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COHERENT CONFLUENCE MODULO RELATIONS
AND DOUBLE GROUPOIDS

BENJAMIN DUPONT – PHILIPPE MALBOS

Abstract – A coherent presentation of an n-category is a presentation by generators, relations and
relations among relations. Completions of presentations by rewriting systems give coherent presen-
tations, whose relations among relations are generated by confluence diagrams induced by critical
branchings. This paper extends this construction to presentations by polygraphs defined modulo a
set of relations. Our coherence results are formulated using the structure of n-category enriched
in double groupoids, whose horizontal cells represent rewriting sequences, vertical cells represent
the congruence generated by relations modulo and square cells represent coherence cells induced by
confluences modulo. We illustrate our method on a diagrammatic presentation of a pivotal monoidal
category modulo the isotopy relations.
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INTRODUCTION

Coherence by confluence. Coherent presentations of a monoid extend the notion of presentations of the
monoid by globular homotopy generators taking into account the relations among the relations, that is
the 2-syzygies of the presentation. Explicitly, a coherent presentation is defined by a set X of generators,
a set R of relations and an acyclic set Γ of 2-spheres of the free p2, 1q-category RJ generated by the
presentation pX, Rq, where acyclicity means that the quotient of the p2, 1q-category RJ by the congruence
generated by Γ is aspherical. This notion of coherent presentation extends to n-categories presented by
pn`1q-polygraphs: a coherent presentation is an pn`2, nq-polygraph, that is an pn`1q-polygraph Pn`1
extended by an acyclic cellular extension Pn`2 of the free pn`1, nq-category on Pn`1. When the pn`1q-
polygraph is convergent, that is confluent and terminating, it can be extended into a coherent presentation
by adding generating pn` 2q-cells defined by a family of confluence diagrams

v f 1

##

Af,g��
u

f 00

g --

w

v 1 g 1

<<

for every critical branching pf, gq of the polygraph Pn`1. Coherent presentations constructed in this
way generalize rewriting systems by keeping track of the cells generated by confluence diagrams. This
method was initiated by Squier in [23] for monoids and generalized to n-categories in [12].

Coherence by confluence modulo. The aim of this paper is to extend these constructions to presenta-
tions of n-categories by rewriting systems defined modulo a set of fixed relations. One of the motivations
is to reduce the set of critical branchings that should be considered in the analysis of coherence by con-
fluence. For that, we introduce the notion of pn ` 1q-polygraph modulo as a data pR, E, Sq made of an
pn` 1q-polygraph R, whose generating pn` 1q-cells are called primary rules, an pn` 1q-polygraph E
such that Ek “ Rk for k ď n´ 1 and En Ď Rn, whose generating pn` 1q-cells are called modulo rules,
and S is a cellular extension of R˚n depending on both cellular extensions Rn`1 and En`1. In this way,
the rules are split into two parts: oriented rules in a set Rn`1 and non-oriented equations in a set En`1.
The most naive approach of rewriting modulo is to consider S to be ERE consisting in rewriting on con-
gruence classes modulo E, but this appears inefficient for analysis of confluence, see [1, Chapter 11].
Another approach of rewriting modulo has been considered by Huet in [15] where rewriting paths does
involve only oriented rules and no equivalence steps, and confluence is formulated modulo equivalence.
However, we will mainly use algebraic rewriting modulo by setting the inherent algebraic awioms into
the modulo rules, so this notion is too restrictive for computations, see [17]. Jouannaud and Kirchner
enlarged this approach in [16] by introducing rewriting modulo properties for any rewriting system be-
tween R and ERE. They also provided a completion procedure for confluence of the polygraph modulo
ER, which was generalized by Bachmair and Dershowitz in [2]. Several other approaches have also been
developed for term rewriting systems modulo to deal with various equational theories, see [20, 25].

In Section 3, we define rewriting properties on polygraphs modulo. In particular, we recall the notion
of confluence modulo as introduced by Huet, [15] and Jouannaud and Kirchner in [16]. In particular, we
recall Huet’s principle of double induction from [15] which we will use in many proofs, and we give a
completion procedure for a polygraph modulo pR, E, ERq.
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Confluence modulo and double categories. Our coherence results modulo for an n-category are for-
mulated using the structure of n-category enriched in double groupoids. The notion of double category
was first introduced by Ehresmann in [11] as an internal category in the category of categories. Such a
categorical structure gives four related categories: a vertical category, an horizontal category and cate-
gories of squares with either vertical or horizontal sources and targets, whether they compose horizontally
or vertically. A square is pictured by

u
f
//

e ��

v

e 1��
u 1

g
// v 1

A��

The horizontal cells are the pn ` 1q-cells of the free pn ` 1q-category S˚ generated by the pn ` 1q-
polygraph S and the vertical cells are the pn`1q-cells of the free pn`1, nq-category EJ generated by the
pn` 1q-polygraph E. In this way, horizontal cells represent rewriting sequences, vertical cells represent
the congruence generated by modulo relations and square cells represent coherence cells modulo. A
branching modulo E of an pn ` 1q-polygraph S defined modulo an pn ` 1q-polygraph E is a triple
pf, e, gq, where f and g are pn` 1q-cells of the free pn` 1q-category S˚ and e is an pn` 1q-cell of the
free pn` 1, nq-category EJ generated by the pn` 1q-polygraph E:

u
f
//

e
��

u 1

v
g
// v 1

Such a branching is confluent modulo E if there exist pn` 1q-cells f 1 and g 1 in S˚ and an pn` 1q-cell e 1

in EJ as in the following diagram:

u
f
//

e
��

u 1
f 1
// u2

e 1
��

v
g
// v 1

g 1
// w2

Coherent confluence modulo. The notion of coherence modulo introduced in this paper is based on an
adaptation of the structure of polygraph known in the globular setting, [5, 22, 24], to a cubical setting.
We define a double pn ` 2, nq- polygraph as a data P “ pPv, Ph, Psq made of two pn ` 1q-polygraphs
Pv and Ph with the same underlying n-polygraph, and a square extension Ps made of square of the form

u
f
//

e
��

u 1

e 1
��

v
g
// v 1

where f, g are pn` 1q-cells of the free pn` 1, nq-category pPvqJ generated by Pv and e, e 1 are pn` 1q-
cells of the free pn ` 1, nq-category pPhqJ generated by Ph. We define a 2-fold coherent presentation
of an n-category C as a double pn ` 2, nq-polygraph P “ pPv, Ph, Psq such that the coproduct of the
polygraphs Pv and Ph is a presentation of the n-category C and that the square extension Ps is acyclic,
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that is for any square S constructed on the vertical pn`1, nq-category pPvqJ and the horizontal pn`1, nq-
category pPhqJ, there exists a square pn` 2q-cell A in the free n-category enriched in double groupoids
generated by P whose boundary is S.

In Section 4, we introduce the notion of coherent confluence modulo obtained by adjunction of a
square cell in each diagram of confluence modulo. Then we prove coherent confluence of an n-polygraph
modulo from local coherent confluence properties. The first result of this section, Theorem 4.1.4, is a
formulation of the Newman lemma for confluence modulo. Explicitly, given pR, E, Sq an n-polygraph
modulo such that ERE is terminating, and Γ be a square extension of pEJ, S˚q. If S is locally Γ -confluent
modulo E then it is Γ -confluent modulo E. Then Theorem 4.2.2 gives a coherent formulation of the
critical branching lemma modulo, deducing coherent local confluence from coherent confluence of some
critical branchings modulo.

Coherent completion modulo. In Section 5, we show how to construct a two-fold coherent presentation
of an pn´1q-category C starting with a presentation of this pn´1q-category by an n-polygraph modulo.
Theorem 5.2.2 shows that for an n-polygraph modulo pR, E, Sq and a square extension Γ on the vertical
pn`1, nq-category EJ and horizontal pn`1, nq-category SJ such that E is convergent, S is Γ -confluent
modulo E, IrrpEq is E-normalizing with respect to S, and ERE is terminating, then the square extension
Γ Y CdpEq is acyclic. From this result, when E is empty, we recover Squier’s theorem for convergent
n-polygraphs as given in [12, Theorem 5.2.], see also [13].

We prove that an acyclic extension of a pair pEJ, SJq of pn` 1, nq-categories coming from a poly-
graph modulo pR, E, Sq can also be obtained from an assumption of commuting normalization strategies
for the polygraphs S and E. In particular, we show how to prove the property of E-normalization from an
additional condition on the commutation of these normalizations strategies. The last result of this article,
Theorem 5.3.3 proves that given an n-polygraph modulo pR, E, Sq, a square extension Γ of the pair of
pn` 1, nq-categories pEJ, SJq, σ and ρ be normalization strategies for S and E respectively, such that E
is convergent, S is Γ -confluent modulo E, ERE is terminating, σ and ρ are weakly commuting, then the
square extension Γ Y CdpEq YNpσ, ρq is acyclic.

Finally, we illustrate in subsection 5.4 our method on diagrammatic presentation of a pivotal monoidal
category modulo some isotopy relations.

Organisation of the article. In Section 1, we recall all the notions about higher-dimensionaln-categories
and n-polygraphs that we will need in the sequel. We refer the reader to [12] for deeper details on these
notions. We recall from [11] the notions of double categories and of double groupoids. In Section 2 we
define the notion of double polygraphs, giving 2-fold coherent presentations of globular n-categories.
We explicit following [10] a construction of a free n-category enriched in double groupoids generated
by a double n-polygraph, in which the coherence results will be formulated. In Section 3, we define
the notion of polygraph modulo as presentations of categories modulo relations, and we formulate the
rewriting properties of termination, branchings, confluence and local confluence for these polygraphs.
Following [2] we give a completion procedure in terms of critical branchings for confluence modulo of
the polygraph modulo ER. In Section 4, we introduce the notion of coherent confluence modulo and
we prove a coherent version of Newman’s lemma and critical branching lemma for polygraphs modulo.
Finally, in Section 5, we define the notion of coherent completion modulo, and show how to construct
a 2-fold coherent presentations of n-categories presented by polygraphs modulo from a such a coherent
completion. We illustrate the results of this section on a toy example of a diagrammatic rewriting system
presenting a pivotal monoidal category, using rewriting modulo isotopy relations.
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1. Preliminaries

1. PRELIMINARIES

In this preliminary section, we give notations on higher-dimensional categories used in this paper. In
particular, we recall the structure of polygraph from [5, 22, 24] and we refer the reader to [12, 14] for
rewriting properties of polygraphs. We recall the notion of double categories from [11] and we refer the
reader to [3, 9, 10] for deeper presentations on double categories and double groupoids.

1.1. Higher-dimensional categories and polygraphs

Throughout this paper, n denotes either a fixed natural number or8.

1.1.1. Higher-dimensional categories. If C is a (small, strict and globular) n-category, we denote byCk
the set of k-cells of C. If f is a k-cell of C, then B´,ipfq and B`,ipfq respectively denote the i-source and
i-target of f, while pk ´ 1q-source and pk ´ 1q-target will be denoted by B´pfq and B`pfq respectively.
The source and target maps satisfy the globular relations:

Bα,iBα,i`1 “ Bα,iBβ,i`1, (1.1.2)

for all α,β in t´,`u. Two k-cells f and g are i-composable when B`,ipfq “ B´,ipgq. In that case, their
i-composite is denoted by f ‹i g, or by fg when i “ 0. The compositions satisfy the exchange relations:

pf1 ‹i g1q ‹j pf2 ‹i g2q “ pf1 ‹j f2q ‹i pg1 ‹j g2q. (1.1.3)

for all i ‰ j and for all cells f1, f2, g1, g2 such that both sides are defined. If f is a k-cell, we denote by 1f
its identity pk` 1q-cell. When 1f is composed with l-cells, we simply denote it by f for l ě k` 1.

A k-cell f of an n-category C is i-invertible when there exists a (necessarily unique) k-cell g in C,
with i-source B`,ipfq and i-target B´,ipfq, called the i-inverse of f, that satisfies

f ‹i g “ 1B´,ipfq and g ‹i f “ 1B`,ipfq.

When i “ k´1, we just say that f is invertible and we denote by f´ its inverse. As in higher-dimensional
groupoids, if a k-cell f is invertible and if its i-source u and i-target v are invertible, then f is pi ´ 1q-
invertible, with pi´ 1q-inverse given by v´ ‹i´1 f´ ‹i´1 u´.

For a natural number p ď n, or for p “ n “ 8, an pn, pq-category is an n-category whose k-cells
are invertible for every k ą p. When n ă 8, this is an n-category enriched in pn ´ pq-groupoids and,
when n “ 8, an n-category enriched in8-groupoids. In particular, an pn,nq-category is an n-category,
and an pn, 0q-category is an n-groupoid, also called a groupoid for n “ 1.

