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COHERENT CONFLUENCE MODULO RELATIONS
AND DOUBLE GROUPOIDS

BENJAMIN DUPONT - PHILIPPE MALBOS

Abstract — A coherent presentation of an n-category is a presentation by generators, relations and
relations among relations. Completions of presentations by rewriting systems give coherent presen-
tations, whose relations among relations are generated by confluence diagrams induced by critical
branchings. This paper extends this construction to presentations by polygraphs defined modulo a
set of relations. Our coherence results are formulated using the structure of n-category enriched
in double groupoids, whose horizontal cells represent rewriting sequences, vertical cells represent
the congruence generated by relations modulo and square cells represent coherence cells induced by
confluences modulo. We illustrate our method on a diagrammatic presentation of a pivotal monoidal
category modulo the isotopy relations.

Keywords — Rewriting modulo, double categories, coherence of higher categories.
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INTRODUCTION

Coherence by confluence. Coherent presentations of a monoid extend the notion of presentations of the
monoid by globular homotopy generators taking into account the relations among the relations, that is
the 2-syzygies of the presentation. Explicitly, a coherent presentation is defined by a set X of generators,
a set R of relations and an acyclic set I" of 2-spheres of the free (2, 1)-category R' generated by the
presentation (X, R), where acyclicity means that the quotient of the (2, 1)-category R' by the congruence
generated by T is aspherical. This notion of coherent presentation extends to n-categories presented by
(n+1)-polygraphs: a coherent presentation is an (n+2, n)-polygraph, that is an (n+1)-polygraph Py,
extended by an acyclic cellular extension P, ; of the free (n+1, n)-category on P, 1. When the (n+1)-
polygraph is convergent, that is confluent and terminating, it can be extended into a coherent presentation
by adding generating (n + 2)-cells defined by a family of confluence diagrams

f Vo !
u ﬂAf’g »va

for every critical branching (f, g) of the polygraph P,;. Coherent presentations constructed in this
way generalize rewriting systems by keeping track of the cells generated by confluence diagrams. This
method was initiated by Squier in [23]] for monoids and generalized to n-categories in [[12]].

Coherence by confluence modulo. The aim of this paper is to extend these constructions to presenta-
tions of n-categories by rewriting systems defined modulo a set of fixed relations. One of the motivations
is to reduce the set of critical branchings that should be considered in the analysis of coherence by con-
fluence. For that, we introduce the notion of (n + 1)-polygraph modulo as a data (R, E,S) made of an
(n + 1)-polygraph R, whose generating (n + 1)-cells are called primary rules, an (n + 1)-polygraph E
such that By = Ry for k < n— 1 and E,, < Ry, whose generating (n + 1)-cells are called modulo rules,
and S is a cellular extension of R} depending on both cellular extensions R, ;1 and Ey 1. In this way,
the rules are split into two parts: oriented rules in a set R, 1 and non-oriented equations in a set E, 1.
The most naive approach of rewriting modulo is to consider S to be ¢Rg consisting in rewriting on con-
gruence classes modulo E, but this appears inefficient for analysis of confluence, see [1, Chapter 11].
Another approach of rewriting modulo has been considered by Huet in [[15)] where rewriting paths does
involve only oriented rules and no equivalence steps, and confluence is formulated modulo equivalence.
However, we will mainly use algebraic rewriting modulo by setting the inherent algebraic awioms into
the modulo rules, so this notion is too restrictive for computations, see [[17)]. Jouannaud and Kirchner
enlarged this approach in [[16] by introducing rewriting modulo properties for any rewriting system be-
tween R and ¢Rg. They also provided a completion procedure for confluence of the polygraph modulo
£R, which was generalized by Bachmair and Dershowitz in [2]. Several other approaches have also been
developed for term rewriting systems modulo to deal with various equational theories, see [20, 23]

In Section[3] we define rewriting properties on polygraphs modulo. In particular, we recall the notion
of confluence modulo as introduced by Huet, [15]] and Jouannaud and Kirchner in [[16]]. In particular, we
recall Huet’s principle of double induction from [[15] which we will use in many proofs, and we give a
completion procedure for a polygraph modulo (R, E, ¢R).



Confluence modulo and double categories. Our coherence results modulo for an n-category are for-
mulated using the structure of n-category enriched in double groupoids. The notion of double category
was first introduced by Ehresmann in [[11] as an internal category in the category of categories. Such a
categorical structure gives four related categories: a vertical category, an horizontal category and cate-
gories of squares with either vertical or horizontal sources and targets, whether they compose horizontally
or vertically. A square is pictured by

w— v
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The horizontal cells are the (n + 1)-cells of the free (n + 1)-category S* generated by the (n + 1)-
polygraph S and the vertical cells are the (n+1)-cells of the free (n+1,n)-category E " generated by the
(n + 1)-polygraph E. In this way, horizontal cells represent rewriting sequences, vertical cells represent
the congruence generated by modulo relations and square cells represent coherence cells modulo. A
branching modulo E of an (n + 1)-polygraph S defined modulo an (n + 1)-polygraph E is a triple
(f,e,g), where f and g are (n + 1)-cells of the free (n + 1)-category S* and e is an (n + 1)-cell of the
free (n 4+ 1,n)-category E T generated by the (n + 1)-polygraph E:

Such a branching is confluent modulo E if there exist (n + 1)-cells f and g’ in S* and an (n + 1)-cell e’
in ET as in the following diagram:

f ., f
u——u y U
el e’

! "
V——V YW
g g’

Coherent confluence modulo. The notion of coherence modulo introduced in this paper is based on an
adaptation of the structure of polygraph known in the globular setting, [5, 22} 24], to a cubical setting.
We define a double (n + 2,n)- polygraph as a data P = (PY, P" P$) made of two (n + 1)-polygraphs
PY and P" with the same underlying n-polygraph, and a square extension P* made of square of the form

L,
u—u

eJ le’

where f, g are (n + 1)-cells of the free (n + 1,n)-category (P¥) " generated by P" and e, e’ are (n. 4 1)-
cells of the free (n + 1,n)-category (P")" generated by P". We define a 2-fold coherent presentation
of an n-category C as a double (n + 2,n)-polygraph P = (PY, P, P$) such that the coproduct of the
polygraphs P¥ and P" is a presentation of the n-category C and that the square extension P* is acyclic,



that is for any square S constructed on the vertical (n+1,n)-category (P¥) and the horizontal (n+1,n)-
category (P") T, there exists a square (n + 2)-cell A in the free n-category enriched in double groupoids
generated by P whose boundary is S.

In Section 4] we introduce the notion of coherent confluence modulo obtained by adjunction of a
square cell in each diagram of confluence modulo. Then we prove coherent confluence of an n-polygraph
modulo from local coherent confluence properties. The first result of this section, Theorem [4.1.4] is a
formulation of the Newman lemma for confluence modulo. Explicitly, given (R, E,S) an n-polygraph
modulo such that gRg is terminating, and I" be a square extension of (E ', S*). If S is locally I'-confluent
modulo E then it is I'-confluent modulo E. Then Theorem §.2.2] gives a coherent formulation of the
critical branching lemma modulo, deducing coherent local confluence from coherent confluence of some
critical branchings modulo.

Coherent completion modulo. In Section[5] we show how to construct a two-fold coherent presentation
of an (n — T)-category C starting with a presentation of this (n — 1)-category by an n-polygraph modulo.
Theorem shows that for an n-polygraph modulo (R, E,S) and a square extension I" on the vertical
(n+1,mn)-category E and horizontal (n + 1,n)-category ST such that E is convergent, S is I'-confluent
modulo E, Irr(E) is E-normalizing with respect to S, and ¢Rg is terminating, then the square extension
' U Cd(E) is acyclic. From this result, when E is empty, we recover Squier’s theorem for convergent
n-polygraphs as given in [12, Theorem 5.2.], see also [[13]].

We prove that an acyclic extension of a pair (ET,ST) of (n + 1,n)-categories coming from a poly-
graph modulo (R, E, S) can also be obtained from an assumption of commuting normalization strategies
for the polygraphs S and E. In particular, we show how to prove the property of E-normalization from an
additional condition on the commutation of these normalizations strategies. The last result of this article,
Theorem proves that given an n-polygraph modulo (R, E,S), a square extension I'" of the pair of
(n + 1,n)-categories (E",ST), o and p be normalization strategies for S and E respectively, such that E
is convergent, S is ['-confluent modulo E, gRg is terminating, o and p are weakly commuting, then the
square extension ' U Cd(E) u N(o, p) is acyclic.

Finally, we illustrate in subsection[5.4|our method on diagrammatic presentation of a pivotal monoidal
category modulo some isotopy relations.

Organisation of the article. In Section[I] we recall all the notions about higher-dimensional n-categories
and n-polygraphs that we will need in the sequel. We refer the reader to [[12] for deeper details on these
notions. We recall from [11] the notions of double categories and of double groupoids. In Section 2] we
define the notion of double polygraphs, giving 2-fold coherent presentations of globular n-categories.
We explicit following [10] a construction of a free n-category enriched in double groupoids generated
by a double n-polygraph, in which the coherence results will be formulated. In Section [3| we define
the notion of polygraph modulo as presentations of categories modulo relations, and we formulate the
rewriting properties of termination, branchings, confluence and local confluence for these polygraphs.
Following [2]] we give a completion procedure in terms of critical branchings for confluence modulo of
the polygraph modulo ¢R. In Section 4} we introduce the notion of coherent confluence modulo and
we prove a coherent version of Newman’s lemma and critical branching lemma for polygraphs modulo.
Finally, in Section [5] we define the notion of coherent completion modulo, and show how to construct
a 2-fold coherent presentations of n-categories presented by polygraphs modulo from a such a coherent
completion. We illustrate the results of this section on a toy example of a diagrammatic rewriting system
presenting a pivotal monoidal category, using rewriting modulo isotopy relations.



1. Preliminaries

1. PRELIMINARIES

In this preliminary section, we give notations on higher-dimensional categories used in this paper. In
particular, we recall the structure of polygraph from [5} 22} 24]] and we refer the reader to [12} [14] for
rewriting properties of polygraphs. We recall the notion of double categories from [[11]] and we refer the
reader to [3} 9} [10] for deeper presentations on double categories and double groupoids.

1.1. Higher-dimensional categories and polygraphs

Throughout this paper, n denotes either a fixed natural number or co.

1.1.1. Higher-dimensional categories. If C is a (small, strict and globular) n-category, we denote byCy
the set of k-cells of C. If f is a k-cell of C, then 0_ ;(f) and 0, ;(f) respectively denote the i-source and
i-target of f, while (k — 1)-source and (k — 1)-target will be denoted by ¢_(f) and 0, (f) respectively.
The source and target maps satisfy the globular relations:

Ou,i0uit1 = Ou,i0pit1, (1.1.2)

for all «, 3 in {—, +}. Two k-cells f and g are i-composable when 0. ;(f) = 0_ ;(g). In that case, their
i-composite is denoted by f *; g, or by fg when i = 0. The compositions satisfy the exchange relations:

(f1*1.g1) %j (f2 %1 g2) = (f1 %5 f2) *i (g1 % 92). (1.1.3)

for all i # j and for all cells fy, f, g1, g2 such that both sides are defined. If f is a k-cell, we denote by 1¢
its identity (k + 1)-cell. When 1¢ is composed with l-cells, we simply denote it by f for L > k + 1.

