
category presented by this polygraph. Theorem 5.2.2 gives conditions for an n-polygraph modulo
(R, E, S) to extend a square extension Γ on the vertical and horizontal (n,n − 1)-categories E> and S>
into an acyclic extension.

Recall from [16] that a convergentn-polygraphE can be extended into a coherent globular presentation
of the category it presents by considering a family of generating confluences of E as a cellular extension
of the free (n,n− 1)-category E> that contains exactly one globular (n+ 1)-cell

v e1
  

Ee,e ′��u

e 00

e ′
--

w

v ′ e ′1

>>

for every critical branching (e, e ′) of E, where (e1, e ′1) is a chosen confluence. Any (n+1, n)-polygraph
obtained from E by adjunction of a chosen family of generating confluences of E is a globular coherent
presentation of the (n − 1)-category E, [16]. In Subsection 5.1, we define a coherent completion of an
n-polygraph modulo (R, E, S) as a square extension of the pair of (n+ 1, n)-categories (E>, S>) whose
elements are the generating square (n+ 1)-cells

u
f
//

e
��

u ′
f ′
//

��

w

e ′
��

u
g
// v

g ′
// w ′

for any critical branchings (f, e, g) of Smodulo E. As a consequence, of Theorem 5.2.2, we show how to
extend a coherent completion Γ of SmoduloE and a coherent completion ΓE ofE into an acyclic extension.
In particular, when E is empty, we recover Squier’s coherence theorem for convergent n-polygraphs as
given in [16, Theorem 5.2.], see also [17].

We prove that an acyclic extension of a pair (E>, S>) of (n,n−1)-categories coming from a polygraph
modulo (R, E, S) can also be obtained from an assumption of commuting normalization strategies for the
polygraphs S and E. We say that a normalization strategy σ with respect to S weakly commute with a
normalization strategy ρ with respect to E if for any (n − 1)-cell u in R∗n−1, there exists an n-cell ηu
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in S∗ as in the following diagram:

u
σu
//

ρu
��

û

ρû
��

ũ
ηu
// ˜̂u

Theorem 5.3.3 explains how to construct an acyclic extension for an n-polygraph modulo (R, E, S) when
there exist commuting normalization strategies for the polygraphs S and E.

Globular coherence from double coherence. In the last section, we explain how to deduce a globular
coherent presentation for an n-category from a double coherent presentation generated by a polygraph
modulo. Our construction is based on the structure of dipolygraph as a presentation by generators and
relations for ∞-categories whose underlying k-categories are not necessarily free, defined in Subsec-
tion 2.1. We define an (n + 2, n)-dipolygraph as a variation of the notion of (n + 2, n)-polygraph for
which the globular extensions are defined modulo. We define in Subsection 2.3 a quotient functor

V : DbPol(n+2,n) → DiPol(n+2,n)

from the category of double (n+ 2, n)-polygraph to the category of (n+ 2, n)-dipolygraphs.
The last result of this article gives conditions to quotient a double coherent presentation generated by

a polygraph modulo. Explicitly, given an n-polygraph modulo (R, E, S) such that E is convergent, S is
convergent modulo E, and Irr(E) is E-normalizing with respect to S, Theorem 6.1.2 shows how to deduce
from a coherent completion Γ of S modulo E a globular coherent presentation of the (n − 1)-category
(R∗n−1)E, whose generating n-cells are defined by quotient of n-cells of Γ by the cellular extension E.
Finally, we illustrate this method by showing how to construct coherent presentations for commutative
monoids in Subsection 6.2 and for pivotal monoidal categories modulo isotopy relations defined by
adjunction in Subsection 6.3.

Organisation of the article

In Section 1, we set up notation and terminology on higher-dimensional globular n-categories and
globular n-polygraphs. We refer the reader to [16] for a deeper presentation on rewriting properties
of n-polygraphs. We recall also from [14] the notions of double categories and of double groupoids.
In Section 2 we define the notions of double polygraphs and dipolygraphs, giving double coherent
presentations of globular n-categories. We explicit following [13] a construction of a free n-category
enriched in double groupoids generated by a double n-polygraph, in which our coherence results will be
formulated. Finally, we explain how to deduce a globular coherent presentation from a double coherent
presentation. As examples, we explicit the notion of coherent presentation on the cases of groups,
commutative monoids and pivotal categories. Section 3 is devoted to the study of rewriting properties
of polygraphs defined modulo relations. We formulate the notions of termination, confluence, local
confluence and confluence modulo for these polygraphs. Following [1] we give a completion procedure
in terms of critical branchings for confluence modulo of the polygraph modulo ER. In Section 4, we
develop the notion of coherent confluence modulo and we prove a coherent version of Newman’s lemma
and critical branching lemma for polygraphs modulo to prove coherent confluence of a polygraph modulo
from coherence confluence modulo of some critical branchings. In Section 5, we define the notion
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1. Preliminaries

of coherent completion modulo, and we show how to construct a double coherent presentations of n-
categories presented by polygraphs modulo from a such a coherent completion. Finally, in Section 6
we explain how to deduce a globular coherent presentation for an n-category from a double coherent
presentation generated by a polygraph modulo. We apply our construction in the situation of commutative
monoids in and to pivotal monoidal categories modulo isotopy relations.

1. Preliminaries
In this preliminary section, we give notations on higher-dimensional categories used in this article. In
particular, we recall the structure of polygraph from [8, 30, 32] and we refer the reader to [16, 18, 19] for
rewriting properties of polygraphs. We recall the notion of double categories from [14] and we refer the
reader to [5, 12, 13] for deeper presentations on double categories and double groupoids.

1.1. Higher-dimensional categories and polygraphs

Throughout this article, n denotes either a fixed natural number or∞.

1.1.1. Higher-dimensional categories. We will denote by Catn the category of (small, strict and glob-
ular) n-categories. If C is an n-category, we denote by Ck the set of k-cells of C. If f is a k-cell of C,
then ∂−,i(f) and ∂+,i(f) respectively denote the i-source and i-target of f, while (k − 1)-source and
(k − 1)-target will be denoted by ∂−(f) and ∂+(f) respectively. The source and target maps satisfy the
globular relations:

∂α,i∂α,i+1 = ∂α,i∂β,i+1, (1.1.2)

for all α,β in {−,+}. Two k-cells f and g are i-composable when ∂+,i(f) = ∂−,i(g). In that case, their
i-composite is denoted by f ?i g, or by fg when i = 0. The compositions satisfy the exchange relations:

(f1 ?i g1) ?j (f2 ?i g2) = (f1 ?j f2) ?i (g1 ?j g2). (1.1.3)

for all i 6= j and for all cells f1, f2, g1, g2 such that both sides are defined. If f is a k-cell, we denote by 1f
its identity (k+ 1)-cell. When 1f is composed with l-cells, we simply denote it by f for l > k+ 1.

A k-cell f of an n-category C is i-invertible when there exists a (necessarily unique) k-cell g in C,
with i-source ∂+,i(f) and i-target ∂−,i(f), called the i-inverse of f, that satisfies

f ?i g = 1∂−,i(f) and g ?i f = 1∂+,i(f).

When i = k − 1, we just say that f is invertible and we denote by f− its inverse. As in higher-
dimensional groupoids, if a k-cell f is invertible and if its i-source u and i-target v are invertible, then f
is (i− 1)-invertible, with (i− 1)-inverse given by v− ?i−1 f

− ?i−1 u
−.

For a natural number p 6 n, or for p = n =∞, an (n, p)-category is an n-category whose k-cells
are invertible for every k > p. When n < ∞, this is an n-category enriched in (n − p)-groupoids
and, when n = ∞, an n-category enriched in ∞-groupoids. In particular, an (n,n)-category is an
n-category, and an (n, 0)-category is an n-groupoid, also called a groupoid for n = 1.

A 0-sphere of C is a pair γ = (f, g) of 0-cells of C and, for 1 6 k 6 n, a k-sphere of C is a pair
S = (f, g) of k-cells of C such that ∂−(f) = ∂−(g) and ∂+(f) = ∂+(g). The k-cell f (resp. g) is called
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1. Preliminaries

the source (resp. target) of S denoted by ∂−(S) (resp. ∂+(S)). We will denote by Sphk(C) the set of
k-spheres of C. If f is a k-cell of C, for 1 6 k 6 n, the boundary of f is the (k−1)-sphere (∂−(f), ∂+(f))
denoted by ∂(f).

1.1.4. Cellular extensions. Suppose n <∞, a cellular extension of an n-category C is a set Γ equipped
with a map γ : Γ → Sphn(C). By considering all the formal compositions of elements of Γ , seen as
(n + 1)-cells with source and target in C, one builds the free (n + 1)-category generated by Γ over C,
denoted by C[Γ ]. The size of an (n+ 1)-cell f of C[Γ ] is the number denoted by ||f||Γ , of (n+ 1)-cells of
Γ it contains. We denote by C(1) the set of n-cells in C of size 1. We denote by (C)Γ the quotient of the
n-category C by the congruence generated by Γ , i.e., the n-category one gets from C by identification of
the n-cells ∂−(S) and ∂+(S), for all n-sphere S of Γ .

If C is an (n, p)-category and Γ is a cellular extension of C, then the free (n+1, p)-category generated
by Γ over C is denoted by C(Γ) and defined as follows:

C(Γ) =
(
C
[
Γ, Γ−

])
Inv(Γ)

where Γ− contains the same (n+ 1)-cells as Γ , with source and target reversed, and Inv(Γ) is the cellular
extension of C [Γ, Γ−] made of two (n+ 2)-cells

f ?n f
− → 1∂−(f) and f− ?n f → 1∂+(f)

for every (n+ 1)-cell f in Γ .
Let C be an (n, p)-category, for p < n < ∞. A cellular extension Γ of C is acyclic if the (n, p)-

category C/Γ is aspherical, i.e., such that, for every n-sphere S of C, there exists an (n + 1)-cell with
boundary S in the (n+ 1, p)-category C(Γ).

1.1.5. Polygraphs. Recall that an n-polygraph is a data P = (P0, P1, . . . , Pn) made of a set P0 and, for
every 0 6 k < n, a cellular extension Pk+1 of the free k-category

P∗k := P0[P1] . . . [Pk],

whose elements are called generating (k + 1)-cells of P. For 0 6 k 6 n − 1, we will denote by P6k
the underlying k-polygraph (P0, P1, . . . , Pk). We will denote by P∗ (resp. P>) the free n-category (resp.
(n,n−1)-category) generated by an n-polygraph P. We will denote by P the (n−1)-category presented
by the polygraph P, that is P := (P∗n−1)Pn .

Given two n-polygraphs P and Q, a morphism of n-polygraphs from P to Q is a pair (ξn−1, fn)
where ξn−1 is a morphism of (n − 1)-polygraphs from Pn−1 to Qn−1, and where fn is a map from Pn
to Qn such that the following diagrams commute:

P∗n−1

Fn−1(ξn−1)
��

Pn
sPn−1
oo

fn
��

Q∗n−1 Qn
s
Q
n−1

oo

P∗n−1

Fn−1(ξn−1)
��

Pn
tPn−1
oo

fn
��

Q∗n−1 Qn
t
Q
n−1

oo
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1.2. Double groupoids

Equivalently, it is a sequence of maps (fk : Pk → Qk)k indexed by integers 0 6 k 6 n− 1 such that the
relations

fks
P
k = sQk fk+1 and fkt

P
k = tQk fk+1

holds for all 0 6 k 6 n− 1.
Wewill denote byPoln the category ofn-polygraphs and theirmorphisms, and byUPoln : Catn → Poln

the forgetful functor sending an n-category on its underlying n-polygraph.
For p 6 n, an (n, p)-polygraph is a data P made of an n-polygraph (P0, . . . , Pn), and for every

p 6 k < n, a cellular extension Pk+1 of the free (k, p)-category

P>k := P∗p(Pn+1) · · · (Pk).

Note that an (n,n)-polygraph is an n-polygraph.

1.1.6. Contexts inn-categories. A context of ann-category C is a pair (S,C)made of an (n−1)-sphere
S of C and an n-cell C in C[S] such that ||C||S = 1. We often denote simply by C, such a context. Recall
from [16, Proposition 2.1.3] that every context of C has a decomposition

fn ?n−1 (fn−1 ?n−2 · · · (f1 ?0 S ?0 g1) · · · ?n−2 gn−1) ?n−1 gn,

where S is an (n − 1)-sphere and, for every k in {1, . . . , n}, fk and gk are n-cells of C. Moreover, one
can choose these cells so that fk and gk are (the identities of) k-cells. A whisker of C is a context with a
decomposition

fn−1 ?n−2 · · · (f1 ?0 S ?0 g1) · · · ?n−2 gn−1
such that, for every k in {1, . . . , n− 1}, fk and gk are k-cells.

Given an n-polygraph P, recall from [16, Proposition 2.1.5] that every n-cell f in P∗ with size k > 1
has a decomposition

f = C1[γ1] ?n−1 · · · ?n−1 Ck[γk],

where γ1, . . . , γk are generating n-cells of P and C1, . . . , Ck are whiskers of P∗.

1.2. Double groupoids

In this subsection, we recall the notion of double category introduced in [14]. It can be defined as an
internal category in the category Cat of all (small) categories and functors. Recall that given V be a
category with finite limits, an internal category C in V is a data (C1,C0, ∂C−, ∂C+, ◦C, iC), where

∂C−, ∂
C
+ : C1 −→ C0, iC : C0 −→ C1, ◦C : C1 ×C0 C1 −→ C1

are morphisms of V satisfying the usual axioms of a category, and whereC1×C0 C1 denotes the pullback
in V over morphisms ∂C− and ∂C+. An internal functor from C to D is a pair of morphisms C1 → D1 and
C0 → D0 in V commuting in the obvious way. We denote by Cat(V) the category of internal categories
in V and their functors.

In the sameway, we define an internal groupoidG inV as an internal category (G1,G0, ∂G−, ∂G+, ◦G, iG)
with an additional morphism

(·)−G : G1 → G1

9
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satisfying the axioms of groups, that is

∂G−◦(·)−G = ∂G+, iG◦∂G− = ◦G◦(id×(·)−G)◦∆, ∂G+◦(·)−G = ∂G−, iG◦∂G+ = ◦G◦((·)−G×id)◦∆, (1.2.1)

where ∆ : G1 → G1 × G1 is the diagonal functor. We denote by Grpd(V) the category of internal
groupoids in V and their functors.

1.2.2. Double categories and double groupoids. The category of double categories is defined as the
category Cat(Cat), and the category of double groupoids is defined as the category Grpd(Grpd) of
internal groupoids in the category Grpd of groupoids and their functors. Explicitly, a double category is
an internal category (C1,C0, ∂C−, ∂C+, ◦C, iC) in Cat, that gives four related categories:

Csv := (Cs,Cv, ∂v−,1, ∂v+,1, �v, iv1), Csh := (Cs,Ch, ∂h−,1, ∂h+,1, �h, ih1 ),
Cvo := (Cv,Co, ∂v−,0, ∂v+,0, ◦v, iv0), Cho := (Ch,Co, ∂h−,0, ∂h+,0, ◦h, ih0 ),

where Csh is the category C1 and Cvo is the category C0. The sources, target and identity maps pictured
in the following diagram

Cs
∂h+,1

""

∂h−,1 ""
∂v−,1

||

∂v+,1

||

Cv
∂v+,0

""
∂v−,0

""

iv1

<<

Ch

∂h−,0||

∂h+,0

||

ih1

bb

Co

ih0

<<

iv0

bb

satisfy the following relations:

i) ∂hα,0∂hβ,1 = ∂vβ,0∂vα,1, for all α,β in {−,+},

ii) ∂µα,1i
η
1 = i

µ
0∂
η
α,0, for all α in {−,+} and µ, η in {v, h},

iii) iv1iv0 = ih1 ih0 ,

iv) ∂µα,1(A �µ B) = ∂
µ
α,1(A) ◦

µ ∂
µ
α,1(B), for all α ∈ {−,+}, µ ∈ {v, h} and any squares A,B such that

both sides are defined,

v) middle four interchange law :

(A �v A ′) �h (B �h B ′) = (A �h B) �v (A ′ �h B ′), (1.2.3)

for any cells A,A ′, B, B ′ in Cs such that both sides are defined.