A 0-sphere of C is a pair γ “ pf, gq of 0-cells of C and, for 1 ď k ď n, a k-sphere of C is a pair
S “ pf, gq of k-cells of C such that B´pfq “ B´pgq and B`pfq “ B`pgq. The k-cell f (resp. g) is called
the source (resp. target) of S denoted by B´pSq (resp. B`pSq). We will denote by SphkpCq the set of
k-spheres of C. If f is a k-cell of C, for 1 ď k ď n, the boundary of f is the pk ´ 1q-sphere pspfq, tpfqq
denoted by Bpfq.
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1. Preliminaries

1.1.4. Cellular extensions. Suppose n ă 8, a cellular extension of an n-category C is a set Γ equipped
with a map γ : Γ Ñ SphnpCq. By considering all the formal compositions of elements of Γ , seen as
pn ` 1q-cells with source and target in C, one builds the free pn ` 1q-category generated by Γ over C,
denoted by CrΓ s. The size of an pn`1q-cell f of CrΓ s is the number denoted by ||f||Γ , of pn`1q-cells of
Γ it contains. We denote by Cp1q the set of n-cells in C of size 1. We denote by C{Γ the quotient of C by Γ ,
i.e., the n-category one gets from C by identification of the n-cells B´pSq and B`pSq, for all n-sphere S
of Γ .

If C is an pn, pq-category and Γ is a cellular extension of C, then the free pn`1, pq-category generated
by Γ over C is denoted by CpΓq and defined as follows:

CpΓq “ C
“

Γ, Γ´
‰ L

InvpΓq

where Γ´ contains the same pn`1q-cells as Γ , with source and target reversed, and InvpΓq is the cellular
extension of rΓ, Γ´s made of two pn` 2q-cells

f ‹n`1 f
´ Ñ 1B´pfq and f´ ‹n`1 f Ñ 1B`pfq

for every pn` 1q-cell f in Γ .
Let C be an pn, pq-category, for p ă n ă 8. A cellular extension Γ of C is acyclic if the pn, pq-

category C{Γ is aspherical, i.e., such that, for every n-sphere S of C, there exists an pn ` 1q-cell with
boundary S in the pn` 1, pq-category CpΓq.

1.1.5. Polygraphs. Recall that an n-polygraph is a data P “ pP0, P1, . . . , Pnq made of a set P0 and, for
every 0 ď k ă n, a cellular extension Pk`1 of the free k-category

P˚k :“ P0rP1s . . . rPks.

For 0 ď k ď n´ 1, we will denote by Pďk the underlying k-polygraph pP0, P1, . . . , Pkq. We will denote
by P˚ (resp. PJ) the free n-category (resp. pn,n ´ 1q-category) generated by an n-polygraph P. We
will denote by P the pn´ 1q-category presented by the polygraph P, that is P :“ P˚n´1{Pn.

Given two n-polygraph P andQ, a morphism of n-polygraphs from P toQ is a pair pξn´1, fnqwhere
ξn´1 is a morphism of pn ´ 1q-polygraphs from Pn´1 to Qn´1, and where fn is a map from Pn to Qn
such that the following diagrams commute:

P˚n´1

Fn´1pξn´1q
��

Pn
sPn´1
oo

fn
��

Q˚n´1 Qn
s
Q
n´1

oo

P˚n´1

Fn´1pξn´1q
��

Pn
tPn´1
oo

fn
��

Q˚n´1 Qn
t
Q
n´1

oo

Equivalently, it is a sequence of maps pfk : Pk Ñ Qkqk indexed by integer 0 ď k ď n´ 1 such that the
conditions

fks
P
k “ s

Q
k fk`1 and fkt

P
k “ t

Q
k fk`1

holds for all 0 ď k ď n´ 1.
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1.2. Double groupoids

For p ď n, an pn, pq-polygraph is a data P made of an n-polygraph pP0, . . . , Pnq, and for every
p ď k ă n, a cellular extension Pk`1 of the free pk, pq-category

PJk :“ P˚ppPn`1q ¨ ¨ ¨ pPkq.

Note that an pn,nq-polygraph is an n-polygraph.
Given an n-polygraph P, recall from [12, Proposition 2.1.5] that every n-cell f in P˚ with size k ě 1

has a decomposition
f “ C1rγ1s ‹n´1 ¨ ¨ ¨ ‹n´1 Ckrγks.

where γ1, . . . , γk are n-cells in P and C1, . . . , Ck are whiskers of P˚.

1.1.6. Contexts in n-categories. A context of an n-category C is a pair pS,Cq made of an pn ´ 1q-
sphere S of C and an n-cell C in CrSs such that ||C||S “ 1. We often denote simply by C, such a context.
Recall from [12, Proposition 2.1.3] that every context of C has a decomposition

fn ‹n´1 pfn´1 ‹n´2 ¨ ¨ ¨ pf1 ‹0 S ‹0 g1q ¨ ¨ ¨ ‹n´2 gn´1q ‹n´1 gn,

where S is an pn ´ 1q-sphere and, for every k in t1, . . . , nu, fk and gk are n-cells of C. Moreover, one
can choose these cells so that fk and gk are (the identities of) k-cells. A whisker of C is a context with a
decomposition

fn´1 ‹n´2 ¨ ¨ ¨ pf1 ‹0 S ‹0 g1q ¨ ¨ ¨ ‹n´2 gn´1

such that, for every k in t1, . . . , n´ 1u, fk and gk are k-cells.

1.2. Double groupoids

In this subsection, we recall the notion of double category introduced in [11]. It can be defined as an
internal category in the category Cat of all (small) categories and functors. Recall that given V be a
category with finite limits, an internal category C in V is a data pC1,C0, BC

´, B
C
`, ˝C, iCq, where

BC
´, B

C
` : C1 ÝÑ C0, iC : C0 ÝÑ C1, ˝C : C1 ˆC0 C1 ÝÑ C1

are morphisms of V satisfying the usual axioms of a category, and where C1ˆC0 C1 denotes the pullback
in V over morphisms BC

´ and BC
`. An internal functor from C to D is a pair of morphisms C1 Ñ D1 and

C0 Ñ D0 in V commuting in the obvious way. We denote by CatpVq the category of internal categories
in V and their functors.

1.2.1. Double categories and double groupoids. The category of double categories is defined as the
category CatpCatq, and the category of double groupoids is defined as the category CatpGrpdq of in-
ternal categories in the category Grpd of groupoids and their functors. A double groupoid is thus a
double category whose the four related categories are groupoids and the source, target, composition
and identity maps are morphisms of groupoids. Explicitly, a double category is an internal category
pC1,C0, BC

´, B
C
`, ˝C, iCq in Cat, that gives four related categories:

Csv :“ pCs,Cv, Bv´,1, B
v
`,1, ˛

v, iv1q, Csh :“ pCs,Ch, Bh´,1, B
h
`,1, ˛

h, ih1 q,

Cvo :“ pCv,Co, Bv´,0, B
v
`,0, ˝

v, iv0q, Cho :“ pCh,Co, Bh´,0, B
h
`,0, ˝

h, ih0 q,

7



1. Preliminaries

where Csh is the category C1 and Cvo is the category C0. The sources, target and identity maps pictured
in the following diagram

Cs
Bh`,1

""

Bh´,1 ""
Bv´,1

||

Bv`,1

||

Cv
Bv`,0

""
Bv´,0

""

iv1

<<

Ch

Bh´,0||

Bh`,0

||

ih1

bb

Co

ih0

<<

iv0

bb

satisfy the following relations:

i) Bhα,0B
h
β,1 “ B

v
β,0B

v
α,1, for all α,β in t´,`u,

ii) Bµα,1i
η
1 “ i

µ
0B
η
α,0, for all α in t´,`u and µ, η in tv, hu,

iii) iv1i
v
0 “ i

h
1 i
h
0 ,

iv) Bµα,1pA ˛
µ Bq “ B

µ
α,1pAq ˝

µ B
µ
α,1pBq, for all α P t´,`u, µ P tv, hu and any squares A,B such that

both sides are defined,

v) middle four interchange law :

pA ˛v A 1q ˛h pB ˛h B 1q “ pA ˛h Bq ˛v pA 1 ˛h B 1q, (1.2.2)

for any cells A,A 1, B, B 1 in Cs such that both sides are defined.

Elements of Co are called point cells, the elements of Ch and Cv are respectively called horizontal cells
and vertical cells and pictured by

x1
f
// x2

x1

e
��

x2

Following relations i), the elements of Cs are called square cells and can be pictured by squares as
follows:

¨
Bh´,1pAq

//

Bv´,1pAq
��

¨

Bv`,1pAq
��

¨
Bh`,1pAq

// ¨

A��

x1
f
//

iv0px1q
��

x2

iv0px2q
��

x1
f
// x2

ih1 pfq��

x
ih0 pxq

//

e
��

x

e
��

y
ih0 pyq

// y

iv1peq��
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1.2. Double groupoids

The compositions ˛v (resp. ˛h) are called respectively vertical and horizontal compositions, and can
be pictured as follows

x1
f1

//

e1

��

x2

e2

��

f2
// x3

e3

��

y1 g1
// y2

A
��

g2
// y3

B
��

ù

x1
f1 ˝

h f2
//

e1

��

x3

e3

��

y1
g1 ˝

h g2

// y3

A ˛v B
��

for all xi, yi in Co, fi, gi in Ch, ei in Cv and A,B in Cs,

x1
f

//

e1

��

x2

e2

��

y1 g
//

e 11

��

y2

e 12

��

A
��

z1
h

// z2

A 1��

ù

x1
f
//

e1 ˝
v e 11

��

x2

e2 ˝
v e 12

��

z1
h

// z2

A ˛h A 1

��

for all xi, yi, zi in Co, f, g, h in Ch, ei, e 1i in Cv and A,A 1 in Cs.

1.2.3. Squares. A square of a double category C is a quadruple pf, g, e, e 1q such that f, g are horizontal
cells and e, e 1 are vertical cells that compose as follows:

u
f
//

e
��

v

e 1
��

u 1
g
// v 1

The boundary of a square cell A in C is the square pB´,hpAq, B`,hpAq, B´,vpAq, B`,vpAqq, denoted
by BpAq. We will denote by SqrpCq the set of square cells of C.

1.2.4. n-categories enriched in double categories. The coherence results for rewriting systems mod-
ulo presented in this paper are formulated using the notion of n-categories enriched in double groupoids.
Let us expand this notion for n ą 0. Consider the category CatpGrpdq equipped with the cartesian
product defined by

Cˆ D “ pC1 ˆ D1,C0 ˆ D0, sC ˆ tC, cC ˆ cD, iC ˆ iDq,

for any double groupoids C and D. The terminal double groupoid T has only one point cell, denoted
by ‚, and identities iv0p‚q, i

h
0 p‚q, i

v
1i
h
0 p‚q “ i

h
1 i
v
0p‚q.

9



1. Preliminaries

An n-category enriched in double groupoids is an n-category C such that for any x, y in Cn´1 the
homset Cnpx, yq has a double groupoid structure, whose point cells are the n-cells in Cnpx, yq. We will
denote by Cvn`1 (resp. Chn`1, C

s
n`2) the sets Cnpx, yqv (resp. Cnpx, yqh, Cnpx, yqs) for all x, y in Cn´1.

An pn` 2q-cell A in Csn`2 can be represented by the following diagrams:

u
f
//

e
��

v

e 1
��

u 1
g
// v 1

A��

with u, u 1, v, v 1 P Cn, f, g P Chn`1 and e, e 1 P Cvn`1. The compositions and identities are induced by the
functors of double categories

‹
x,y,z
n´1 : Cnpx, yq ˆ Cnpy, zq Ñ Cnpx, zq, 1x : T Ñ Cnpx, xq,

for all pn´ 1q-cells x, y, z. The pn´ 1q-composite of an pn` 2q-cell A in Cnpx, yq with an pn` 2q-cell
B in Cnpy, zq such that

u1
f1
//

e1
��

v1

e 11
��

u 11 g1
// v 11

A��

u2
f2
//

e2
��

v2

e 12
��

u 12 g2
// v 12

B��

is defined by composition along ‹n´1 and denoted by:

u1 ‹n´1 u2
f1 ‹n´1 f2

//

e1 ‹n´1 e2

��

v1 ‹n´1 v2

e 11 ‹n´1 e
1
2

��

u 11 ‹n´1 u
1
2 g1 ‹n´1 g2

// v 11 ‹n´1 v
1
2

A ‹n´1 B

��

By functoriality, the pn´ 1q-composition satisfies the following exchange relations:

pA ˛µ A 1q ‹n´1 pB ˛
µ B 1q “ pA ‹n´1 Bq ˛

µ pA 1 ‹n´1 B
1q, (1.2.5)

pA ˛µ A 1q ‹n´1 pB ˛
η B 1q “ ppA ‹n´1 Bq ˛

µ pA 1 ‹n´1 Bqq ˛
η ppA ‹n´1 B

1q ˛µ pA 1 ‹n´1 B
1qq. (1.2.6)

Using middle four interchange law (1.2.2), the identity (1.2.6) is equivalent to the following identity

pA ˛µ A 1q ‹n´1 pB ˛
η B 1q “ ppA ‹n´1 Bq ˛

η pA ‹n´1 B
1qq ˛µ ppA 1 ‹n´1 Bq ˛

η pA 1 ‹n´1 B
1qq

for all µ ‰ η in tv, hu and any pn` 2q-cells A,A 1, B, B 1 such that both sides are defined.
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2. Two-fold coherent presentations

1.2.7. 2-categories as double categories. From a 2-category C, one can construct two canonical double
categories, by defining the vertical or horizontal cells to be only identities in C. In this way, 2-categories
can be considered as special cases of double categories. The quintet construction gives an other way
to associate a double category, called the double category of quintets in C and denoted by QpCq to a
2-category C. The vertical and horizontal categories of QpCq are both equal to C, and there is a square
cell

u
f
//

g
��

u 1

k
��

v
h
// v 1

A��

in QpCq whenever there is a 2-cell A : f ‹1 kñ g ‹1 h in C. This defines a functor Q : Cat2 Ñ DbCat.
Similarly, for n ě 2 one can associate to an n-category an pn´2q-category enriched in double categories
by a quintet construction.