A k-cell f of an n-category C is i-invertible when there exists a (necessarily unique) k-cell g in C,
with i-source 0 ;(f) and i-target 0_ ;(f), called the i-inverse of f, that satisfies

frig="To i —and gxf=To

When i = k—1, we just say that f is invertible and we denote by ™ its inverse. As in higher-dimensional
groupoids, if a k-cell f is invertible and if its i-source u and i-target v are invertible, then f is (1 — 1)-
invertible, with (i — 1)-inverse given by v= *;_1 f~ *j_ju™.

For a natural number p < n, or for p = n = o0, an (n, p)-category is an n-category whose k-cells
are invertible for every k > p. When n < oo, this is an n-category enriched in (n — p)-groupoids and,
when n = 0, an n-category enriched in co-groupoids. In particular, an (n, n)-category is an n-category,
and an (n, 0)-category is an n-groupoid, also called a groupoid forn = 1.

A O-sphere of C is a pair y = (f, g) of O-cells of C and, for T < k < n, a k-sphere of C is a pair
S = (f, g) of k-cells of C such that 0_(f) = 0_(g) and 0 (f) = 0+(g). The k-cell f (resp. g) is called
the source (resp. target) of S denoted by 0_(S) (resp. 0+(S)). We will denote by Sph, (C) the set of
k-spheres of C. If f is a k-cell of C, for 1 < k < n, the boundary of f is the (k — 1)-sphere (s(f), t(f))
denoted by O(f).
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1.1.4. Cellular extensions. Suppose n < o0, a cellular extension of an n-category € is a set I' equipped
with a map y : ' — Sph,(C). By considering all the formal compositions of elements of I', seen as
(n + 1)-cells with source and target in C, one builds the free (n + 1)-category generated by T over C,
denoted by C[I']. The size of an (n + 1)-cell f of C[T'] is the number denoted by ||f||r, of (n + 1)-cells of
I" it contains. We denote by e the set of n-cells in € of size 1. We denote by C/T the quotient of C by T,
i.e., the n-category one gets from € by identification of the n-cells _(S) and 0 (S), for all n-sphere S
of .

If Cis an (n, p)-category and I" is a cellular extension of C, then the free (n+1, p)-category generated
by T over C is denoted by C(T") and defined as follows:

er) = €[ T7]/Inv(l

where '™ contains the same (1 + 1)-cells as I', with source and target reversed, and Inv(T") is the cellular
extension of [I] T'~] made of two (n + 2)-cells

fonp 7 = 1oy and 7 xq f — 1o

for every (n + 1)-cell fin T,

Let C be an (n,p)-category, for p < n < 0. A cellular extension I of € is acyclic if the (n,p)-
category C/T is aspherical, i.e., such that, for every n-sphere S of C, there exists an (n + 1)-cell with
boundary S in the (n + 1,p)-category C(T).

1.1.5. Polygraphs. Recall that an n-polygraph is a data P = (Py, Py,..., Py) made of a set Py and, for
every 0 < k < n, a cellular extension Py of the free k-category

Py = Po[P1]...[Px]-

For 0 < k < n — 1, we will denote by Py the underlying k-polygraph (Po, Py, ..., Px). We will denote
by P* (resp. PT) the free n-category (resp. (n,n — 1)-category) generated by an n-polygraph P. We
will denote by P the (n — 1)-category presented by the polygraph P, thatis P := P*_, /Py,.

Given two n-polygraph P and Q, a morphism of n-polygraphs from P to Q is a pair (&,,_1, f,) where
&n—1 is a morphism of (n — 1)-polygraphs from P, _; to Qn_1, and where f,, is a map from Py, to Qn
such that the following diagrams commute:

P P
Piy €L Py Piy e Py
Fn—] (En—] )J, an Fn—] (En—] )J/ J{fn
Qn-1t5— Qn Qn-1t5— Qn
S t
n—1 n—1

Equivalently, it is a sequence of maps (fy : Px — Qy)k indexed by integer 0 < k < n — 1 such that the
conditions
kaE = ngk—H and fktE = tgfk_;,_]

holds forall0 <k <n -—1.



1.2. Double groupoids

For p < m, an (n,p)-polygraph is a data P made of an n-polygraph (Po,...,Py,), and for every
p < k < n, acellular extension Py of the free (k, p)-category

P = P¥(Png1) -+ (P).

Note that an (n, n)-polygraph is an n-polygraph.
Given an n-polygraph P, recall from [12, Proposition 2.1.5] that every n-cell f in P* with size k > 1
has a decomposition
= Cilvil *n—1 - *n—1 Gyl

where y1, ..., yx are n-cellsin P and Cy, ..., Cy are whiskers of P*,

1.1.6. Contexts in n-categories. A context of an n-category C is a pair (S, C) made of an (n — 1)-
sphere S of € and an n-cell C in C[S] such that ||C||s = 1. We often denote simply by C, such a context.
Recall from [[12, Proposition 2.1.3] that every context of € has a decomposition

fro*n—1 (fnc1 *n—2 - (f1 %0 S*0 g1) - - *n—2 Gn—1) *n—1 gn,

where S is an (n — 1)-sphere and, for every k in {1,...,n}, fx and gy are n-cells of C. Moreover, one
can choose these cells so that f and gy are (the identities of) k-cells. A whisker of C is a context with a
decomposition

fa1*n2- - (fi*0 S*0 g1) + *n_2 gn-1

such that, for every kin {1,...,n — 1}, fi and gy are k-cells.

1.2. Double groupoids

In this subsection, we recall the notion of double category introduced in [11]. It can be defined as an
internal category in the category Cat of all (small) categories and functors. Recall that given V be a
category with finite limits, an internal category C in V is a data (Cy, Co, S, 0S, oc, ic), where

89,8$:C1—>Co, i(jiCo—>C1, OC:C1 XC0C1—>C1

are morphisms of V satisfying the usual axioms of a category, and where C; x ¢, C; denotes the pullback
in V over morphisms € and ag. An internal functor from C to D is a pair of morphisms C; — D¢ and
Cy — Dy in V commuting in the obvious way. We denote by Cat(V) the category of internal categories
in 'V and their functors.

1.2.1. Double categories and double groupoids. The category of double categories is defined as the
category Cat(Cat), and the category of double groupoids is defined as the category Cat(Grpd) of in-
ternal categories in the category Grpd of groupoids and their functors. A double groupoid is thus a
double category whose the four related categories are groupoids and the source, target, composition
and identity maps are morphisms of groupoids. Explicitly, a double category is an internal category
(Cy,Co, €, 0€, oc, ic) in Cat, that gives four related categories:

CY = (CS,CV,ﬁ\iJ, 1,1)0\))1\1))) ch (CS ch ah1>5+1)<> 11)
C" = (Cvacova\i,oy 3—,0)0\)»1\0))) Ch (Ch CO ah 0)a+ 05 © 0)
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where C"* is the category C; and C"° is the category Cy. The sources, target and identity maps pictured
in the following diagram

satisfy the following relations:

i) O 00 1 = 0 00% 1, forall o, B in {—, +},

ii) 0} ;1] = 150y, forall acin {—, +} and p,n in {v, h},
i) 171y = i,

iv) 05 (Aot B) = 0L (A) ot ! (B), forall x € {—,+}, u € {v,h} and any squares A, B such that
both sides are defined,

v) middle four interchange law :
(AoV A )M (BoMB’) = (AMB) oY (A’ oM BY), (1.2.2)
for any cells A, A’, B, B’ in C® such that both sides are defined.

Elements of C° are called point cells, the elements of C" and C" are respectively called horizontal cells
and vertical cells and pictured by

X1

f e\
X1—X2
X2

Following relations i), the elements of C* are called square cells and can be pictured by squares as
follows:

aM) X1 i) X2 X @ X
| ﬂ/\l LA | Jrofiee e fie)e
o1 (A) noeE Y’



1.2. Double groupoids

The compositions oV (resp. o) are called respectively vertical and horizontal compositions, and can
be pictured as follows

f1 15) i o 2
X1 X2 X3 X1 X3
\
€1 \H/A €2 \H/B €3 @ A <>K) B €3
N
Y1 Y2 Y3 Y1 Y3
91 92 g1 of 92

for all x;,y; in C°, fi, g; in C", e;in C¥ and A, B in C¥,

f f
X1 —mmmX2 X1 ——mmX2
€1 \H/A €2 ‘
v/ L v/
Y ————yy we €10 e AotAl |eo e
9 1
e ﬂA’ e
il — 2
Z1 T)Zz h

for all x4, yi, z; in C°, f, g, hin C™, e, e/ in C and A, A’ in C5.

1.2.3. Squares. A square of a double category C is a quadruple (f, g, e, ') such that f, g are horizontal
cells and e, e’ are vertical cells that compose as follows:

f
U——v

4 e

u’ —>g v/

The boundary of a square cell A in C is the square (0_n(A), 0+ n(A),0—y(A),04v(A)), denoted
by 0(A). We will denote by Sqr(C) the set of square cells of C.

1.2.4. n-categories enriched in double categories. The coherence results for rewriting systems mod-
ulo presented in this paper are formulated using the notion of n-categories enriched in double groupoids.
Let us expand this notion for n > 0. Consider the category Cat(Grpd) equipped with the cartesian
product defined by

CxD-= (C] XD],CO XDQ,SC x tc,cc X C]),ic X i])),

for any double groupoids C and D. The terminal double groupoid T has only one point cell, denoted
by e, and identities i}(e), i}(e), iyi}(e) = iMij(e).
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An n-category enriched in double groupoids is an n-category C such that for any x,y in C,,_; the
homset Cy,(x,y) has a double groupoid structure, whose point cells are the n-cells in Cp, (x,y). We will
denote by €Y (resp. €I, €5, ,) the sets Cpn(x,y)" (resp. Cn(x,y)", Cr(x,y)*) for all x,y in Cp_;.
An (n + 2)-cell A in G, can be represented by the following diagrams:

with u,u’,v,v" € Cy, f,g € C_; and e, e’ € ), ;. The compositions and identities are induced by the
functors of double categories

% OYZ . Gn(x,y) % @n(y,z) — (i’n(x, Z), ]x T — en(xa X))

n—1

for all (n — 1)-cells x,y, z. The (n — 1)-composite of an (n + 2)-cell A in Cr(x,y) with an (n + 2)-cell
B in €y (y, z) such that
f

1 2
Uy —wv U —mVv)
e{ lA Je{ 62J B Jeé
! / / /
u ——v u —v
g ' 27g, 2

is defined by composition along *,,_1 and denoted by:

f1*n_1 12
U U ———— V1 *pn1 V2

€1 *n—1 €2 JlA *n—1B |ef *n_1¢€)

!/ / / /
WMt g gy V112

By functoriality, the (n — 1)-composition satisfies the following exchange relations:

(AMA) xn_1 (Bo*B’) = (A *n_; B) o (A" %q_1 BY), (1.2.5)

(AMA) % 1 (BO"B') = ((Axp_q1B)o* (A %1 B)) 0" (A xn_1B')o* (A %1 B')). (1.2.6)
Using middle four interchange law (1.2.2)), the identity (1.2.6) is equivalent to the following identity
(AH A xn_1 (Bo"B’) = ((A #n_1B)o" (A xy_1 B')) o* (A #y_1 B) 0" (A’ %11 B'))

for all u # 1 in {v, h} and any (n + 2)-cells A, A’, B, B such that both sides are defined.

