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Abstract

We give a new proof that free Burnside groups of sufficiently large even
exponents are infinite. The method can also be used to study (partially)
periodic quotients of any group which admits an action on a hyperbolic
space satisfying a weak form of acylindricity.
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1 Introduction

Historical background
A group G has exponent n ∈ N if gn = 1 for every g ∈ G. In 1902, Burnside
asked whether every finitely generated group with finite exponent was neces-
sarily finite [5]. Despite its simplicity, this question remained open for a long
time and motivated many developments in group theory. The class of groups
with exponent n forms a group variety whose free elements are the free Burnside
groups of exponent n. More concretely, the free Burnside group of rank r and
exponent n, that we denote by Br(n), admits the following presentation

Br(n) = 〈a1, . . . , ar | xn, ∀x〉 .

Amajor breakthrough in the subject was achieved by Novikov and Adian in 1968
[29]. They proved that Br(n) is infinite provided r > 2 and n is a sufficiently
large odd exponent. Later Ol’shansk̆ı provided an alternative proof of the same
result [30]. Despite these progresses the case of even exponents hold up longer.
It was only in the early 90’s that Ivanov [24] and Lysenok [26] independently
proved that free Burnside groups of sufficiently large even exponents are also
infinite.

The aforementioned results rely (more or less explicitly) on a combinatorial
approach of small cancellation theory (using combinatorics on words and/or
van Kampen diagram). Historically, the respective works of Novikov-Adian and
Ol’shanskĭı appeared before the emergence of hyperbolicity as formalized by
Gromov in [19]. However hyperbolic groups and their various generalizations
provide a perfect framework offering new insights into small cancellation theory.
See for instance [21, 11] for a survey on the topic. Using this geometric point of
view, Delzant and Gromov revisited the Burnside problem making an explicit
use of hyperbolic geometry [15]. Nevertheless their work only applies to odd
exponents.

Main results. In this article we provide a new approach to the free Burnside
groups with even exponents based on the geometrical ideas of Delzant and
Gromov [15]. More precisely we prove the following statement.

Theorem 1.1. Let r > 2. There exists a critical exponent N0 ∈ N such that
for every integer n > N0, the free Burnside group Br(n) is infinite.

Not only is our approach substantially shorter than the one of Lysenok and
Ivanov (200 and 300 pages respectively) it also gives a way to produce (par-
tially) periodic quotients of many groups as soon as they carry a certain form
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of negative curvature. Our next theorem is originally due to Ol’shanskĭı and
Ivanov [31, 25] answering a question of Gromov [19]. Given an arbitrary group
G, we write Gn for the (normal) subgroup of G generated by the n-th power of
all its elements.

Theorem 1.2. Let G be a non-elementary hyperbolic group. There exist p,N0 ∈
N, such that for every integer n > N0 that is a multiple of p, the quotient G/Gn
is infinite. Moreover ⋂

n>1

Gn = {1}.

More generally if G is a group acting acylindrically on a Gromov hyperbolic
space X (see Section 5.2 for a precise definition) then for arbitrary large ex-
ponents n ∈ N, we are able to produce a partially n-periodic quotient of G
(Theorem 5.7), i.e. a quotient Q of G such that

(i) every elliptic subgroup of G (for its action on X) embeds in Q,

(ii) for every q ∈ Q, either q is the image of an elliptic element of G or qn = 1.

In particular it applies to the mapping class group of a surface acting on
the associated curve complex (Theorem 5.13) or certain amalgamated products
acting on their corresponding Bass-Serre trees (Theorem 5.14). For instance if
G = A ∗ B is a free product, the corresponding quotient Q corresponds to the
n-periodic product of A and B, see for instance [1]. Those statements generalize
the previous work of the author [10]. Note that the same strategy could also be
used to study the outer automorphism group of free Burnside groups with even
exponent, extending some other work of the author [8]. Nevertheless to limit
the length of the article we decided not to detail that part.

A geometrical approach
Let us highlight a few important ideas involved in the proofs. For simplicity
we restrict our attention to free Burnside groups as this case already covers all
the difficulties. As shown by Ivanov and Lysenok, free Burnside groups with
(sufficiently large) odd or even exponent have a considerably different algebraic
structure. For instance if n is odd, every finite subgroup of Br(n) is cyclic. By
contrast if n is even, Br(n) contains arbitrarily large direct products of dihedral
groups. Nevertheless the global strategy to study those groups remains the
same.