Elements of Co are called point cells, the elements of Ch and Cv are respectively called horizontal cells
and vertical cells and pictured by

x1
f
// x2

x1

e
��

x2

10



1.2. Double groupoids

Following relations i), the elements ofCs are called square cells and can be pictured by squares as follows:

·
∂h−,1(A)

//

∂v−,1(A)
��

·
∂v+,1(A)
��

·
∂h+,1(A)

// ·
A��

and by the followings squares for identities

x1
f
//

iv0(x1)
��

x2

iv0(x2)
��

x1
f
// x2

ih1 (f)��

x
ih0 (x)

//

e
��

x

e
��

y
ih0 (y)

// y

iv1(e)�� or simply by
x1

f
//

=

��

x2

=

��

x1
f
// x2

ih1 (f)

x
=
//

e
��

x

e
��

y =
// y

iv1(e)

The compositions �v (resp. �h) are called respectively vertical and horizontal compositions, and can
be pictured as follows

x1
f1
//

e1

��

x2

e2

��

f2
// x3

e3

��

y1 g1
// y2

A��

g2
// y3

B��  

x1
f1 ◦h f2

//

e1

��

x3

e3

��

y1
g1 ◦h g2

// y3

A �v B��

for all xi, yi in Co, fi, gi in Ch, ei in Cv and A,B in Cs,

x1
f
//

e1

��

x2

e2

��

y1 g
//

e ′1
��

y2

e ′2
��

A��

z1
h
// z2

A ′��

 

x1
f
//

e1 ◦v e ′1

��

x2

e2 ◦v e ′2

��

z1
h
// z2

A �h A ′
��

for all xi, yi, zi in Co, f, g, h in Ch, ei, e ′i in Cv and A,A ′ in Cs.
Similarly a double groupoid is given by the same data (G1,G0, ∂G−, ∂G+, ◦G, iG), with an inverse

operation (·)−G : G1 → G1 satisfying the relations (1.2.1). As a consequence the four related categories
Gsv, Gsh, Gvo and Gho are groupoids. For any square cell

· f
//

e
��

·
e ′
��

·
g
// ·
A��

11



1. Preliminaries

in Gs, the inverse square cell with respect to �µ, for µ ∈ {v, h}, is denoted by A−,µ and satisfy the
following relations

A �µ (A−,µ) = iµ1 (∂
µ
−,1(A)), (A−,µ) �µ A = iµ1 (∂

µ
+,1(A)). (1.2.4)

The sources and targets of these inverse are given as follows

· f−
//

e ′
��

·
e
��

·
g−
// ·

A−,v
��

·
g
//

e−

��

·

(e ′)−

��

·
f
// ·

A−,h
��

1.2.5. Squares. A square of a double category C is a quadruple (f, g, e, e ′) such that f, g are horizontal
cells and e, e ′ are vertical cells that compose as follows:

u
f
//

e
��

v

e ′
��

u ′
g
// v ′

The boundary of a square cell A in C is the square (∂−,h(A), ∂+,h(A), ∂−,v(A), ∂+,v(A)), denoted
by ∂(A). We will denote by Sqr(C) the set of square cells of C.

1.2.6. n-categories enriched in double categories. The coherence results for rewriting systems modulo
presented in this article are formulated using the notion of n-categories enriched in double categories and
double groupoids. Let us expand the latter notion for n > 0. Consider the category Cat(Grpd) equipped
with the cartesian product defined by

C× D = (C1 × D1,C0 × D0, sC × tC, cC × cD, iC × iD),

for any double groupoids C and D. The terminal double groupoid T has only one point cell, denoted
by •, and identities iv0(•), ih0 (•), iv1ih0 (•) = ih1 iv0(•).

An n-category enriched in double groupoids is an n-category C such that for any x, y in Cn−1 the
homset Cn(x, y) has a double groupoid structure, whose point cells are the n-cells in Cn(x, y). We will
denote by Cvn+1 (resp. Chn+1, Csn+2) the union of sets Cn(x, y)v (resp. Cn(x, y)h, Cn(x, y)s) for all x, y
in Cn−1. An (n+ 2)-cell A in Csn+2 can be represented by the following diagrams:

u
f
//

e
��

v

e ′
��

u ′
g
// v ′

A��

with u, u ′, v, v ′ in Cn, f, g in Chn+1 and e, e ′ in Cvn+1. The compositions of the (n + 2)-cells and the
identities (n+ 2)-cells are induced by the functors of double categories

?x,y,zn−1 : Cn(x, y)× Cn(y, z)→ Cn(x, z), 1x : T→ Cn(x, x),

12



1.2. Double groupoids

for all (n−1)-cells x, y, z. The (n−1)-composite of an (n+2)-cellA in Cn(x, y)with an (n+2)-cell B
in Cn(y, z) of the form

u1
f1
//

e1
��

v1

e ′1
��

u ′1 g1
// v ′1

A��

u2
f2
//

e2
��

v2

e ′2
��

u ′2 g2
// v ′2

B��

is defined by ?n−1 compositions ofn-cells, vertical (n+1)-cells and horizontal (n+1)-cells and denoted
by:

u1 ?n−1 u2
f1 ?n−1 f2

//

e1 ?n−1 e2

��

v1 ?n−1 v2

e ′1 ?n−1 e
′
2

��

u ′1 ?n−1 u
′
2 g1 ?n−1 g2

// v ′1 ?n−1 v
′
2

A ?n−1 B
��

By functoriality, the (n− 1)-composition satisfies the following exchange relations:

(A �µ A ′) ?n−1 (B �µ B ′) = (A ?n−1 B) �µ (A ′ ?n−1 B ′), (1.2.7)

(A �µ A ′) ?n−1 (B �η B ′) = ((A ?n−1 B) �µ (A ′ ?n−1 B)) �η ((A ?n−1 B
′) �µ (A ′ ?n−1 B ′)). (1.2.8)

Using middle four interchange law (1.2.3), the identity (1.2.8) is equivalent to the following identity

(A �µ A ′) ?n−1 (B �η B ′) = ((A ?n−1 B) �η (A ?n−1 B
′)) �µ ((A ′ ?n−1 B) �η (A ′ ?n−1 B ′))

for all µ 6= η in {v, h} and any (n+ 2)-cells A,A ′, B, B ′ such that both sides are defined.
We will denote by Catn(DbCat) (resp. Catn(DbGrpd)) the category of n-categories enriched in

double categories (resp. double groupoids) and enriched n-functors.

1.2.9. 2-categories as double categories. From a 2-category C, one can construct two canonical double
categories, by setting the vertical or horizontal cells to be only identities in C. In this way, 2-categories
can be considered as special cases of double categories. The quintet construction gives another way
to associate a double category, called the double category of quintets in C and denoted by Q(C) to a
2-category C. The vertical and horizontal categories of Q(C) are both equal to C, and there is a square
cell

u
f
//

g
��

u ′

k
��

v
h
// v ′

A��

in Q(C) whenever there is a 2-cell A : f ?1 k⇒ g ?1 h in C. This defines a functor Q : Cat2 → DbCat.
Similarly, forn > 2 one can associate to ann-category an (n−2)-category enriched in double categories
by a quintet construction.

13



2. Double coherent presentations

2. Double coherent presentations
Recall from [15] that a coherent presentation of a 1-category C is a (3, 1)-polygraph P whose underlying
2-polygraph P62 is a presentation of C and P3 is an acyclic extension of the free (2, 1)-category P>
generated by P. This notion extends to n-categories generated by n-polygraphs. Namely, a coherent
presentation of such an n-category C is an (n + 2, n)-polygraph P such that the underlying (n + 1)-
polygraph P6(n+1) is a presentation of C and Pn+2 is an acyclic extension of the free (n+ 1, n)-category
generated by P. In Subsection 2.1, we introduce dipolygraphs in order to extend the notion of coherent
presentation to n-categories whose underlying (n− 1)-category is not free. We also introduce the notion
of double n-polygraph generating n-categories enriched in double groupoids. In Section 4, we will
formulate coherence results modulo using the structure of double n-polygraph. Finally, we introduce in
Subsection 2.2 double coherent presentations of n-categories. This notion allows us to obtain coherent
presentations from polygraphs modulo as it will be explained in 6.

2.1. Double polygraphs and dipolygraphs

2.1.1. Square extensions. Let (Cv,Ch) be a pair of n-categories with the same underlying (n − 1)-
category B. A square extension of the pair (Cv,Ch) is a set Γ equipped with four maps ∂µα,n,
with α ∈ {−,+}, µ ∈ {1, 2}, as depicted by the following diagram:

Γ ∂h+,n

$$∂h−,n $$
∂v−,n

zz

∂v+,n

zz

Cv ∂v+,n−1

$$
∂v−,n−1

$$

Ch

∂h−,n−1
zz

∂h+,n−1

zz

B

and satisfying the following relations:

∂vα,n−1∂
v
β,n = ∂hβ,n−1∂

h
α,n,

for all α,β in {−,+}. The point cells of a square A in Γ are the (n− 1)-cells of B of the form

∂
µ
α,n−1∂

η
β,n(A)

with α,β in {−,+}, and η, µ in {h, v}. Note that by construction these four (n − 1)-cells have the same
(n− 2)-source and (n− 2)-target in B respectively denoted by ∂−,n−2(A) and ∂+,n−2(A).

A pair of n-categories (Cv,Ch) has two canonical square extensions, the empty one, and the full
one that contains all squares on (Cv,Ch), denoted by Sqr(Cv,Ch). We will write Sph(Cv, 1) (resp.
Sph(1,Ch)) the square extension of (Cv,Ch) made of all squares of the form

u
=
//

e
��

u

e ′
��

v =
// v

(
resp.

u
f
//

=

��

u ′

=

��

u
g
// u ′

)
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2.1. Double polygraphs and dipolygraphs

for all n-cells e, e ′ in Cv (resp. n-cells in f, g in Ch).
The Peiffer square extension of the pair (Cv,Ch) is the square extension of (Cv,Ch), denoted by

Peiff(Cv,Ch), containing the squares of the form

u ?i v
f ?i v

//

u ?i e
��

u ′ ?i v

u ′ ?i e
��

u ?i v
′

f ?i v
′
// u ′ ?i v

′

w ?i u
w ?i f

//

e ′ ?i u
��

w ?i u
′

e ′ ?i u
′

��

w ′ ?i u
w ′ ?i f

// w ′ ?i u
′

for all n-cells e, e ′ in Cv and n-cell f in Ch.

2.1.2. Double polygraphs. We define a double n-polygraph as a data P = (Pv, Ph, Ps) made of

i) two (n+ 1)-polygraphs Pv and Ph such that Pv6n = Ph6n,

ii) a square extension Ps of the pair of free (n+ 1)-categories ((Pv)∗, (Ph)∗).

Such a data can be pictured by the following diagram

Ps

∂h+,n+1

""∂h−,n+1 ""∂v−,n+1||

∂v+,n+1

||

(Pv)∗
∂v−,n

""

∂v+,n
""

(Ph)∗

∂h+,n
||

∂h−,n

||

Pv
∂v+,n

//

∂v−,n

//

ιvn+1

OO

P∗n+1

∂−,n−1

��

∂+,n−1

��

Ph

∂h−,n

oo

∂h+,n
oo

ιhn+1

OO

P∗n

For 0 6 k 6 n, the k-cells of the (n + 1)-polygraphs Pv and Ph are called generating k-cells of P.
The (n + 1)-cells of Pv (resp. Ph) are called generating vertical (n + 1)-cells of P (resp. generating
horizontal (n+ 1)-cells of P), and the elements of Ps are called generating square (n+ 2)-cells of P.

2.1.3. The category of double n-polygraphs. Given two double n-polygraphs P = (Pv, Ph, Ps) and
Q = (Qv, Qh, Qs), a morphism of double n-polygraphs from P to Q is a triple (fv, fh, fs) made of two
morphisms of (n+ 1)-polygraphs

fv : Pv → Qv, fh : Ph → Qh,
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and a map fs : Ps → Qs such that the following diagrams commute:

P
µ
n+1

f
µ
n+1
��

Ps
∂
µ,P
−,n−1

oo

fs

��

Q
µ
n+1 Qs

∂
µ,Q
−,n−1

oo

P
µ
n+1

f
µ
n+1
��

Ps
∂
µ,P
+,n−1

oo

fs

��

Q
µ
n+1 Qs

∂
µ,Q
+,n−1

oo

for µ in {v, h}. We will denote by DbPoln the category of double n-polygraphs and their morphisms.
Let us explicit two full subcategories of DbPoln used in the sequel to formulate coherence and

confluence results for polygraphs modulo. We define a double (n + 2, n)-polygraph as a double n-
polygraph whose square extension Ps is defined on the pair of (n + 1, n)-categories ((Pv)>, (Ph)>).
We denote by DbPol(n+2,n) the category of double (n + 2, n)-polygraphs. In some situations, we will
also consider double n-polygraphs whose square extension is defined on the pair of (n + 1)-categories
((Pv)>, (Ph)∗) (resp. ((Pv)∗, (Ph)>)). We will respectively denote by DbPolvn (resp. DbPolhn) the full
subcategories of DbPoln they form.

2.1.4. Dipolygraphs. We define the structure of dipolygraph as presentation by generators and relations
for ∞-categories whose underlying k-categories are not necessarily free. Note that a similar notion
was introduced by Burroni in [7]. Let us define the notion of n-dipolygraph by induction on n > 0.
A 0-dipolygraph is a set. A 1-dipolygraph is a triple ((P0, P1), Q1), where (P0, Q1) is a 1-polygraph
and P1 is a cellular extension of the quotient category (P∗0)Q1 . For n > 2, an n-dipolygraph is a data
(P,Q) = ((Pi)06i6n, (Qi)16i6n) made of

i) a 1-dipolygraph ((P0, P1), Q1),

ii) for every 2 6 k 6 n, a cellular extension Qk of the (k− 1)-category

[Pk−2]Qk−1 [Pk−1],

where [Pk−2]Qk−1 denotes the (k− 2)-category

((((P∗0)Q1 [P1])Q2 [P2])Q3 . . . [Pk−2])Qk−1 ,

iii) for every 2 6 k 6 n, a cellular extension Pk of the (k− 1)-category

[Pk−1]Qk .

For 0 6 k 6 n− 1, we will denote by (P,Q)6k the underlying k-dipolygraph ((Pi)06i6k, (Qi)16i6k).

2.1.5. For 0 6 p 6 n, an (n, p)-dipolygraph is a data ((Pi)06i6n, (Qi)16i6n) such that:

i) ((Pi)06i6p+1, (Qi)16i6p+1) is a (p+ 1)-dipolygraph,

ii) for every p+ 2 6 k 6 n, Qk is a cellular extension of the (k− 1, p)-category

([Pp]Qp+1)(Pp+1)Qp+2 . . . (Pk−1),

iii) for every p+ 2 6 k 6 n, Pk is a cellular extension of the (k− 1, p)-category

((([Pp]Qp+1)(Pp+1))Qp+2 . . . (Pk−1))Qk .
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2.1.6. We define a morphism of (n, p)-dipolygraphs

((Pi)06i6n, (Qi)16i6n)→ ((P ′i)06i6n, (Q
′
i)16i6n)

as a family of pairs ((fk, gk))16k6n, where fk : Pk → P ′k and gk : Qk → Q ′k are maps such that the
following diagram commute

Qk
//
//

gk
��

[Pk−2]Qk−1 [Pk−1]

f̃k−1
��

Q ′k
//
// [P ′k−2]Q ′k−1 [P

′
k−1]

Pk
//
//

fk
��

[Pk−1]Qk

[fk−1]gk
��

P ′k
//
// [P ′k−1]Q ′k

for any 1 6 k 6 p+ 1, and such that the following diagrams commute

Qk
//
//

gk
��

([Pp]Qp)(Pp+1)Qp+2 . . . (Pk−1)

f̃k−1
��

Q ′k
//
// ([P ′p]Q ′p)(P

′
p+1)Q ′p+2 . . . (P

′
k−1)

Pk
//
//

fk
��

((([Pp]Qp+1)(Pp+1))Qp+2 . . . (Pk−1))Qk

[fk−1]gk
��

P ′k
//
// ((([P ′p]Q ′p+1)(P

′
p+1))Q ′p+2 . . . (P

′
k−1))Q ′k

for any p+ 2 6 k 6 n, where the map f̃k−1 is induced by the map fk−1 and the map [fk−1]gk is defined
by the following commutative diagram:

(([Pp]Qp+1)(Pp+1))Qp+2 . . . (Pk−1)
π
//

f̃k−1
��

((([Pp]Qp+1)(Pp+1))Qp+2 . . . (Pk−1))Qk

[fk−1]gk
��

(([P ′p]Q ′p+1)(P
′
p+1))Q ′p+2 . . . (P

′
k−1)

π ′
// ((([P ′p]Q ′p+1)(P

′
p+1))Q ′p+2 . . . (P

′
k−1))Q ′k

We will denote by DiPol(n,p) the category of (n, p)-dipolygraphs and their morphisms.