10



2. Two-fold coherent presentations

1.2.7. 2-categories as double categories. From a 2-category C, one can construct two canonical double
categories, by defining the vertical or horizontal cells to be only identities in C. In this way, 2-categories
can be considered as special cases of double categories. The quintet construction gives an other way
to associate a double category, called the double category of quintets in C and denoted by Q(C) to a
2-category C. The vertical and horizontal categories of Q(C) are both equal to C, and there is a square
cell

in Q(C) whenever there is a 2-cell A : f x; k = g %1 hin C. This defines a functor Q : Cat, — DbCat.
Similarly, for n > 2 one can associate to an n-category an (n—2)-category enriched in double categories
by a quintet construction.

2. TWO-FOLD COHERENT PRESENTATIONS

In this section, we introduce the notion of two fold coherent presentations for n-categories. This notion is
constructed using the structure of double polygraph introduced in Section [2.T]and that extends to double
categories the known structure of polygraph on strict globular categories from [3l 22| 24]. We give a
construction of the free n-category enriched in double categories generated by a double polygraph.

2.1. Double polygraphs

2.1.1. Square extensions. Let (C¥, C") be a pair of n-categories with the same underlying (n — 1)-
category B. A square extension of the pair (C’,C") is a set I' equipped with four maps Ohoms
with o € {—, +}, n € {1, 2}, as depicted by the following diagram:

+n1 +n1

and satisfying the following relations:

agc,nf1 5\},71 6[5 n— 1aoc ny
for all «, 3 in {—, +}. The point cells of a square A in " are the (n — 1)-cells of B of the form
ain 1an,n(A)

with «, 3 in {—, +}, and 1, p in {h, v}. Note that by construction these four (n — 1)-cells have the same
(n — 2)-source and (n — 2)-target in B respectively denoted by 0_ ,_>(A) and 04 n_»(A).
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2. Two-fold coherent presentations

A pair of categories (C”, C") has two canonical square extensions, the empty one, and the full one
denoted by Sqr(CV, C™) that contains all squares on (C",C"). We will denote by Sph(CY,1) (resp.
Sph(1,C™)) the 2-square extension of (C”, C"") made of all squares of the form

U—ou w—t
el le/ (resp. “J lu )
V—="V u—u’

9

for all n-cells e, e’ in C” (resp. n-cells in f, g in C™).
The Peiffer square extension of the pair (C”, C™) is the square extension of (C¥, C"), denoted by
Peiff(C”, C""), containing the squares of the form

fxv w i f /
UriV—U *iV WHiU— WU
U *; e / / / /
1 u *je e *u e *u
/ / / !/ / /
u*xiv 4/)11. *iV w *iul—wv *i U
fxv W' ok f

for all n-cells e, e’ in C¥ and n-cell f in C".

2.1.2. Double polygraphs. For n > 0, we define a double n- polygraph as a data P = (PY,P", P%)
made of

i) two (n + 1)-polygraphs P¥ and P" such that P, = PZ ,
ii) a square extension P* of the pair of free (n + 1)-categories ((PY)*, (P™)*).

Such a data can be pictured by the following diagram

For 0 < k < n + 1, the k-cells of the (n + 1)-polygraphs PV and P" are called generating k-cells of P.
The elements of P* are called generating square (n + 2)-cells of P.

12



2.2. Two-fold coherent presentations

2.1.3. The category of double n-polygraphs. Given two double n-polygraphs P = (P¥, P, P%) and
Q = (QY, QM Q°), a morphism of double n-polygraphs from P to Q is a triple (", f*, ) made of two
morphisms of (n + 1)-polygraphs

P —>QY, Pt QM

and a map f* : P$ — Q% such that the following diagrams commute:

w,P ] w,P ]
o —N— s i +yn— s
Pn—H P Pn+1 P
v s v s
o R
18 S 53 ¢ N
T uQ Q T uQ Q
af,nf aJr,nf1

for win {v, h}. We will denote by DbPol,, the category of double n-polygraphs and their morphisms.

Let us explicit two full subcategories of DbPol,, used in the sequel to formulate coherence and
confluence results for polygraphs modulo. We define a double (n + 2,m)-polygraph as a double n-
polygraph whose square extension P® is defined on the pair of (n + 1,n)-categories ((P¥)', (P™M)T).
We denote by DbPol(,, > ) the category of double (n + 2,n)-polygraphs. In some situations, we will
also consider double n-polygraphs whose square extension is defined on the pair of (n + 1)-categories
((PY)T, (PM)*) (resp. ((P¥)*, (PM)T). We will respectively denote by DbPol, (resp. DbPol") the full
subcategories of DbPol,, they form.

2.2. Two-fold coherent presentations

Recall that a coherent presentation of an n-category C is an (n + 2,n)-polygraph P such that the n-
category C is isomorphic to the quotient n-category P} /P, and P, is an acyclic extension of the
(n + 1,n)-category PI 41+ In this subsection, we define a similar notion for n-categories enriched in
double categories.

Let us first explicit the construction of a free n-category enriched in double categories generated
by a double n-polygraph. The question of the construction of free double categories was considered in
several works, [7H10]. In particular, Dawson and Pare give in [10]] constructions of free double categories
generated by double graphs and double reflexive graphs. Such free double categories always exists, and
they show how to describe their cells explicitly in geometric terms. However, they show that free double
categories generated by double graphs can not describe many of the possible compositions in free double
categories. They fixed this problem by considering double reflexive graphs as generators. In this work,
we consider this approach but using double n-polygraphs as generating data.

2.2.1. Free n-category enriched in double categories. Consider a double n-polygraph P = (P¥, P" P$).
We construct the free n-category enriched in double categories on P, denoted by P°, as follows:

i) the underlying n-category of P is the free n-category P},

ii) for all (n — 1)-cells x and y of P}, the hom-double category P°(x,y) is constructed as follows

13



2. Two-fold coherent presentations

a) the point cells of P°(x,y) are the n-cells in P (x,y),

b) the vertical cells of P”(x,y) are the (n + 1)-cells of the free (n + T1)-category (P")*,

¢) the horizontal cells of P*(x,y) are the (n + 1)-cells of the free (n + 1)-category (P")*,
d) the set of square cells of P°(x,y) is defined recursively and contains

— the square cells A of P* such that 0_ ,_1(A) = xand 04 n—1(A) =y,
— the square cells C[A] for any context C of the n-category P} and A in P®, such that

0-n-1(C[A]) = xand 04 n1(C[A]) =y,
— identities square cells i}(f) and i} (e), for any (n + 1)-cells f in (P™)* and (n + 1)-cell e in
(PY)* whose (n — 1)-source (resp. (n — 1)-target) in P} is x (resp. y),
— all formal pastings of these elements with respect to o™-composition and ¢”-composition.
e) two square cells constructed as such formal pastings are identified by the associativity, and iden-
tity axioms of compositions ¢V and o™ and middle four interchange law given in (1.2.2),
iii) for all (n — 1)-cells x,y, z of P}, the composition functor

o1 PROGY) x PRy, 2) — PR(x,2)

is defined for any

fi 1)
U —mWV U ——mwvp
e{ JAs Je{ in P°(x,y) and QZJ 1A Jeﬁ in P°(y, 2),
u 4)91 V] uj *>92 vy
by
f1 *n_1 12

Ul *p_ g U) ————————— V] %1 V2
€1 *n_1 €2 JJA] *n—1Azle] *n_1 €y

/ / / /
U 1 a1 *n Vi *n-1V

-192

where the square cell A x,,_1 A; is defined recursively using exchanges relations (I.2.5H1.2.6)) from
functoriality of the composition *,_1, and the middle four identities (1.2.2),

iv) for all (n — 1)-cell x of P}, the identity map T — P°(x,x), where T is the terminal double
groupoid mapping on il (x) = iMY(x):
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3. Polygraphs modulo

2.2.2. By similar constructions of the free n-category enriched in double categories on a double n-
polygraph P = (P¥, P, P%) given in[2.2.1| we can construct the following categories:

i) the free n-category enriched in double groupoids generated by a double (n + 2,n)-polygraph P =
(P, P, P%), that we denote by PT;

ii) the free n-category enriched in double category, whose vertical category is groupoid, generated by
a n-polygraph (P¥,P" P$), whose square extension is defined on the pair of (n + 1)-categories

((PY)T, (PM)).

2.2.3. Acyclicity. Let P = (PY, P" P$) be a double (n + 2,n)-polygraph. The square extension P*
of the pair of (n + 1,mn)-categories ((P¥)", (P™)T) is acyclic if for any square S over ((PY)T, (PM)T)
there exists a square (n + 2)-cell A in the free n-category enriched in double groupoids PT such that
d(A) = S. For example, the set of squares over ((P¥)", (P") ") forms an acyclic extension.

2.2.4. Two-fold coherent presentations of n-categories. Recall that a presentation of an n-category

Cis an (n+ 1)-polygraph P whose presented category P is isomorphic to C. We define a 2-fold coherent
presentation of C as a double (n + 2, n)-polygraph (PV, P, P$) satisfying the two following conditions:

i) the (n + 1)-polygraph (Q,P¥_; [P, ,) is a presentation of C, where Q is the underlying n-
polygraph of P” and P",

ii) the square extension P* is acyclic.

3. POLYGRAPHS MODULO

In this section, we introduce the notion of polygraph modulo and we formulate the rewriting properties
of termination, confluence and local confluence for these polygraphs.

3.1. Polygraphs modulo

3.1.1. Cellular extensions modulo. Consider two n-polygraphs E and R such that E<;,_2 = R¢n—2
and E,,_7 € R_1. One defines the cellular extension

yER D gR — Sph,_; (RE_;)

where ¢R is the set defined by the following pullback in Set:

A L

T[]J ha_,n_]

T *
E‘ﬂ. a RTL—]
+mn—1
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3. Polygraphs modulo

and the map v £R defined by y =R (e, f) = (0_ n_1(e), 04 n_1(f)) forallein E" and f in RED. Similarly,
one defines the cellular extension
:Rg — Sph, _4(Rj_1)

where R is the set defined by the followmg pullback in Set:

RE s EL 20 EL

T[]J [a,n]

RED S RE
a+T1 1

and the map YRt defined by YRt (f,e) = (0_n_1(f), 04 n—1(e)) forall ein E and f in RED., Finally,
one defines the cellular extension

yERE: ERg — Sph,,_;(R% ),

where ¢Rg is the set defined by the following composition of pullbacks in Set:

T, TU
L e RAO s El(ﬂ)lz;‘;(” xge B2 E]
(T, 702) us Ja_)nq
T %(1) Uy x(1) *
En XR:_1 Rn Rn a-’,—,n : n—1
s a—,n—]
E, RA-

O

and the map y £t is defined by Y R (e, f, e) = (0_n_1(€), O+ n_1(e")).

3.1.2. Polygraphs modulo. A n-polygraph modulo is a data (R, E, S) made of
i) an n-polygraph R, whose generating n-cells are called primary rules,

ii) an n-polygraph E such that By = Ry for k < n — 2 and E,,_; € R;;_1, whose generating n-cells
are called modulo rules,

iii) S is a cellular extension of R _; such that the inclusions of cellular extensions
Rc Sc gRe
holds.