A sequence of approximation groups. Given a large exponent n ∈ N, one
produces by induction an approximation sequence of hyperbolic groups

Fr = G0 � G1 � G2 · · ·� Gk � Gk+1 � . . . (1)

whose directly limit is exactly Br(n). At each step Gk+1 is obtained from Gk
by adding relations of the form hn = 1, where h run over the set of all “small”
loxodromic elements of Gk. The goal is to prevent this sequence to collapse to
a finite group. To that end we use small cancellation theory.
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Geometric small cancellation. Let S be a finite set and R a collection of
cyclically reduced words of F(S). Assume for simplicity thatR is invariant under
taking cyclic permutations and inverses and write ` for the length of its smallest
element. Given λ ∈ (0, 1), the group presentation 〈S|R〉 satisfies the classical
C ′′(λ) small cancellation condition if every prefix u of two distinct relations in
R has length at most |u| < λ`. For small values of λ, one understands precisely
the properties of the corresponding group Ḡ = F(S)/〈〈R〉〉. For instance if
λ 6 1/6, then Ḡ is hyperbolic. The C ′′(λ) condition can advantageously be
reformulated as follows. Let X be the Cayley graph of F(S) with respect to
S. The presentation 〈S|R〉 satisfies the C ′′(λ) condition if for every distinct
r1, r2 ∈ R, the overlap between the respective axes of r1 and r2 has length less
then λ`, where ` is also the smallest translation length of an element in R.

With this idea in mind, one can extends the small cancellation theory to
the context of hyperbolic groups [19, 32, 14] (or more generally of groups acting
on a hyperbolic space). Let G be a group acting properly co-compactly by
isometries on a hyperbolic space X and R a subset of G, which is invariant under
conjugation. Roughly speaking we will say that R satisfies a small cancellation
condition if given any two distinct r1, r2 ∈ R, the length ∆(r1, r2) on which the
respective axes of r1 and r2 fellow travel is very small compare to the translation
lengths ‖r1‖ and ‖r2‖ (see Figure 1). In this situation the quotient Ḡ = G/〈〈R〉〉

∆(r1,
r2)

x

r1x

r2x

Axis(r1)

Axis(r2)

Figure 1: Overlap between two relations seen in the hyperbolic space X. The
translation length ‖ri‖ of ri is roughly speaking the distance between x and rix.

is a non-elementary hyperbolic group. Under this hypothesis, Gromov explains
in [20] how to let this group act on a hyperbolic space X̄ whose geometry is
finer than the one of the Cayley graph of Ḡ, see also [15, 7, 9]. Assume for
instance that Ḡ is a quotient of the form Ḡ = G/〈〈hn〉〉 where h is a loxodromic
element and n a (large) exponent. Then M̄ = X̄/Ḡ can be seen as an orbifold
(whose fundamental group is Ḡ and universal cover is X̄) and comes with an
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analog of Margulis’ thin/thick decomposition for hyperbolic manifolds. The thin
part corresponds to the neighborhood of a single singular point whose isotropy
group is exactly the maximal finite subgroup F̄ ⊂ Ḡ containing the image of
h. The pre-image in X̄ of the thin part is roughly speaking the collection of all
Ḡ-translates of an F̄ -invariant hyperbolic disc D ⊂ X̄. Moreover there exists a
natural map q : F̄ → Dn, where Dn, is a the dihedral group of order 2n, such
that the action of F̄ on D is identified via q to the natural action of Dn on the
disc.

Adopting this point of view, we associate to each approximation group Gk
in (1) a hyperbolic space Xk on which Gk acts properly co-compactly. The goal
will be to prove that at each step the new relations defining Gk+1 will satisfy a
small cancellation condition in the above sense (i.e. relative to the action of Gk
on the space Xk). It has the following main advantage: almost every needed
property of the relations defining Gk is captured by the hyperbolicity of Xk.
Consequently when studying the quotient map Gk � Gk+1 one can completely
forget the relations defining Gk and rely only on the geometry of Xk. This
allows us to formulate – unlike in [29, 30, 26, 24] – the induction hypothesis
used to build the approximation sequence (1) in a rather compact form (see
Proposition 5.1).