2. TWO-FOLD COHERENT PRESENTATIONS

In this section, we introduce the notion of two fold coherent presentations for n-categories. This notion is
constructed using the structure of double polygraph introduced in Section 2.1 and that extends to double
categories the known structure of polygraph on strict globular categories from [5, 22, 24]. We give a
construction of the free n-category enriched in double categories generated by a double polygraph.

2.1. Double polygraphs

2.1.1. Square extensions. Let pCv,Chq be a pair of n-categories with the same underlying pn ´ 1q-
category B. A square extension of the pair pCv,Chq is a set Γ equipped with four maps Bµα,n,
with α P t´,`u, µ P t1, 2u, as depicted by the following diagram:

Γ B2`,n

$$B2´,n $$
B1´,n

zz

B1`,n

zz

Cv B1`,n´1

$$B1´,n´1
$$

Ch

B2´,n´1
zz

B2`,n´1

zz

B

and satisfying the following relations:

Bvα,n´1B
v
β,n “ B

h
β,n´1B

h
α,n,

for all α,β in t´,`u. The point cells of a square A in Γ are the pn´ 1q-cells of B of the form

B
µ
α,n´1B

η
β,npAq

with α,β in t´,`u, and η, µ in th, vu. Note that by construction these four pn´ 1q-cells have the same
pn´ 2q-source and pn´ 2q-target in B respectively denoted by B´,n´2pAq and B`,n´2pAq.

11



2. Two-fold coherent presentations

A pair of categories pCv,Chq has two canonical square extensions, the empty one, and the full one
denoted by SqrpCv,Chq that contains all squares on pCv,Chq. We will denote by SphpCv, 1q (resp.
Sphp1,Chq) the 2-square extension of pCv,Chq made of all squares of the form

u
“
//

e
��

u

e 1
��

v “
// v

`

resp.
u

f
//

=

��

u 1

=

��

u
g
// u 1

˘

for all n-cells e, e 1 in Cv (resp. n-cells in f, g in Ch).
The Peiffer square extension of the pair pCv,Chq is the square extension of pCv,Chq, denoted by

PeiffpCv,Chq, containing the squares of the form

u ‹i v
f ‹i v

//

u ‹i e
��

u 1 ‹i v

u 1 ‹i e
��

u ‹i v
1

f ‹i v
1
// u 1 ‹i v

1

w ‹i u
w ‹i f

//

e 1 ‹i u
��

w ‹i u
1

e 1 ‹i u
1

��

w 1 ‹i u
w 1 ‹i f

// w 1 ‹i u
1

for all n-cells e, e 1 in Cv and n-cell f in Ch.

2.1.2. Double polygraphs. For n ě 0, we define a double n- polygraph as a data P “ pPv, Ph, Psq

made of

i) two pn` 1q-polygraphs Pv and Ph such that Pvďn “ P
h
ďn,

ii) a square extension Ps of the pair of free pn` 1q-categories ppPvq˚, pPhq˚q.

Such a data can be pictured by the following diagram

Ps

Bh`,n`1

""Bh´,n`1 ""Bv´,n`1||

Bv`,n`1

||

pPvq˚
Bv´,n

""

Bv`,n

""

pPhq˚

Bh`,n
||

Bh´,n

||

Pv
Bv`,n

//

Bv´,n

//

ιvn`1

OO

P˚n`1

B´,n´1

��

B`,n´1

��

Ph

Bh´,n

oo

Bh`,n
oo

ιhn`1

OO

P˚n

For 0 ď k ď n` 1, the k-cells of the pn` 1q-polygraphs Pv and Ph are called generating k-cells of P.
The elements of Ps are called generating square pn` 2q-cells of P.
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2.2. Two-fold coherent presentations

2.1.3. The category of double n-polygraphs. Given two double n-polygraphs P “ pPv, Ph, Psq and
Q “ pQv, Qh, Qsq, a morphism of double n-polygraphs from P to Q is a triple pfv, fh, fsq made of two
morphisms of pn` 1q-polygraphs

fv : Pv Ñ Qv, fh : Ph Ñ Qh,

and a map fs : Ps Ñ Qs such that the following diagrams commute:

P
µ
n`1

f
µ
n`1
��

Ps
B
µ,P
´,n´1

oo

fs

��

Q
µ
n`1 Qs

B
µ,Q
´,n´1

oo

P
µ
n`1

f
µ
n`1
��

Ps
B
µ,P
`,n´1

oo

fs

��

Q
µ
n`1 Qs

B
µ,Q
`,n´1

oo

for µ in tv, hu. We will denote by DbPoln the category of double n-polygraphs and their morphisms.
Let us explicit two full subcategories of DbPoln used in the sequel to formulate coherence and

confluence results for polygraphs modulo. We define a double pn ` 2, nq-polygraph as a double n-
polygraph whose square extension Ps is defined on the pair of pn ` 1, nq-categories ppPvqJ, pPhqJq.
We denote by DbPolpn`2,nq the category of double pn ` 2, nq-polygraphs. In some situations, we will
also consider double n-polygraphs whose square extension is defined on the pair of pn ` 1q-categories
ppPvqJ, pPhq˚q (resp. ppPvq˚, pPhqJ). We will respectively denote by DbPolvn (resp. DbPolhn) the full
subcategories of DbPoln they form.

2.2. Two-fold coherent presentations

Recall that a coherent presentation of an n-category C is an pn ` 2, nq-polygraph P such that the n-
category C is isomorphic to the quotient n-category P˚n{Pn`1 and Pn`2 is an acyclic extension of the
pn ` 1, nq-category PJn`1. In this subsection, we define a similar notion for n-categories enriched in
double categories.

Let us first explicit the construction of a free n-category enriched in double categories generated
by a double n-polygraph. The question of the construction of free double categories was considered in
several works, [7–10]. In particular, Dawson and Pare give in [10] constructions of free double categories
generated by double graphs and double reflexive graphs. Such free double categories always exists, and
they show how to describe their cells explicitly in geometric terms. However, they show that free double
categories generated by double graphs can not describe many of the possible compositions in free double
categories. They fixed this problem by considering double reflexive graphs as generators. In this work,
we consider this approach but using double n-polygraphs as generating data.

2.2.1. Freen-category enriched in double categories. Consider a doublen-polygraph P “ pPv, Ph, Psq.
We construct the free n-category enriched in double categories on P, denoted by P˝, as follows:

i) the underlying n-category of P˝ is the free n-category P˚n,

ii) for all pn´ 1q-cells x and y of P˚n, the hom-double category P˝px, yq is constructed as follows

13



2. Two-fold coherent presentations

a) the point cells of P˝px, yq are the n-cells in P˚npx, yq,

b) the vertical cells of P˝px, yq are the pn` 1q-cells of the free pn` 1q-category pPvq˚,

c) the horizontal cells of P˝px, yq are the pn` 1q-cells of the free pn` 1q-category pPhq˚,

d) the set of square cells of P˝px, yq is defined recursively and contains

´ the square cells A of Ps such that B´,n´1pAq “ x and B`,n´1pAq “ y,
´ the square cells CrAs for any context C of the n-category P˚n and A in Ps, such that
B´,n´1pCrAsq “ x and B`,n´1pCrAsq “ y,

´ identities square cells ih1 pfq and iv1peq, for any pn` 1q-cells f in pPhq˚ and pn` 1q-cell e in
pPvq˚ whose pn´ 1q-source (resp. pn´ 1q-target) in P˚n is x (resp. y),

´ all formal pastings of these elements with respect to ˛h-composition and ˛v-composition.

e) two square cells constructed as such formal pastings are identified by the associativity, and iden-
tity axioms of compositions ˛v and ˛h and middle four interchange law given in (1.2.2),

iii) for all pn´ 1q-cells x, y, z of P˚n, the composition functor

‹n´1 : P
˝px, yq ˆ P˝py, zq ÝÑ P˝px, zq

is defined for any

u1
f1
//

e1
��

v1

e 11
��

u 11 g1
// v 11

A1�� in P˝px, yq and

u2
f2
//

e2
��

v2

e 12
��

u 12 g2
// v 12

A2�� in P˝py, zq,

by

u1 ‹n´1 u2
f1 ‹n´1 f2

//

e1 ‹n´1 e2

��

v1 ‹n´1 v2

e 11 ‹n´1 e
1
2

��

u 11 ‹n´1 u
1
2 g1 ‹n´1 g2

// v 11 ‹n´1 v
1
2

A1 ‹n´1 A2

��

where the square cellA1 ‹n´1A2 is defined recursively using exchanges relations (1.2.5-1.2.6) from
functoriality of the composition ‹n´1, and the middle four identities (1.2.2),

iv) for all pn ´ 1q-cell x of P˚n, the identity map T ÝÑ P˝px, xq, where T is the terminal double
groupoid mapping on iv1i

h
1 pxq “ i

h
1 i
v
1pxq:

x
ih0 pxq

//

iv1pxq
��

x

iv1pxq
��

x
ih0 pxq

// x
��
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3. Polygraphs modulo

2.2.2. By similar constructions of the free n-category enriched in double categories on a double n-
polygraph P “ pPv, Ph, Psq given in 2.2.1, we can construct the following categories:

i) the free n-category enriched in double groupoids generated by a double pn` 2, nq-polygraph P “
pPv, Ph, Psq, that we denote by P ) ;

ii) the free n-category enriched in double category, whose vertical category is groupoid, generated by
a n-polygraph pPv, Ph, Psq, whose square extension is defined on the pair of pn ` 1q-categories
ppPvqJ, pPhq˚q.

2.2.3. Acyclicity. Let P “ pPv, Ph, Psq be a double pn ` 2, nq-polygraph. The square extension Ps

of the pair of pn ` 1, nq-categories ppPvqJ, pPhqJq is acyclic if for any square S over ppPvqJ, pPhqJq
there exists a square pn ` 2q-cell A in the free n-category enriched in double groupoids P ) such that
BpAq “ S. For example, the set of squares over ppPvqJ, pPhqJq forms an acyclic extension.

2.2.4. Two-fold coherent presentations of n-categories. Recall that a presentation of an n-category
C is an pn`1q-polygraph P whose presented category P is isomorphic to C. We define a 2-fold coherent
presentation of C as a double pn` 2, nq-polygraph pPv, Ph, Psq satisfying the two following conditions:

i) the pn ` 1q-polygraph pQ,Pvn`1
š

Phn`1q is a presentation of C, where Q is the underlying n-
polygraph of Pv and Ph,

ii) the square extension Ps is acyclic.

3. POLYGRAPHS MODULO

In this section, we introduce the notion of polygraph modulo and we formulate the rewriting properties
of termination, confluence and local confluence for these polygraphs.

3.1. Polygraphs modulo

3.1.1. Cellular extensions modulo. Consider two n-polygraphs E and R such that Eďn´2 “ Rďn´2
and En´1 Ď Rn´1. One defines the cellular extension

γ ER : ERÑ Sphn´1pR
˚
n´1q

where ER is the set defined by the following pullback in Set:

EJn ˆR˚n´1
R
˚p1q
n

π1
��

π2
// R
˚p1q
n

B´,n´1
��

EJn
B`,n´1

// R˚n´1
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3. Polygraphs modulo

and the map γ ER defined by γ ERpe, fq “ pB´,n´1peq, B`,n´1pfqq for all e in EJ and f in R˚p1qn . Similarly,
one defines the cellular extension

γRE : RE Ñ Sphn´1pR
˚
n´1q

where RE is the set defined by the following pullback in Set:

R
˚p1q
n ˆR˚n´1

EJn

π1
��

π2
// EJn

B´,n´1
��

R
˚p1q
n

B`,n´1

// R˚n´1

and the map γRE defined by γREpf, eq “ pB´,n´1pfq, B`,n´1peqq for all e in EJ and f in R˚p1qn . Finally,
one defines the cellular extension

γ ERE : ERE Ñ Sphn´1pR
˚
n´1q,

where ERE is the set defined by the following composition of pullbacks in Set:

EJn ˆR˚n´1
R
˚p1q
n ˆR˚n´1

EJn
pπ2, π3q

//

pπ1, π2q
��

R
˚p1q
n ˆR˚n´1

EJn

π1
��

π2
// EJn

B´,n´1

��

EJn ˆR˚n´1
R
˚p1q
n

π1
��

π2
// R
˚p1q
n

B`,n´1

//

B´,n´1

��

R˚n´1

EJn
B`,n´1

// R˚n´1

and the map γ ERE is defined by γ EREpe, f, e 1q “ pB´,n´1peq, B`,n´1pe 1qq.