By abuse of notation, the n-polygraphs modulo (R, E, ¢R), (R, E,Rg) and (R, E, ¢Rg) will be de-
noted by gR, Rg and R respectively. Given an n-polygraph modulo (R, E, S), we will consider in the
sequel the following categories:
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3.2. Termination and normal forms

i) the free n-category R* ;[Rn, En [ [ E;']/Inv(En, Ex'), denoted by R*(E).
ii) the free n-category generated by S, denoted by S*,
iii) the free (n,n — 1)-category generated by S, denoted by S'.

For any n-cell f in S* (resp. ST), the size of f is defined as the positive integer ||f||r, corresponding
to the number of n-cells of Ry, contained in A, and denoted by {(f).

3.2. Termination and normal forms

In this subsection, we introduce the property of termination and the notion of normal form for polygraphs
modulo. We explain how to prove termination of polygraphs modulo using a termination order compat-
ible modulo rules. Finally, we recall the double induction principle introduced by Huet in [[15] that we
will use in many proofs in the sequel.

3.2.1. Termination. Recall that an n-polygraph terminates if it has no infinite rewriting sequence. The
n-polygraph modulo (R, E, S) is terminating when S is terminating. Note that, when S # R, the follow-
ing conditions hold

i) ¢Ris terminating,
ii) Rg is terminating,
iii) ¢Rg is terminating,
iv) S is terminating.
An order relation < on R?:_, is compatible with S modulo E if it satisfy the following conditions:
i) v <u,forany (n — T)-cells u,vin R¥_; such that there exists an n-cell u — vin S,

i) if v < ufor (n—1)-cellsu,vinR%_,, thenv’ < u’ holds for any (n — 1)-cells u’, v in R¥_; such
thatv/ ~ vand u’ ~ u.

A termination order for S modulo E is a well-founded order relation compatible with S modulo E.

In this work, many constructions will be based on the termination of the n-rsm Rg, which can be
proved by constructing a termination order for one of the n-rsm gR, Rg and gRg. It can be also proved
by constructing a termination order for R compatible with E.

3.2.2. Normal forms. A (n — 1)-cell win R?_; is S-reduced if it cannot be reduced by n-cells of S. A
S-normal form with respect to S for a (n — 1)-cell win R¥_; is a S-reduced (n — 1)-cell v such that u
can be reduced to v with respect to S. We will denote by Irr(S) the set of irreducible (n — 1)-cells with
respect to S. We denote by NF(S, u) the set of normal forms of a (n — 1)-cell u with respect to S.

If S is terminating, every (n — 1)-cell has at least one normal form with respect to S. Moreover,
Noetherian induction allows definitions and proofs of properties of (n — 1)-cells by induction on the
maximum size of the n-cells leading to normal forms.
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3. Polygraphs modulo

3.2.3. Noetherian induction. If S is terminating at f, then it is normalizing at f, that is, every n-cell
has at least one normal form. In that case, one can prove properties using Noetherian induction. For that,
one proves the property on normal forms; then one fixes an n-cell f, one assumes that the result holds
for every g such that f reduces into g and one proves that, under those hypotheses, the n-cell f satisfies
the property.

Let us recall the double Noetherian induction principle introduced by Huet in [15] to prove the
equivalence between confluence modulo and local confluence modulo under a termination hypothesis.
We construct an auxiliary n-polygraph S" as follows. One defines

Sk =Sk xScfor0<k<n-—1,

and SY contains an n-cell (u,v) — (u/,v’), for all (n — 1)-cells u,u’;v, v’ in any of the following
situation:
i) there exists an n-cell u — u’ in S* and v = v/;
ii) there exists an n-cellv — v/ in S* and u = u’;
iii) there exist n-cellsu — u’ and u — v’ in S*;
iv) there exist n-cellsv — u’ and v — v’ in §*;

v) there exist n-cells e, e; and e3 in ET as in the following diagram

€1 €2 ;€3 /
u v u A%

such that {(e) > {(e3).

Note that this definition implies that, if there exists n-cells u — u’ and v — v’ in S*, then there is an
n-cell (u,v) — (u/,v’) in S" given by the following composition:

(w,v) = (Wyv) = (V)

Following [13} Proposition 2.2], if Sg is terminating, then so is S".
In the sequel, we will apply this Noetherian induction on S™ with the following property:

foranyn-cells f:u — u’, g:v > v inS*and e : uw — v in ET, there exists n-cells
flou - u”, g v >winS*and e’ :u" —w" inE7, and a square (n. + 1)-cell A in
a given (n — 1)-category enriched in groupoids, as depicted in the following diagram:

f / f/ "
u—u y U
el ﬂA e’
! Vi
V——V s W
g 9/

In the language of Section 4] this means that any branching (f, e, g) of source (x,y) of S modulo E is
coherently confluent modulo E.
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3.3. Confluence modulo

3.3. Confluence modulo

In this subsection, we define properties of confluence and local confluence modulo for an n-polygraph
modulo (R, E, S), and we explicit a classification of branchings of S modulo E.

3.3.1. Branchings. A branching of the n-polygraph S is a pair (f, g), where f and g are n-cells of
S*and such that 81‘@71) (f) = 8:017]) (g). Such a branching is depicted by

”J (332)

and will be denoted by (f,g) : u = (u’,v’). The (n — 1)-cell u is called the source of this branching.
We do not distinguish the branchings (f, g) and (g, f).

A branching modulo E of the n-polygraph modulo S is a triple (f, e, g) where f and g are n-cells
of $* with f non trivial and e is an n-cell of E". Such a branching is depicted by

f o £
u—u u—u
el (resp. ei ) (3.3.3)
Vg~ v/ v

when g is non trivial (resp. trivial) and denoted by
(f,e,g): (w,v) = (u,v') (resp. (f,e):u= (u',v)).

The pair of (n — 1)-cells (u,v) (resp. (u,u)) is called the source of this branching modulo E. Note that
any branching (f, g) is a branching modulo E (f, e, g) where e = i} (" (nq)(f)) =1iy(o" (nq)(g)).

3.3.4. Confluence and confluence modulo. A confluence of the n-polygraph S is a pair (f’,g’) of
n-cells of S* such that 61)017]) (f') = 63@71) (g”). Such a confluence is depicted by

!
u——w

|

v’%/ w

g

and denoted by (f’,g’) : (u',v') = w. A confluence modulo E of the n-polygraph S is a triple
(f’ye’,g’), where f', g’ are n-cells of $* and e’ is an n-cell of ET such that 0" () =2 (n_l)(e’)

and 82@7])(9’) = éiy(nq)(e’). Such a confluence is depicted by
f/
u——w
e
vl - W/
g
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3. Polygraphs modulo

and denoted by (f';e’;g’) : (u/,v') = (w,w’).
A branching as in (3.3.2)) is confluent (resp. confluent modulo E) if there exists n-cells f’, g’ in S*
and e/ in E' as in the following diagrams:

f , f f ,
u—u y W u—u YW
||J l“ (resp. ||J e ).
u—v' yw' u—v' sw'

g g’ g g’

A branching modulo E as in (3.3.3)) is confluent modulo E if there exists n-cells f’, g’ in S* and e’
in ET as in the following diagram:

f ;!
u——u YW
eJ e’
v——v/ yw’
g 9’

We say that the n-polygraph modulo S is confluent (resp. confluent modulo E) if all of its branchings are
confluent (resp. confluent modulo E). Note that when S is confluent, every (n — 1)-cell of S* has at most
one normal form with respect to S. Under the confluence modulo hypothesis, a (n — 1—-cell may admit
several S-normal forms, which are all equivalent modulo E.

Finally, let us recall the notion of confluence modulo introduced by Jouannaud and Kirchner in [16].
We say that the n-polygraph modulo S is

i) JK confluent modulo E, if any branching is confluent modulo E,

ii) JK coherent modulo E, if for any branching modulo E (f,e) : uw = (u/,v) is confluent modulo E:

f o
uU—v y v
el o
u’ YW

!/

g
in such a way that g’ is a non-trivial n-cell in S*.

3.3.5. Local branchings. A branching (f, g) of the n-polygraph S is local if f, g are n-cells of s*(M. A
branching (f, e, g) modulo E is local if f is an n-cell of $*(V), g is an n-cell of S* and e an n-cell of ET
such that £(g) + £(e) = 1. Local branchings belong to one of the following families:

i) local aspherical branchings of the form:
f
u—v
||l ill

UTV

where f is an n-cell of S*(]);
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3.3. Confluence modulo

ii) local Peiffer branchings of the form:

f*iv /
UK V—U *{V

|

UkiV—U*V
U*; g

where 0 < i< n—2,fand g are n-cells of s*(1),

iii) local Peiffer modulo of the forms:

fxv , W ki f ,
Ui V—— U *{V WHiU— W * U (3.3.6)
u*iei e/*iui
ux v’ w xu

where 0 < i < n — 2, where f is an n-cell of $*() and e, e’ are n-cell of ET(1);
iv) overlapping branchings are the remaining local branchings:

f
u—-v

|

u—)g v/

where f and g are n-cells of S*U),

V) overlapping branchings modulo are the remaining local branchings modulo:

u—tsv (337

el
V/

where f is an n-cell of S*(1) and e is an n-cell of ET(D,

Let (f,g) (resp. (f,e,g)) be a branching (resp. branching modulo E) of the n-polygraph S with
source u (resp. (u,V)) and a whisker C[ou] of R}, composable with u and v, the pair (C[f], C[g])
(resp. triple (C[f], C[e], C[g])) is a branching (resp. branching modulo E) of the n-polygraph S. If the
branching (f, e, g) is local, then the branching (C[f], C[e], C[g]) is local. We denote by = the order
relation on branchings modulo E of S defined by (f,e,g) = (f’,e’,g’) when there exists a whisker C
such that (C[f], C[e],C[g]) = (f’,e’,g’) hold. A branching (resp. branching modulo E) is minimal
if it is minimal for the order relation =. A branching (resp. branching modulo E) is critical if it is an
overlapping branching that is minimal for the relation E.

3.3.8. Local confluence modulo. The n-polygraph modulo S is locally confluent modulo E if any of its
local branchings modulo E is confluent modulo E. Note that following [[16]], there exists a local version of
JK-confluence modulo E and JK coherence modulo E, given by properties a) and b) of Proposition{4.2.1}
and we will prove in the next section that all these notions are equivalent.
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3. Polygraphs modulo

3.4. Completion procedure for R

In this subsection, we give a completion procedure for an n-polygraph modulo of the form (R, E, ¢R),
when gR is not confluent modulo E as n-polygraph modulo E. The procedure computes an n-polygraph
R such that ¢R is confluent modulo E as an n-polygraph modulo E.

3.4.1. Completion of R modulo E. Note that the property of JK coherence is trivially satisfied for gR.
Indeed, any branching (f, e) of ¢R modulo E is trivially confluent modulo E as follows: we split the set
of critical branchings of ¢R modulo E into three sets as follows:

u——v (3.4.2)

where e™ - f is a rewriting step of gR.