2.1.7. Presentations by dipolygraphs. The (n − 1)-category presented by an n-dipolygraph (P,Q) is
defined by

(P,Q) := ([Pn−1]Qn)Pn .

Let C be an (n− 1)-category. A presentation of C is an n-dipolygraph (P,Q) whose presented category
(P,Q) is isomorphic to C. A coherent presentation of C is an (n+1, n−1)-dipolygraph (P,Q) satisfying
the following conditions

i) the underlying n-dipolygraph (P,Q)6n is a presentation of C,

ii) the cellular extension Pn+1 is acyclic,

iii) the cellular extension Qn+1 is empty.
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2.2. Double coherent presentations

In this subsection, we introduce the notion of double coherent presentation of an n-category, defined
using the structure of double n-polygraph. Let us first explicit the construction of a free n-category
enriched in double categories generated by a double n-polygraph.
2.2.1. What is a free double category like ? The question of the construction of free double categories
was considered in several works, [10–13]. In particular, Dawson and Pare gave in [13] constructions of free
double categories generated by double graphs and double reflexive graphs. Such free double categories
always exist, and they show how to describe their cells explicitly in geometrical terms. However, they
show that free double categories generated by double graphs cannot describe many of the possible
compositions in free double categories. They fixed this problem by considering double reflexive graphs
as generators.

2.2.2. The coherence results that we will state in Section 5 are formulated in free n-categories enriched
in double categories generated by double n-polygraphs. For every n > 0, let us consider the forgetful
functor

Wn : Catn(DbCat)→ DbPoln (2.2.3)

that sends an n-category enriched in double categories C on the double n-polygraph, denoted by

Wn(C) = (Wv
n+1(C),W

h
n+1(C),W

s
n+2(C)),

whereWv
n+1(C) (resp. Wh

n+1(C)) is the underlying (n+ 1)-polygraph of the (n+ 1)-category obtained
as the extension of the underlying n-category of C by the vertical (resp. horizontal) (n + 1)-cells
and Ws

n+2(C) is the square extension generated by all squares of C. Explicitly, for µ ∈ {v, h}, con-
sider Cµn+1 the (n+ 1)-category whose

i) underlying (n− 1)-category coincides with the underlying (n− 1)-category of C,

ii) set of n-cells is given by
(Cµn+1)n :=

∐
x,y∈Cn−1

(Cn(x, y))
o,

iii) set of (n+ 1)-cells is given by

(Cµn+1)n+1 :=
∐

x,y∈Cn−1

(Cn(x, y))
µ.

The (n − 1)-composition of n-cells and (n + 1)-cells of Cµn+1 are defined by enrichment. The n-
composition of (n + 1)-cells of Cµn+1 are induced by the composition ◦µ. We define Wµ

n+1(C) as the
underlying (n+ 1)-polygraph of the (n+ 1)-category Cµn+1 :

W
µ
n+1(C) := U

Pol
n+1(C

µ
n+1).

Finally, the square extensionWs
n+2(C) is defined on the pair of (n+ 1)-categories (Cvn+1,Chn+1) by

Ws
n+2(C) :=

∐
x,y∈Cn−1

Cn(x, y)
s.
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2.2.4. Proposition. For every n > 0, the forgetful functor Wn defined in (2.2.3) admits a left adjoint
functor Fn.

The proof of this result consists in constructing explicitly in 2.2.5 the free n-category enriched in
double categories generated by a double n-polygraph and the proof in 2.2.6 of universal property of free
object.

2.2.5. Freen-category enriched indouble categories. Consider a doublen-polygraphP = (Pv, Ph, Ps).
We construct the free n-category enriched in double categories on P, denoted by P@, as follows:

i) the underlying n-category of P@ is the free n-category P∗n,

ii) for all (n− 1)-cells x and y of P∗n−1, the hom-double category P@(x, y) is constructed as follows

a) the point cells of P@(x, y) are the n-cells in P∗n(x, y),
b) the vertical cells of P@(x, y) are the (n + 1)-cells of the free (n + 1)-category (Pv)∗ with

(n− 1)-source x and (n− 1)-target y,
c) the horizontal cells of P@(x, y) are the (n + 1)-cells of the free (n + 1)-category (Ph)∗ with

(n− 1)-source x and (n− 1)-target y,
d) the set of square cells of P@(x, y) is defined recursively and contains

− the square cells A of Ps such that ∂−,n−1(A) = x and ∂+,n−1(A) = y,
− the square cells C[A] for any context C of the n-category P∗n and A in Ps, such that
∂−,n−1(C[A]) = x and ∂+,n−1(C[A]) = y,

− identities square cells ih1 (f) and iv1(e), for any (n + 1)-cells f in (Ph)∗ and (n + 1)-cell e
in (Pv)∗ whose (n− 1)-source (resp. (n− 1)-target) in P∗n−1 is x (resp. y),

− all formal pastings of these elements with respect to �h-composition and �v-composition.
e) two square cells constructed as such formal pastings are identified by the associativity, and identity

axioms of compositions �v and �h and middle four interchange law given in (1.2.3),

iii) for all (n− 1)-cells x, y, z of P∗n−1, the composition functor

?n−1 : P
@(x, y)× P@(y, z) −→ P@(x, z)

is defined for any

u1
f1
//

e1
��

v1

e ′1
��

u ′1 g1
// v ′1

A1�� in P@(x, y), and

u2
f2
//

e2
��

v2

e ′2
��

u ′2 g2
// v ′2

A2�� in P@(y, z),

by

u1 ?n−1 u2
f1 ?n−1 f2

//

e1 ?n−1 e2

��

v1 ?n−1 v2

e ′1 ?n−1 e
′
2

��

u ′1 ?n−1 u
′
2 g1 ?n−1 g2

// v ′1 ?n−1 v
′
2

A1 ?n−1 A2
��
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2. Double coherent presentations

where the square cellA1 ?n−1A2 is defined recursively using exchanges relations (1.2.7-1.2.8) from
functoriality of the composition ?n−1, and the middle four identities (1.2.3),

iv) for all (n − 1)-cell x of P∗n−1, the identity map T −→ P@(x, x), where T is the terminal double
groupoid, sends the one point cell • on x and the identity iµα(•) on iµα(x) for all µ ∈ {v, h} and
α ∈ {0, 1}.

2.2.6. The functor Fn : DbPoln → Catn(DbCat) defined by Fn(P) = P@ for any double n-polygraph P
satisfies the universal property of a free object in Catn(DbCat). Indeed, given a double n-polygraph
P = (Pv, Ph, Ps), a morphism ηP : P → Wn(Fn(P)) of double n-polygraphs, an n-category enriched
in double categories C, and a morphism ϕ : P → Wn(C) of double n-polygraphs, there exists a unique
enriched morphism ϕ̃ : Fn(P)→ C such that the following diagram commutes

P
ηP

//

ϕ
%%

Wn(Fn(P))

Wn(ϕ̃)
��

Wn(C)

The functor ϕ̃ = (ϕ̃k)06k6n+2 is defined as follows.

i) By construction, the morphism ϕ induces morphisms of (n+ 1)-polygraphs ϕµ : Pµ →W
µ
n+1(C),

for µ ∈ {v, h}. The morphism ϕµ extends by universal property of free (n + 1)-categories into a
functor ϕ̃µ : (Pµ)∗ → C

µ
n+1. We set ϕ̃k = ϕvk = ϕhk for 0 6 k 6 n, and

ϕ̃n+1(f) = ϕ
h(f), ϕ̃n+1(e) = ϕ

v(e),

for every horizontal (n+ 1)-cell f and every vertical (n+ 1)-cell e.

ii) By construction, any square (n+2)-cellA in Fn(P) is a composite of generating square (n+2)-cells
in Ps with respect to the compositions �v, �h and ?n−1. Moreover, following [12, Theorem 1.2], if
a compatible arrangement of square cells in a double category is composable in two different ways,
the results are equal modulo the associativity, identity axioms of compositions �v and �h, and middle
four interchange law (1.2.3). We extend the functor ϕ to the functor ϕ̃ by setting

ϕ̃(A �µ B) = ϕ(A) �µ ϕ(B), ϕ̃(A ?n−1 B) = ϕ(A) ?n−1 ϕ(B),

for every µ ∈ {v, h} and all square generating (n+ 2)-cells A,B in Ps whenever the composites are
defined.

2.2.7. Free n-categories enriched in double groupoids. By a similar construction to the free n-
category enriched in double categories on a double n-polygraph P = (Pv, Ph, Ps) given in 2.2.5, we
construct the free n-category enriched in double groupoids generated by a double (n + 2, n)-polygraph
P = (Pv, Ph, Ps), that we denote by P

�

. It is obtained as the freen-category enriched in double categories
P@ having in addition

− inverse vertical (n+ 1)-cells e− for any generating vertical (n+ 1)-cell e,
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2.3. Globular coherent presentations from double coherent presentations

− inverse horizontal (n+ 1)-cells f− for any generating vertical (n+ 1)-cell f,

− inverse square (n+ 2)-cells A−,µ for any generating square (n+ 2)-cell A in Ps,

that satisfy the inverses axioms of groupoids for vertical and horizontal cells and the relations (1.2.4) for
square cells.

Finally, we will also consider the free n-category enriched in double categories, whose vertical
category is a groupoid, generated by a double n-polygraph P = (Pv, Ph, Ps) in DbPolv, that we denote
by P

�

,v. In that case, we only require the invertibility of vertical (n + 1)-cells and the invertibility of
square (n+ 2)-cells with respect to �h-composition.

2.2.8. Acyclicity. Let P = (Pv, Ph, Ps) be a double (n + 2, n)-polygraph. The square extension Ps of
the pair of (n+ 1, n)-categories ((Pv)>, (Ph)>) is acyclic if for any square S over ((Pv)>, (Ph)>) there
exists a square (n+2)-cellA in the freen-category enriched in double groupoids P

�

such that ∂(A) = S.
For example, the set of squares over ((Pv)>, (Ph)>) forms an acyclic extension.

2.2.9. Double coherent presentations of n-categories. Recall that a presentation of an n-category C
is an (n+ 1)-polygraph P whose presented category P is isomorphic to C. We define a double coherent
presentation of C as a double (n+ 2, n)-polygraph (Pv, Ph, Ps) satisfying the two following conditions:

i) the (n + 1)-polygraph (Pn, P
v
n+1 ∪ Phn+1) is a presentation of C, where Pn is the underlying n-

polygraph of Pv and Ph,

ii) the square extension Ps is acyclic.

2.3. Globular coherent presentations from double coherent presentations

2.3.1. We define a quotient functor

V : DbPol(n+2,n) → DiPol(n+2,n) (2.3.2)

that sends a double (n+ 2, n)-polygraph P = (Pv, Ph, Ps) to the (n+ 2, n)-dipolygraph

V(P) = ((P0, . . . , Pn+2), (Q1, . . . , Qn+2)) (2.3.3)

defined as follows:

i) (P0, . . . , Pn) is the underlying n-polygraph Pv6n = Ph6n := Pn,

ii) for every 1 6 i 6 n, the cellular extension Qi is empty,

iii) Qn+1 is the cellular extension Pvn+1
∂v−,n

//

∂v+,n

// P∗n ,
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2. Double coherent presentations

iv) Pn+1 is the cellular extension Phn+1
∂̃h−,n

//

∂̃h+,n

// (P∗n)Pvn+1 , where the maps ∂̃h−,n and ∂̃h+,n are defined by

∂̃hµ,n = ∂hµ,n ◦ π,

for any µ in {−,+}, where π : P∗n � (P∗n)Pvn+1 denotes the canonical projection sending an n-cell
u in P∗n on its class, denoted by [u]v, modulo Pvn+1. Moreover, for any f : u → v in Phn+1, we will
denote by [f]v : [u]v → [v]v the corresponding element in Pn+1,

v) the cellular extension Qn+2 is empty,

vi) Pn+2 is defined as the cellular extension Ps
š
//

ť
// (P∗n)Pvn+1(P

h
n+1) , where the maps š and ť are

defined by the following commutative diagrams:

Ps

∂h−,n+1
��

∂h+,n+1
��

š
&&

ť &&

(Phn+1)
>

F
//

∂h−,n
��

∂h+,n
��

(P∗n)Pvn+1(P
h
n+1)

∂̃
h

−,n
��

∂̃
h

+,n
��

P∗n π
// (P∗n)Pvn+1

where the maps ∂̃
h

−,n and ∂̃
h

+,n are induced from ∂̃h−,n and ∂̃h+,n, and the (n+ 1)-functor F is defined
by:

a) F is the identity functor on the underlying (n− 1)-category P∗n−1,
b) F sends an n-cell u in P∗n to its equivalence class [u]v modulo Pvn+1,
c) F sends an (n + 1)-cell f : u → v in (Phn+1)

> to the (n + 1)-cell [f]v : [u]v → [v]v in
(P∗n)Pvn+1(P

h
n+1) defined as follows

- for any f in Phn+1, [f]v is defined by iv),
- F is extended to the (n+ 1)-cells of (Phn+1)> by functoriality by setting

[xn ?n . . . (x1 ?0g?0y1) . . .?nyn]
v = [xn]

v ?nxn−1 ?n . . . (x1 ?0 [g]
v ?0y1) . . .?nyn−1 ?n [yn]

v

for all whisker xn ?n . . . (x1 ?0 − ?0 y1) . . . ?n yn of (Phn+1)> and (n+ 1)-cell g in (Phn+1)
>,

and
[f1 ?n f2]

v = [f1]
v ?n [f2]

v,

for all (n+ 1)-cells f1, f2 in (Phn+1)>.
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2.3. Globular coherent presentations from double coherent presentations

2.3.4. Given a generating square (n+ 2)-cell

u
f
//

g
��

u ′

k
��

v
h
// v ′

A��

of Ps, we denote by [A]v the generating (n + 2)-cell of the globular cellular extension Pn+2 on
(P∗n)Pvn+1(P

h
n+1) defined in (2.3.3) as follows:

[u]v = [u ′]v

[f]v

$$

[g]v

::
[v]v = [v ′]v[A]v

��

Note that by construction in the (n + 2, n)-category ((P∗n)Pvn+1(P
h
n+1))(Pn+2) the following relations

hold
[A]v ?n [A

′]v = [A �v A ′]v, [A]v ?n+1 [A
′]v = [A �h A ′]v,

for all generating square (n+ 2)-cells A and A ′ in Ps such that these compositions make sense.

2.3.5. Proposition. Let P = (Pv, Ph, Ps) be a double (n + 2, n)-polygraph. If the square extension Ps
is acyclic then the cellular extension Pn+2 of the (n + 1)-category (P∗n)Pvn+1(P

h
n+1) defined in (2.3.3) is

acyclic.
In particular, if P is a double coherent presentation of an n-category C. Then, the (n + 2, n)-

dipolygraph V(P) is a globular coherent presentation of the quotient n-category (P∗n)Pvn+1 , that is the
n-category is isomorphic to V(P)6(n+1) and Pn+2 is an acyclic extension of (P

∗
n)Pvn+1(P

h
n+1).

Proof. Given an (n+1)-sphere γ := ([f]v, [g]v) in (P∗n)Pvn+1(P
h
n+1), by definition of the functorV defined

in (2.3.2), there exists an (n+ 1)-square

S :=

u
f
//

e
��

u ′

e ′
��

v
g
// v ′

in ((Pvn+1)
>, (Phn+1)

>), such that F(f) = [f]v and F(g) = [g]v and V(S) = γ. By acyclicity assumption,
there exists a square (n + 2)-cell A in the free n-category enriched in double groupoids (Pv, Ph, Ps)

�

such that ∂(A) = S. Then [A]v is an (n + 2)-cell in (P∗n)Pvn+1(P
h
n+1))(Pn+2) such that ∂([A]v) = γ.

Finally, the fact that V(P)6(n+1) is a presentation of the quotient n-category (P∗n)Pvn+1 follows from the
definition of the functor V and the fact that the (n + 1)-polygraph (Pn, P

v
n+1 ∪ Phn+1) is a presentation

of C.
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2. Double coherent presentations

2.4. Examples

We illustrate how to define coherent presentations of algebraic structures in terms of dipolygraphs on the
cases of groups, commutative monoids and pivotal categories.