3.1.2. Polygraphs modulo. A n-polygraph modulo is a data pR, E, Sq made of

i) an n-polygraph R, whose generating n-cells are called primary rules,

ii) an n-polygraph E such that Ek “ Rk for k ď n ´ 2 and En´1 Ď Rn´1, whose generating n-cells
are called modulo rules,

iii) S is a cellular extension of R˚n´1 such that the inclusions of cellular extensions

R Ď S Ď ERE

holds.

By abuse of notation, the n-polygraphs modulo pR, E, ERq, pR, E, REq and pR, E, EREq will be de-
noted by ER, RE and ERE respectively. Given an n-polygraph modulo pR, E, Sq, we will consider in the
sequel the following categories:
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3.2. Termination and normal forms

i) the free n-category R˚n´1rRn, En
š

E´1n s{InvpEn, E´1n q, denoted by R˚pEq.

ii) the free n-category generated by S, denoted by S˚,

iii) the free pn,n´ 1q-category generated by S, denoted by SJ.

For any n-cell f in S˚ (resp. SJ), the size of f is defined as the positive integer ||f||Rn corresponding
to the number of n-cells of Rn contained in A, and denoted by `pfq.

3.2. Termination and normal forms

In this subsection, we introduce the property of termination and the notion of normal form for polygraphs
modulo. We explain how to prove termination of polygraphs modulo using a termination order compat-
ible modulo rules. Finally, we recall the double induction principle introduced by Huet in [15] that we
will use in many proofs in the sequel.

3.2.1. Termination. Recall that an n-polygraph terminates if it has no infinite rewriting sequence. The
n-polygraph modulo pR, E, Sq is terminating when S is terminating. Note that, when S ‰ R, the follow-
ing conditions hold

i) ER is terminating,

ii) RE is terminating,

iii) ERE is terminating,

iv) S is terminating.

An order relation ă on R˚n´1 is compatible with S modulo E if it satisfy the following conditions:

i) v ă u, for any pn´ 1q-cells u, v in R˚n´1 such that there exists an n-cell uÑ v in S,

ii) if v ă u for pn´ 1q-cells u, v in R˚n´1, then v 1 ă u 1 holds for any pn´ 1q-cells u 1, v 1 in R˚n´1 such
that v 1 « v and u 1 « u.

A termination order for S modulo E is a well-founded order relation compatible with S modulo E.
In this work, many constructions will be based on the termination of the n-rsm RE, which can be

proved by constructing a termination order for one of the n-rsm ER, RE and ERE. It can be also proved
by constructing a termination order for R compatible with E.

3.2.2. Normal forms. A pn´ 1q-cell u in R˚n´1 is S-reduced if it cannot be reduced by n-cells of S. A
S-normal form with respect to S for a pn ´ 1q-cell u in R˚n´1 is a S-reduced pn ´ 1q-cell v such that u
can be reduced to v with respect to S. We will denote by IrrpSq the set of irreducible pn´ 1q-cells with
respect to S. We denote by NFpS, uq the set of normal forms of a pn´ 1q-cell u with respect to S.

If S is terminating, every pn ´ 1q-cell has at least one normal form with respect to S. Moreover,
Noetherian induction allows definitions and proofs of properties of pn ´ 1q-cells by induction on the
maximum size of the n-cells leading to normal forms.
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3. Polygraphs modulo

3.2.3. Noetherian induction. If S is terminating at f, then it is normalizing at f, that is, every n-cell
has at least one normal form. In that case, one can prove properties using Noetherian induction. For that,
one proves the property on normal forms; then one fixes an n-cell f, one assumes that the result holds
for every g such that f reduces into g and one proves that, under those hypotheses, the n-cell f satisfies
the property.

Let us recall the double Noetherian induction principle introduced by Huet in [15] to prove the
equivalence between confluence modulo and local confluence modulo under a termination hypothesis.
We construct an auxiliary n-polygraph S> as follows. One defines

S>k “ Sk ˆ Sk for 0 ď k ď n´ 1,

and S>n contains an n-cell pu, vq Ñ pu 1, v 1q, for all pn ´ 1q-cells u, u 1, v, v 1 in any of the following
situation:

i) there exists an n-cell uÑ u 1 in S˚ and v “ v 1;

ii) there exists an n-cell vÑ v 1 in S˚ and u “ u 1;

iii) there exist n-cells uÑ u 1 and uÑ v 1 in S˚;

iv) there exist n-cells vÑ u 1 and vÑ v 1 in S˚;

v) there exist n-cells e1, e2 and e3 in EJ as in the following diagram

u
e1
// v

e2
// u 1

e3
// v 1

such that `pe1q ą `pe3q.

Note that this definition implies that, if there exists n-cells u Ñ u 1 and v Ñ v 1 in S˚, then there is an
n-cell pu, vq Ñ pu 1, v 1q in S> given by the following composition:

pu, vq Ñ pu 1, vq Ñ pu 1, v 1q

Following [15, Proposition 2.2], if SE is terminating, then so is S>.
In the sequel, we will apply this Noetherian induction on S> with the following property:

for any n-cells f : u Ñ u 1, g : v Ñ v 1 in S˚ and e : u Ñ v in EJ, there exists n-cells
f 1 : u 1 Ñ u2, g 1 : v 1 Ñ w2 in S˚ and e 1 : u2 Ñ w2 in EJ, and a square pn` 1q-cell A in
a given pn´ 1q-category enriched in groupoids, as depicted in the following diagram:

u
f
//

e
��

u 1
f 1
// u2

e 1
��

v
g
// v 1

g 1
// w2

A��

In the language of Section 4, this means that any branching pf, e, gq of source px, yq of S modulo E is
coherently confluent modulo E.
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3.3. Confluence modulo

3.3. Confluence modulo

In this subsection, we define properties of confluence and local confluence modulo for an n-polygraph
modulo pR, E, Sq, and we explicit a classification of branchings of S modulo E.

3.3.1. Branchings. A branching of the n-polygraph S is a pair pf, gq, where f and g are n-cells of
S˚and such that Bh

´,pn´1qpfq “ B
h
´,pn´1qpgq. Such a branching is depicted by

u
f
//

=
��

u 1

u
g
// v 1

(3.3.2)

and will be denoted by pf, gq : u ñ pu 1, v 1q. The pn ´ 1q-cell u is called the source of this branching.
We do not distinguish the branchings pf, gq and pg, fq.

A branching modulo E of the n-polygraph modulo S is a triple pf, e, gq where f and g are n-cells
of S˚ with f non trivial and e is an n-cell of EJ. Such a branching is depicted by

u
f
//

e
��

u 1

v
g
// v 1

`

resp.
u

f
//

e
��

u 1

v

˘

(3.3.3)

when g is non trivial (resp. trivial) and denoted by

pf, e, gq : pu, vq ñ pu 1, v 1q (resp. pf, eq : uñ pu 1, vq ).

The pair of pn´ 1q-cells pu, vq (resp. pu, uq) is called the source of this branching modulo E. Note that
any branching pf, gq is a branching modulo E pf, e, gq where e “ iv1pB

h
´,pn´1qpfqq “ i

v
1pB

h
´,pn´1qpgqq.

3.3.4. Confluence and confluence modulo. A confluence of the n-polygraph S is a pair pf 1, g 1q of
n-cells of S˚ such that Bh

`,pn´1qpf
1q “ Bh

`,pn´1qpg
1q. Such a confluence is depicted by

u 1
f 1
// w

=

��

v 1

g 1
// w

and denoted by pf 1, g 1q : pu 1, v 1q ñ w. A confluence modulo E of the n-polygraph S is a triple
pf 1, e 1, g 1q, where f 1, g 1 are n-cells of S˚ and e 1 is an n-cell of EJ such that Bh

`,pn´1qpf
1q “ Bv

´,pn´1qpe
1q

and Bh
`,pn´1qpg

1q “ Bv
`,pn´1qpe

1q. Such a confluence is depicted by

u 1
f 1
// w

e 1
��

v 1

g 1
// w 1
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3. Polygraphs modulo

and denoted by pf 1, e 1, g 1q : pu 1, v 1q ñ pw,w 1q.
A branching as in (3.3.2) is confluent (resp. confluent modulo E) if there exists n-cells f 1, g 1 in S˚

and e 1 in EJ as in the following diagrams:

u
f
//

=

��

u 1
f 1
// w

=

��

u
g
// v 1

g 1
// w 1

`

resp.
u

f
//

=

��

u 1
f 1
// w

e 1
��

u
g
// v 1

g 1
// w 1

˘

.

A branching modulo E as in (3.3.3) is confluent modulo E if there exists n-cells f 1, g 1 in S˚ and e 1

in EJ as in the following diagram:

u
f
//

e
��

u 1
f 1
// w

e 1
��

v
g
// v 1

g 1
// w 1

.

We say that the n-polygraph modulo S is confluent (resp. confluent modulo E) if all of its branchings are
confluent (resp. confluent modulo E). Note that when S is confluent, every pn´1q-cell of S˚ has at most
one normal form with respect to S. Under the confluence modulo hypothesis, a pn´ 1´-cell may admit
several S-normal forms, which are all equivalent modulo E.

Finally, let us recall the notion of confluence modulo introduced by Jouannaud and Kirchner in [16].
We say that the n-polygraph modulo S is

i) JK confluent modulo E, if any branching is confluent modulo E,

ii) JK coherent modulo E, if for any branching modulo E pf, eq : uñ pu 1, vq is confluent modulo E:

u
f
//

e
��

v
f 1
// v 1

e 1
��

u 1

g 1
// w

in such a way that g 1 is a non-trivial n-cell in S˚.

3.3.5. Local branchings. A branching pf, gq of the n-polygraph S is local if f, g are n-cells of S˚p1q. A
branching pf, e, gq modulo E is local if f is an n-cell of S˚p1q, g is an n-cell of S˚ and e an n-cell of EJ

such that `pgq ` `peq “ 1. Local branchings belong to one of the following families:

i) local aspherical branchings of the form:

u
f
//

=

��

v

=

��

u
f
// v

where f is an n-cell of S˚p1q;
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3.3. Confluence modulo

ii) local Peiffer branchings of the form:

u ‹i v
f ‹i v

//

=

��

u 1 ‹i v

u ‹i vu ‹i g
// u ‹i v

1

where 0 ď i ď n´ 2, f and g are n-cells of S˚p1q,

iii) local Peiffer modulo of the forms:

u ‹i v
f ‹i v

//

u ‹i e
��

u 1 ‹i v

u ‹i v
1

w ‹i u
w ‹i f

//

e 1 ‹i u ��

w ‹i u
1

w 1 ‹i u

(3.3.6)

where 0 ď i ď n´ 2, where f is an n-cell of S˚p1q and e, e 1 are n-cell of EJp1q;

iv) overlapping branchings are the remaining local branchings:

u
f
//

=

��

v

u
g
// v 1

where f and g are n-cells of S˚p1q,

v) overlapping branchings modulo are the remaining local branchings modulo:

u
f
//

e
��

v

v 1

(3.3.7)

where f is an n-cell of S˚p1q and e is an n-cell of EJp1q.

Let pf, gq (resp. pf, e, gq) be a branching (resp. branching modulo E) of the n-polygraph S with
source u (resp. pu, vq) and a whisker CrBus of R˚n1 composable with u and v, the pair pCrfs, Crgsq
(resp. triple pCrfs, Cres, Crgsq) is a branching (resp. branching modulo E) of the n-polygraph S. If the
branching pf, e, gq is local, then the branching pCrfs, Cres, Crgsq is local. We denote by Ď the order
relation on branchings modulo E of S defined by pf, e, gq Ď pf 1, e 1, g 1q when there exists a whisker C
such that pCrfs, Cres, Crgsq “ pf 1, e 1, g 1q hold. A branching (resp. branching modulo E) is minimal
if it is minimal for the order relation Ď. A branching (resp. branching modulo E) is critical if it is an
overlapping branching that is minimal for the relation Ď.

3.3.8. Local confluence modulo. The n-polygraph modulo S is locally confluent modulo E if any of its
local branchings modulo E is confluent modulo E. Note that following [16], there exists a local version of
JK-confluence modulo E and JK coherence modulo E, given by properties a) and b) of Proposition 4.2.1,
and we will prove in the next section that all these notions are equivalent.
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3. Polygraphs modulo

3.4. Completion procedure for ER

In this subsection, we give a completion procedure for an n-polygraph modulo of the form pR, E, ERq,
when ER is not confluent modulo E as n-polygraph modulo E. The procedure computes an n-polygraph
Ř such that EŘ is confluent modulo E as an n-polygraph modulo E.

3.4.1. Completion of ERmodulo E. Note that the property of JK coherence is trivially satisfied for ER.
Indeed, any branching pf, eq of ER modulo E is trivially confluent modulo E as follows: we split the set
of critical branchings of ER modulo E into three sets as follows:

u
f
//

e
��

v
=

��

v 1

e´ ¨ f
// v

(3.4.2)

where e´ ¨ f is a rewriting step of ER.

Following the critical branching lemma for rewriting modulo, enounced in a coherent version and
given in the next section in Theorem 4.2.2, we describe a completion procedure for confluence of ER

modulo E in terms of critical branchings, similar to the Knuth-Bendix completion in a non modulo
setting. From (3.4.2) and Theorem 4.2.2, when ER is terminating, ER is confluent modulo E if and only
if all critical branchings pf, gq of ER modulo E with f in ER

˚p1q and g in R˚p1q are confluent modulo E,
as depicted by:

u
f P ER

//

=

��

v
f 1 P p ERq

˚

// v 1

e 1

��

u
g P R

// w
g 1 P p ERq

˚
// w 1

We denote by CPp ER, Rq the set of such critical branchings.