Following the critical branching lemma for rewriting modulo, enounced in a coherent version and
given in the next section in Theorem [4.2.2} we describe a completion procedure for confluence of ¢R
modulo E in terms of critical branchings, similar to the Knuth-Bendix completion in a non modulo
setting. From and Theorem when ¢R is terminating, gR is confluent modulo E if and only
if all critical branchings (f, g) of ¢R modulo E with f in ¢R*(") and g in R*(") are confluent modulo E,
as depicted by:

fe gR ' e (gR)*
Uu—-—yyv YV

||‘ e’

uy—->w YW
geR g' e (eR)*

We denote by CP( gR, R) the set of such critical branchings.

3.4.3. Completion procedure. Let us consider R and E two n-polygraphs such that E<,_7 = Ren—2
and E,_1 € R,_1, and < a termination order compatible with R modulo E. In this paragraph, we
describe a procedure to compute a completion R of the n-polygraph R such that £R is confluent modulo
E. We denote by {LER a normal form of an element 1t in RY_; wrt gR.
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3.4. Completion procedure for R

Input:

- R and E 2-polygraphs over a 1-polygraph X.

- < a termination order for R compatible with E,

which is total on the set of gR-irreducible elements.

begin
AT
C < CP(gR,R)
while C # ¢ do
Pick any branching ¢ = (f: u = v,g:u = w)inC, with f in gR* and g in R*;
Reduce v to 9ER a gR-normal form;
Reduce w to WER a ¢R-normal form;
C —C\{c}
if DR ~¢ WER then
if WER < 9ER then

| R—RuU (PR @eRy
end
if DR < WeER then

| R RuU{WERZ 9eRy
end

end
C <« C u {( &R, R)-critical branchings created by «}
end

end

This procedure may not be terminating. However, it does not fail because of the hypothesis that < is
total on the set of gR-irreducible elements.

3.4.4. Proposition. When it terminates, this completion procedure returns a rewriting system R such
that ¢R is confluent modulo E.

Proof. The proof of correctness of this procedure is a consequence of the inference system given by
Bachmair and Dershowitz in [2]] in order to get a set of rules R such that EIVQ is confluent modulo E. Given
two rewriting systems R and E and a termination order > compatible with R modulo E, their inference
system is given by the following six elementary rules:

1) Orienting an equation:

(Au{s=1t}R) s (AJRuU{s - t}ifs > t.

2) Adding an equational consequence:

(A,R)  wo>  (Au{s=1t}R)ifs «<—Ror U —RuE t.
3) Simplifying an equation:

(Auf{s=t}LR) wo  (Aufu=thLR)ifs Su
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4. Coherent confluence modulo

4) Deleting an equation:

(Au{s=1t}R) s (A,R)if s ~¢ t.
5) Simplifying the right-hand side of a rule:
(A,RU{s >t}) wo (A RuU{s—u})ift 5w
6) Simplifying the left-hand side of a rule:

(ALRU{s >1t}) wo  (Au{u=t},R)ifs 5w

The correctness of Procedure [3.4.3]is a consequence of the following arguments:

i) For any critical branching (f : w — v,g : u — w) in CP(¢R, R), we can add an equation v = w
using the rule Adding an equational consequence, and simplify it to 9ER = WER using the rule
Symplifying and equation.

ii) IfDER ~f WER, we can delete the equation using the rule Deleting an equation.
iii) Otherwise, we can always orient it using the rule Orienting an equation.

Thus, each step of this completion procedure comes from one of the inference rules given by Bachmair
and Dershowitz. Following [2], it returns a set R so that ¢R is confluent modulo E. ]

4. COHERENT CONFLUENCE MODULO

In this section, we introduce the property of coherent confluence modulo defined by the adjunction of a
square cell for each confluence diagram modulo. Under a termination hypothesis, Theorem [4.1.4] shows
how to deduce coherent confluence modulo for a polygraph modulo from coherent local confluence
modulo. This result is a coherent version of Newman’s lemma that states the equivalence between local
confluence and confluence under a termination hypothesis, [21]. Theorem formulates a coherent
version of the critical branching lemma, it shows how to deduce local coherent confluence modulo from
the coherent confluence modulo of some critical branchings.

4.1. Coherent Newman’s lemma modulo

4.1.1. Biaction of ET on Sqr(E",S*). Let (R,E,S) be an n-polygraph modulo. Let I' be a square
extension of the pair of n-categories (E',S*). As the inclusion R £ S < gRg of cellular extensions
holds, any n-cell f in S* can be decomposed in f = ey *,,_1 f1 *_1 €2 *y_1 T2 with f; in R*(D_ £, in S*
such that £(f,) = €(f) — 1, ey and e; in ET possibly identities, and *,,_1 denoting for the composition
along (n — 1)-cells in the free n-category generated by R U E.
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4.1. Coherent Newman’s lemma modulo

Thus, a branching (f, e, g) of S modulo E with a choice of a generating confluence (f’,e’, g’) may
correspond to different squares in Sqr(E',S*). For instance, if g can be decomposed g = €7 *n_1
g1 *n_1 €2, the following squares in Sqr(E ", S*) correspond to the same branching of S modulo E:

£ foof
U——V »V U——V »V
eJ e and € *n_1 el{ e’
/ v/
U W ) W U] —— W oy W
9 g’ Tgie T g

When computing a coherent presentation of S modulo E, one does not want to consider two different
elements in a coherent completion of S modulo E, as defined in to tile these squares which are not
equal in the free n-category enriched in double category generated by the double (n — 1)-polygraph
(E,S,T U Peiff(ET, $*)).

In order to avoid these redundant squares, we define a biaction of E" on Sqr(E ", S*). For any n-cells
e; and ey in ET and any (n + 1)-cell

o
u—u
el JA le/
!/
U—g—v
in Sqr(E", $*) satisfying the following conditions
i) 6+’n_1(e1) = a}l’ni]a—,nv(A),
ii) 0_no1(ex) =% 0—,n(A),
iii) e;0" | (A) €S,
iv) e;&i)n(A) €S,

we define the square (n + 1)-cell ¢} A as follows:

€1f

T
e1eezi %}A
u J—
e g

1'L/
Le
v/

where u; = 0_ _1(eq). For a square extension I' of (E', S*), we denote by E x T the set containing all
elements 2;/\ with A'in T and e, e, in ET, whenever it is well defined. For any ej,e, in ET and A,A’ in
I", the following equalities hold whenever both sides are defined:

o~ el e ejer 5 .
) SHEA) = HOA;

i) (A AY) = (S1A) oV A/;
i) e (AOMAY) = (7TA) o (LAY).

e
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4. Coherent confluence modulo

4.1.2. Coherent confluence modulo. Let (R, E,S) be an n-polygraph modulo. Let I' be a square exten-
sion of the pair of n-categories (E ', S*). We will consider

i) (E,S,T UPeiff(ET,$*))T the free (n — 1)-category enriched in double groupoids generated by the
double (n + 1,n — 1)-polygraph (E,S,T)

ii) (E,S,T U Peiff(ET,$*)) T the free (n — 1)-category enriched in double categories whose vertical
n-cells are invertible generated by the double (n—1)-polygraph (E, S, "' UPeiff(ET, $*)) in DbPol..

A branching modulo E as in (3.3.3) is I'-confluent modulo E if there exists n-cells f/, g’ in $*, e’ in
ETanda (n + 1)-cell A in (E,S,E x ' U Peiff(ET, $*)) T as in the following diagram:

f ;!
u—u y W
el MA e
v——v/ sw'
g 9’

We say that S is I'-confluent (resp. locally T'-confluent, resp. critically I'-confluent) modulo E if every
branching (resp. local branching, resp. critical branching) modulo E is I'-confluent modulo E. Note that
when I' = Sqr(ET, $*) (resp. I' = Sph(S*)), the property of I'-confluence modulo E corresponds to the
property of confluence modulo E (resp. confluence) given in[3.3]

In the sequel, proofs of confluence modulo results will be based on the Huet double Noetherian
induction principle on the n-polygraph S" defined in and the property P on R* _; x R* _, defined,
for any u,vin R} _,, by

P(u,v) : any branching (f, e, g) of S modulo E of source (u,v) is I'-confluent modulo E.

4.1.3. Proposition (Coherent half Newman’s modulo lemma). Let (R, E,S) be an n-polygraph mod-
ulo such that ¢Rg is terminating, and T be a square extension of (ET,S*). If S is locally T-confluent
modulo E then the two following conditions hold

i) any branching (f, e) of S modulo E with f in S*( and e in €7 is T-confluent modulo E,
ii) any branching (f,e) of S modulo € with f in S* and e in ET() is T-confluent modulo E,

Proof. We prove condition i), the proof of condition ii) is similar. Let us assume that S is locally T'-
confluent modulo E, we proceed by double induction.

We denote by u the source of the branching (f, e). If u is irreducible with respect to S, then f is an
identity n-cell, and the branching is trivially I'-confluent.

Suppose that f is not an identity and assume that for any pair (u’,v’) of (n — 1)-cells in R¥_; such
that there is an n-cell (u, 1) — (u,v’) in S", any branching (f’,e’; g’) of source (u’,v’) is I'-confluent
modulo E. Prove that the branching (f, e) is '-confluent modulo E.

We proceed by induction on £(e) > 1. If £(e) = 1, (f,e) is a local branching of S modulo E and
it is I'-confluent modulo E by local I'-confluence of S modulo E. Now, let us assume that for k > 1,
any branching (f”;e”) of S modulo E such that {(e”) = k is I'-confluent modulo E, and let us consider
a branching (f, e) of S modulo E such that {(e) = k + 1, with source 1. We choose a decomposition
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4.1. Coherent Newman’s lemma modulo

e = e1 *n_1 ey with ey in ETM and ey in ET. Using local I'-confluence on the branching (f, ey) of
source 1, there exist n-cells f' and 1 in $*, an n-cell ef : ty_1(f') — tn_1(f;) in ET and a (n + 1)-cell
A in (E,S,T)™ such that o , (A) = f %, ' and % w(A) = f;. Then, we choose a decomposition
f1 = f] *n_1 7 with f] in $*() and f2 in $*. Using the induction hypothesis on the branching (f1, e;)
of S modulo E of source uy := ty,_j(e1) = sn_1(ez), there exist n-cells f{ and g in $*, an n-cell
ex:tn_1(f]) = tan_1(g)in E" and a (n + 1)-cell B in (E,S,T) T such that o L(B) = f] #n_1 f] and
(7l}rm(B) = ¢. This can be represented by the following diagram:

f f’
u u u”

€1| Local I'-conf mod E he{

w —fl—u —f—uf

up —fl—u] —f]—u

e>| Induction on {(e) ‘eé

v v/

g

Now, there is an n-cell (u,u) — (uj,u) in S" given by the composition
(wyu) = (ur,ur) = (ur,ug) — (ug,uy)

where the first step exists because {(e;) > 0 and the remaining composition is as in Then, we
apply double induction on the branching (4, f]) of S modulo E of source (u],]): there exist n-cells f,
and f} in S* and an n-cell e3 : tn_1(f2) — tn_1(f}) in ET. By a similar argument, we can apply double
induction on the branchings (f2, (e])™) and (f3, e5) of S modulo E, so that there exist n-cells f”,f3, f;
and g’ in $* and n-cells e] : th_1(f") — tn_1(f3) and ) : t,_1(f}) — tn_1(g’) as in the following
diagram:

w— f’ u” f u”
e1| Local I'-conf mod E ‘61/ Db Ind. ‘e{’
u —fl—u; —f—u —fH—wy —f3—w)

I = ‘II Db Ind. es
u —fl— up —f— uy —f— wy —f—w;
e>| Induction on {(e) {eé Db Ind. Jeﬁ/
v g v/ 7 v
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4. Coherent confluence modulo

We can then repeat the same process using double induction on the branching (f3, e3, f;) of S modulo
E of source (wj,w;) and so on, and this process terminates in finitely many steps, otherwise it leads
to an infinite rewriting sequence wrt S starting from wy, which is not possible since gRg, and thus S, is
terminating. This yields the I'-confluence of the branching (f, e). O

4.1.4. Theorem (Coherent Newman’s lemma modulo). Lef (R, E,S) be an n-polygraph modulo such
that ¢Rg is terminating, and T be a square extension of (ET,S*). If S is locally T-confluent modulo E
then it is T-confluent modulo E.