A Margulis’ lemma. As mentioned above, the main challenge when building
the approximation sequence (1) is to make sure that Gk is not eventually finite.
This will not happen if, at each step, the relations (of the form hn = 1) used
to define Gk+1 from Gk satisfy a small cancellation condition. Therefore, given
any two loxodromic elements g1, g2 ∈ Gk which do not generate an elementary
subgroup, one needs to control uniformly, independently of k the ratio

∆(g1, g2)

max {‖g1‖, ‖g2‖}
(2)

where ∆(g1, g2) measures the “overlap” between the respective axes of g1 and
g2 in Xk. If Xk was a simply connected manifold with pinched negative sec-
tional curvature, such estimate would follow from Margulis’ Lemma. However
hyperbolicity only provides an upper bound for the curvature of the space.
To compensate this lack, one usually uses assumptions on the action of the
group (e.g. the fact that the action is proper co-compact or acylindrical).
For instance, a first (naive) attempt to bound the ratio (2) could work as
follows. Suppose that g1, g2 ∈ Gk are two loxodromic elements such that
∆(g1, g2) > N max{‖g1‖, ‖g2‖}. It is a standard exercise of hyperbolic geometry
to see that there exists a point x ∈ Xk such that for every i ∈ J0, N − 1K, the
commutator [g1, g

i
2] moves x by at most 100δk (where δk is the hyperbolicity

constant of Xk), see Figure 2. In particular if N exceeds the number of elements
in {u ∈ Gk : |ux − x| 6 100δk}, then g1 commutes with a power of g2, thus
〈g1, g2〉 is non-elementary. So, roughly speaking, the ratio (2) is bounded above
by the cardinality of the (almost) stabilizer of points in Xk. This strategy has
a major weakness though: if n is an even exponent, the cardinality of finite
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Figure 2: The point x is hardly moved by the commutator [g1, g
i
2].

subgroups is not uniformly bounded along the sequence (Gk). During the pro-
cess we will encounter points in Xk with arbitrary large stabilizers. Hence this
method cannot be used to keep the ratio (2) uniformly bounded. Any refine-
ment of the above argument using acylindrical actions of Gk on Xk – see for
instance [13] – shall fail in the same way.

To bypass this difficulty one associates to the action of Gk on Xk several
numerical invariants. Heuristically,

(i) A(Gk, Xk) is characterized as follows: if S is any finite subset of Gk gen-
erating a non-elementary subgroup, then the set of points in Xk which are
“hardly” moved by every element of S has diameter at most A(Gk, Xk)
(see Definition 3.2).

(ii) ν(Gk, Xk) is the smallest integer m with the following property: let g, h ∈
Gk with h loxodromic . If g, hgh−1, h2gh−2, . . . , hmgh−m generate an
elementary subgroup, then so do g and h (see Definition 3.3).

If the action of Gk on Xk is acylindrical, then both A(Gk, Xk) and ν(Gk, Xk)
are finite (however the converse does not hold). The quantity A(Gk, Xk) can
be thought of as a local version of the ratio (2). Indeed, its definition only
involves “small” elements. Combined with the ν-invariant one recovers the fol-
lowing global analogue of Margulis’ Lemma: if g1, g2 ∈ Gk do not generate an
elementary subgroup, then

∆(g1, g2) 6 [ν(Gk, Xk) + 2] max {‖g1‖ , ‖g2‖}+A(Gk, Xk) + 1000δk,

see for instance [10, Proposition 3.34] or Proposition 3.4. Consequently, in order
to make sure that for every k ∈ N, the relations defining Gk+1 from Gk satisfy
a suitable small cancellation condition, it suffices to control (among others) the
values of A(Gk, Xk) and ν(Gk, Xk) all along the approximation sequence (1).
This was done in [10] in the absence of even torsion.
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As soon as even torsion is involved, the situation becomes much more del-
icate. In particular, the ν-invariant does not behave very well when passing
to a quotient (see for instance the discussion and examples at the beginning
of Section 4.7.2). It results from the fact that the algebraic structure of finite
subgroups of Br(n) is rather intricate, see for instance Lysenok [27].