2.4.1. Coherent presentations of groups. Apresentation of a groupG is defined by a setX of generators
and a set R of relations equipped with a map from R to the free group F(X) on X such thatG is isomorphic
to the quotient of F(X) by the normal subgroup generated by R. The free group F(X) can be presented by
the 2-polygraph, denoted by Gp2(X), with only one 0-cell, its set of generating 1-cells is X ∪ X−, where
X− := {x− | x ∈ X} and its generating 2-cells are

xx− ⇒ 1, x−x⇒ 1,

for any x in X. A coherent presentation of the group G is a (3, 1)-dipolygraph (P,Q) such that:

i) (P0, P1, Q2) is the 2-polygraph Gp2(X), and the cellular extension Q1 is empty,

ii) the cellular extension P2 of F(X) has for generating set R, its source map is the identity and its target
is constant equal to 1,

iii) the cellular extension Q3 is empty, and P3 is an acyclic extension of the 2-group (F(X))(R).

2.4.2. Coherent presentation of commutative monoids. A presentation of a commutative monoidM
is defined by a set X of generators and a cellular extension R of relations on the free commutative
monoid 〈X〉 on X such thatM is isomorphic to the quotient of 〈X〉 by the congruence generated by R.
The free commutative monoid 〈X〉 on X can be defined by the 2-polygraph, denoted by Com2(X), with
only one 0-cell, its set of generating 1-cells is X, and the generating 2-cells are

xixj ⇒ xjxi

for any xi, xj in X, such that xi > xj for a given total order > on X. A coherent presentation of the
commutative monoidM is a (3, 1)-dipolygraph (P,Q) such that:

i) (P0, P1, Q2) is the 2-polygraph Com2(X), and the cellular extension Q1 is empty,

ii) P2 = R, Q3 is empty, and P3 is an acyclic extension of the 2-category 〈X〉(R).

2.4.3. Coherent presentation of monoidal pivotal categories. Recall that a (strict monoidal) pivotal
category C is a monoidal category, seen as 2-category with only one 0-cell, in which every 1-cell p has a
right dual 1-cell p̂, which is also a left-dual, that is there are 2-cells

η−p : 1⇒ p̂ ?0 p, η+p : 1⇒ p ?0 p̂, ε−p : p̂ ?0 p⇒ 1, and ε+p : p ?0 p̂⇒ 1, (2.4.4)

respectively represented by the following diagrams:

p̂ p

,
p p̂

,
p̂ p , and p p̂

. (2.4.5)
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These 2-cells satisfy the relations

(ε+p ?0 1p) ?1 (1p ?0 η
−
p ) = 1p = (1p ?0 ε

−
p ) ?1 (η

+
p ?0 1p)

(ε−p ?0 1p̂) ?1 (1p̂ ?0 η
+
p ), = 1p̂ = (1p̂ ?0 η

+
p ) ?1 (η

−
p ?0 1p̂),

that can be diagrammatically depicted as follows

ε+p

η−pp

=

p

=

η+p

ε−p

p

ε−p

η+pp̂

=

p̂

=

η−p

ε+q

p̂

Any 2-cell f : p ⇒ q in C is cyclic with respect to the biadjunctions p̂ ` p ` p̂ and q̂ ` q ` q̂ defined
respectively by the family of 2-cells (η−p , η+p , ε−p , ε+p ) and (η−q , η+q , ε−q , ε+q ), that is f∗ = ∗f, where f∗ and
∗f are respectively the right and left duals of f, defined using the right and left adjunction as follows:

∗f :=

ε−q

η+p

•f
p̂

q̂

f∗ := •f
p̂

η−p

ε+q

q̂

We refer the reader to [9, 23] for more details about the notion of pivotal monoidal category.
A presentation of a pivotal categoryC is defined by a setX1 of generating 1-cells, a setX2 of generating

cyclic 2-cells, and a cellular extension R on the free pivotal category P(X1, X2) on the data (X1, X2), such
that C is isomorphic to the quotient of P(X1, X2) by the congruence generated by R. The free pivotal
category P(X1, X2) can be presented by the 3-polygraph Piv3(X1, X2) defined as follows

i) it has only one 0-cell,

ii) its set of generating 1-cells is X1 ∪ X̂1, where X̂1 := {p̂ | p ∈ X1},

iii) its set of generating 2-cells is

X2 ∪ {η−p , η
+
p , ε

−
p , ε

+
p | p ∈ X1},

where the 2-cells η−p , η+p , ε−p , ε+p are defined by (2.4.4),

iv) its generating 3-cells are

ε−q

η+p

•f
p̂

q̂

V

q̂

p̂

∗f• •f
p̂

η−p

ε+q

q̂

V

q̂

p̂

f∗•

for any generating 2-cell f in X2 or f is an identity cell.

A coherent presentation of the pivotal category C is a (4, 2)-dipolygrah (P,Q) such that:

i) (P0, P1, P2, Q3) is the 3-polygraph Piv3(X1, X2) and the cellular extensions Q1 and Q2 are empty,

ii) P3 = R, Q4 is empty and P4 is an acyclic extension of the 2-category P(X1, X2)(R).
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3. Polygraphs modulo

3. Polygraphs modulo

In this section, we introduce the notion of polygraph modulo and we define the rewriting properties of
termination, confluence and local confluence for these polygraphs.

3.1. Polygraphs modulo

3.1.1. Cellular extensions modulo. Consider two n-polygraphs E and R such that E6n−2 = R6n−2 and
En−1 ⊆ Rn−1. One defines the cellular extension

γ ER : ER→ Sphn−1(R
∗
n−1),

where the set ER is defined by the following pullback in Set:

E>n ×R∗n−1 R
∗(1)
n

π1
��

π2
// R
∗(1)
n

∂−,n−1
��

E>n ∂+,n−1
// R∗n−1

and themapγ ER is defined byγ ER(e, f) = (∂−,n−1(e), ∂+,n−1(f)) for all e inE> and f inR∗(1)n . Similarly,
one defines the cellular extension

γRE : RE → Sphn−1(R
∗
n−1),

where the set RE is defined by the following pullback in Set:

R
∗(1)
n ×R∗n−1 E

>
n

π1
��

π2
// E>n

∂−,n−1
��

R
∗(1)
n

∂+,n−1
// R∗n−1

and the map γRE is defined by γRE(f, e) = (∂−,n−1(f), ∂+,n−1(e)) for all e in E> and f in R∗(1)n . Finally,
one defines the cellular extension

γ ERE : ERE → Sphn−1(R
∗
n−1),
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where the set ERE is defined by the following composition of pullbacks in Set:

E>n ×R∗n−1 R
∗(1)
n ×R∗n−1 E

>
n

(π2, π3)
//

(π1, π2)
��

R
∗(1)
n ×R∗n−1 E

>
n

π1
��

π2
// E>n

∂−,n−1
��

E>n ×R∗n−1 R
∗(1)
n

π1
��

π2
// R
∗(1)
n

∂+,n−1
//

∂−,n−1
��

R∗n−1

E>n ∂+,n−1
// R∗n−1

and the map γ ERE is defined by γ ERE(e, f, e ′) = (∂−,n−1(e), ∂+,n−1(e
′)).

3.1.2. Polygraphs modulo. A n-polygraph modulo is a data (R, E, S) made of

i) an n-polygraph R, whose generating n-cells are called primary rules,

ii) an n-polygraph E such that E6(n−2) = R6(n−2) and En−1 ⊆ Rn−1, whose generating n-cells are
called modulo rules,

iii) S is a cellular extension of R∗n−1 such that the inclusions of cellular extensions

R ⊆ S ⊆ ERE

holds.

If no confusion may occur, an n-polygraph modulo (R, E, S) will be simply denoted by S. For
simplicity of notation, the n-polygraphs modulo (R, E, ER), (R, E, RE) and (R, E, ERE) will be denoted
by ER, RE and ERE respectively.

3.1.3. Given an n-polygraph modulo (R, E, S), we will consider in the sequel the following categories:

- the free n-category R∗n−1[Rn, En
∐
E−1n ]/Inv(En, E−1n ), denoted by R∗(E).

- the free n-category generated by S, denoted by S∗,

- the free (n,n− 1)-category generated by S, denoted by S>.

For any n-cell f in S∗ (resp. S>), the size of f is defined as the positive integer ||f||Rn corresponding
to the number of n-cells of Rn contained in A, and denoted by `(f).

3.1.4. Reductions. One says that an (n−1)-cell u reduces into some (n−1)-cell vwith respect to ann-
polygraph modulo (R, E, S) when there exists a non-identity n-cell from u to v in the free n-category S∗.
A reduction sequence is a family (uk)k of (n − 1)-cells in R∗n−1 such that each uk reduces to uk+1. A
rewriting step is an non-identity n-cell f of S∗ such that `(f) = 1, that is with shape C[γ], where γ is a
generating n-cell of S and C is a whisker of R∗n−1.
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3. Polygraphs modulo

3.2. Termination and normal forms

In this subsection, we introduce the property of termination and the notion of normal form for polygraphs
modulo. We explain how to prove termination of polygraphsmodulo using a termination order compatible
modulo rules. Finally, we recall the double induction principle introduced by Huet in [20] that we will
use in many proofs in the sequel.

3.2.1. Termination. Recall that an n-polygraph terminates if it has no infinite rewriting sequence. An
n-polygraph modulo (R, E, S) is terminating when the n-polygraph (Rn−1, S) is terminating. Note that,
when S 6= R, ER is terminating iff RE is terminating iff ERE is terminating iff S is terminating.

An order relation≺ on R∗n−1 is compatible with Smodulo E if it satisfies the two following conditions:

i) v ≺ u, for any (n− 1)-cells u, v in R∗n−1 such that there exists an n-cell u→ v in S∗,

ii) if v ≺ u for (n− 1)-cells u, v in R∗n−1, then v ′ ≺ u ′ holds for any (n− 1)-cells u ′, v ′ in R∗n−1 such
that there exist n-cells e : u→ u ′ and e ′ : v→ v ′ in E>.

A termination order for S modulo E is a well-founded order relation compatible with S modulo E.
In this work, many constructions will be based on the termination of the n-polygraph modulo ERE,

which can be proved by constructing a termination order for one of the n-polygraphs modulo ER, RE
and ERE. It can be also proved by constructing a termination order for R compatible with E.

3.2.2. Normal forms. A (n− 1)-cell u in R∗n−1 is S-reduced if it cannot be reduced by n-cells of S. A
S-normal form for an (n− 1)-cell u in R∗n−1 is a S-reduced (n− 1)-cell v such that u can be reduced to v
with respect to S. We will denote by Irr(S) the set of S-reduced (n− 1)-cells of R∗n−1, and by NF(S, u)
the set of S-normal forms of an (n− 1)-cell u of R∗n−1. If S is terminating, every (n− 1)-cell has at least
one S-normal form.

3.2.3. Noetherian induction. If S is terminating one can prove properties on (n−1)-cells of R∗n−1 using
Noetherian induction. For that, one proves the property on normal forms; then one fixes an (n− 1)-cell
u, one assumes that the result holds for every (n − 1)-cell v such that u reduces into v and one proves,
under those hypotheses, that the (n− 1)-cell u satisfies the property.

Let us recall the double Noetherian induction principle introduced by Huet in [20] to prove the
equivalence between confluence modulo and local confluence modulo under a termination hypothesis.
We construct an auxiliary n-polygraph Sq as follows. One defines

Sqk = Sk × Sk for 0 6 k 6 n− 1,

and Sqn contains an n-cell (u, v) → (u ′, v ′), for all (n − 1)-cells u, u ′, v, v ′ in any of the following
situation:

i) there exists an n-cell u→ u ′ in S∗ and v = v ′;

ii) there exists an n-cell v→ v ′ in S∗ and u = u ′;

iii) there exist n-cells u→ u ′ and u→ v ′ in S∗;

iv) there exist n-cells v→ u ′ and v→ v ′ in S∗;
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3.3. Confluence modulo

v) there exist n-cells e1, e2 and e3 in E> as in the following diagram

u
e1
// v

e2
// u ′

e3
// v ′

such that `(e1) > `(e3).

Note that this definition implies that, if there exist n-cells u → u ′ and v → v ′ in S∗, then there is an
n-cell (u, v)→ (u ′, v ′) in Sq given by the following composition:

(u, v)→ (u ′, v)→ (u ′, v ′)

Following [20, Proposition 2.2], if SE is terminating, then so is Sq. In the sequel, we will apply this
Noetherian induction on Sq with the following property:

for any n-cells f : u → u ′, g : v → v ′ in S∗ and e : u → v in E>, there exist n-cells
f ′ : u ′ → u ′′, g ′ : v ′ → w ′′ in S∗ and e ′ : u ′′ → w ′′ in E>, and a square (n+ 1)-cell A in
a given (n− 1)-category enriched in groupoids, as depicted in the following diagram:

u
f
//

e
��

u ′
f ′
// u ′′

e ′
��

v
g
// v ′

g ′
// w ′′

A
��

In Section 4, we will formulate this property for such a branching (f, e, g) of S modulo E in terms of
coherent confluence modulo E.

3.3. Confluence modulo

In this subsection, we define properties of confluence and local confluence modulo for an n-polygraph
modulo (R, E, S), and we explicit a classification of branchings of S modulo E.

3.3.1. Branchings. A branching of the n-polygraph modulo S is a pair (f, g), where f and g are n-cells
of S∗and such that ∂h−,n−1(f) = ∂h−,n−1(g). Such a branching is depicted by

u
f
//

=

��

u ′

u
g
// v ′

(3.3.2)

and will be denoted by (f, g) : u⇒ (u ′, v ′). The (n−1)-cell u is called the source of this branching. We
do not distinguish the branchings (f, g) and (g, f). A branching modulo E of the n-polygraph modulo S
is a triple (f, e, g) where f and g are n-cells of S∗ with f non trivial and e is an n-cell of E>. Such a
branching is depicted by

u
f
//

e
��

u ′

v
g
// v ′

(
resp.

u
f
//

e
��

u ′

v

)
(3.3.3)
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3. Polygraphs modulo

when g is non trivial (resp. trivial) and denoted by

(f, e, g) : (u, v)⇒ (u ′, v ′) (resp. (f, e) : u⇒ (u ′, v) ).

The pair of (n− 1)-cells (u, v) (resp. (u, u)) is called the source of this branching modulo E. Note that
any branching (f, g) is a branching modulo E (f, e, g) where e = iv1(∂h−,(n−1)(f)) = i

v
1(∂

h
−,(n−1)(g)).

3.3.4. Confluence and confluence modulo. A confluence of the n-polygraph modulo S is a pair (f ′, g ′)
of n-cells of S∗ such that ∂h+,(n−1)(f

′) = ∂h+,(n−1)(g
′). Such a confluence is depicted by

u ′
f ′
// w

=

��

v ′

g ′
// w

and denoted by (f ′, g ′) : (u ′, v ′)⇒ w. A confluence modulo E of the n-polygraph modulo S is a triple
(f ′, e ′, g ′), where f ′, g ′ are n-cells of S∗ and e ′ is an n-cell of E> such that ∂h+,(n−1)(f

′) = ∂v−,(n−1)(e
′)

and ∂h+,(n−1)(g
′) = ∂v+,(n−1)(e

′). Such a confluence is depicted by

u ′
f ′
// w

e ′
��

v ′

g ′
// w ′

and denoted by (f ′, e ′, g ′) : (u ′, v ′)⇒ (w,w ′).
A branching as in (3.3.2) is confluent (resp. confluent modulo E) if there exist n-cells f ′, g ′ in S∗ and

e ′ in E> as in the following diagrams:

u
f
//

=

��

u ′
f ′
// w

=

��

u
g
// v ′

g ′
// w ′

(
resp.

u
f
//

=

��

u ′
f ′
// w

e ′
��

u
g
// v ′

g ′
// w ′

)
.

A branching modulo E as in (3.3.3) is confluent modulo E if there exist n-cells f ′, g ′ in S∗ and e ′
in E> as in the following diagram:

u
f
//

e
��

u ′
f ′
// w

e ′
��

v
g
// v ′

g ′
// w ′

.