Proof. Prove that any branching (f, e, g) of S modulo E is I'-confluent modulo E. Let us choose such a
branching and denote by (u, V) its source. We assume that any branching (', e’, g’) of S modulo E of
source (u/,v’) such that there is an n-cell (u,v) — (u’;v’) in S" is I'-confluent modulo E. We follow
the proof scheme used by Huet in [15| Lemma 2.7]. Let us denote by n := {(f) and m := £(g). We
assume without loss of generality that n > 0 and we fix a decomposition f = f1 *n_; f, with f; in $*(1)
and f; in S*.

Ifm =0,by Propositionon the branching (f;, e) of S modulo E, there exist n-cells f; and g’ in
S*,ann-celle’ : t,_1(f]) — to_1(g’) anda (n+1)-cell Ain (E, S, )T such that O W(A) = fran_if]
and " | (A) = g’. Then, since there is an n-cell (u,u) — (uj,u) in S" with uy := t,_;(f7), we can
apply double induction on the branching (f;, f{) of S modulo E as in the following diagram:

wy u,

|| Db Ind. J

Prop. BT |

/

u
u—f1—uy —fj—uy —f{—>u)
v—>v

We finish the proof of this case with a similar argument than in [4.1.3] using repeated double inductions
that can not occur infinitely many times since S is terminating.

Now, assume that m > 0 and fix a decomposition g = g7 *n_1 g2 of g with g7 in $*(") and g5 in
S*. By Step 1 on the branching (f1,e) of S modulo E, there exist n-cells f{ and hy in S*, an n-cell
er:tn1(f]) = th_1(hy)inE" anda (n+ 1)-cell A'in (E,S,T) T such that 6}_"11(/\) = f1xn_1f] and
6]}”1(A) hi. We distinguish two cases whether h; is trivial or not.

If hy is trivial, the I'-confluence of the branching (f, e, g) of S modulo E is given by the following
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4.1. Coherent Newman’s lemma modulo

diagram

f1 fa f) /
u u u) u
I = Il Db Ind. ‘
/ / fq
u—fi—u —f— Yy f3 u3 ugs —f5— us
e Prop. o/ Prop. &1 Db Ind.
v 1, v —gi—v; —gi— v —gi—wy _ %, w3
I = n = JII Db Ind.
v vV—gi— vy v w
. g 17 g, 2 92 2

where the branchings (f1, e) and (g1, e’) of S modulo E are I'-confluent by Proposition4.1.3] double
induction applies on the branchings (f, f] n_1 f3), (g1, 92) and (f4, e1, g{') since there are n-cells

(W) = (uu) - (w,w), (Wv) = W,v) - (V>V1/) - (\11,,\)1/) and (u,v) — (u3,v) — (uSaVI//)

in SU and one can check that this process of double induction can be repeated, terminating in a finite
number of steps since S is terminating and yields a I'-confluence of the branching (f, e, g) modulo E.

If hy is not trivial, let us fix a decomposition hy = h} *n_1 h% with h} in $*(V) and h% in S*. The
I'-confluence of the branching (f, e, g) of S modulo E is given by the following diagram:
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4. Coherent confluence modulo

!
f L) 13 /
u w wy u;

I I Db Ind.

u—f—u —f—u —f3—us —f—uy
e Prop. 4.1.3] Db Ind. ‘

v—h]— v —hi—w; —hy—w, —hj—w;)
I = [ Db Ind.

v—h]—v; —h{—wj —hz— w3 —hj—w;
Il'| Local I'-conf mod E ‘ Db Ind. ‘

V—gi—V —gi— V] —g;— V) —gi— V3

I = I Db Ind. h

Y v/ V)

g1 92 93
where the branching (f, e) modulo E is T'-confluent by Proposition the branching (h}, gr)is I'-
confluent by assumption of local I'-confluence of S, and one can check that double induction applies on
the branchings (f2, f}), (h4,h), (g}, g2), (f3, h2) and (hs, g}). This process of double induction can be
repeated, terminating in a finite number of steps since S is terminating and yields a I'-confluence of the
branching (f, e, g) modulo E.

V3

O

4.2. Coherent critical branching lemma modulo

In this subsection, we show that to prove coherent local confluence of an n-polygraph modulo, we do
not need to consider all the local branchings. We show how to prove coherent local confluence of an
n-polygraph modulo from coherent confluence of critical branchings.

4.2.1. Proposition. Let (R, E,S) be an n-polygraph modulo such that ¢Rg is terminating. Then S is
I'-locally confluent modulo E, if and only if the two following conditions hold:

a) any local branching (f, g) : uw = (v, w) with f in $*) and g in R*() is T-confluent modulo E:

f o
Uu—v YV
a) I A e’
N ~
UTW )W/
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4.2. Coherent critical branching lemma modulo

b) any local branching (f,e) : w = (v,u’) modulo E with f in $*(") and e in ET() is T-confluent
modulo E:

f o
u——v yV
b) eJ B e’
\V/ ~
u’ . YW
g

Proof. We prove this result using Huet double Noetherian induction principle on the n-polygraph S
defined in and the property P on R* _; x R*_, defined by: for any u,vin R? _;,

P(u,v) : any branching (f, e, g) of S modulo E of source (u,v) is I'-confluent modulo E.

The only part is trivial because properties a) and b) correspond to I'-confluence of some local branch-
ings of S modulo E. Conversely, assume that S satisfy properties a) and b) and let us at first prove that
any branching (f, e) with f in $*(!) and e in ET is M'-confluent. We consider such a branching (f, e) of
source u and assume that any branching (', e’, g”) of S modulo E of source (1, v’) such that there exist
an n-cell (u,u) — (u/,v’) in S"is I'-confluent modulo E. We proceed by induction on £(e). If {(e) = 1,
the I'-confluence of the branching (f, e) is given by property b). Now, suppose this result proved for any
branching (f”, e”) with f” in $*(") and e” in ET such that £(e”) = k > 1 and assume that £(e) = k + 1.
Let us choose a decomposition e = ey *,,_1 € with e; in ET( and e, in ET such that {(e;) = k. By
property b), the local branching (f, e;) is I'-confluent modulo E: there exist n-cells f’ and f; in S*, an
n-cell e’ : tn_1(f’) = to_1(f;) and a (n + 1)-cell A in (E, S, )™ such that " (A) = fxn_y f’ and
o L (A) =1

We choose a decomposition 1 = f} *pn—1 f% with f} in $*(") and f% in $*, and by induction hy-
pothesis, the branching (f},ez) is I'-confluent modulo E: there exist n-cells f; and g in $*, an n-cell
e” : th_1(f]) — tn_1(g) and a (n + T)-cell B in (E,S,T)T such that o .(B) = f] *n_1 f] and
& n(B) = g

f f’
u u u”

e b) ‘e{

0l P!

u —fl—u; —f—uj

e2| Induction on {(e) {eﬁ

/

Y v
g

We then finish this part of the proof with a similar argument than in the proof of Proposition 4.1.3]
Now, let us prove that any local branching is I'-confluent modulo E. We consider a local branching
(f, e, g) of S modulo E, and assume without loss of generality that f is a non-trivial n-cell in $*(1). There
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4. Coherent confluence modulo

are two cases: either g is trivial, and the local branching (f, e) of S modulo E is I'-confluent by b), or e is
trivial. In that case, if g is in R*(1), then M'-confluence of the branching (f, g) is given by a). Otherwise,
let us choose a decomposition g = e *,_1 g’ *,,_1 €2 with ej,e in ET and g’in R*(M. Now, let us prove
the confluence of the branching

g'ez

of S modulo E, where g’e; is an n-cell in $*(1). We will then prove the I'-confluence of the branching
(f, g) using the biaction of E" on Sqr(ET, $*). Using first part of the proof on the branching (f,e;) of
S modulo E, there exist n-cells f and fq in $*, an n-cell e’ : t,_1(f') — t,_1(f1) and a (n + 1)-cell
A in (E,S,T) TV such that 6}_‘,n(A) = f*,_1 " and 81)11(/\) = f;. Using property a) on the local
branching (g’, g’e;) € R*(1) x S*(1) and the trivial confluence given by the right vertical cell e, there
exist a (n + 1)-cell B in (E,S,T)™ such that (7E’n(B) = g’ and 0%  (B) = g’e;. Let us choose a
decomposition f; = f} *n_1 f% with f} in $*(1) and f%. By property a) on the local branching (f}, g’),
there exist n-cells f| and g/ in S*, ann-celle” : t,_1(f]) — t,_1(g}) and a (n+1)-cell Cin (E,S, T) T
such that 0" | (C) = f] *n_1 f] and % 1(C) = g’ *n_1 g{ as depicted on the following diagram:

f f’
u uw u”

€1 ﬂ/\ ‘61/

0l P!

u —fl—u; —f—uj

! Jc {eé

v—g'—V ———W2

92
Il lLB €2
V—— v/
ge

There are n-cells (u, u) — (uf,u;) and (u,u) — (v1,v7) in S" given by the following compositions

(W) — (u,w) — (u1)u1/) - (u{>u1/)
(wu) = (un,w) = (w,v) = (v,v) = (v,vi) = (vi,v1)

so that we can apply double induction on the branchings (f%, f1) and (g5, e2) of S modulo E, and we finish
the proof of I'-confluence of the branching (f, e, g’e;) using repeated double inductions, terminating in
a finite number of steps since S is terminating.
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4.2. Coherent critical branching lemma modulo

Now, we get the I'-confluence of the branching (f, g) of S by the following diagram:

f i p

u u

u

!/
I : Aﬂ ‘61
uy —e fl- ug —f—uy

uy —e fl-o up —f1—uy

e
I e;B ‘eﬁ

V—ejg'=vi———W

92
I 27 C Jez

v—’
€1g e

since the top rectangle is by definition tiled by the (n + 1)-cell 16 , A, the bottom rectangle is tiled by the
(n+ 1)-cell 21_ B and the remaining rectangle is tiled by the (n. + 1)-cell z‘_ C. The rest of the diagram is
1

tiled in the same way than above. 0

4.2.2. Theorem (Coherent critical branching lemma modulo). Let (R, E,S) be an n-polygraph mod-
ulo such that ¢Rg is terminating. Then S is I'-locally confluent modulo E, if and only if the two following
conditions hold

ag) any critical branching (f,g) : w = (v,w) with f in $*() and g in R*() is M-confluent modulo E:

R
u—ov v
ag) ||J A e’
' <~
uTW )W/

bo) any critical branching (f,e) : uw = (v,u’) modulo E with f in $*) and e in ET(MV js T-confluent

modulo E:
f oy
U—-v yV
bO) eJ{ \/B e’
u’ : y W
g

Proof. By Proposition 4.2.1} the local I'-confluence is equivalent to both conditions a) and b). Let us
prove that the condition a) (resp. b)) holds if and only if the condition ag) (resp. bg)) holds. One
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5. Coherent completion modulo

implication is trivial. Suppose that conditions by) holds and prove condition b). The proof of the other
implication is similar.