3.4.3. Completion procedure. Let us consider R and E two n-polygraphs such that Eďn´2 “ Rďn´2
and En´1 Ď Rn´1, and ă a termination order compatible with R modulo E. In this paragraph, we
describe a procedure to compute a completion Ř of the n-polygraph R such that EŘ is confluent modulo
E. We denote by û ER a normal form of an element u in R˚n´1 wrt ER.

22



3.4. Completion procedure for ER

Input:
- R and E 2-polygraphs over a 1-polygraph X.
- ă a termination order for R compatible with E,

which is total on the set of ER-irreducible elements.

begin
AÐH

C Ð CPp ER, Rq
while C ‰ H do

Pick any branching c “ pf : uñ v, g : uñ wq in C, with f in ER
˚ and g in R˚;

Reduce v to v̂ ER a ER-normal form;
Reduce w to ŵ ER a ER-normal form;
C Ð Cztcu
if v̂ ER ��«E ŵ ER then

if ŵ ER ă v̂ ER then
RÐ RY tv̂ ER

α
ñ ŵ ERu

end
if v̂ ER ă ŵ ER then

RÐ RY tŵ ER
α
ñ v̂ ERu

end
end
C Ð C Y tp ER, Rq-critical branchings created by αu

end
end

This procedure may not be terminating. However, it does not fail because of the hypothesis that ă is
total on the set of ER-irreducible elements.

3.4.4. Proposition. When it terminates, this completion procedure returns a rewriting system Ř such
that EŘ is confluent modulo E.

Proof. The proof of correctness of this procedure is a consequence of the inference system given by
Bachmair and Dershowitz in [2] in order to get a set of rules Ř such that EŘ is confluent modulo E. Given
two rewriting systems R and E and a termination order ą compatible with R modulo E, their inference
system is given by the following six elementary rules:

1) Orienting an equation:

pAY ts “ tu, Rq ù pA,RY tsÑ tu) if s ą t.

2) Adding an equational consequence:

pA,Rq ù pAY ts “ tu, Rq if s ˚
ÐÝRYE u

˚
ÝÑRYE t.

3) Simplifying an equation:

pAY ts “ tu, Rq ù pAY tu “ tu, Rq if s ER
Ñ u.
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4. Coherent confluence modulo

4) Deleting an equation:

pAY ts “ tu, Rq ù pA,Rq if s «E t.

5) Simplifying the right-hand side of a rule:

pA,RY tsÑ tuq ù pA,RY tsÑ uuq if t ER
Ñ u.

6) Simplifying the left-hand side of a rule:

pA,RY tsÑ tuq ù pAY tu “ tu, Rq if s ER
Ñ u.

The correctness of Procedure 3.4.3 is a consequence of the following arguments:

i) For any critical branching pf : u Ñ v, g : u Ñ wq in CPp ER, Rq, we can add an equation v “ w
using the rule Adding an equational consequence, and simplify it to v̂ ER “ ŵ ER using the rule
Symplifying and equation.

ii) If v̂ ER «E ŵ ER, we can delete the equation using the rule Deleting an equation.

iii) Otherwise, we can always orient it using the rule Orienting an equation.

Thus, each step of this completion procedure comes from one of the inference rules given by Bachmair
and Dershowitz. Following [2], it returns a set R so that ER is confluent modulo E.

4. COHERENT CONFLUENCE MODULO

In this section, we introduce the property of coherent confluence modulo defined by the adjunction of a
square cell for each confluence diagram modulo. Under a termination hypothesis, Theorem 4.1.4 shows
how to deduce coherent confluence modulo for a polygraph modulo from coherent local confluence
modulo. This result is a coherent version of Newman’s lemma that states the equivalence between local
confluence and confluence under a termination hypothesis, [21]. Theorem 4.2.2 formulates a coherent
version of the critical branching lemma, it shows how to deduce local coherent confluence modulo from
the coherent confluence modulo of some critical branchings.

4.1. Coherent Newman’s lemma modulo

4.1.1. Biaction of EJ on SqrpEJ, S˚q. Let pR, E, Sq be an n-polygraph modulo. Let Γ be a square
extension of the pair of n-categories pEJ, S˚q. As the inclusion R Ď S Ď ERE of cellular extensions
holds, any n-cell f in S˚ can be decomposed in f “ e1 ‹n´1 f1 ‹n´1 e2 ‹n´1 f2 with f1 in R˚p1q, f2 in S˚

such that `pf2q “ `pfq ´ 1, e1 and e2 in EJ possibly identities, and ‹n´1 denoting for the composition
along pn´ 1q-cells in the free n-category generated by RY E.
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4.1. Coherent Newman’s lemma modulo

Thus, a branching pf, e, gq of S modulo E with a choice of a generating confluence pf 1, e 1, g 1q may
correspond to different squares in SqrpEJ, S˚q. For instance, if g can be decomposed g “ e1 ‹n´1
g1 ‹n´1 e2, the following squares in SqrpEJ, S˚q correspond to the same branching of S modulo E:

u
f
//

e
��

v
f 1
// v 1

e 1
��

u
g
// w

g 1
// w 1

and

u
f
//

e ‹n´1 e1
��

v
f 1
// v 1

e 1
��

u1 g1e2
// w

g 1
// w 1

When computing a coherent presentation of Smodulo E, one does not want to consider two different
elements in a coherent completion of S modulo E, as defined in 5.1, to tile these squares which are not
equal in the free n-category enriched in double category generated by the double pn ´ 1q-polygraph
pE, S, Γ Y PeiffpEJ, S˚qq.

In order to avoid these redundant squares, we define a biaction of EJ on SqrpEJ, S˚q. For any n-cells
e1 and e2 in EJ and any pn` 1q-cell

u
f
//

e
��

u 1

e 1
��

u
g
// v 1

A��

in SqrpEJ, S˚q satisfying the following conditions

i) B`,n´1pe1q “ Bh´,n´1B´, n
vpAq,

ii) B´,n´1pe2q “ Bh`,n´1B´, n
vpAq,

iii) e1Bh´,npAq P S,

iv) e´2 B
h
`,npAq P S,

we define the square pn` 1q-cell e1e2A as follows:

u1
e1f
//

e1ee2
��

u 1

e 1
��

u
e´2 g
// v 1

e1
e2
A
��

where u1 “ B´,n´1pe1q. For a square extension Γ of pEJ, S˚q, we denote by E¸ Γ the set containing all
elements e1e2A with A in Γ and e1, e2 in EJ, whenever it is well defined. For any e1,e2 in EJ and A,A 1 in
Γ , the following equalities hold whenever both sides are defined:

i) e 11
e 12
p
e1
e2Aq “

e 11e1
e2e

1
2
A;

ii) e1
e2pA ˛

v A 1q “ pe1e2Aq ˛
v A 1;

iii) e1
e2pA ˛

h A 1q “ pe11 Aq ˛
h p1e2A

1q.
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4. Coherent confluence modulo

4.1.2. Coherent confluence modulo. Let pR, E, Sq be an n-polygraph modulo. Let Γ be a square exten-
sion of the pair of n-categories pEJ, S˚q. We will consider

i) pE, S, Γ Y PeiffpEJ, S˚qq ) the free pn´ 1q-category enriched in double groupoids generated by the
double pn` 1, n´ 1q-polygraph pE, S, Γq

ii) pE, S, Γ Y PeiffpEJ, S˚qq ) ,v the free pn´ 1q-category enriched in double categories whose vertical
n-cells are invertible generated by the double pn´1q-polygraph pE, S, ΓYPeiffpEJ, S˚qq in DbPolvn.

A branching modulo E as in (3.3.3) is Γ -confluent modulo E if there exists n-cells f 1, g 1 in S˚, e 1 in
EJ and a pn` 1q-cell A in pE, S, E¸ Γ Y PeiffpEJ, S˚qq ) ,v as in the following diagram:

u
f
//

e
��

u 1
f 1
//

A��

w

e 1
��

v
g
// v 1

g 1
// w 1

.

We say that S is Γ -confluent (resp. locally Γ -confluent, resp. critically Γ -confluent) modulo E if every
branching (resp. local branching, resp. critical branching) modulo E is Γ -confluent modulo E. Note that
when Γ “ SqrpEJ, S˚q (resp. Γ “ SphpS˚q), the property of Γ -confluence modulo E corresponds to the
property of confluence modulo E (resp. confluence) given in 3.3.

In the sequel, proofs of confluence modulo results will be based on the Huet double Noetherian
induction principle on the n-polygraph S> defined in 3.2.3 and the property P on R˚n´1 ˆ R

˚
n´1 defined,

for any u, v in R˚n´1, by

Ppu, vq : any branching pf, e, gq of S modulo E of source pu, vq is Γ -confluent modulo E.

4.1.3. Proposition (Coherent half Newman’s modulo lemma). Let pR, E, Sq be an n-polygraph mod-
ulo such that ERE is terminating, and Γ be a square extension of pEJ, S˚q. If S is locally Γ -confluent
modulo E then the two following conditions hold

i) any branching pf, eq of S modulo E with f in S˚p1q and e in EJ is Γ -confluent modulo E,

ii) any branching pf, eq of S modulo E with f in S˚ and e in EJp1q is Γ -confluent modulo E,

Proof. We prove condition i), the proof of condition ii) is similar. Let us assume that S is locally Γ -
confluent modulo E, we proceed by double induction.

We denote by u the source of the branching pf, eq. If u is irreducible with respect to S, then f is an
identity n-cell, and the branching is trivially Γ -confluent.

Suppose that f is not an identity and assume that for any pair pu 1, v 1q of pn ´ 1q-cells in R˚n´1 such
that there is an n-cell pu, uq Ñ pu 1, v 1q in S>, any branching pf 1, e 1, g 1q of source pu 1, v 1q is Γ -confluent
modulo E. Prove that the branching pf, eq is Γ -confluent modulo E.

We proceed by induction on `peq ě 1. If `peq “ 1, pf, eq is a local branching of S modulo E and
it is Γ -confluent modulo E by local Γ -confluence of S modulo E. Now, let us assume that for k ě 1,
any branching pf2, e2q of S modulo E such that `pe2q “ k is Γ -confluent modulo E, and let us consider
a branching pf, eq of S modulo E such that `peq “ k ` 1, with source u. We choose a decomposition
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4.1. Coherent Newman’s lemma modulo

e “ e1 ‹n´1 e2 with e1 in EJp1q and e2 in EJ. Using local Γ -confluence on the branching pf, e1q of
source u, there exist n-cells f 1 and f1 in S˚, an n-cell e 11 : tn´1pf

1q Ñ tn´1pf1q in EJ and a pn` 1q-cell
A in pE, S, Γq ) ,v such that Bh´,npAq “ f ‹n´1 f

1 and Bh`,npAq “ f1. Then, we choose a decomposition
f1 “ f

1
1 ‹n´1 f

2
1 with f11 in S˚p1q and f21 in S˚. Using the induction hypothesis on the branching pf11, e2q

of S modulo E of source u1 :“ tn´1pe1q “ sn´1pe2q, there exist n-cells f 11 and g in S˚, an n-cell
e2 : tn´1pf

1
1q Ñ tn´1pgq in EJ and a pn` 1q-cell B in pE, S, Γq ) ,v such that Bh´,npBq “ f

1
1 ‹n´1 f

1
1 and

Bh`,npBq “ g. This can be represented by the following diagram:

u

e1

��

f
// u 1

f 1
// u2

e 11
��

u1

=

��

f11
// u 11

=

��

f21
// u21

u1 f11
//

e2

��

u 11 f 11
// u 12

e 12
��

v
g

// v 1

Local Γ -conf mod E

Induction on `peq

“

Now, there is an n-cell pu, uq Ñ pu 11, u
1
1q in S> given by the composition

pu, uq Ñ pu1, u1q Ñ pu1, u
1
1q Ñ pu 11, u

1
1q

where the first step exists because `pe1q ą 0 and the remaining composition is as in 3.2.3. Then, we
apply double induction on the branching pf21, f

1
1q of S modulo E of source pu 11, u

1
1q: there exist n-cells f2

and f 12 in S˚ and an n-cell e3 : tn´1pf2q Ñ tn´1pf
1
2q in EJ. By a similar argument, we can apply double

induction on the branchings pf2, pe 11q
´q and pf 12, e

1
2q of S modulo E, so that there exist n-cells f2,f3, f 13

and g 1 in S˚ and n-cells e21 : tn´1pf
2q Ñ tn´1pf3q and e22 : tn´1pf

1
3q Ñ tn´1pg

1q as in the following
diagram:

u

e1

��

f
// u 1

f 1
// u2

e 11
��

f2
// u3

e21
��

u1

=

��

f11
// u 11

=

��

f21
// u21 f2 // w1 f3 //

e3

��

w 11

u1 f11
//

e2

��

u 11 f 11
// u 12

e 12
��

f 12
// w2 f 13

// w 12

e22
��

v
g

// v 1

g 1
// v2

Local Γ -conf mod E

Induction on `peq

“ Db Ind.