Structure of elementary subgroups. As we mentioned earlier, if n is odd,
then every maximal finite subgroup of Br(n) is isomorphic to the cyclic group
Zn. Moreover finite subgroups “stabilize” along the approximation sequence (1).
More precisely we have the following property: if F0 is a finite subgroup of some
Gk, then for every ` > k, every finite subgroup of G` containing the image of
F0 actually comes from a finite subgroup F of Gk which already contains F0.
By contrast, if n is even, finite subgroups may “grow” when taking successive
quotients. Let us illustrate this fact with the following toy example.

Example 1.3. Assume that n is a (large) even exponent. Start with the free
group G0 = F2 generated by a and b and set

G1 = G0/〈〈an, bn, (ba)n〉〉.

InG1 the elements s0 = an/2, s1 = bn/2 and s2 = (ba)n/2 all generate a subgroup
isomorphic to Z2. Consequently in the quotient

G2 = G1/〈〈(s0s1)n, (s0s2)n〉〉

s0 and s1 generates a subgroup isomorphic to the dihedral group Dn of order
2n. In particular, s0 commutes with the involution u1 = s0(s0s1)n/2. Similarly
s0 commutes with the involution u2 = s0(s0s2)n/2. Form now the quotient

G3 = G2/〈〈(u1u2)n〉〉.

Note that s0, u1 and u2 generate a subgroup isomorphic to Z2 ×Dn. In this
example, F1 = 〈s0〉 = Z2 is a finite subgroup of G1. Its image in G2 (respectively
G3) embeds in F2 = 〈s0, s1〉 = Dn (respectively F3 = 〈s0, u1, u2〉 = Z2 ×
Dn). However F2 (respectively F3) is not the image of a finite subgroup of
G1 (respectively G2). We stopped our example after three steps. However one
can proceed further and embeds F0 in an arbitrarily large product of the form
Z2 × · · · × Z2 ×Dn.

The previous example suggests that Gk – and thus Br(n) – contains nested
copies of dihedral groups. As mentioned above, one of the advantages of the
space Xk (compare to the Cayley graph of Gk) is that one “sees” some of these
dihedral groups acting as the isometry group of a disc. Unfortunately this is not
sufficient to capture all the properties of finite subgroups of Gk. To sort a bit
this nested structure, we introduce the notion of dihedral germ. A dihedral germ
of Gk is an elliptic subgroup C (for its action on Xk) containing a subgroup C0

which is normalized by a loxodromic element and such that [C : C0] is a power
of 2. As suggested by the terminology, the dihedral germs are exactly the finite
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subgroups of Gk that may eventually grow in Gk+1, i.e. be embedded in a larger
finite subgroup of Gk+1 that does not come from Gk. This typically arises as
follows.

Example 1.4. Assume that A is a finite subgroup of Gk and C a subgroup of A
of index 2 which is normalized by a loxodromic element h ∈ Gk. In particular,
A is a dihedral germ. Suppose for simplicity that hn is trivial in Gk+1. Let
a ∈ A \ C. Seen in Gk+1, the group C has index two in both A = 〈C, a〉 and
B = 〈C, hn/2〉. In particular A and B generate an elementary subgroup E of
Gk+1 which is (most of the time) isomorphic to E = A ∗C B and such that
E/C = D∞. As an element of Gk+1 the product t = ahn/2 has infinite order.
However, since Br(n) is the direct limit of (Gk), we have tn = 1 in G` for some
` > k + 1. The image in G` of E is actually isomorphic to E/〈tn〉 which is a
finite group that strictly contains the dihedral germ A. Nevertheless there is
no finite subgroup F of Gk containing A such that the canonical quotient map
Gk � G` induces an isomorphism preserving A from F onto E/〈tn〉.