We say that the n-polygraph modulo S is confluent (resp. confluent modulo E) if all of its branchings
(resp. branchings modulo E) are confluent (resp. confluent modulo E). Note that when S is confluent,
every (n − 1)-cell of S∗ has at most one normal form with respect to S. Under the confluence modulo
hypothesis, an (n− 1)-cell may admit several S-normal forms, which are all equivalent modulo E.
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3.3. Confluence modulo

3.3.5. Diconvergence. The n-polygraph modulo S is called convergent if it is both terminating and
confluent. It is called convergent modulo E when it is confluent modulo E and ERE is terminating. We
say that S is diconvergent when E is convergent and S is convergent modulo E.

3.3.6. JK confluence and JK coherence. Finally, let us recall the notion of confluence modulo intro-
duced by Jouannaud and Kirchner in [21]. We say that the n-polygraph modulo S is

i) JK confluent modulo E, if any branching is confluent modulo E,

ii) JK coherent modulo E, if for any branching modulo E (f, e) : u⇒ (u ′, v) is confluent modulo E:

u
f
//

e
��

v
f ′
// v ′

e ′
��

u ′

g ′
// w

in such a way that g ′ is a non-trivial n-cell in S∗.

3.3.7. Local branchings. A branching (f, g) of the n-polygraph modulo S is local if f, g are n-cells
of S∗(1). A branching (f, e, g) modulo E is local if f is an n-cell of S∗(1), g is an n-cell of S∗ and e an
n-cell of E> such that `(g) + `(e) = 1. Local branchings belong to one of the following families:

i) local aspherical branchings of the form:

u
f
//

=

��

v

=

��

u
f
// v

where f is an n-cell of S∗(1);

ii) local Peiffer branchings of the form:

u ?i v
f ?i v

//

=

��

u ′ ?i v

u ?i vu ?i g
// u ?i v

′

where 0 6 i 6 n− 2, f and g are n-cells of S∗(1),

iii) local Peiffer modulo of the forms:

u ?i v
f ?i v

//

u ?i e
��

u ′ ?i v

u ?i v
′

w ?i u
w ?i f

//

e ′ ?i u
��

w ?i u
′

w ′ ?i u

(3.3.8)

where 0 6 i 6 n− 2, where f is an n-cell of S∗(1) and e, e ′ are n-cells of E>(1);
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3. Polygraphs modulo

iv) overlapping branchings are the remaining local branchings:

u
f
//

=

��

v

u
g
// v ′

where f and g are n-cells of S∗(1),

v) overlapping branchings modulo are the remaining local branchings modulo:

u
f
//

e
��

v

v ′

(3.3.9)

where f is an n-cell of S∗(1) and e is an n-cell of E>(1).

Let (f, g) (resp. (f, e, g)) be a branching (resp. branching modulo E) of the n-polygraph modulo S
with source u (resp. (u, v)) and a whisker C[∂u] of R∗n−1 composable with u and v, the pair (C[f], C[g])
(resp. triple (C[f], C[e], C[g])) is a branching (resp. branching modulo E) of the n-polygraph modulo S.
If the branching (f, e, g) is local, then the branching (C[f], C[e], C[g]) is local. We denote byv the order
relation on branchings modulo E of S defined by (f, e, g) v (f ′, e ′, g ′) when there exists a whisker C
of R∗n−1 such that (C[f], C[e], C[g]) = (f ′, e ′, g ′) hold. A branching (resp. branching modulo E) is
minimal if it is minimal for the order relation v. A branching (resp. branching modulo E) is critical if it
is an overlapping branching that is minimal for the relation v.

3.3.10. Local confluence modulo. The n-polygraph modulo S is locally confluent modulo E if any of its
local branchings modulo E is confluent modulo E. Note that following [21], there exists a local version of
JK-confluence modulo E and JK coherence modulo E, given by properties a) and b) of Proposition 4.2.1,
and we will prove in the next section that all these notions are equivalent.

3.4. Completion procedure for ER

In this subsection, we give a completion procedure for an n-polygraph modulo of the form (R, E, ER),
when ER is not confluent modulo E that computes an n-polygraph Ř such that EŘ is confluent modulo E.

3.4.1. Completion of ERmodulo E. Note that the property of JK coherence is trivially satisfied for ER.
Indeed, any branching (f, e) of ER modulo E is trivially confluent modulo E as follows:

u
f
//

e
��

v

=

��

v ′

e− · f
// v

(3.4.2)
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3.4. Completion procedure for ER

where e− · f is a rewriting step of ER. Following the critical branching lemma modulo, Theorem 4.2.2
given in the next section, we describe a completion procedure for confluence of ER modulo E in terms
of critical branchings, similar to the Knuth-Bendix completion. From (3.4.2) and Theorem 4.2.2, when
ER is terminating, ER is confluent modulo E if and only if all critical branchings (f, g) of ER modulo E
with f in ( ER)

∗(1) and g in R∗(1) are confluent modulo E, as depicted by:

u
f ∈ ( ER)

∗(1)
//

=

��

v
f ′ ∈ ( ER)

∗
// v ′

e ′

��

u
g ∈ R∗(1)

// w
g ′ ∈ ( ER)

∗
// w ′

We denote by CP( ER, R) the set of such critical branchings.

3.4.3. Completion procedure for ER. Let us consider R and E two n-polygraphs such that E6n−2 =
R6n−2 and En−1 ⊆ Rn−1, and ≺ a termination order compatible with R modulo E. In this paragraph, we
describe a procedure to compute a completion Ř of then-polygraph R such that EŘ is confluent modulo E.
We denote by û ER a normal form of an element u in R∗n−1 with respect to ER. To simplify the notations,
for any (n− 1)-cells u and v in R∗n−1, we denote u ≈E v if there exists an n-cell e : u→ v in E>.

Input:
- R and E 2-polygraphs over a 1-polygraph X.
- ≺ a termination order for R compatible with E,

which is total on the set of ER-irreducible elements.

begin
C← CP( ER, R);
while C 6= ∅ do

Pick any branching c = (f : u⇒ v, g : u⇒ w) in C, with f in ER
∗ and g in R∗;

Reduce v to v̂ ER a ER-normal form;
Reduce w to ŵ ER a ER-normal form;
C← C\{c} ;
if v̂ ER ��≈E ŵ ER then

if ŵ ER ≺ v̂ ER then
R← R ∪ {v̂ ER

α⇒ ŵ ER};
end
if v̂ ER ≺ ŵ ER then

R← R ∪ {ŵ ER α⇒ v̂ ER};
end

end
C← C ∪ {( ER, R)-critical branchings created by α};

end
end
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3. Polygraphs modulo

This procedure may not be terminating. However, it does not fail because of the hypothesis that ≺ is
total on the set of ER-irreducible elements.

3.4.4. Proposition. When it terminates, the completion procedure for ER returns an n-polygraph Ř such
that EŘ is confluent modulo E.

Proof. The proof of soundness of the completion procedure for ER is a consequence of the inference
system given by Bachmair and Dershowitz in [1] in order to get a set of rules Ř such that EŘ is confluent
modulo E. Given two n-polygraphs R and E and a termination order > compatible with R modulo E,
their inference system is given by the following six elementary rules:

1) Orienting an equation:

(A ∪ {s = t}, R)  (A,R ∪ {s→ t}) if s > t.

2) Adding an equational consequence:

(A,R)  (A ∪ {s = t}, R) if s ∗←−R∪E u ∗−→R∪E t.

3) Simplifying an equation:

(A ∪ {s = t}, R)  (A ∪ {u = t}, R) if s ER→ u.

4) Deleting an equation:
(A ∪ {s = t}, R)  (A,R) if s ≈E t.

5) Simplifying the right-hand side of a rule:

(A,R ∪ {s→ t})  (A,R ∪ {s→ u}) if t ER→ u.

6) Simplifying the left-hand side of a rule:

(A,R ∪ {s→ t})  (A ∪ {u = t}, R) if s ER→ u.

The soundness of Procedure 3.4.3 is a consequence of the following arguments:

i) For any critical branching (f : u → v, g : u → w) in CP( ER, R), we can add an equation v = w

using the rule Adding an equational consequence, and simplify it to v̂ ER = ŵ ER using the rule
Symplifying an equation.

ii) If v̂ ER ≈E ŵ ER, we can delete the equation using the rule Deleting an equation.

iii) Otherwise, we can always orient it using the rule Orienting an equation.

Thus, each step of this completion procedure comes from one of the inference rules given by Bachmair
and Dershowitz. Following [1], it returns a set R of rules so that ER is confluent modulo E.
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4. Coherent confluence modulo

3.4.5. Completion procedure for ERE. By definition, the polygraph ER is confluent modulo E if and
only if the polygraph ERE is confluent modulo E. We can extend the above completion procedure in the
case of the polygraph modulo ERE. In that case, the critical branchings of the form (f, e) with f in ER

∗(1)
E

and e in E>(1) are still trivially confluent. Let us denote by CP( ERE, R) the set of critical branchings
of ERE modulo R. All these critical branchings can be written as a pair (f · e, g), where (f, g) is a critical
branching in CP( ER, R) and e is an n-cell in E>.

As a consequence, the completion procedure for ER given in 3.4.3 can be adapted for the polygraph
modulo ERE. In that case, the procedure differs from 3.4.3 by the fact that when adding a rule α : u⇒ v

in R, one can choose as target of α any element of the equivalence class of v with respect to E. We
prove in the same way than when it terminates, this completion procedure returns an n-polygraph Ř such
that ERE is confluent modulo E.

4. Coherent confluence modulo
In this section, we introduce the property of coherent confluence modulo defined by the adjunction of a
square cell for each confluence diagram modulo. Under a termination hypothesis, Theorem 4.1.4 shows
how to deduce coherent confluence modulo for a polygraph modulo from coherent local confluence
modulo. This result is a coherent version of Newman’s lemma that states the equivalence between local
confluence and confluence under a termination hypothesis, [28]. Theorem 4.2.2 formulates a coherent
version of the critical branching lemma, it shows how to deduce local coherent confluence modulo from
the coherent confluence modulo of critical branchings.

4.1. Coherent Newman’s lemma modulo

4.1.1. Biaction of E> on Sqr(E>, S∗). Let (R, E, S) be an n-polygraph modulo. Let Γ be a square
extension of the pair of n-categories (E>, S∗). As the inclusions R ⊆ S ⊆ ERE of cellular extensions
hold, any n-cell f in S∗ can be decomposed in f = e1 ?n−1 f1 ?n−1 e2 ?n−1 f2 with f1 in R∗(1), f2 in S∗
such that `(f2) = `(f) − 1, e1 and e2 are n-cells in E> possibly identities, and ?n−1 denoting for the
composition along (n− 1)-cells in the free n-category generated by R ∪ E.

Thus, a branching (f, e, g) of S modulo E with a choice of a generating confluence (f ′, e ′, g ′) may
correspond to different squares in Sqr(E>, S∗). For instance, if g can be decomposed g = e1?n−1g1?n−1
e2, the following squares in Sqr(E>, S∗) correspond to the same branching of S modulo E:

u
f
//

e
��

v
f ′
// v ′

e ′
��

u
g
// w

g ′
// w ′

and
u

f
//

e ?n−1 e1
��

v
f ′
// v ′

e ′
��

u1 g1e2
// w

g ′
// w ′

When computing a coherent presentation of S modulo E, one does not want to consider two different
elements in a coherent completion of S modulo E, as defined in 5.1, to tile these squares which are not
equal in the free n-category enriched in double category generated by the double (n − 1)-polygraph
(E, S, Γ ∪ Peiff(E>, S∗)).
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4. Coherent confluence modulo

In order to avoid these redundant squares, we define a biaction of E> on Sqr(E>, S∗). For any
n-cells e1 and e2 in E> and any (n+ 1)-cell

u
f
//

e
��

u ′

e ′
��

u
g
// v ′

A��

in Sqr(E>, S∗) satisfying the following conditions

i) ∂+,n−1(e1) = ∂h−,n−1∂v−,n(A),

ii) ∂−,n−1(e2) = ∂h+,n−1∂v−,n(A),

iii) e1∂h−,n(A) ∈ S,

iv) e−2 ∂h+,n(A) ∈ S,
we define the square (n+ 1)-cell e1e2A as follows:

u1
e1f
//

e1ee2
��

u ′

e ′
��

u2
e−2 g
// v ′

e1
e2
A

��

where u1 = ∂−,n−1(e1) and u2 = ∂+,n−1(e2). For a square extension Γ of (E>, S∗), we denote by Eo Γ
the set containing all elements e1e2A with A in Γ and e1, e2 in E>, whenever it is well defined. For any
e1,e2 in E> and A,A ′ in Γ , the following equalities hold whenever both sides are defined:

i) e ′1
e ′2
(e1e2A) =

e ′1e1
e2e
′
2
A;

ii) e1
e2(A �v A ′) = (e1e2A) �v A ′;

iii) e1
e2(A �h A ′) = (e11 A) �

h (1e2A
′).

4.1.2. Coherent confluence modulo. Let (R, E, S) be an n-polygraph modulo. Let Γ be a square
extension of the pair of n-categories (E>, S∗). Let us denote

Γg := (E, S, Eo Γ ∪ Peiff(E>, S∗))

�

,v

the free (n− 1)-category enriched in double categories, whose vertical n-cells are invertible, generated
by the double (n− 1)-polygraph (E, S, Eo Γ ∪ Peiff(E>, S∗)) in DbPolvn−1.

A branching modulo E as in (3.3.3) is Γ -confluent modulo E if there exist n-cells f ′, g ′ in S∗, e ′ in E>
and an (n+ 1)-cell A in Γg as in the following diagram:

u
f
//

e
��

u ′
f ′
//

A
��

w

e ′
��

v
g
// v ′

g ′
// w ′

.
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We say that S is Γ -confluent (resp. locally Γ -confluent, resp. critically Γ -confluent) modulo E if
every branching (resp. local branching, resp. critical branching) modulo E is Γ -confluent modulo E, and
that S is Γ -convergent if it is Γ -confluent modulo E and ERE is terminating. The polygraph modulo S
is called Γ -diconvergent, when it is Γ -convergent and E is convergent. Note that when Γ = Sqr(E>, S∗)
(resp. Γ = Sph(S∗)), the property of Γ -confluence modulo E corresponds to the property of confluence
modulo E (resp. confluence) given in 3.3.

In the sequel, proofs of confluencemodulo results will be based onHuet’s doubleNoetherian induction
principle on the n-polygraph Sq defined in 3.2.3 and the property P on R∗n−1×R∗n−1 defined, for any u, v
in R∗n−1, by

P(u, v) : any branching (f, e, g) of S modulo E with source (u, v) is Γ -confluent modulo E.

4.1.3. Proposition (Coherent half Newman’smodulo lemma). Let (R, E, S) be ann-polygraphmodulo
such that ERE is terminating, and Γ be a square extension of (E>, S∗). If S is locally Γ -confluent modulo
E then the two following conditions hold

i) any branching (f, e) of S modulo E with f in S∗(1) and e in E> is Γ -confluent modulo E,

ii) any branching (f, e) of S modulo E with f in S∗ and e in E>(1) is Γ -confluent modulo E,

Proof. We prove condition i), the proof of condition ii) is similar. Let us assume that S is locally
Γ -confluent modulo E, we proceed by double induction.

We denote by u the source of the branching (f, e). If u is irreducible with respect to S, then f is an
identity n-cell, and the branching is trivially Γ -confluent.

Suppose that f is not an identity and assume that for any pair (u ′, v ′) of (n − 1)-cells in R∗n−1 such
that there is an n-cell (u, u)→ (u ′, v ′) in Sq, any branching (f ′, e ′, g ′) of source (u ′, v ′) is Γ -confluent
modulo E. Prove that the branching (f, e) is Γ -confluent modulo E.