Db Ind.

Db Ind.
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4. Coherent confluence modulo

We can then repeat the same process using double induction on the branching pf3, e3, f 13q of S modulo
E of source pw1, w2q and so on, and this process terminates in finitely many steps, otherwise it leads
to an infinite rewriting sequence wrt S starting from u1, which is not possible since ERE, and thus S, is
terminating. This yields the Γ -confluence of the branching pf, eq.

4.1.4. Theorem (Coherent Newman’s lemma modulo). Let pR, E, Sq be an n-polygraph modulo such
that ERE is terminating, and Γ be a square extension of pEJ, S˚q. If S is locally Γ -confluent modulo E
then it is Γ -confluent modulo E.

Proof. Prove that any branching pf, e, gq of S modulo E is Γ -confluent modulo E. Let us choose such a
branching and denote by pu, vq its source. We assume that any branching pf 1, e 1, g 1q of S modulo E of
source pu 1, v 1q such that there is an n-cell pu, vq Ñ pu 1, v 1q in S> is Γ -confluent modulo E. We follow
the proof scheme used by Huet in [15, Lemma 2.7]. Let us denote by n :“ `pfq and m :“ `pgq. We
assume without loss of generality that n ą 0 and we fix a decomposition f “ f1 ‹n´1 f2 with f1 in S˚p1q

and f2 in S˚.

Ifm “ 0, by Proposition 4.1.3 on the branching pf1, eq of Smodulo E, there exist n-cells f 11 and g 1 in
S˚, ann-cell e 1 : tn´1pf 11q Ñ tn´1pg

1q and a pn`1q-cellA in pE, S, Γq ) ,v such that Bh´,npAq “ f1‹n´1f
1
1

and Bh`,npAq “ g
1. Then, since there is an n-cell pu, uq Ñ pu1, u1q in S> with u1 :“ tn´1pf1q, we can

apply double induction on the branching pf2, f 11q of S modulo E as in the following diagram:

u
f1
//

=

��

u1
f2
//

=

��

u2
f 12
// u 12

��

u

e
��

f1 // u1 f 11
// u2 f21

//

e 1
��

u 12

v
g 1

// v 1

Prop. 4.1.3

“ Db Ind.

We finish the proof of this case with a similar argument than in 4.1.3, using repeated double inductions
that can not occur infinitely many times since S is terminating.

Now, assume that m ą 0 and fix a decomposition g “ g1 ‹n´1 g2 of g with g1 in S˚p1q and g2 in
S˚. By Step 1 on the branching pf1, eq of S modulo E, there exist n-cells f 11 and h1 in S˚, an n-cell
e1 : tn´1pf

1
1q Ñ tn´1ph1q in EJ and a pn` 1q-cellA in pE, S, Γq ) ,v such that Bh´,npAq “ f1 ‹n´1 f

1
1 and

Bh`,npAq “ h1. We distinguish two cases whether h1 is trivial or not.

If h1 is trivial, the Γ -confluence of the branching pf, e, gq of S modulo E is given by the following
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4.1. Coherent Newman’s lemma modulo

diagram

u

=

��

f1
// u1

=

��

f2
// u2

f 12
// u 12

��

u f1 //

e

��

u1 f 11
// u 11 f3 //

e 1

��

u3

e1

��

f4
// u4 f5 // u5

��

v

=

��

1v // v

=

��

g1 // v 11
=

��

g 11
// v21 g21

// w1

��

g3
// w3

v
1v

// v g1 // v 11 g2
// v2

g 12

// w2

Prop. 4.1.3Prop. 4.1.3

“

“ “

Db Ind.

Db Ind.

Db Ind.

where the branchings pf1, eq and pg1, e 1q of Smodulo E are Γ -confluent by Proposition 4.1.3, double
induction applies on the branchings pf2, f 11 ‹n´1 f3q, pg

1
1, g2q and pf4, e1, g21 q since there are n-cells

pu, vq Ñ pu, uq Ñ pu1, u1q , pu, vq Ñ pv, vq Ñ pv, v 11q Ñ pv 11, v
1
1q and pu, vq Ñ pu3, vq Ñ pu3, v

2
1 q

in S> and one can check that this process of double induction can be repeated, terminating in a finite
number of steps since S is terminating and yields a Γ -confluence of the branching pf, e, gq modulo E.

If h1 is not trivial, let us fix a decomposition h1 “ h11 ‹n´1 h
2
1 with h11 in S˚p1q and h21 in S˚. The

Γ -confluence of the branching pf, e, gq of S modulo E is given by the following diagram:
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4. Coherent confluence modulo

u

=
��

f1
// u1

=

��

f2
// u2

f 12
// u 12

��

u

e

��

f1 // u1 f 11
// u 11

��

f3 // u3 f4 // u4

��

v

=

��

h11
// v1

=

��

h21
// w1 h2 // w2

��

h 12
// w 12

v

=

��

h11
// v1 h 11

// w 11

��

h3 // w3 h 13
// w 13

��

v

=

��

g1 // v 1

=

��

g 11
// v 11 g 12

// v 12 g 13
//

��

v 13

v
g1

// v 1
g2

// v2 g3
// v3

“

“

“

Prop. 4.1.3

Local Γ -conf mod E

Db Ind.

Db Ind.

Db Ind.

Db Ind.

Db Ind.

where the branching pf1, eq modulo E is Γ -confluent by Proposition 4.1.3, the branching ph11, g1q is Γ -
confluent by assumption of local Γ -confluence of S, and one can check that double induction applies on
the branchings pf2, f 11q, ph

2
1, h

1
1q, pg

1
1, g2q, pf3, h2q and ph3, g 12q. This process of double induction can be

repeated, terminating in a finite number of steps since S is terminating and yields a Γ -confluence of the
branching pf, e, gq modulo E.

4.2. Coherent critical branching lemma modulo

In this subsection, we show that to prove coherent local confluence of an n-polygraph modulo, we do
not need to consider all the local branchings. We show how to prove coherent local confluence of an
n-polygraph modulo from coherent confluence of critical branchings.

4.2.1. Proposition. Let pR, E, Sq be an n-polygraph modulo such that ERE is terminating. Then S is
Γ -locally confluent modulo E, if and only if the two following conditions hold:

a) any local branching pf, gq : uñ pv,wq with f in S˚p1q and g in R˚p1q is Γ -confluent modulo E:

a):
u

f
//

=

��

v
f 1
// v 1

e 1
��

u
g
// w // w 1
A
��
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4.2. Coherent critical branching lemma modulo

b) any local branching pf, eq : u ñ pv, u 1q modulo E with f in S˚p1q and e in EJp1q is Γ -confluent
modulo E:

b):
u

f
//

e
��

v
f 1
// v 1

e 1
��

u 1

g 1
// w

B
��

Proof. We prove this result using Huet double Noetherian induction principle on the n-polygraph S>

defined in 3.2.3 and the property P on R˚n´1 ˆ R
˚
n´1 defined by: for any u, v in R˚n´1,

Ppu, vq : any branching pf, e, gq of S modulo E of source pu, vq is Γ -confluent modulo E.

The only part is trivial because properties a) and b) correspond to Γ -confluence of some local branch-
ings of S modulo E. Conversely, assume that S satisfy properties a) and b) and let us at first prove that
any branching pf, eq with f in S˚p1q and e in EJ is Γ -confluent. We consider such a branching pf, eq of
source u and assume that any branching pf 1, e 1, g 1q of Smodulo E of source pu 1, v 1q such that there exist
an n-cell pu, uq Ñ pu 1, v 1q in S> is Γ -confluent modulo E. We proceed by induction on `peq. If `peq “ 1,
the Γ -confluence of the branching pf, eq is given by property b). Now, suppose this result proved for any
branching pf2, e2q with f2 in S˚p1q and e2 in EJ such that `pe2q “ k ě 1 and assume that `peq “ k` 1.
Let us choose a decomposition e “ e1 ‹n´1 e2 with e1 in EJp1q and e2 in EJ such that `pe2q “ k. By
property b), the local branching pf, e1q is Γ -confluent modulo E: there exist n-cells f 1 and f1 in S˚, an
n-cell e 1 : tn´1pf 1q Ñ tn´1pf1q and a pn` 1q-cell A in pE, S, Γq ) ,v such that Bh´,npAq “ f ‹n´1 f

1 and
Bh`,npAq “ f1.

We choose a decomposition f1 “ f11 ‹n´1 f
2
1 with f11 in S˚p1q and f21 in S˚, and by induction hy-

pothesis, the branching pf11, e2q is Γ -confluent modulo E: there exist n-cells f 11 and g in S˚, an n-cell
e2 : tn´1pf

1
1q Ñ tn´1pgq and a pn ` 1q-cell B in pE, S, Γq ) ,v such that Bh´,npBq “ f11 ‹n´1 f

1
1 and

Bh`,npBq “ g:

u

e1

��

f
// u 1

f 1
// u2

e 11
��

u1

=

��

f11
// u 11

=

��

f21
// u21

u1 f11
//

e2

��

u 11 f 11
// u 12

e 12
��

v
g

// v 1

b)

Induction on `peq

“

We then finish this part of the proof with a similar argument than in the proof of Proposition 4.1.3.
Now, let us prove that any local branching is Γ -confluent modulo E. We consider a local branching

pf, e, gq of Smodulo E, and assume without loss of generality that f is a non-trivial n-cell in S˚p1q. There
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4. Coherent confluence modulo

are two cases: either g is trivial, and the local branching pf, eq of Smodulo E is Γ -confluent by b), or e is
trivial. In that case, if g is in R˚p1q, then Γ -confluence of the branching pf, gq is given by a). Otherwise,
let us choose a decomposition g “ e1 ‹n´1 g 1 ‹n´1 e2 with e1,e2 in EJ and g 1 in R˚p1q. Now, let us prove
the confluence of the branching

u
f
//

e1
��

v

u 1

g 1e2

// v 1

of S modulo E, where g 1e2 is an n-cell in S˚p1q. We will then prove the Γ -confluence of the branching
pf, gq using the biaction of EJ on SqrpEJ, S˚q. Using first part of the proof on the branching pf, e1q of
S modulo E, there exist n-cells f 1 and f1 in S˚, an n-cell e 1 : tn´1pf 1q Ñ tn´1pf1q and a pn ` 1q-cell
A in pE, S, Γq ) ,v such that Bh´,npAq “ f ‹n´1 f

1 and Bh`,npAq “ f1. Using property a) on the local
branching pg 1, g 1e2q P R˚p1q ˆ S˚p1q and the trivial confluence given by the right vertical cell e2, there
exist a pn ` 1q-cell B in pE, S, Γq ) ,v such that Bh´,npBq “ g 1 and Bh`,npBq “ g 1e2. Let us choose a
decomposition f1 “ f11 ‹n´1 f

2
1 with f11 in S˚p1q and f21. By property a) on the local branching pf11, g

1q,
there existn-cells f 11 and g 11 in S˚, ann-cell e2 : tn´1pf 11q Ñ tn´1pg

1
1q and a pn`1q-cellC in pE, S, Γq ) ,v

such that Bh´,npCq “ f
1
1 ‹n´1 f

1
1 and Bh`,npCq “ g

1 ‹n´1 g
1
1 as depicted on the following diagram:

u

e1

��

f
// u 1

f 1
// u2

e 11
��

u1

=

��

f11
// u 11

=

��

f21
// u21

u1 f11
//

=

��

u 11 f 11
// u 12

e 12
��

v g 1 //

=

��

v1
g 12

//

e2
��

v2

v
g 1e2

// v 1

A
��

C��

B��

“

There aren-cells pu, uq Ñ pu 11, u
1
1q and pu, uq Ñ pv1, v1q in S> given by the following compositions

pu, uq Ñ pu1, u1q Ñ pu1, u
1
1q Ñ pu 11, u

1
1q

pu, uq Ñ pu1, u1q Ñ pu1, vq Ñ pv, vq Ñ pv, v1q Ñ pv1, v1q

so that we can apply double induction on the branchings pf21, f
1
1q and pg 12, e2q of Smodulo E, and we finish

the proof of Γ -confluence of the branching pf, e1, g 1e2q using repeated double inductions, terminating in
a finite number of steps since S is terminating.
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4.2. Coherent critical branching lemma modulo

Now, we get the Γ -confluence of the branching pf, gq of S by the following diagram:

u

=

��

f
// u 1

f 1
// u2

e 11
��

u1

=

��

e1f
1
1
// u 11

=

��

f21
// u21

u1 e1f
1
1
//

=

��

u 11 f 11
// u 12

e 12
��

v e1g
1 //

=

��

v1
g 12

//

e2
��

v2

v
e1g

1e2

// v 1

“

1
e1
A
��

e1
e´1
B
��

e1
e´1
C
��

since the top rectangle is by definition tiled by the pn` 1q-cell 1e1A, the bottom rectangle is tiled by the
pn` 1q-cell e1

e´1
B and the remaining rectangle is tiled by the pn` 1q-cell e1

e´1
C. The rest of the diagram is

tiled in the same way than above.