It turns out that the dihedral germs of Gk are exactly its 2-subgroups (when
studying general periodic quotients different from free Burnside groups, those
dihedral germs are slightly more complicated). A careful analysis of dihedral
germs allows us to prove that every finite subgroup of Gk embeds in a direct
product of the form Dn × Dn2

× · · · × Dn2
where n2 is the largest power of

2 dividing n. In particular finite subgroups of Gk share many identities with
finite dihedral groups. Those identities can be used to control a variation on
the ν-invariant which captures both geometric and algebraic features of the
groups Gk (see Definition 3.10). Once we control the ν-invariant along the
sequence (1), a uniform estimate of the quantity A(Gk, Xk) follows rather easily
(Proposition 4.46). Those two invariants (together with the injectivity radius
of Gk acting on Xk) provide a sufficient control to show that each group Gk+1

is actually a small cancellation quotient of Gk. Therefore it is hyperbolic and
non-elementary, which ensures that at the limit Br(n) is infinite.

Critical exponent. All these arguments actually only work provided n is
divisible by a large power of 2, namely 128 for free Burnside groups. Neverthe-
less, given any two integers p, n ∈ N, the group Br(pn) naturally maps onto
Br(n). Since Burnside groups of large odd exponents are known to be infinite,
we can conclude that free Burnside groups of sufficiently large exponents are
infinite. The works of Ivanov [24] and Lysenok [26] have a similar restriction.
They require n to be divisible by 29 and 16 respectively. Using [27] as a “black
box” our proof can be adapted for large exponents n which are only divisible
by 16. However for completeness and simplicity we preferred to detail our own
understanding of finite subgroups of Br(n).

According to Theorem 1.1 there exists a critical exponent N0 such that for
every integer n > N0, the group Br(n) is infinite. In our method, N0 is directly
related to the parameters of the Small cancellation Theorem, see Equations
(22)–(25). Since our approach to small cancellation is qualitative we do not
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provide an explicit value of N0. Nevertheless, for a general group G we stress
how this critical exponent depends on the action of G on a hyperbolic space
X (see Theorem 5.4). An interested reader could go through all the arguments
with a quantitative point of view to get an estimate of N0. However the resulting
N0 would most likely be very large.

Outline of the paper
The proof that we present here is essentially self-contained. Beside hyperbolic
geometry, the arguments only rely on geometrical small cancellation theory
which is now well understood. See for instance [11, 21] for a survey on the
topic. For the benefit of the reader we did not attempt to write the shortest
possible proof. In particular, we added in the course of the article numerous
discussions, examples and figures to highlight the main difficulties and illustrate
the important results.

In Section 2 we make a short review of hyperbolic geometry. We define
in Section 3 all the geometric and algebraic invariants needed to control the
small cancellation parameters when building the approximation sequence (1).
In Section 4 we first review the main properties of small cancellation theory.
Given a group G acting on a hyperbolic space, the goal is to understand the
properties of the quotient Ḡ obtained from G by adjoining relations of the form
hn = 1, where n is a large even integer. In particular, we study the elementary
subgroups of Ḡ (Section 4.6) as well as the geometric/algebraic invariants of
Ḡ (Section 4.7). Section 5 collects all the previous work. We first state and
prove the induction hypothesis used to produce the approximation sequence
(1), see Proposition 5.1. Then we apply our main result (Theorem 5.4) to
various examples (Section 5.3) such as free Burnside groups, periodic quotients
of hyperbolic groups, etc.

Acknowledgment. The author is grateful to the Centre Henri Lebesgue ANR-
11-LABX-0020-01 for creating an attractive mathematical environment. He ac-
knowledges support from the Agence Nationale de la Recherche under Grant
Dagger ANR-16-CE40-0006-01. He is greatly indebted to Thomas Delzant for
his valuable comments and suggestions that helped improving the exposition of
the article.

2 Hyperbolic geometry
We recall here a few basic facts about hyperbolic spaces in the sense of Gromov
[19]. A reader familiar with the subject can directly jump to Section 3 where
we define the important invariants associated to the action of a group on a
hyperbolic space. We included precise references for the quantitative results.
Some of the them only provide a proof in the context of geodesic metric spaces.
However, by relaxing if necessary the constants, which we do here, the same
arguments work in the more general settings of length spaces. For the rest, we
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refer the reader to Gromov’s original article [19] or the numerous literature on
the subject, e.g. [6, 18].