We proceed by induction on `(e) > 1. If `(e) = 1, (f, e) is a local branching of S modulo E and
it is Γ -confluent modulo E by local Γ -confluence of S modulo E. Now, let us assume that for k > 1,
any branching (f ′′, e ′′) of S modulo E such that `(e ′′) = k is Γ -confluent modulo E, and let us consider
a branching (f, e) of S modulo E such that `(e) = k + 1, with source u. We choose a decomposition
e = e1 ?n−1 e2 with e1 in E>(1) and e2 in E>. Using local Γ -confluence on the branching (f, e1) of source
u, there exist n-cells f ′ and f1 in S∗, an n-cell e ′1 : tn−1(f ′)→ tn−1(f1) in E> and an (n+ 1)-cell A in
Γg such that ∂h−,n(A) = f ?n−1 f ′ and ∂h+,n(A) = f1. Then, we choose a decomposition f1 = f11 ?n−1 f21
with f11 in S∗(1) and f21 in S∗. Using the induction hypothesis on the branching (f11, e2) of S modulo E of
source u1 := tn−1(e1) = sn−1(e2), there exist n-cells f ′1 and g in S∗, an n-cell e2 : tn−1(f ′1)→ tn−1(g)
in E> and an (n + 1)-cell B in Γg such that ∂h−,n(B) = f11 ?n−1 f

′
1 and ∂h+,n(B) = g. This can be
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represented by the following diagram:

u

e1

��

f
// u ′

f ′
// u ′′

e ′1
��

u1

=

��

f11
// u ′1

=

��

f21
// u ′′1

u1 f11
//

e2

��

u ′1 f ′1
// u ′2

e ′2
��

v
g

// v ′

Local Γ -conf mod E

Induction on `(e)

ih1 (f
1
1)

Now, there is an n-cell (u, u)→ (u ′1, u
′
1) in Sq given by the composition

(u, u)→ (u1, u1)→ (u1, u
′
1)→ (u ′1, u

′
1)

where the first step exists because `(e1) > 0 and the remaining composition is as in 3.2.3. Then, we
apply double induction on the branching (f21, f ′1) of S modulo E of source (u ′1, u ′1): there exist n-cells f2
and f ′2 in S∗ and an n-cell e3 : tn−1(f2)→ tn−1(f

′
2) in E>. By a similar argument, we can apply double

induction on the branchings (f2, (e ′1)−) and (f ′2, e
′
2) of S modulo E, so that there exist n-cells f ′′,f3, f ′3

and g ′ in S∗ and n-cells e ′′1 : tn−1(f
′′) → tn−1(f3) and e ′′2 : tn−1(f

′
3) → tn−1(g

′) as in the following
diagram:

u

e1

��

f
// u ′

f ′
// u ′′

e ′1
��

f ′′
// u ′′′

e ′′1
��

u1

=

��

f11
// u ′1

=

��

f21
// u ′′1 f2 // w1 f3 //

e3

��

w ′1

u1 f11
//

e2

��

u ′1 f ′1
// u ′2

e ′2
��

f ′2
// w2 f ′3

// w ′2

e ′′2
��

v
g

// v ′

g ′
// v ′′

Local Γ -conf mod E

Induction on `(e)

ih1 (f
1
1) Db Ind.

Db Ind.

Db Ind.

We can then repeat the same process using double induction on the branching (f3, e3, f
′
3) of S modulo

E of source (w1, w2) and so on, and this process terminates in finitely many steps, otherwise it leads to
an infinite rewriting sequence wrt S starting from u1, which is not possible since ERE, and thus S, is
terminating. This yields the Γ -confluence of the branching (f, e).
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4.1. Coherent Newman’s lemma modulo

4.1.4. Theorem (Coherent Newman’s lemma modulo). Let (R, E, S) be an n-polygraph modulo such
that ERE is terminating, and Γ be a square extension of (E>, S∗). If S is locally Γ -confluent modulo E
then it is Γ -confluent modulo E.

Proof. Prove that any branching (f, e, g) of S modulo E is Γ -confluent modulo E. Let us choose such a
branching and denote by (u, v) its source. We assume that any branching (f ′, e ′, g ′) of S modulo E of
source (u ′, v ′) such that there is an n-cell (u, v) → (u ′, v ′) in Sq is Γ -confluent modulo E. We follow
the proof scheme used by Huet in [20, Lemma 2.7]. Let us denote by n := `(f) and m := `(g). We
assume without loss of generality that n > 0 and we fix a decomposition f = f1 ?n−1 f2 with f1 in S∗(1)
and f2 in S∗.

Ifm = 0, by Proposition 4.1.3 on the branching (f1, e) of S modulo E, there exist n-cells f ′1 and g ′
in S∗, an n-cell e ′ : tn−1(f ′1) → tn−1(g

′) and an (n + 1)-cell A in Γg such that ∂h−,n(A) = f1 ?n−1 f
′
1

and ∂h+,n(A) = g ′. Then, since there is an n-cell (u, u)→ (u1, u1) in Sq with u1 := tn−1(f1), we can
apply double induction on the branching (f2, f

′
1) of S modulo E as in the following diagram:

u
f1
//

=

��

u1
f2
//

=

��

u2
f ′2
// u ′2

��

u

e

��

f1 // u1 f ′1
// u2 f ′′1

//

e ′
��

u ′2

v
g ′

// v ′

Prop. 4.1.3

ih1 (f1) Db Ind.

We finish the proof of this case with a similar argument than in 4.1.3, using repeated double inductions
that can not occur infinitely many times since S is terminating.

Now, assume that m > 0 and fix a decomposition g = g1 ?n−1 g2 of g with g1 in S∗(1) and g2 in
S∗. By Step 1 on the branching (f1, e) of S modulo E, there exist n-cells f ′1 and h1 in S∗, an n-cell
e1 : tn−1(f

′
1) → tn−1(h1) in E> and an (n + 1)-cell A in Γg such that ∂h−,n(A) = f1 ?n−1 f

′
1 and

∂h+,n(A) = h1. We distinguish two cases whether h1 is trivial or not.

If h1 is trivial, the Γ -confluence of the branching (f, e, g) of S modulo E is given by the following

39



4. Coherent confluence modulo

diagram

u

=

��

f1
// u1

=

��

f2
// u2

f ′2
// u ′2

��

u f1 //

e

��

u1 f ′1
// u ′1 f3 //

e ′

��

u3

e1

��

f4
// u4 f5 // u5

��

v

=

��

1v // v

=

��

g1 // v ′1
=

��

g ′1
// v ′′1 g ′′1

// w1

��

g3
// w3

v
1v

// v g1 // v ′1 g2
// v2

g ′2

// w2

Prop. 4.1.3Prop. 4.1.3

ih1 (f1)

ih1 (1v) ih1 (g1)

Db Ind.

Db Ind.

Db Ind.

where the branchings (f1, e) and (g1, e ′) of S modulo E are Γ -confluent by Proposition 4.1.3, double
induction applies on the branchings (f2, f ′1 ?n−1 f3), (g ′1, g2) and (f4, e1, g ′′1 ) since there are n-cells

(u, v)→ (u, u)→ (u1, u1) , (u, v)→ (v, v)→ (v, v ′1)→ (v ′1, v
′
1) and (u, v)→ (u3, v)→ (u3, v

′′
1 )

in Sq and one can check that this process of double induction can be repeated, terminating in a finite
number of steps since S is terminating and yields a Γ -confluence of the branching (f, e, g) modulo E.

If h1 is not trivial, let us fix a decomposition h1 = h11 ?n−1 h
2
1 with h11 in S∗(1) and h21 in S∗. The

Γ -confluence of the branching (f, e, g) of S modulo E is given by the following diagram:
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4.2. Coherent critical branching lemma modulo

u

=
��

f1
// u1

=

��

f2
// u2

f ′2
// u ′2

��

u

e

��

f1 // u1 f ′1
// u ′1

��

f3 // u3 f4 // u4

��

v

=

��

h11
// v1

=

��

h21
// w1 h2 // w2

��

h ′2
// w ′2

v

=

��

h11
// v1 h ′1

// w ′1

��

h3 // w3 h ′3
// w ′3

��

v

=

��

g1 // v ′

=

��

g ′1
// v ′1 g ′2

// v ′2 g ′3
//

��

v ′3

v
g1

// v ′
g2

// v2 g3
// v3

ih1 (f1)

ih1 (g1)

ih1 (h
1
1)

Prop. 4.1.3

Local Γ -conf mod E

Db Ind.

Db Ind.

Db Ind.

Db Ind.

Db Ind.

where the branching (f1, e) modulo E is Γ -confluent by Proposition 4.1.3, the branching (h11, g1) is
Γ -confluent by assumption of local Γ -confluence of S, and one can check that double induction applies
on the branchings (f2, f ′1), (h21, h ′1), (g ′1, g2), (f3, h2) and (h3, g ′2). This process of double induction can
be repeated, terminating in a finite number of steps since S is terminating and yields a Γ -confluence of
the branching (f, e, g) modulo E.

4.2. Coherent critical branching lemma modulo

In this subsection, we show how to prove coherent local confluence of an n-polygraph modulo from
coherent confluence of some critical branchings. In particular, we show that we do not need to consider
all the local branchings.

4.2.1. Proposition. Let (R, E, S) be an n-polygraph modulo such that ERE is terminating, and Γ be a
square extension of (E>, S∗). Then S is Γ -locally confluent modulo E, if and only if the two following
conditions hold:

a) any local branching (f, g) : u⇒ (v,w) with f in S∗(1) and g in R∗(1) is Γ -confluent modulo E:

u
f
//

=

��

v
f ′
// v ′

e ′
��

u
g
// w // w ′
A
��
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4. Coherent confluence modulo

b) any local branching (f, e) : u ⇒ (v, u ′) modulo E with f in S∗(1) and e in E>(1) is Γ -confluent
modulo E:

u
f
//

e
��

v
f ′
// v ′

e ′
��

u ′

g ′
// w

B
��

Proof. We prove this result using Huet’s double Noetherian induction principle on the n-polygraph Sq
defined in 3.2.3 and the property P on R∗n−1 × R∗n−1 defined by: for any u, v in R∗n−1,

P(u, v) : any branching (f, e, g) of S modulo E of source (u, v) is Γ -confluent modulo E.

The only part is trivial because properties a) and b) correspond to Γ -confluence of some local
branchings of S modulo E. Conversely, assume that S satisfy properties a) and b) and let us prove that
any local branching is Γ -confluent modulo E. We consider a local branching (f, e, g) of S modulo E,
and assume without loss of generality that f is a non-trivial n-cell in S∗(1). There are two cases: either
g is trivial, and the local branching (f, e) of S modulo E is Γ -confluent by b), or e is trivial. In that
case, if g is in R∗(1), then Γ -confluence of the branching (f, g) is given by a). Otherwise, let us choose a
decomposition g = e1 ?n−1 g

′ ?n−1 e2 with e1,e2 in E> and g ′ in R∗(1). Now, let us prove the confluence
of the branching

u
f
//

e1
��

v

u ′

g ′e2

// v ′

of S modulo E, where g ′e2 is an n-cell in S∗(1). We will then prove the Γ -confluence of the branching
(f, g) using the biaction of E> on Sqr(E>, S∗). Using Proposition 4.1.3 on the branching (f, e1) of S
modulo E, there exist n-cells f ′ and f1 in S∗, an n-cell e ′ : tn−1(f ′) → tn−1(f1) and an (n + 1)-cell
A in Γg such that ∂h−,n(A) = f ?n−1 f

′ and ∂h+,n(A) = f1. Using property a) on the local branching
(g ′, g ′e2) ∈ R∗(1) × S∗(1) and the trivial confluence given by the right vertical cell e2, there exists an
(n + 1)-cell B in Γg such that ∂h−,n(B) = g ′ and ∂h+,n(B) = g ′e2. Let us choose a decomposition
f1 = f11 ?n−1 f

2
1 with f11 in S∗(1) and f21. By property a) on the local branching (f11, g

′), there exist
n-cells f ′1 and g ′1 in S∗, an n-cell e ′′ : tn−1(f ′1) → tn−1(g

′
1) and an (n + 1)-cell C in Γg such that

∂h−,n(C) = f
1
1 ?n−1 f

′
1 and ∂h+,n(C) = g ′ ?n−1 g ′1 as depicted on the following diagram:
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4.2. Coherent critical branching lemma modulo

u

e1

��

f
// u ′

f ′
// u ′′

e ′1
��

u1

=
��

f11
// u ′1

=

��

f21
// u ′′1

u1 f11
//

=

��

u ′1 f ′1
// u ′2

e ′2
��

v g ′ //

=

��

v1
g ′2

//

e2
��

v2

v
g ′e2

// v ′

A
��

C��

B��

ih1 (f
1
1)

There aren-cells (u, u)→ (u ′1, u
′
1) and (u, u)→ (v1, v1) in Sq given by the following compositions

(u, u)→ (u1, u1)→ (u1, u
′
1)→ (u ′1, u

′
1)

(u, u)→ (u1, u1)→ (u1, v)→ (v, v)→ (v, v1)→ (v1, v1)

so that we can apply double induction on the branchings (f21, f ′1) and (g ′2, e2) of Smodulo E, and we finish
the proof of Γ -confluence of the branching (f, e1, g ′e2) using repeated double inductions, terminating in
a finite number of steps since S is terminating.

Now, we get the Γ -confluence of the branching (f, g) of S by the following diagram:

u

=

��

f
// u ′

f ′
// u ′′

e ′1
��

u1

=

��

e1f
1
1
// u ′1

=

��

f21
// u ′′1

u1 e1f
1
1
//

=

��

u ′1 f ′1
// u ′2

e ′2
��

v e1g
′ //

=

��

v1
g ′2

//

e2
��

v2

v
e1g

′e2

// v ′

ih1 (e1f
1
1)

1
e1
A
��

e1
e−1
C
��

e1
e−1
B
��
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4. Coherent confluence modulo

since the top rectangle is by definition tiled by the (n + 1)-cell 1e1A, the bottom rectangle is tiled by the
(n+ 1)-cell e1

e−1
B and the remaining rectangle is tiled by the (n+ 1)-cell e1

e−1
C. The rest of the diagram is

tiled in the same way than above.

4.2.2. Theorem (Coherent critical branching lemma modulo). Let (R, E, S) be an n-polygraph mod-
ulo such that ERE is terminating, and Γ be a square extension of (E>, S∗). Then S is Γ -locally confluent
modulo E, if and only if the two following conditions hold

a0) any critical branching (f, g) : u⇒ (v,w) with f in S∗(1) and g in R∗(1) is Γ -confluent modulo E:

u
f
//

=

��

v
f ′
// v ′

e ′
��

u
g
// w // w ′
A��

b0) any critical branching (f, e) : u ⇒ (v, u ′) modulo E with f in S∗(1) and e in E>(1) is Γ -confluent
modulo E:

u
f
//

e
��

v
f ′
// v ′

e ′
��

u ′

g ′
// w

B��

Proof. By Proposition 4.2.1, the local Γ -confluence is equivalent to both conditions a) and b). Let us
prove that the condition a) (resp. b)) holds if and only if the condition a0) (resp. b0)) holds. One
implication is trivial. Suppose that condition b0) holds and prove condition b). The proof of the other
implication is similar. We examine all the possible forms of local branchings modulo given in 3.3.7.
Local aspherical branchings modulo and local Peiffer branchings modulo of the forms (3.3.8) are trivially
confluent modulo:

u ?i v
f ?i v

//

u ?i e
��

u ′ ?i v

u ′ ?i e
��

u ?i v
′

f ?i v
′
// u ′ ?i v

′

w ?i u
w ?i f

//

e ′ ?i u
��

w ?i u
′

e ′ ?i u
′

��

w ′ ?i u
w ′ ?i f

// w ′ ?i u
′

and Γ -confluent modulo by definition of Γ -confluence. The other local branchingsmodulo are overlapping
branchings modulo (f, e) : u⇒ (u ′, v) of the form (3.3.9), where f is an n-cell of S∗(1) and e is an n-cell
of E>(1). By definition, there exists a whisker C on R∗n−1 and a critical branching (f ′, e ′) : u0 ⇒ (u ′0, v0)
such that f = C[f ′] and e = C[e ′]. Following condition b0) the branching (f ′, e ′) is Γ -confluent, that is
there exists a Γ -confluence modulo E:

u
f ′
//

e ′
��

v
f ′′
// v ′

e ′′
��

u ′

g ′
// w

A��

44



5. Coherent completion modulo

inducing a Γ -confluence for (f, e):

C[u]
C[f ′]

//

C[e ′]
��

C[v]
C[f ′′]

// v ′

C[e ′′]
��

C[u ′]
C[g ′]

// w

C[A]
��

This proves the condition b).

5. Coherent completion modulo

In this section, we show how to construct a double coherent presentation of an (n−1)-category C starting
with a presentation of this (n − 1)-category by an n-polygraph modulo. We explain how the results
presented in this section generalize to n-polygraph modulo the coherence results from n-polygraphs as
given in [16, 17].

5.1. Coherent completion modulo

In this subsection, we recall the notion of coherent completion of a convergent n-polygraph and introduce
the notion of coherent completion modulo for polygraphs modulo, given by adjunction of a square cell
for any confluence diagram of critical branching modulo.