We examine all the possible forms of local branchings modulo given in[3.3.5] Local Peiffer branching
modulo of the forms (3.3.6) are trivially confluent modulo:

f*i\) ’ W*if /
UKxKiV——U *V WhkiUl—WHku

U eJ Ju’ xi € e’ *; uJ Jel *u!

u*ivlﬁu'*ivl w’*iu/—wv’*iu'
fxv woxi f

and '-confluent modulo by definition of I'-confluence. The other local branchings modulo are overlap-
ping branchings modulo (f, e) : 1 = (u/, V) of the form (3.3.7), where f is an n-cell of $*() and e is an
n-cell of ET(1). There exists a whisker C on R* _; and a critical branching (f/,e’) : 1y = (1, vo) such
that f = C[f’] and e = C[e’]. Following condition by) the branching (f’, e’) is I'-confluent, that is there
exists a [-confluence modulo E:

f/ f//
u——v sy
/
e "
u’ : y W
g

Clu] ——= C[v] v/
Cle’] CIA]  Cle]
Y
Clu'] : W
Clg’l
This proves the condition b). O

5. COHERENT COMPLETION MODULO

In this section, we show how to construct a two-fold coherent presentation of an (n— 1)-category € start-
ing with a presentation of this (n — T)-category by an n-polygraph modulo. We explain how the results
presented in this section generalize to n-polygraph modulo the coherence results from n-polygraphs as
given in [12}[13].

5.1. Coherent completion modulo

In this subsection, we recall the notion of coherent completion of a convergent n-polygraph and introduce
the notion of coherent completion modulo for polygraphs modulo, given by adjunction of a square cell
for any confluence diagram of critical branching modulo.
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5.2. Coherence by E-normalization

5.1.1. Coherent completion. Recall from [12]] that a convergent n-polygraph can be extended into a
coherent presentation of the category it presents. Explicitly, given a convergent n-polygraph E, we
consider a family of generating confluences of E as a cellular extension of the free (n41,n)-category E '
that contains exactly one (n + 1)-cell

% ’ ﬂ
u UEeer W
e,\} V/ /e{\
for every critical branching (f,g) of E. Any (n + 1,n)-polygraph obtained from E by adjunction of
a chosen family of generating confluences of E is a coherent presentation of the (n — 1)-category E,
[12]. Note that this result was originally proved by Squier in the case n = 2 in [23]]. From such a
(n 4+ 1,m)-polygraph we can define a double (n + 2,n)-polygraph (E, &f, Cd(E)), where Cd(E) is the

square extension of the (n+ 1, n)-categories (E ', 1) seen as an n-category enriched in double groupoids
that contains exactly one square (n + 1)-cell
—u
I
v/

d
v E e’
e ] e

w s W

for every critical branching (e, e’) of E.

5.1.2. Coherent completion modulo. Let (R, E,S) be an n-polygraph modulo. A coherent completion
modulo E of S is a square extension of the pair of (n + 1,mn)-categories (ET, ST ) whose elements are the
square cells Ay 4 and By of the following form:

/ /
w—tsw w—tsw (5.1.3)
||J \H/Aﬂg ie’ el ﬂBf,e ie’
U——v——w vV————w’
9 g’ g’

for any critical branchings (f,g) and (f,e) of S modulo E, where f, g and e are n-cells of S*(1),
R*(M and ET(V respectively. Note that such completion is not unique in general and depends on the
n-cells f/; g’; e’ chosen to obtain the confluence of the critical branchings.

5.2. Coherence by E-normalization

In this subsection, we show how to obtain an acyclic square extension a the pair of categories (ET,ST)
coming from a polygraph modulo (R, E, S), under an assumption of normalization of S with respect toE.
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5. Coherent completion modulo

5.2.1. Normalisation in polygraphs modulo. Let us recall the notion of normalization strategy in an
n-polygraph P. Denote by € the (n — 1)-category presented by P. Consider a section s : € — P} of the
canonical projection 7t : P} — C, that sends any (n — 1)-cell win Cona (n — 1)-cell in P¥_; denoted
by {i such that 7t({t) = u. A normalization strategy for P with respect to s is a map

(O P;if] g P:;
that sends every (n — 1)-cell wof P} _, toa (n + 1)-cell
oy, u— 1.

Let (R, E, S) be an n-polygraph modulo. The n-polygraph modulo S is normalizing if any (n — 1)-
cell u admits at least one normal with respect to S, that is NF(S,u) is not empty.

A set X of (n — 1)-cells in RY_, is E-normalizing with respect to S if for any u in X, the set
NF(S,u) n Irr(E) is not empty. The n-polygraph modulo S is E-normalizing if it normalizing and
Rﬁ—] is E-normalizing. When S is E-normalizing, a E-normalization strategy o for S, associates to each
(n —1)-cell win R¥_; an n-cell o, : u — {i in S*, where {i belongs to NF(S,u) n Irr(E).

5.2.2. Theorem. Let (R, E,S) be n-polygraph modulo, and T" be a square extension of the pair of (n +
1,m)-categories (ET,ST). If the following conditions hold

i) E is convergent,

ii) S is I'-confluent modulo E,
iii) Irr(E) is E-normalizing with respect to S,
iv) Rg is terminating,
then the square extension I U Cd(E) is acyclic.

Proof. Let T be a square extension of (E",ST). We will denote by C the free n-category enriched in
double groupoid (E,S,T" u Cd(E))T generated by the double (n + 2,n)-polygraph (E, S, T U Cd(E)).
We will denote by 1i the unique normal form of a (n — 1)-cell win R}, with respect to E and we fix a
normalization strategy p,, : uw — U for E.

By termination of ¢Rg, the n-polygraph modulo S is normalizing. Let us fix a E-normalization
strategy oy, : u — {l for S. Let us consider a square

el Je’ (5.2.3)

in C. By definition the n-cell f in ST can be decomposed (in general in a non unique way) into a zigzag
sequence fo*n 117 *n_1-+-*n_1fon*n_1f;, ; with source u and target v where the 2y : Uz — Uk
and fo 1 W2 — Uk, forall 0 < k < m are n-cell of S*, with ug = wand Uy = v.
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5.2. Coherence by E-normalization

By I'-confluence modulo E there exist an n-cells ef, in E" and (n+1)-cell oy, in C as in the following

diagrams:

f2k+l 0_U~2k+1

f2k Gu2k+l ~
Uok4+2 — 2 U2k4+1 — 7 U2k+1

Upk — Uk 1 — U2k 41

Pusy Oy €fop Pu Oty €foi
U2k o— U2k U2k+2 p— U2k+2
Uk U2k+2

for all 0 < k < n. By definition of the normalization strategy o, forany 0 < i < 2n+ 1, the (n—1)-cell

U is a normal form with respect to E, and by convergence of the n-polygraph E we have the equality
Ui = Uit

Moreover, for any 1 < i < 2n+1, there exists a square (n+1)-cell in C as in the following diagram:

A = A
Wit — W

er er

i Eiy s

—

U ——= Uit2
We define a square (n + 1)-cell oy in C as the following ¢¥-composition:
v v % % \% % v
01, 0" By 07 0p, 07 0f, 07 ... 0" 0%, O Bony1 07 0%,y

For an even integer i > 0

fi Ouipr = _— Ouigy fi+2 Ouiys N =
W Uit Wit Uit Wit 142 WUit3 i+3
Py Ojﬁi ef; Ei+] efi+1 O—fi+1 Pu, 0-f1+2 efi+2 Ei+3
i O i Ui42 — Uit2 — Wit —=
1 i+2 i+2

In this way, we have constructed a square (n + 1)-cell

U.L)V
pu‘ \H/O—f hpv
U——v

070y
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5. Coherent completion modulo

Similarly, we construct a square (n. + 1)-cell o4 as follows:

030~
~ v ~
Uu——v

u’ 4’9 v/

using that i = 1/ andV = v’ by convergence of E. We obtain a square (n+1)-cell E¢oY (ool 0g )0 Eer
filling the square (5.2.3)), as in the following diagram:

— f -

u u Y% v
Pu (yf Pv

(0 \U/ O:
~ Yl = < v ~

e Ee U———m—m——mm™m>uU=vVé&—V Eel e/
pLL/ g pv’

LLI _ u/ V/ VI

5.2.4. Corollary. Let (R, E,S) be an n-polygraph modulo such that
i) E is convergent,
ii) S is confluent modulo E,

iii) ¢Rg is terminating,

iv) Irr(E) is E-normalizing with respect to S.

For any coherent completion T of S modulo E and any coherent completion Cd(E) of E, the square
extension I' U Cd(E) is acyclic.

Note that, when E is empty in Corollary we recover Squier’s theorem [23 Theorem 5.2] for
convergent n-polygraphs, [12, Proposition 4.3.4].

5.2.5. Decreasing orders for E-normalization. Let (R, E,S) be an n-polygraph modulo. We describe
a way to prove that the set Irr(E) is E-normalizing, laying on the definition of a termination order for R.
Given an n-polygraph P, one defines a decreasing order operator for P as a family of functions

®pq:Pr1(pyq) — N™(Pa)

indexed by pairs of (n — 2)-cells p and q in P} _, satisfying the following conditions:
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5.3. Coherence by commutation

i) For any (n — 1)-cells w and v in P}_,(p, q) such that there exists a n-cell f : u — v in P*, the
function @y, 4 satisfy @pq(u) > @p4(v), where > is the lexicographic order on N™™4), We
denote by > the partial order on P* _; defined by u > Vv if and only if u and v have same source
p and target q and @, 4(u) > Dy, (V).

ii) For any uandvin P*_, and any whisker C on P}_;, u >¢x v implies that C[u] >jex C[Vv].

n—1>
iii) The normal forms in P*_,(p, q) with respect to P are sent to the tuple (0, ...,0) in N™(P9),

Note that if an n-polygraph P admits a decreasing order operator, it is terminating. Actually, such
a decreasing order is a terminating order for P which is similar to a monomial order, but that we do not
require to be total.

5.2.6. Proving coherence modulo using a decreasing order. Consider an n-polygraph modulo (R, E, S)
such that E is terminating. A decreasing order operator @ for E is compatible with R if for any n-cell
f:u — vin R¥, then @y 4(u) = Op (V).