2.1 General facts
Four point inequality. Let X be a metric length space. In this article all the
paths are rectifiable and parametrized by arc length. Given two points x, y ∈ X,
we write |x− y|X or simply |x− y| for the distance between them. The Gromov
product of three points x, y, z ∈ X is defined as

〈x, y〉z =
1

2
[|x− z|+ |y − z| − |x− y|] .

Let δ ∈ R∗+. We assume that X is δ-hyperbolic, i.e. for every x, y, z, t ∈ X we
have

〈x, y〉t > min {〈x, z〉t , 〈z, y〉t} − δ. (3)

or equivalently

|x− y|+ |z − t| 6 max {|x− z|+ |y − t| , |x− t|+ |y − z|}+ 2δ. (4)

In this context, the Gromov product has the following useful interpretation. For
every x, y, z ∈ X, the quantity 〈y, z〉x is roughly the distance between x and
any geodesic [y, z] between y and z. More precisely, we have

〈y, z〉x 6 d(x, [y, z]) 6 〈y, z〉x + 4δ,

see for instance [6, Chapitre 3, Lemme 2.7].
Remark 2.1. In this article, the metric spaces we are going to consider are
not necessarily geodesic. In particular, we cannot speak of the distance be-
tween a point and a geodesic. One option to bypass this technical issue would
be to replace geodesics by (1, ε)-quasi-geodesics for arbitrarily small ε > 0.
However this solution is rather burdensome. Instead we prefer to work with
Gromov’s products. The reader should keep in mind that an inequality of the
form 〈y, z〉x 6 d (respectively 〈y, z〉x > d) means that x is close (respectively
far) from a “geodesic” between y and z.

Boundary at infinity. Let o be a base point in X. A sequence (yn) of points
of X converges at infinity if 〈yn, ym〉o diverges to infinity as n and m tend to
infinity. The set S of all such sequences is endowed with an equivalence relation
defined as follows: two sequences (yn) and (y′n) are related if

lim
n→∞

〈yn, y′n〉o = +∞.

The boundary at infinity of X, denoted by ∂X is the quotient of S by this
equivalence relation. If the sequence (yn) is an element in the class of ξ ∈ ∂X,
we say that (yn) converges to ξ and write

lim
n→∞

yn = ξ.
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The Gromov product of three points can be extended to the boundary: given
x ∈ X and y, z ∈ X ∪ ∂X, we define

〈y, z〉x = inf

{
lim inf
n→+∞

〈yn, zn〉x : lim
n→∞

yn = y, lim
n→∞

zn = z

}
Let x ∈ X. Let (yn) and (zn) be two sequences of points of X respectively
converging to y and z in X ∪ ∂X. It follows from (3) that

〈y, z〉x 6 lim inf
n→+∞

〈yn, zn〉x 6 lim sup
n→+∞

〈yn, zn〉x 6 〈y, z〉x + kδ, (5)

where k is the number of points in {y, z} which belongs to ∂X. Moreover, for
every t ∈ X, for every x, y, z ∈ X ∪ ∂X, the four point inequality (3) leads to

〈x, z〉t > min {〈x, y〉t , 〈y, z〉t} − δ. (6)

The isometry group of X naturally acts on ∂X preserving Gromov’s products.

Busemann cocycles. To every point ξ ∈ ∂X, we would like to associate
a Busemann cocycle. However the space X is neither locally compact, nor
geodesic. To that end we proceeds as follows. Given any point ξ ∈ ∂X and a
base point o ∈ X, we first define a map b : X → R by

b(x) = 〈o, ξ〉x − 〈x, ξ〉o

and then let
c : X ×X → R

(x, y) → b(x)− b(y).

The map c is obviously a cocycle, i.e.

c(x1, x3) = c(x1, x2) + c(x2, x3), ∀x1, x2, x3 ∈ X.