5.1.1. Coherent completion. Recall from [16] that a convergent n-polygraph can be extended into a
coherent globular presentation of the category it presents. Explicitly, given a convergent n-polygraph E,
we consider a family of generating confluences of E as a cellular extension of the free (n,n − 1)-
category E> that contains exactly one globular (n+ 1)-cell

v e1
  

Ee,e ′��u

e 00

e ′
--

w

v ′ e ′1

>>

for every critical branching (e, e ′) of E, where (e1, e ′1) is a chosen confluence. Any (n+1, n)-polygraph
obtained from E by adjunction of a chosen family of generating confluences of E is a globular coherent
presentation of the (n − 1)-category E, [16]. This result was originally proved by Squier in [31]
for n = 2. From such an (n + 1, n)-polygraph we will consider a double (n + 1, n − 1)-polygraph
(E, ∅, ΓE), where ΓE is a square extension of the (n,n − 1)-categories (E>, 1) seen as an n-category
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5. Coherent completion modulo

enriched in double groupoids that contains exactly one square (n+ 1)-cell

u

e
��

=
// u

e ′
��

v

e1
��

v ′

e ′1
��

w =
// w

Ee,e ′

��

for every critical branching (e, e ′) of E, where (e1, e ′1) is a chosen confluence.

5.1.2. Coherent completion modulo. Let (R, E, S) be an n-polygraph modulo. A coherent completion
modulo E of S is a square extension of the pair of (n+ 1, n)-categories (E>, S>) whose elements are the
square (n+ 1)-cells Af,g and Bf,e of the following form:

u
f
//

=

��

u ′
f ′
//

Af,g
��

w

e ′
��

u
g
// v

g ′
// w ′

u
f
//

e
��

u ′
f ′
//

Bf,e
��

w

e ′
��

v
g ′

// w ′

(5.1.3)

for any critical branchings (f, g) and (f, e) of Smodulo E, where f, g and e are n-cells of S∗(1), R∗(1) and
E>(1) respectively. Note that such completion is not unique in general and depends on then-cells f ′, g ′, e ′
chosen to obtain the confluence of the critical branchings.

5.2. Coherence by E-normalization

In this subsection, we show how to obtain an acyclic square extension of a pair of categories (E>, S>)
coming from a polygraph modulo (R, E, S), under an assumption of confluence modulo E and of normal-
ization of S with respect to E.

5.2.1. Normalisation in polygraphs modulo. Let us recall the notion of normalization strategy in an
n-polygraph P. Denote by C the (n− 1)-category presented by P. Consider a section s : C→ P∗n of the
canonical projection π : P∗n → C, that sends any (n− 1)-cell u in C on an (n− 1)-cell in P∗n−1 denoted
by û such that π(û) = u. A normalization strategy for P with respect to s is a map

σ : P∗n−1 → P∗n

that sends every (n− 1)-cell u of P∗n−1 to an (n+ 1)-cell

σu : u→ û.

Let (R, E, S) be ann-polygraphmodulo. Then-polygraphmodulo S is normalizing if any (n−1)-cell
u admits at least one normal with respect to S, that is NF(S, u) is not empty.

A set X of (n − 1)-cells in R∗n−1 is E-normalizing with respect to S if for any u in X, the set
NF(S, u) ∩ Irr(E) is not empty. The n-polygraph modulo S is E-normalizing if it normalizing andR∗n−1
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5.2. Coherence by E-normalization

is E-normalizing. When S is E-normalizing, a E-normalization strategy σ for S, associates to each
(n − 1)-cell u in R∗n−1 an n-cell σu : u → û in S∗, where û belongs to NF(S, u) ∩ Irr(E). Note that a
normalizing cellular extension modulo ERE is E-normalizing.

5.2.2. Theorem. Let (R, E, S) be an n-polygraph modulo, and Γ be a square extension of the pair of
(n + 1, n)-categories (E>, S>) such that S is Γ -diconvergent. If Irr(E) is E-normalizing with respect to
S, then the square extension Eo Γ ∪ Peiff(E>, S∗) ∪ ΓE is acyclic.

Proof. Let Γ be a square extension of (E>, S>). We will denote by C the free n-category enriched in
double groupoid (E, S, Eo Γ ∪ Peiff(E>, S∗) ∪ ΓE)

�

generated by the double (n+ 1, n− 1)-polygraph
(E, S, Eo Γ ∪ Peiff(E>, S∗) ∪ ΓE). We will denote by ũ the unique normal form of an (n− 1)-cell u in
R∗n−1 with respect to E and we fix a normalization strategy ρu : u→ ũ for E.

By termination of ERE, the n-polygraph modulo S is normalizing. Let us fix a E-normalization
strategy σu : u→ û for S. Let us consider a square

u
f
//

e
��

v

e ′
��

u ′
g
// v ′

(5.2.3)

in C. By definition the n-cell f in S> can be decomposed (in general in a non unique way) into a zigzag
sequence f0 ?n−1 f−1 ?n−1 · · ·?n−1 f2n ?n−1 f

−
2n+1 with source u and target vwhere the f2k : u2k → u2k+1

and f2k+1 : u2k+2 → u2k+1, for all 0 6 k 6 n are n-cell of S∗, with u0 = u and u2n+2 = v.
By Γ -confluence modulo E there exist n-cells efi in E> and (n+ 1)-cells σfi in C as in the following

diagrams:

u2k
f2k

//

ρu2k

��

u2k+1
σu2k+1

// ^u2k+1

ef2k
��

ũ2k σũ2k
// ̂̃u2k

σf2k
��

u2k+2
f2k+1

//

ρu

��

u2k+1
σu2k+1

// ^u2k+1

ef2k+1
��

ũ2k+2 σũ2k+2
//̂̃u2k+2

σf2k+1
��

for all 0 6 k 6 n. By definition of the normalization strategyσ, for any 0 6 i 6 2n+1, the (n−1)-cell ̂̃u
is a normal form with respect to E, and by convergence of the n-polygraph E it follows that ̂̃ui = ̂̃ui+1.

Moreover, for any 1 6 i 6 2n+1, there exists a square (n+1)-cell in C as in the following diagram:

^ui+1
=
//

efi
��

^ui+1

efi+1
��̂̃ui =

// ̂̃ui+2
Ei+1
��

We define a square (n+ 1)-cell σf in C as the following �v-composition:

σf0 �
v E1 �v σf1 �

v σf2 �
v . . . �v σf2n �

v E2n+1 �v σf2n+1
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5. Coherent completion modulo

For an even integer i > 0

ui

ρui

��

fi
// ui+1

σui+1
// ûi+1

=
//

efi
��

ûi+1

efi+1
��

ui+1
σui+1
oo ui+2

fi+1
oo

fi+2
//

ρu2

��

ui+3
σui+3

// ^ui+3
=
//

efi+2
��

^ui+3

efi+3
��

. . .

ũi σũi
// ̂̃ui =

// ̂̃ui+2 ũi+2σũi+2
oo

σũi+2
// ̂̃ui+2 =

// ̂̃ui+4 . . .

σfi
��

σfi+1
��

σfi+2
��

Ei+1
��

Ei+3
��

In this way, we have constructed a square (n+ 1)-cell

u
f
//

ρu
��

v

ρv
��

ũ
σũσ

−
ṽ

// ṽ

σf��

Similarly, we construct a square (n+ 1)-cell σg as follows:

ũ
σũσ

−
ṽ
// ṽ

u ′
g
//

ρu ′
OO

v ′

ρv ′
OOEY

σg

using that ũ = ũ ′ and ṽ = ṽ ′ by convergence of E. We obtain a square (n+1)-cell Ee �v (σf �hσ−g )�vEe ′
filling the square (5.2.3), as in the following diagram:

u
=

//

e

��

u

ρu

��

f
// v

ρv

��

=
// v

e ′

��

ũ
σũ

// ̂̃u = ̂̃v ṽ
σṽ

oo

u ′ =
// u ′

g
//

ρu ′

OO

v ′ =
//

ρv ′

OO

v ′

σf
��

σg

EY
Ee

��

Ee ′

��

5.2.4. Corollary. Let (R, E, S) be a diconvergent n-polygraph modulo. If Irr(E) is E-normalizing with
respect to S, then for any coherent completion Γ of S modulo E and any coherent completion ΓE of E, the
square extension Eo Γ ∪ Peiff(E>, S∗) ∪ ΓE is acyclic.

Note that, when E is empty in Corollary 5.2.4, we recover Squier’s coherence theorem [31, Theorem
5.2] for convergent n-polygraphs, [16, Proposition 4.3.4].
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5.3. Coherence by commutation

5.2.5. Decreasing orders for E-normalization. Let (R, E, S) be an n-polygraph modulo. We describe
a way to prove that the set Irr(E) is E-normalizing, laying on the definition of a termination order for R.

Given an n-polygraph P, one defines a decreasing order operator for P as a family of functions

Φp,q : P∗n−1(p, q)→ Nm(p,q)

indexed by pairs of (n− 2)-cells p and q in P∗n−2 satisfying the following conditions:

i) For any (n − 1)-cells u and v in P∗n−1(p, q) such that there exists an n-cell f : u → v in P∗, the
functionΦp,q satisfyΦp,q(u) > Φp,q(v), where> is the lexicographic order onNm(p,q). We denote
by >lex the partial order on P∗n−1 defined by u >lex v if and only if u and v have same source p and
target q and Φp,q(u) > Φp,q(v).

ii) For any u and v in P∗n−1 and any whisker C on P∗n−1, u >lex v implies that C[u] >lex C[v].

iii) The normal forms in P∗n−1(p, q) with respect to P are sent to the tuple (0, . . . , 0) in Nm(p,q).

Note that if an n-polygraph P admits a decreasing order operator, it is terminating. Actually, such a
decreasing order is a terminating order for P which is similar to a monomial order, but that we do not
require to be total.

5.2.6. Proving coherencemodulo using a decreasing order. Consider ann-polygraphmodulo (R, E, S)
such that E is terminating. A decreasing order operator Φ for E is compatible with R if for any n-cell
f : u→ v in R∗, then Φp,q(u) > Φp,q(v).

In that case, the set Irr(E) is E-normalizing with respect to R, since if u in R∗n−1 is a normal form
with respect to E,Φp,q(u) = (0, . . . , 0) in Nm(p,q) and by compatibility with R, for any n-cell f : u→ v

in R∗, we get Φp,q(v) = (0, . . . , 0) so v is still a normal form with respect to E. We can also prove that
Irr(E) is E-normalizing with respect to ER using this method, provided for any (n − 1)-cell u in Irr(E)
irreducible by R, any (n − 1)-cell u ′ such that there is an n-cell u→ u ′ in E> is also irreducible by R.
This is for instance the case if R is left-disjoint from E, that is for any (n − 1)-cell u in s(R), we have
GR(u) ∩ En−1 = ∅ where:

− s(R) is the set of (n− 1)-sources in R∗n−1 of generating n-cells in Rn,

− for any u in R∗n−1, GR(u) is the set of generating (n− 1)-cells in Rn−1 contained in u.

With these conditions, we can apply Theorem 5.2.2 to obtain acyclic extensions of R or ER.

5.3. Coherence by commutation

In this subsection, we prove that an acyclic extension of a pair (E>, S>) coming from a polygraph
modulo (R, E, S) can be obtained from an assumption of commuting normalization strategies for the
polygraphs S and E. In particular, with further assumptions about this commutation we show how to
prove E-normalization.
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5. Coherent completion modulo

5.3.1. Commuting normalization strategies. Let (R, E, S) be an n-polygraph modulo. Let σ (resp. ρ)
a normalization strategy with respect to S (resp. with respect to E). The normalization strategies σ and ρ
are weakly commuting if for any u in R∗n−1, there exists an n-cell ηu in S∗ as in the following diagram:

u
σu
//

ρu
��

û

ρû
��

ũ
ηu
// ˜̂u (5.3.2)

Given weakly commuting normalization strategies σ and ρ, we will denote by N(σ, ρ) the square
extension of the pair (E>, S>) made of squares of the form (5.3.2), for every (n− 1)-cell u in R∗n−1.

The normalization strategies σ and ρ are said to be commuting if ηu = σũ holds for all (n− 1)-cell u
in R∗n−1. Note that, by definition σ and ρ commute if and only if the equality ̂̃u = ˜̂u hold for all
(n− 1)-cells of R∗n−1.

5.3.3. Theorem. Let (R, E, S) be an n-polygraph modulo, and Γ be a square extension of the pair
of (n + 1, n)-categories (E>, S>) such that S is Γ -diconvergent. If σ and ρ are weakly commuting
normalization strategies for S and E respectively, then the square extension Eo Γ ∪ Peiff(E>, S∗)∪ ΓE ∪
N(σ, ρ) is acyclic.

Proof. Denote by C the free n-category enriched in double groupoids (E, S, E o Γ ∪ Peiff(E>, S∗) ∪
ΓE ∪ N(σ, ρ))

�

. For u in R∗n−1, we denote by Nu the square (n + 1)-cell in C corresponding to the
square (5.3.2).

We prove that for any n-cell f : u→ v in S∗, there exists a square (n+1)-cell σ̃f in C of the following
form

û

ρû
��

u
f
//

σu
oo v

σv
// v̂

ρv̂
��˜̂u =
// ˜̂vσ̃f��

The square (n+ 1)-cell σ̃f is obtained as the following composition:

û

ρû
��

u
f
//

σu
oo

ρu

��

v
σv
// v̂

=
// v̂

=
//

eηu
��

v̂

ev̂
��

=
// v̂

ρv̂
��˜̂u ũ

ηu
oo

ηu
// ˜̂v

σ˜̂v //
̂̃̂
v =

//
̂̃̂
v ̂̃v

σ̂̃voo

Nu
��

ηf
��

Eeηu ,ev̂
��

γv
��

where the n-cell eηu and the square (n + 1)-cell ηf (resp. the n-cell ev̂ and the square (n + 1)-cell γv)
belong to C by Γ -confluence modulo E of S, and the square (n+ 1)-cell Eeηu ,ev̂ belongs to ΓE.

Now, let consider a square

u
f
//

e
��

v

e ′
��

u ′
g
// v ′

(5.3.4)
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5.3. Coherence by commutation

in C. By definition the n-cell f in S> can be decomposed (in general in a non unique way) into a zigzag
sequence

f0 ?n−1 f
−
1 ?n−1 · · · ?n−1 f2n ?n−1 f−2n+1

with source u and target v where the f2k : u2k → u2k+1 and f2k+1 : u2k+2 → u2k+1, for all 0 6 k 6 n
are n-cell of S∗, with u0 = u and u2n+2 = v. We define a square (n+1)-cell σf as the following vertical
composition:

Nu �v σ̃f0 �
v σ̃f1 �

v . . . �v σ̃f2n+1 �
v Nv

as depicted on the following diagram

u0
σu0
//

ρu0

��

û0

ρû0
��

u0
σu0
oo

f0
// u1

σu1
// û1

ρû1
��

u1
σu1
oo u2

f1
oo

σu2
// û2

σu2
//

ρû2
��

u2
f2
// u3

σu3
// û3

ρû3
��

· · ·

ũ0 ηu0
// ˜̂u0 =

// ˜̂u1 =
// ˜̂u2 =

// ˜̂u3 · · ·

Nu0
��

σ̃f0
��

σ̃f1
��

σ̃f2
��

In this way, we have constructed a square (n+ 1)-cell

u
f
//

ρu
��

v

ρv
��

ũ
ηuη

−
v

// ṽ

σf��

Similarly, we construct a square (n+ 1)-cell σg as follows:

ũ
ηuη

−
v
// ṽ

u ′
g
//

ρu ′
OO

v ′

ρv ′
OOEY

σg

using that ũ = ũ ′ and ṽ = ṽ ′ by convergence of E. We obtain a square (n + 1)-cell filling the
square (5.3.4), as in the proof of Theorem 5.2.2.

5.3.5. Remarks. Note that when σ and ρ are commuting, Irr(E) is E-normalizing with respect to S sincễu = ˜̂u implies that the normal form ̂̃u with respect to S also is a normal form with respect to E. Then
Theorem 5.2.2 applies, to prove that Eo Γ ∪ Peiff(E>, S∗) ∪ ΓE is acyclic.

One can recover the fact that with the hypothesis of Theorem 5.3.3 and the assumption that the
equality ηu = σũ holds for any u in R∗n−1, we do not need the square (n + 1)-cells Nu in the coherent
extension, using the following lemma on the square (5.3.2).