4.2.2. Theorem (Coherent critical branching lemma modulo). Let pR, E, Sq be an n-polygraph mod-
ulo such that ERE is terminating. Then S is Γ -locally confluent modulo E, if and only if the two following
conditions hold

a0q any critical branching pf, gq : uñ pv,wq with f in S˚p1q and g in R˚p1q is Γ -confluent modulo E:

a0q:

u
f
//

=

��

v
f 1
// v 1

e 1
��

u
g
// w // w 1
A��

b0q any critical branching pf, eq : u ñ pv, u 1q modulo E with f in S˚p1q and e in EJp1q is Γ -confluent
modulo E:

b0q:

u
f
//

e
��

v
f 1
// v 1

e 1
��

u 1

g 1
// w

B��

Proof. By Proposition 4.2.1, the local Γ -confluence is equivalent to both conditions a) and b). Let us
prove that the condition a) (resp. b)) holds if and only if the condition a0q (resp. b0q) holds. One
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5. Coherent completion modulo

implication is trivial. Suppose that conditions b0q holds and prove condition b). The proof of the other
implication is similar.

We examine all the possible forms of local branchings modulo given in 3.3.5. Local Peiffer branching
modulo of the forms (3.3.6) are trivially confluent modulo:

u ‹i v
f ‹i v

//

u ‹i e
��

u 1 ‹i v

u 1 ‹i e
��

u ‹i v
1

f ‹i v
1
// u 1 ‹i v

1

w ‹i u
w ‹i f

//

e 1 ‹i u
��

w ‹i u
1

e 1 ‹i u
1

��

w 1 ‹i u
w 1 ‹i f

// w 1 ‹i u
1

and Γ -confluent modulo by definition of Γ -confluence. The other local branchings modulo are overlap-
ping branchings modulo pf, eq : uñ pu 1, vq of the form (3.3.7), where f is an n-cell of S˚p1q and e is an
n-cell of EJp1q. There exists a whisker C on R˚n´1 and a critical branching pf 1, e 1q : u0 ñ pu 10, v0q such
that f “ Crf 1s and e “ Cre 1s. Following condition b0q the branching pf 1, e 1q is Γ -confluent, that is there
exists a Γ -confluence modulo E:

u
f 1
//

e 1
��

v
f2
// v 1

e2
��

u 1

g 1
// w

A��

inducing a Γ -confluence for pf, eq:

Crus
Crf 1s

//

Cre 1s
��

Crvs
Crf2s

// v 1

Cre2s
��

Cru 1s
Crg 1s

// w

CrAs
��

This proves the condition b).

5. COHERENT COMPLETION MODULO

In this section, we show how to construct a two-fold coherent presentation of an pn´1q-category C start-
ing with a presentation of this pn´ 1q-category by an n-polygraph modulo. We explain how the results
presented in this section generalize to n-polygraph modulo the coherence results from n-polygraphs as
given in [12, 13].

5.1. Coherent completion modulo

In this subsection, we recall the notion of coherent completion of a convergentn-polygraph and introduce
the notion of coherent completion modulo for polygraphs modulo, given by adjunction of a square cell
for any confluence diagram of critical branching modulo.
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5.2. Coherence by E-normalization

5.1.1. Coherent completion. Recall from [12] that a convergent n-polygraph can be extended into a
coherent presentation of the category it presents. Explicitly, given a convergent n-polygraph E, we
consider a family of generating confluences of E as a cellular extension of the free pn`1, nq-category EJ

that contains exactly one pn` 1q-cell

v e1
  

Ee,e 1��u

e 00

e 1
--

w

v 1 e 11

??

for every critical branching pf, gq of E. Any pn ` 1, nq-polygraph obtained from E by adjunction of
a chosen family of generating confluences of E is a coherent presentation of the pn ´ 1q-category E,
[12]. Note that this result was originally proved by Squier in the case n “ 2 in [23]. From such a
pn ` 1, nq-polygraph we can define a double pn ` 2, nq-polygraph pE,H,CdpEqq, where CdpEq is the
square extension of the pn`1, nq-categories pEJ, 1q seen as an n-category enriched in double groupoids
that contains exactly one square pn` 1q-cell

u

e

��

“
// u

e 1

��

v

e1

��

v 1

e 11
��

w “
// w

Ee,e 1

��

for every critical branching pe, e 1q of E.

5.1.2. Coherent completion modulo. Let pR, E, Sq be an n-polygraph modulo. A coherent completion
modulo E of S is a square extension of the pair of pn` 1, nq-categories pEJ, SJq whose elements are the
square cells Af,g and Bf,e of the following form:

u
f
//

=

��

u 1
f 1
//

Af,g��

w

e 1
��

u
g
// v

g 1
// w 1

u
f
//

e
��

u 1
f 1
//

Bf,e��

w

e 1
��

v
g 1

// w 1

(5.1.3)

for any critical branchings pf, gq and pf, eq of S modulo E, where f, g and e are n-cells of S˚p1q,
R˚p1q and EJp1q respectively. Note that such completion is not unique in general and depends on the
n-cells f 1, g 1, e 1 chosen to obtain the confluence of the critical branchings.

5.2. Coherence by E-normalization

In this subsection, we show how to obtain an acyclic square extension a the pair of categories pEJ, SJq
coming from a polygraph modulo pR, E, Sq, under an assumption of normalization of S with respect toE.
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5. Coherent completion modulo

5.2.1. Normalisation in polygraphs modulo. Let us recall the notion of normalization strategy in an
n-polygraph P. Denote by C the pn´ 1q-category presented by P. Consider a section s : CÑ P˚n of the
canonical projection π : P˚n Ñ C, that sends any pn ´ 1q-cell u in C on a pn ´ 1q-cell in P˚n´1 denoted
by û such that πpûq “ u. A normalization strategy for P with respect to s is a map

σ : P˚n´1 Ñ P˚n

that sends every pn´ 1q-cell u of P˚n´1 to a pn` 1q-cell

σu : uÑ û.

Let pR, E, Sq be an n-polygraph modulo. The n-polygraph modulo S is normalizing if any pn´ 1q-
cell u admits at least one normal with respect to S, that is NFpS, uq is not empty.

A set X of pn ´ 1q-cells in R˚n´1 is E-normalizing with respect to S if for any u in X, the set
NFpS, uq X IrrpEq is not empty. The n-polygraph modulo S is E-normalizing if it normalizing and
R˚n´1 is E-normalizing. When S is E-normalizing, a E-normalization strategy σ for S, associates to each
pn´ 1q-cell u in R˚n´1 an n-cell σu : uÑ û in S˚, where û belongs to NFpS, uq X IrrpEq.

5.2.2. Theorem. Let pR, E, Sq be n-polygraph modulo, and Γ be a square extension of the pair of pn`
1, nq-categories pEJ, SJq. If the following conditions hold

i) E is convergent,

ii) S is Γ -confluent modulo E,

iii) IrrpEq is E-normalizing with respect to S,

iv) ERE is terminating,

then the square extension Γ Y CdpEq is acyclic.

Proof. Let Γ be a square extension of pEJ, SJq. We will denote by C the free n-category enriched in
double groupoid pE, S, Γ Y CdpEqq ) generated by the double pn ` 2, nq-polygraph pE, S, Γ Y CdpEqq.
We will denote by ru the unique normal form of a pn´ 1q-cell u in R˚n´1 with respect to E and we fix a
normalization strategy ρu : uÑ ru for E.

By termination of ERE, the n-polygraph modulo S is normalizing. Let us fix a E-normalization
strategy σu : uÑ û for S. Let us consider a square

u
f
//

e
��

v

e 1
��

u 1
g
// v 1

(5.2.3)

in C. By definition the n-cell f in SJ can be decomposed (in general in a non unique way) into a zigzag
sequence f0‹n´1 f´1 ‹n´1 ¨ ¨ ¨‹n´1 f2n‹n´1 f

´
2n`1 with source u and target vwhere the f2k : u2k Ñ u2k`1

and f2k`1 : u2k`2 Ñ u2k`1, for all 0 ď k ď n are n-cell of S˚, with u0 “ u and u2n`2 “ v.
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5.2. Coherence by E-normalization

By Γ -confluence modulo E there exist ann-cells efi in EJ and pn`1q-cell σfi in C as in the following
diagrams:

u2k
f2k

//

ρu2k

��

u2k`1
σu2k`1

// ^u2k`1

ef2k
��

Ąu2k σ
Ąu2k

//y
Ąu2k

σf2k
��

u2k`2
f2k`1

//

ρu

��

u2k`1
σu2k`1

// ^u2k`1

ef2k`1
��

Ču2k`2 σ
Ču2k`2

//{
Ču2k`2

σf2k`1
��

for all 0 ď k ď n. By definition of the normalization strategy σ, for any 0 ď i ď 2n`1, the pn´1q-cell
p

ru is a normal form with respect to E, and by convergence of the n-polygraph E we have the equality
p

rui “
z

Ćui`1.
Moreover, for any 1 ď i ď 2n`1, there exists a square pn`1q-cell in C as in the following diagram:

^ui`1
“
//

efi
��

^ui`1

efi`1
��

p

rui “
//z
Ćui`2

Ei`1
��

We define a square pn` 1q-cell σf in C as the following ˛v-composition:

σf0 ˛
v E1 ˛

v σf1 ˛
v σf2 ˛

v . . . ˛v σf2n ˛
v E2n`1 ˛

v σf2n`1

For an even integer i ě 0

ui

ρui

��

fi
// ui`1

σui`1
//
zui`1

“
//

efi
��

zui`1

efi`1
��

ui`1
σui`1
oo ui`2

fi`1
oo

fi`2
//

ρu2

��

ui`3
σui`3

// ^ui`3
“
//

efi`2
��

^ui`3

efi`3
��

. . .

rui σ
Ăui

// p
rui “

//z
Ćui`2 Ćui`2σ

Ćui`2

oo

σ
Ćui`2

//z
Ćui`2 “

//z
Ćui`4 . . .

σfi
��

σfi`1
��

σfi`2
��

Ei`1
��

Ei`3
��

In this way, we have constructed a square pn` 1q-cell

u
f
//

ρu
��

v

ρv
��

ru
σ
ruσ
´
rv

//
rv

σf
��
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5. Coherent completion modulo

Similarly, we construct a square pn` 1q-cell σg as follows:

ru
σ
ruσ
´
rv
//
rv

u 1
g
//

ρu 1

OO

v 1

ρv 1

OOEY

σg

using that ru “ ru 1 and rv “ rv 1 by convergence of E. We obtain a square pn`1q-cell Ee˛v pσf˛hσ´g q˛
vEe 1

filling the square (5.2.3), as in the following diagram:

u
“

//

e

��

u

ρu

��

f
// v

ρv

��

“
// v

e 1

��

ru
σ
ru

// p
ru “ p

rv rv
σ
rv

oo

u 1 “
// u 1

g
//

ρu 1

OO

v 1 “
//

ρv 1

OO

v 1

σf
��

σg

EY
Ee

��

Ee 1

��

5.2.4. Corollary. Let pR, E, Sq be an n-polygraph modulo such that

i) E is convergent,

ii) S is confluent modulo E,

iii) ERE is terminating,

iv) IrrpEq is E-normalizing with respect to S.

For any coherent completion Γ of S modulo E and any coherent completion CdpEq of E, the square
extension Γ Y CdpEq is acyclic.

Note that, when E is empty in Corollary 5.2.4, we recover Squier’s theorem [23, Theorem 5.2] for
convergent n-polygraphs, [12, Proposition 4.3.4].

5.2.5. Decreasing orders for E-normalization. Let pR, E, Sq be an n-polygraph modulo. We describe
a way to prove that the set IrrpEq is E-normalizing, laying on the definition of a termination order for R.

Given an n-polygraph P, one defines a decreasing order operator for P as a family of functions

Φp,q : P˚n´1pp, qq Ñ Nmpp,qq

indexed by pairs of pn´ 2q-cells p and q in P˚n´2 satisfying the following conditions:
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5.3. Coherence by commutation

i) For any pn ´ 1q-cells u and v in P˚n´1pp, qq such that there exists a n-cell f : u Ñ v in P˚, the
function Φp,q satisfy Φp,qpuq ą Φp,qpvq, where ą is the lexicographic order on Nmpp,qq. We
denote byąlex the partial order on P˚n´1 defined by u ąlex v if and only if u and v have same source
p and target q and Φp,qpuq ą Φp,qpvq.

ii) For any u and v in P˚n´1 and any whisker C on P˚n´1, u ąlex v implies that Crus ąlex Crvs.

iii) The normal forms in P˚n´1pp, qq with respect to P are sent to the tuple p0, . . . , 0q in Nmpp,qq.

Note that if an n-polygraph P admits a decreasing order operator, it is terminating. Actually, such
a decreasing order is a terminating order for P which is similar to a monomial order, but that we do not
require to be total.

5.2.6. Proving coherence modulo using a decreasing order. Consider ann-polygraph modulo pR, E, Sq
such that E is terminating. A decreasing order operator Φ for E is compatible with R if for any n-cell
f : uÑ v in R˚, then Φp,qpuq ě Φp,qpvq.