In that case, the set Irr(E) is E normahzlng with respect to R, since if u in R} _; is a normal form
with respect to E, @p 4 (1) = (0,...,0) in N™™9) and by compatibility with R, for any n-cell f : u — v
in R*, we get @ 4(v) = (0,..., 0) so v is still a normal form with respect to E. We can also prove that
Irr(E) is E-normalizing with respect to gR using this method, provided for any (n — 1)-cell w in Irr(E)
irreducible by R, any (n — 1)-cell u’ such that there is an n-cell u — u/ in ET is also irreducible by R.
This is for instance the case if R is left-disjoint from E, that is for any (n — 1)-cell u in s(R), we have
Gr(u) n E = J where:

— s(R) is the set of (n — 1)-sources in R¥ _; of generating n-cells in Ry,
— forany uin R?_,, Gr(u) is the set of generating n-cells in R;, contained in u.

With these conditions, we can apply Theorem to obtain acyclic extensions of R or gR.

5.3. Coherence by commutation

In this subsection, we prove that an acyclic extension of a pair (E", ST) coming from a polygraph modulo
(R, E, S) can be obtained from an assumption of commuting normalization strategies for the polygraphs S
and E. In particular, with further assumptions about this commutation we show to prove E-normalization.

5.3.1. Commuting normalization strategies. Let (R, E,S) be an n-polygraph modulo. Let o (resp. p)
a normalization strategy with respect to S (resp. with respect to E). The normalization strategies o and p

are weakly commuting if for any win R} _,, there exists an n-cell 1, in $* as in the following diagram:

Q
Jpﬁ (5.3.2)
i

Given weakly commuting normalization strategies o and p, we denote by N(o, p) the square exten-
sion of the pair (ET,ST) made of square of the form 1| for every (n — 1)-cell win R _,
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5. Coherent completion modulo

We say that the normalization strategies o and p are commuting if n,, = oy holds, for all (n— 1)-cell

uwin R%_,. Note that, 0 and p commutes if and only if the equality ti = U hold for all (n — T)-cells of
R* -1

n

5.3.3. Theorem. Let (R,E,S) be an n-polygraph modulo, T be a square extension of the pair of (n +
1,m)-categories (ET,ST), o and p be normalization strategies for S and E respectively. If the following
four conditions hold

i) E is convergent,
ii) S is I'-confluent modulo E,
iii) ¢Rg is terminating,
iv) o and p are weakly commuting,
then the square extension I v Cd(E) u N(o, p) is acyclic.

Proof. Denote by C the free n-category enriched in double groupoids (E,S,T u Cd(E) u N(o,p))T.
For win R} _;, we denote by N, the square (n + 1)-cell in C corresponding to the square (5.3.2).

n—1°
We prove that for any n-cell f : uw — v in $*, there exists a square (n + 1)-cell 67 of the following

form
f

in C. The square (n + 1)-cell 0% is obtained as the following composition:

Oy

u A%

DU D
5

oy f Oy A~ = A = . =
v v

<O«
<O«

v —
Nu Mu 0% 05

where the n-cell ey, and the square (n + 1)-cell n¢ (resp. the n-cell e and the square (n + 1)-cell yy)
exist in C by I'-confluence modulo E of S, and the square (n + 1)-cell lives in Cd(E)T.
Now, let consider a square

w—t (5.3.4)

U/TV/

in C. By definition the n-cell f in ST can be decomposed (in general in a non unique way) into a zigzag
sequence fo*n 117 *n_1- - -*n_1fon*n_1 5, | with source u and target v where the 2y : Uz — Uk
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5.3. Coherence by commutation

and for 1 Wka2 — U1, forall 0 < k < n are n-cell of $*, with up = w and uy, 12 = v. We define
a square (n + 1)-cell oy as the following vertical composition:

v~ v~ v v — W
Ny o¥ 05, 0% 07, 07 ... 0" 0p,, . ©" Ny

as depicted on the following diagram

Guo N Uuo f() GU] o~ UU] f] Guz —~ GuZ fZ Gu3 A~

Up Uo Uo w u w w w w2 us us

puoh JJNququ ﬂ&g p ﬁ‘ ﬂ&; ‘sz ﬂ(y?z P@‘

o Uo — w p w = us
T]uo

In this way, we have constructed a square (n + 1)-cell

f
—
i
—

MMy

e

Pu Pv

—
QDe——<

e

Similarly, we construct a square (n. + 1)-cell o4 as follows:

~ MuMy, o
u——v

u’ —>g v/

using that L = u’ and ¥ = v/ by convergence of E. We obtain a square (n + 1)-cell filling the
square (5.3.4), as in the proof of Theorem[5.2.2]

Moreover, when o and p are commuting, Irr(E) is E-normalizing with respect to S since U = U

O

implies that the normal form U with respect to S also is a normal form with respect to E. Then Theorem
applies, to prove that ' U Sph(E T, 1) is acyclic.

5.3.5. Remark. One can recover the fact that with the hypothesis of Theorem [5.3.3]and the assumption
that the equality 1, = oy holds for any u in R;_1, we do not need the square (n + 1)-cells Ny, in the
coherent extension, using the following lemma on the square (5.3.2).

5.3.6. Lemma. Let S be an n-polygraph modulo such that ¢Rg is terminating, and T be a square exten-
sion of the pair of (n 4 1,1)-categories (ET,S") such that S is T-confluent modulo E. Then any square
in (E,S, 7)1 of the form

f f/
U—v—w (5.3.7)

I

uw—v'—w
g g’
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5. Coherent completion modulo

such that w and w' are normal forms with respect to S is the boundary of a square (n + 1)-cell

in (E,S, )T,

Proof. Let us consider a square as in (5.3.7). By I'-confluence of S modulo E on the branching (f, e, g),
there exists a I'-confluence as in the following diagram:

f T
U— v —

el \H/A Je//
uw——v ——
g9 g
By I'-confluence on the branchings (f/, f1) and (g1, g’) of S, there exist square (n + 1)-cells B and B’ as
follows:

f f’
u Y w

I = ‘II JLB ‘61
U—-r+"—v—Ff1— vy —Fr—v;
ny:

uw —g—v' —g1—v] —g2—)

HEN:

ul g V/ g/ W/

Then, we use Huet’s double induction as in Section {|to prove that the square

2
Vi ———™V)

ez‘ hqe’ez

/ /
Vi ———V
1 g2 2

is the boundary of a square (n + 1)-cell in (E, S, )T, O
5.4. A diagrammatic rewriting toy example
In this subsection, we present an application of Theorem [5.2.2] on a toy example in the context of di-

agrammatic rewrting. We consider a presentation of a pivotal monoidal category, seen as a pivotal
2-category with only one O-cell presented by a 3-polygraph. The pivotal structure can be interpreted
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5.4. A diagrammatic rewriting toy example

by isotopies relations on the 2-cells of the 2-category. Such relations produce many critical branching
with primary rules of the presentation. In this example, by using the structure of polygraph modulo, we
show how manage such isotopy rules with respect the primary rules in the computation of a coherent pre-
sentation of the given monoidal category. In particular, we illustrate the method with a kind of relation
arising in many presentation of monoidal categories, relation (5.4.7), see for instance Khovanov-Lauda’s
2-category [[18]] which categorifies quantum groups associated with symmetrizable Kac-Moody algebras,
or in the definition of Heisenberg category as given in [4}[19].

5.4.1. A toy example. We consider the 3-polygraph P defined by the following data:

i) only one O-cell,
ii) two 1-cells A and v,

iii) eight 2-cells pictured by
$ >< t X (5.4.2)

M, U, M \_JA (5.4.3)

iv) the 3-cells of P are given by:

a) the three family of 3-cells of the 3-polygraph of pearls from [12]:
AU VoS R VAR AAVES B
U=t [U=h b Y =h e

=\UJ, MN=1, U=, N2/ 646

b) the 3-cells of the 3-polygraph of permutations for both upward and downward orientations of
strands:

gu) 83| s Gs k)

¢) a3-cell

(5.4.7)

% 1 (5.4.8)

Note that the relations (5.4.4]—[5.4.6) are isotopy relations, corresponding to the fact that the gener-
ating T-cells v and A are biadjoints in the 2-category P presented by P, and cups and caps 2-cells are
units and counits for these adjunctions. Relations implying dots also ensure that the dot 2-cell is a cyclic
2-morphism in the sense of [6]] for the biadjunction v - A - v making P a pivotal 2-category.
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5. Coherent completion modulo

5.4.9. Confluence of polygraph P. The 3-polygraph P is not confluent since the branching

/ 8%1 (5.4.10)
%\Tﬂ

is not confluent. Moreover, solving this obstruction to confluence by using a Knuth-Bendix completion
may create a great number of relations, making analysis of confluence from critical branchings ineffi-
cient. To tackle this issue, we use rewriting modulo isotopy.

5.4.11. Confluence modulo isotopy. We consider the 3-polygraph E defined by the following data
i) B« =P«
ii) it has six 2-cells given in (5.4.3) and the dot 2-cells in[5.4.2]

iii) the isotopy 3-cells (5.4.4]—[5.4.6) of the 3-polygraph of pearls.

Let R be a 3-polygraph such that R<; = P<, where P is the 3-polygraph of [5.4.1] and whose 3-cells are
given by (ott, B,7y) of (5.4.7]—[5.4.8), and let us consider the 3-polygraph modulo ¢R. Following[3.4.1]
the only critical branchings we have to consider are those of the form (f, g) with f in eR*(M and g in
R*(M . The branching is not such a branching because the top 3-cell belongs to E', and the top-
right 2-cell is not reducible by R. Moreover, one can check that the only critical branchings we have to
consider are given by pairs (f, g) of 3-cells both in R*(1. The 3-cell y in R*(V) does not overlap with ot
or 34, so the only critical branchings we have to consider are those of the 3-polygraph of permutations
described in [12, 5.4.4], with either upward or downward orientated strands.

5.4.12. Decreasing order operator for E-normalization. The 3-polygraph R is left-disjoint from E,
since no caps and cups 2-cells appear in the sources of the generating 3-cells of R. Following
we prove that Irr(E) is E-normalizing with respect to ¢R using a decreasing order operator ® for E
compatible with R.

5.4.13. Lemma. Let E and R be the 3-polygraphs defined above. There exists a decreasing operator
order @ for E compatible with R.

Proof. For any 1-cells p and q in R}, we set m(p, q) = 2 and for any 2-cell u of source p and target q
in Ry, @}, 4(u) = (Idot(w),I(w)) where:

i) Idot(u) counts the number of left-dotted caps and cups, adding for such cap and cup the number of
dots on it. In particular, for any n in N*, we have

tdot (™)) = 1dot ( Mh_J ) i=m 41

for both orientations of strands.
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ii) I(u) counts the number of instances of one of the following 2-cells of R} in wu:

AVRVARVARAY

For any 3-cell u = v in E, we have ®(u) > ®(v) and that ®(u,u) = (0,0) for any u in Irr(E).
Moreover, @ is compatible with R because rewritings with respect to R do not make the dot 2-cell move
around a cup or a cap, or create sources of isotopies. O

As a consequence of Theorem we deduce an acyclic square extension of the pair of (3,2)-
categories (E', gRT). This square extension is made of the ten elements given by the diagrams of
the homotopy basis for the 3-polygraph of permutations from [[12 Section 5.4.4] for both upward and
downward orientations of strands and the 16 elements given by the diagrams of the homotopy basis or
the 3-polygraph of pearls in [[12], Section 5.5.3] for both orientations of strands form.
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