5.3.6. Lemma. Let S be an n-polygraph modulo such that ERE is terminating, and Γ be a square
extension of the pair of (n + 1, n)-categories (E>, S>) such that S is Γ -confluent modulo E. Then any
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5. Coherent completion modulo

square in Γg of the form

u
f
//

e
��

v
f ′
// w

e ′
��

u ′
g
// v ′

g ′
// w ′

(5.3.7)

such that w and w ′ are normal forms with respect to S is the boundary of a square (n+ 1)-cell in Γg.

Proof. Let us consider a square as in (5.3.7). By Γ -confluence of S modulo E on the branching (f, e, g),
there exists a Γ -confluence as in the following diagram:

u
f
//

e
��

v
f1
// v1

e ′′
��

u ′
g
// v ′

g1
// v ′1

A��

By Γ -confluence on the branchings (f ′, f1) and (g1, g ′) of S, there exist square (n+ 1)-cells B and B ′ as
follows:

u

=

��

f
// v

=

��

f ′
// w

e1

��

u

e

��

f // v f1 // v1

e2
��

f2 // v2

u ′

=

��

g // v ′

=

��

g1 // v ′1 g2 // v ′2

e3
��

u ′ g // v ′ g ′ // w ′

ih1 (f)

ih1 (g)

A
��

B
��

B ′

��

Then, we use Huet’s double induction as in Section 4 to prove that the square

v1

e2
��

f2
// v2

e−1 e
′e2

��

v ′1 g2
// v ′2

is the boundary of a square (n+ 1)-cell in Γg.
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6. Globular coherence from double coherence

6. Globular coherence from double coherence
In this section we explain how to deduce a globular coherent presentation for ann-category from a double
coherent presentation generated by a polygraph modulo. We apply this construction in the situation of
commutative monoids in Subsection 6.2 and to pivotal monoidal categories in Subsection 6.3.

6.1. Globular coherence by convergence modulo

Let (R, E, S) be an n-polygraph modulo and Γ be a square extension on (E>, S>). Consider the double
(n + 1, n − 1)-polygraph given by (E, S, E o Γ ∪ Peiff(E>, S∗) ∪ ΓE), where ΓE is the square extension
defined in 5.1.1. Let us denote by ((Pi)06i6n+1, (Qi)16i6n+1) the associated (n+ 1, n− 1)-dipolygraph
V(E, S, EoΓ ∪Peiff(E>, S∗)∪ΓE) given by the functor V defined in 2.3.2. The cellular extension S being
defined modulo the cellular extension E in the sense of 3.1.1, we adapt the construction of the n-functor
F in the quotient functor V defined in 2.3.1-vi) as follows.

a) F is the identity functor on the underlying (n− 2)-category R∗n−2, that coincides with E∗n−2,

b) F sends an (n− 1)-cell u in R∗n−1 to its equivalence class [u]v modulo En,

c) F sends an n-cell f : u→ v in S> to the n-cell [f]v : [u]v → [v]v in (R∗n−1)En(Pn) defined as in 2.3.1,
iv)-c), but by setting

[f]v = [f1]
v ?n−1 [f2]

v ?n−1 . . . ?n−1 [fk]
v,

for any decomposition of f = e1 ?n−1 f1 ?n−1 e2 ?n−1 f2 ?n−1 . . . ?n−1 ek ?n−1 fk in S>, where the
n-cells ei and fi are in E> and R> respectively and may be identity cells.

As a consequence of Proposition 2.3.5 and Corollary 5.2.4, we get the following result:

6.1.1. Proposition. Let (R, E, S) be a diconvergent n-polygraph modulo. If Irr(E) is E-normalizing
with respect to S, then for any coherent completion Γ of S modulo E, the (n + 1, n − 1)-dipolygraph
V(E, S, Eo Γ ∪Peiff(E>, S∗)∪ ΓE) is a globular coherent presentation of the (n− 1)-category (R∗n−1)E.

6.1.2. Theorem. Let (R, E, S) be a diconvergent n-polygraph modulo such that Irr(E) is E-normalizing
with respect to S. Let Γ be a coherent completion of S modulo E, then the cellular extension

[Γ ]v := {[A]v | A ∈ Γ }

extends the n-category (R∗n−1)En(Rn) into a globular coherent presentation of the (n − 1)-category
(R∗n−1)E.

Proof. The quotient functor V sends the cellular extension Eo Γ ∪Peiff(E>, S∗)∪ ΓE to [Γ ]v. Indeed, any
square (n+1)-cell Ee,e ′ in ΓE yields an identity (n+1)-cell in the (n+1)-category (R∗n−1)En(Sn)(Pn+1):

u

e
��

=
// u

e ′
��

v

e1
��

v ′

e ′1
��

w =
// w

Ee,e ′

��

 [u]v = [w]v

[ih0 (u)]
v

$$

[ih0 (w)]
v

::
[u]v = [w]v

��
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6. Globular coherence from double coherence

Similarly, any (n + 1)-cell in Peiff(E>, S∗) yields an identity (n + 1)-cell in the (n + 1)-category
(R∗n−1)En(Sn)(Pn+1). Finally, two square (n+1)-cells in the same orbit for the biaction of the (n,n−1)-
category E> on Sqr(E>, S∗) are sent on the same globular (n+ 1)-cell in (R∗n−1)En(Sn)(Pn+1).

6.1.3. Gobular coherent completion procedure for ER. Given a diconvergent n-polygraph mod-
ulo (R, E, S), Corollary 5.2.4 gives a method to construct an acyclic square extension of the pair of
(n,n−1)-categories (E>, S>). In many applications, this result is applied with S = ER and in situations
where ER is not confluent modulo E. When ER is equipped with a termination order compatible with R
modulo E, one can apply the completion procedure of Subsection 3.4 to obtain an n-polygraph Ř such
that EŘ is confluent modulo E. Moreover, following Corollary 6.1.2 the only square cells that we have
to consider in the construction of the globular coherent presentation through the quotient functor V are
the square cells Af,g and Bf,e of (5.1.3) of a coherent completion of S modulo E. In the particular case
of ER, we do not have to consider square cells of the form Bf,e. Indeed, the critical branchings (f, e)
where f is an n-cell in S∗(1) and e is an n-cell in E>(1) are trivially confluent from 3.4.1, and the square
(n+ 1)-cell Bf,e obtained by the following choice of a confluence modulo E:

u
f

//

e
��

Bf,e��

v

=

��

u ′

e− · f
// v

yields an identity (n+ 1)-cell

[u]v = [u ′]v

[f]v

%%

[e− · f]v = [f]v

99
[v]vi[f]v

��

in the (n+ 1)-category ((R∗n−1)En(Pn))(Pn+1). As a consequence, one only needs to choose a family of
square (n+ 1)-cells

u
f
//

=

��

u ′
f ′
//

Af,g
��

w

e ′
��

u
g
// v

g ′
// w ′

for a choice of confluence modulo E of any critical branching (f, g) of S modulo E, where f is an
n-cell of ER

∗(1) and g is an n-cell of R∗(1). Applying the quotient functor V of 2.3.2 on the set of
square (n + 1)-cells Af,g, following Theorem 6.1.1, we obtain an acyclic extension of the n-category
(R∗n−1)En(Pn) given by

{ [Af,g]
v | (f, g) is a critical branching of S modulo E },

where bracket notation [−]v is defined in 2.3.4.
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6.2. Commutative monoids

6.2. Commutative monoids

We illustrate the completion procedure 6.1.3 to show how to compute a coherent presentation of a com-
mutative monoid presented by a 2-polygraph modulo (R, E, ERE), where E is the 2-polygraph Com2(X)
for a finite set X defined in 2.4.2. The 2-cell of the 2-polygraph Com2(X) are oriented with respect to
a deglex order induced by a total order on X, hence Com2(X) is terminating. It is also confluent by
confluence of any critical branching depicted as follows:

xixkxj
αi,kxj %9 xkxixj xkαi,j

�3
xixjxk

xiαj,k +?

αi,jxk �3

xkxjxi

xjxixk xjαi,k
%9 xjxkxi

αj,kxi

+?

for any xi, xj, xk in X such that xi > xj > xk, and the 2-cells α−,− are the generating 2-cell of Com2(X).

6.2.1. Example. Consider such a 2-polygraph modulo with X = {x1, x2, x3, x4}, and

R2 = {x1x3
β⇒ x2x4, x1x2

γ⇒ x1}.

There is a critical branching of ERE modulo E given by

x1x2x3
α−
2,3 · β %9

=

��

x2x4x2

x1x2x3 γ
%9 x1x3

β %9 x2x4

(6.2.2)

where α−
2,3 · β is the rewriting step of ERE defined by x1x2x3

α−
2,3 %9 x1x3x2

βx2 %9 x2x4x2 . As any
permutation of the xi in x2x4x2 and x2x4 are irreducible with respect to R2, the 1-cells x2x4x2 and x2x4
are normal forms with respect to ERE, so the branching (6.2.2) is not confluent modulo E. Following the
completion procedure 3.4.5, we define the following 2-cell

δ : x2x2x4 ⇒ x2x4,

and we set R := R ∪ {γ}. The degree lexicographic order induced by x1 > x2 > x3 > x4 is a termination
order compatible with R2 modulo E, so that ERE is terminating and Irr(E) is trivially E-normalizing with
respect to ERE. Moreover, the 2-polygraph modulo ERE is confluent modulo E. Indeed, all its critical
branchings modulo, depicted in (6.2.3) and (6.2.4), are confluent modulo.

x1x2x3
α−
2,3 · β%9

=

��

x2x4x2
α−
2,4 · δ %9 x2x4

=

��
x1x2x3 γ

%9 x1x3
β

%9 x2x4

A
��

x2x2x4x1
α2,4 · γ %9

=

��

x2x4x1
α−
1,4α

−
1,2 · γ%9 x2x4

=

��
x2x2x4x1

δx1
%9 x2x4x1

α−
1,4α

−
1,2 · γ
%9 x2x4

B
��

(6.2.3)
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6. Globular coherence from double coherence

x2x4x2x4x2
α−
2,4 · δ %9

=

��

x2x4x4x2
(α−
2,4)

2 · δ
%9 x2x4x4

=

��
x2x4x2x4x2

α−
2,4 · δ

%9 x2x4x2x4
α−
2,4 · δ

%9 x2x4x4

C
��

(6.2.4)

Following procedure 6.1.3, one shows that an acyclic extension of the commutative monoid generated by
X and submitted to relations in R2 can be computed from the the square extension {A,B,C} of (E>, ER>E ).
This acyclic extension is made of the following 3-cells.

[x1x2x3]

[β] ?1 [δ]

�+

[γ] ?1 [β]

3G
[x2x4][A]

��
[x1x2x2x4]

[δ] ?1 [γ]

�,

[δ] ?1 [γ]

2F
[x2x4][B]

��
[x2x2x2x4x4]

[δ] ?1 [δ]

�-

[δ] ?1 [δ]

1E
[x2x4x4][C]

��

Note that if we take the commutation 2-cells as rewriting rules, the Knuth-Bendix completion is
infinite, requiring to add a 2-cell εn : x4x

n
3 x2x2 ⇒ x4x

n
3 x2 for any n > 0. This yields acyclic extension

made of an infinite set of 3-cells

x4x
n+1
3 x2x2 εn+1

�-
x4x

n
3 x2x2x3

α22,3 ';

εnx3 $8

x4x
n+1
3 x2

x4x
n
3 x2x3 α2,3

1E
Dn��

6.3. Pivotal monoidal categories

Wepresent an application of the coherence Theorem 5.2.2 on a toy example in the context of diagrammatic
rewriting. We consider a presentation of a pivotal monoidal category, seen as a pivotal 2-category with
only one 0-cell presented by a 3-polygraph. The pivotal structure can be interpreted by isotopies relations
on the 2-cells of the 2-category. Such relations produce many critical branching with primary rules of
the presentation. In this example, by using the structure of polygraph modulo, we show how manage
such isotopy rules with respect the primary rules in the computation of a coherent presentation of
the given monoidal category. In particular, we illustrate the method with a kind of relation arising
in many presentations of monoidal categories, relation (6.3.7), see for instance Khovanov-Lauda’s 2-
category introduced in [24] which categorifies quantum groups associated with symmetrizable Kac-
Moody algebras, or in the definition of Heisenberg category as given by Khovanov in [25], extended by
Brundan in [6].

6.3.1. Example. We consider the 3-polygraph P defined by the following data:

i) only one generating 0-cell,
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6.3. Pivotal monoidal categories

ii) two generating 1-cells f and g,

iii) eight generating 2-cells pictured by

• , , • , , (6.3.2)

, , , , (6.3.3)

iv) the generating 3-cells of P are given by:

a) the three families of generating 3-cells of the 3-polygraph of pearls from [16]:

V , V , V , V (6.3.4)

• V • , • V • , • V • , • V • , (6.3.5)

• V • , • V • , • V • , • V • (6.3.6)

b) the generating 3-cells of the 3-polygraph of permutations for both upward and downward orien-
tations of strands:

α+

V
α−

V
β+

V
β−

V

(6.3.7)

c) a generating 3-cell
γ

V
(6.3.8)

Note that the relations (6.3.4 – 6.3.6) are isotopy relations, corresponding to the fact that the generating
1-cells g and f are biadjoints in the 2-category P presented by P, and cups and caps 2-cells are units
and counits for these adjunctions. Relations implying dots also ensure that the dot 2-cell is a cyclic
2-morphism in the sense of [9] for the biadjunction g ` f ` g making P a pivotal 2-category.
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6. Globular coherence from double coherence

6.3.9. Confluence of polygraph P. The 3-polygraph P is not confluent since the branching

(<

$8

(6.3.10)

is not confluent. Moreover, solving this obstruction to confluence by using a Knuth-Bendix completion
may create a great number of relations, making analysis of confluence from critical branchings inefficient.
To tackle this issue, we use rewriting modulo isotopy.

6.3.11. Confluence modulo isotopy. We consider the 3-polygraph E defined by the following data

i) E61 = P61,

ii) it has six 2-cells given in (6.3.3) and the dot 2-cells in 6.3.2,

iii) the isotopy 3-cells (6.3.4 – 6.3.6) of the 3-polygraph of pearls.

Let R be a 3-polygraph such that R62 = P62 where P is the 3-polygraph of 6.3.1, and whose 3-cells
are given by (α±, β±, γ) of (6.3.7 – 6.3.8), and let us consider the 3-polygraph modulo ER. Following
3.4.1, the only critical branchings we have to consider are those of the form (f, g) with f in ER

∗(1) and
g in R∗(1). The branching (6.3.10) is not such a branching because the top 3-cell belongs to E>, and the
top-right 2-cell is not reducible by R. Moreover, one can check that the only critical branchings we have
to consider are given by pairs (f, g) of 3-cells both in R∗(1). The 3-cell γ in R∗(1) does not overlap withα±
or β±, so the only critical branchings we have to consider are those of the 3-polygraph of permutations
described in [16, 5.4.4], with either upward or downward orientated strands.

6.3.12. Decreasing order operator for E-normalization. The 3-polygraph R is left-disjoint from E,
since no caps and cups 2-cells appear in the sources of the generating 3-cells of R. Following 5.2.6,
we prove that Irr(E) is E-normalizing with respect to ER using a decreasing order operator Φ for E
compatible with R.

6.3.13. Lemma. Let E and R be the 3-polygraphs defined above. There exists a decreasing operator
order Φ for E compatible with R.

Proof. For any 1-cells p and q in R∗1, we setm(p, q) = 2 and for any 2-cell u of source p and target q
in R∗2,Φp,q(u) = (ldot(u), I(u)) where:

i) ldot(u) counts the number of left-dotted caps and cups, adding for such cap and cup the number of
dots on it. In particular, for any n in N∗, we have

ldot
( •n

)
= ldot

(
•n

)
:= n+ 1

for both orientations of strands.
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ii) I(u) counts the number of instances of one of the following 2-cells of R∗2 in u:

For any 3-cell u V v in E, we have Φ(u) > Φ(v) and that Φ(u, u) = (0, 0) for any u in Irr(E).
Moreover, Φ is compatible with R because rewritings with respect to R do not make the dot 2-cell move
around a cup or a cap, or create sources of isotopies.

As a consequence of Theorem 5.2.2, we deduce an acyclic square extension of the pair of (3, 2)-
categories (E>, ER

>). This square extension is made of the ten elements given by the diagrams of
the homotopy basis for the 3-polygraph of permutations from [16, Section 5.4.4] for both upward and
downward orientations of strands and the 16 elements given by the diagrams of the homotopy basis or
the 3-polygraph of pearls in [16, Section 5.5.3] for both orientations of strands form.
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