In that case, the set IrrpEq is E-normalizing with respect to R, since if u in R˚n´1 is a normal form
with respect to E,Φp,qpuq “ p0, . . . , 0q in Nmpp,qq and by compatibility with R, for any n-cell f : uÑ v

in R˚, we get Φp,qpvq “ p0, . . . , 0q so v is still a normal form with respect to E. We can also prove that
IrrpEq is E-normalizing with respect to ER using this method, provided for any pn ´ 1q-cell u in IrrpEq
irreducible by R, any pn´ 1q-cell u 1 such that there is an n-cell uÑ u 1 in EJ is also irreducible by R.
This is for instance the case if R is left-disjoint from E, that is for any pn ´ 1q-cell u in spRq, we have
GRpuq X En “ H where:

´ spRq is the set of pn´ 1q-sources in R˚n´1 of generating n-cells in Rn,

´ for any u in R˚n´1, GRpuq is the set of generating n-cells in Rn contained in u.

With these conditions, we can apply Theorem 5.2.2 to obtain acyclic extensions of R or ER.

5.3. Coherence by commutation

In this subsection, we prove that an acyclic extension of a pair pEJ, SJq coming from a polygraph modulo
pR, E, Sq can be obtained from an assumption of commuting normalization strategies for the polygraphs S
and E. In particular, with further assumptions about this commutation we show to prove E-normalization.

5.3.1. Commuting normalization strategies. Let pR, E, Sq be an n-polygraph modulo. Let σ (resp. ρ)
a normalization strategy with respect to S (resp. with respect to E). The normalization strategies σ and ρ
are weakly commuting if for any u in R˚n´1, there exists an n-cell ηu in S˚ as in the following diagram:

u
σu
//

ρu
��

û

ρû
��

ru
ηu
// r
pu

(5.3.2)

Given weakly commuting normalization strategies σ and ρ, we denote by Npσ, ρq the square exten-
sion of the pair pEJ, SJq made of square of the form (5.3.2), for every pn´ 1q-cell u in R˚n´1.
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5. Coherent completion modulo

We say that the normalization strategies σ and ρ are commuting if ηu “ σ
ru holds, for all pn´1q-cell

u in R˚n´1. Note that, σ and ρ commutes if and only if the equality p

ru “ r

pu hold for all pn ´ 1q-cells of
R˚n´1.

5.3.3. Theorem. Let pR, E, Sq be an n-polygraph modulo, Γ be a square extension of the pair of pn `
1, nq-categories pEJ, SJq, σ and ρ be normalization strategies for S and E respectively. If the following
four conditions hold

i) E is convergent,

ii) S is Γ -confluent modulo E,

iii) ERE is terminating,

iv) σ and ρ are weakly commuting,

then the square extension Γ Y CdpEq YNpσ, ρq is acyclic.

Proof. Denote by C the free n-category enriched in double groupoids pE, S, Γ Y CdpEq Y Npσ, ρqq ) .
For u in R˚n´1, we denote by Nu the square pn` 1q-cell in C corresponding to the square (5.3.2).

We prove that for any n-cell f : u Ñ v in S˚, there exists a square pn ` 1q-cell rσf of the following
form

pu

ρ
pu

��

u
f
//

σu
oo v

σv
//
pv

ρ
pv

��

r

pu “
// r
pv

rσf
��

in C. The square pn` 1q-cell rσf is obtained as the following composition:

pu

ρ
pu

��

u
f
//

σu
oo

ρu

��

v
σv
//
pv

“
//
pv

“
//

eηu
��

pv

ev̂
��

“
//
pv

ρ
pv

��

r

pu ru
ηu
oo

ηu
// r
pv

σ
r

pv

//
p

p

rv “
//
p

p

rv p

rv
σ
p

rv

oo

Nu
��

ηf
��

Eeηu ,ev̂
��

γv
��

where the n-cell eηu and the square pn` 1q-cell ηf (resp. the n-cell ev̂ and the square pn` 1q-cell γv)
exist in C by Γ -confluence modulo E of S, and the square pn` 1q-cell lives in CdpEq ) .

Now, let consider a square

u
f
//

e
��

v

e 1
��

u 1
g
// v 1

(5.3.4)

in C. By definition the n-cell f in SJ can be decomposed (in general in a non unique way) into a zigzag
sequence f0‹n´1 f´1 ‹n´1 ¨ ¨ ¨‹n´1 f2n‹n´1 f

´
2n`1 with source u and target vwhere the f2k : u2k Ñ u2k`1

40



5.3. Coherence by commutation

and f2k`1 : u2k`2 Ñ u2k`1, for all 0 ď k ď n are n-cell of S˚, with u0 “ u and u2n`2 “ v. We define
a square pn` 1q-cell σf as the following vertical composition:

Nu ˛
v
Ăσf0 ˛

v
Ăσf1 ˛

v . . . ˛v Čσf2n`1 ˛
v Nv

as depicted on the following diagram

u0
σu0
//

ρu0

��

û0

ρ
xu0

��

u0
σu0
oo

f0
// u1

σu1
//
xu1

ρû1
��

u1
σu1
oo u2

f1
oo

σu2
//
xu2

σu2
//

ρ
xu2

��

u2
f2
// u3

σu3
// û3

ρ
xu3

��

. . .

Ău0 ηu0
// Ă
xu0 “

// Ă
xu1 “

// Ă
xu2 “

// Ă
xu3 . . .

Nu0
��

Ăσf0
��

Ăσf1
��

Ăσf2
��

In this way, we have constructed a square pn` 1q-cell

u
f
//

ρu
��

v

ρv
��

ru
ηuη

´
v

//
rv

σf
��

Similarly, we construct a square pn` 1q-cell σg as follows:

ru
ηuη

´
v
//
rv

u 1
g
//

ρu 1

OO

v 1

ρv 1

OOEY

σg

using that ru “ ru 1 and rv “ rv 1 by convergence of E. We obtain a square pn ` 1q-cell filling the
square (5.3.4), as in the proof of Theorem 5.2.2.

Moreover, when σ and ρ are commuting, IrrpEq is E-normalizing with respect to S since p

ru “ r

pu

implies that the normal form p

ru with respect to S also is a normal form with respect to E. Then Theorem
5.2.2 applies, to prove that Γ Y SphpEJ, 1q is acyclic.

5.3.5. Remark. One can recover the fact that with the hypothesis of Theorem 5.3.3 and the assumption
that the equality ηu “ σ

ru holds for any u in R˚p´1, we do not need the square pn ` 1q-cells Nu in the
coherent extension, using the following lemma on the square (5.3.2).

5.3.6. Lemma. Let S be an n-polygraph modulo such that ERE is terminating, and Γ be a square exten-
sion of the pair of pn` 1, nq-categories pEJ, SJq such that S is Γ -confluent modulo E. Then any square
in pE, S, Γq ) ,v of the form

u
f
//

e
��

v
f 1
// w

e 1
��

u 1
g
// v 1

g 1
// w 1

(5.3.7)
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5. Coherent completion modulo

such that w and w 1 are normal forms with respect to S is the boundary of a square pn ` 1q-cell
in pE, S, Γq ) ,v.

Proof. Let us consider a square as in (5.3.7). By Γ -confluence of S modulo E on the branching pf, e, gq,
there exists a Γ -confluence as in the following diagram:

u
f
//

e
��

v
f1
// v1

e2
��

u 1
g
// v 1

g1
// v 11

A��

By Γ -confluence on the branchings pf 1, f1q and pg1, g 1q of S, there exist square pn` 1q-cells B and B 1 as
follows:

u

=

��

f
// v

=

��

f 1
// w

e1

��

u

e

��

f // v f1 // v1

e2
��

f2 // v2

u 1

=

��

g // v 1

=

��

g1 // v 11 g2 // v 12

e3
��

u 1 g // v 1 g 1 // w 1

“

“

A
��

B
��

B 1

��

Then, we use Huet’s double induction as in Section 4 to prove that the square

v1

e2
��

f2
// v2

e´1 e
1e2

��

v 11 g2
// v 12

is the boundary of a square pn` 1q-cell in pE, S, Γq ) ,v.

5.4. A diagrammatic rewriting toy example

In this subsection, we present an application of Theorem 5.2.2 on a toy example in the context of di-
agrammatic rewrting. We consider a presentation of a pivotal monoidal category, seen as a pivotal
2-category with only one 0-cell presented by a 3-polygraph. The pivotal structure can be interpreted
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5.4. A diagrammatic rewriting toy example

by isotopies relations on the 2-cells of the 2-category. Such relations produce many critical branching
with primary rules of the presentation. In this example, by using the structure of polygraph modulo, we
show how manage such isotopy rules with respect the primary rules in the computation of a coherent pre-
sentation of the given monoidal category. In particular, we illustrate the method with a kind of relation
arising in many presentation of monoidal categories, relation (5.4.7), see for instance Khovanov-Lauda’s
2-category [18] which categorifies quantum groups associated with symmetrizable Kac-Moody algebras,
or in the definition of Heisenberg category as given in [4, 19].

5.4.1. A toy example. We consider the 3-polygraph P defined by the following data:

i) only one 0-cell,

ii) two 1-cells ^ and _,

iii) eight 2-cells pictured by

‚ ‚ (5.4.2)

, , , , (5.4.3)

iv) the 3-cells of P are given by:

a) the three family of 3-cells of the 3-polygraph of pearls from [12]:

V , V , V , V (5.4.4)

‚ V ‚ , ‚ V ‚ , ‚ V ‚ , ‚ V ‚ , (5.4.5)

‚ V ‚ , ‚ V ‚ , ‚ V ‚ , ‚ V ‚ (5.4.6)

b) the 3-cells of the 3-polygraph of permutations for both upward and downward orientations of
strands:

α`
V

α´
V

β`
V

β´
V

(5.4.7)

c) a 3-cell
γ

V
(5.4.8)

Note that the relations (5.4.4 – 5.4.6) are isotopy relations, corresponding to the fact that the gener-
ating 1-cells _ and ^ are biadjoints in the 2-category P presented by P, and cups and caps 2-cells are
units and counits for these adjunctions. Relations implying dots also ensure that the dot 2-cell is a cyclic
2-morphism in the sense of [6] for the biadjunction _ $ ^ $ _ making P a pivotal 2-category.
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5. Coherent completion modulo

5.4.9. Confluence of polygraph P. The 3-polygraph P is not confluent since the branching

(<

$8

(5.4.10)

is not confluent. Moreover, solving this obstruction to confluence by using a Knuth-Bendix completion
may create a great number of relations, making analysis of confluence from critical branchings ineffi-
cient. To tackle this issue, we use rewriting modulo isotopy.

5.4.11. Confluence modulo isotopy. We consider the 3-polygraph E defined by the following data

i) Eď1 “ Pď1,

ii) it has six 2-cells given in (5.4.3) and the dot 2-cells in 5.4.2,

iii) the isotopy 3-cells (5.4.4 – 5.4.6) of the 3-polygraph of pearls.

Let R be a 3-polygraph such that Rď2 “ Pď2 where P is the 3-polygraph of 5.4.1, and whose 3-cells are
given by pα˘, β˘, γq of (5.4.7 – 5.4.8), and let us consider the 3-polygraph modulo ER. Following 3.4.1,
the only critical branchings we have to consider are those of the form pf, gq with f in ER

˚p1q and g in
R˚p1q. The branching (5.4.10) is not such a branching because the top 3-cell belongs to EJ, and the top-
right 2-cell is not reducible by R. Moreover, one can check that the only critical branchings we have to
consider are given by pairs pf, gq of 3-cells both in R˚p1q. The 3-cell γ in R˚p1q does not overlap with α˘
or β˘, so the only critical branchings we have to consider are those of the 3-polygraph of permutations
described in [12, 5.4.4], with either upward or downward orientated strands.

5.4.12. Decreasing order operator for E-normalization. The 3-polygraph R is left-disjoint from E,
since no caps and cups 2-cells appear in the sources of the generating 3-cells of R. Following 5.2.6,
we prove that IrrpEq is E-normalizing with respect to ER using a decreasing order operator Φ for E
compatible with R.

5.4.13. Lemma. Let E and R be the 3-polygraphs defined above. There exists a decreasing operator
orderΦ for E compatible with R.

Proof. For any 1-cells p and q in R˚1 , we set mpp, qq “ 2 and for any 2-cell u of source p and target q
in R˚2 ,Φp,qpuq “ pldotpuq, Ipuqq where:

i) ldotpuq counts the number of left-dotted caps and cups, adding for such cap and cup the number of
dots on it. In particular, for any n in N˚, we have

ldot
´

‚n
¯

“ ldot
´

‚n
¯

:“ n` 1

for both orientations of strands.
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ii) Ipuq counts the number of instances of one of the following 2-cells of R˚2 in u:

For any 3-cell u V v in E, we have Φpuq ą Φpvq and that Φpu, uq “ p0, 0q for any u in IrrpEq.
Moreover, Φ is compatible with R because rewritings with respect to R do not make the dot 2-cell move
around a cup or a cap, or create sources of isotopies.

As a consequence of Theorem 5.2.2, we deduce an acyclic square extension of the pair of p3, 2q-
categories pEJ, ERJq. This square extension is made of the ten elements given by the diagrams of
the homotopy basis for the 3-polygraph of permutations from [12, Section 5.4.4] for both upward and
downward orientations of strands and the 16 elements given by the diagrams of the homotopy basis or
the 3-polygraph of pearls in [12, Section 5.5.3] for both orientations of strands form.
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