We call c a Busemann cocycle at ξ (based at o). Note that c does depend on the
base point o. Nevertheless for every x, y ∈ X,∣∣∣c(x, y)−

[
〈y, ξ〉x − 〈x, ξ〉y

]∣∣∣ 6 3δ. (7)

In particular any two cocycles at ξ differ by at most 6δ. Moreover c is almost
1-Lipschitz, i.e.

|c(x, y)| 6 |x− y|+ 2δ, ∀x, y ∈ X. (8)

Lemma 2.2. Let ξ ∈ ∂X and c a Busemann cocycle at ξ. For every x, y, y′ ∈ X
we have

|y − y′| 6 |c(y, y′)|+ 2 max
{
〈x, ξ〉y , 〈x, ξ〉y′

}
+ 8δ.
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Proof. Let (zn) be a sequence of points of X converging to ξ. It follows from
the four point inequality that for every n ∈ N

|y − y′| 6 ||y − zn| − |y′ − zn||+ 2 max
{
〈x, zn〉y , 〈x, zn〉y′

}
+ 2δ

6
∣∣∣〈y′, zn〉y − 〈y, zn〉y′ ∣∣∣+ 2 max

{
〈x, zn〉y , 〈x, zn〉y′

}
+ 2δ

see for instance [9, Lemma 2.2 (ii)]. The conclusion follows by taking the limit
and applying (5).

We denote by ∂hX the set of all Busemann cocycles obtained as above. The
isometry group of X naturally acts on ∂hX: if g is an isometry of X and c a
Busemann cocycle at a point ξ ∈ ∂X, then the map gc : X ×X → R defined by
(gc)(z, z′) = c(g−1z, g−1z′) is a Busemann cocycle at gξ.

Quasi-geodesics. Let κ ∈ R∗+ and ` ∈ R+. A (κ, `)-quasi-isometric em-
bedding is a map f : X1 → X2 between two metric spaces such that for every
x, x′ ∈ X1,

κ−1 |x− x′| − ` 6 |f(x)− f(x′)| 6 κ |x− x′|+ `.

A (κ, `)-quasi-geodesic is a (κ, `)-quasi-isometric embedding γ : I → X from an
interval I of R into X. Recall that all the paths we consider are rectifiable by
arc length. Hence, if γ : I → X is a (κ, `)-quasi-geodesic, we have the following
more accurate inequalities:

κ−1 |s− t| − ` 6 |γ(s)− γ(t)| 6 |s− t| , ∀s, t ∈ I.

A path is an L-local (κ, `)-quasi-geodesic if its restriction to any interval of
length L is a (κ, `)-quasi-geodesic. If γ : R+ → X is (κ, `)-quasi-geodesic, then
there exists a unique point ξ ∈ ∂X such that for every sequence of real numbers
(tn) diverging to infinity we have limn→∞ γ(tn) = ξ. We view ξ as the endpoint
at infinity of γ and write ξ = γ(∞). In this article, we mostly work with local
(1, `)-quasi-geodesics. Therefore we use the following version of the stability of
quasi-geodesics.

Proposition 2.3 (Stability of quasi-geodesics [9, Corollaries 2.6 and 2.7]).
There exists L0 ∈ R+ such that for every δ ∈ R∗+, for every ` ∈ [0, 105δ],
the following holds. Let γ : I → X be an L0δ-local (1, `)-quasi-geodesic of a
δ-hyperbolic length space X.

(i) The path γ is a (global) (2, `)-quasi-geodesic.

(ii) For every s, t, t′ ∈ I, with t 6 s 6 t′, we have 〈γ(t), γ(t′)〉γ(s) 6 `/2 + 5δ.

(iii) For every x ∈ X, for every y, y′ ∈ X, lying on γ, we have d(x, γ) 6
〈y, y′〉x + `+ 8δ.

In addition the Hausdorff distance between two L0δ-local (1, `)-quasi-geodesics
with the same endpoints (eventually in ∂X) is at most 2`+ 5δ.
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Remark. Note that the parameter L0 does not depend on δ or on the metric
space X. Without loss of generality we can assume that L0 > 1000, which we
do here.

Although the space X is not geodesic, its boundary satisfies a visibility
property: for every x ∈ X, ξ ∈ ∂X, and L > L0δ, there exists an L-local
(1, 11δ)-quasi-geodesic γ : R+ → X such that γ(0) = x and γ(∞) = ξ [10,
Lemma 2.9].

Lemma 2.4. Let ` ∈ [0, 105δ]. Let γ : R+ → X be an L0δ-local (1, `)-quasi-
geodesic and ξ = γ(∞) its endpoint at infinity. Let c be a Busemann cocycle at
ξ. For every s, t ∈ R+ with t > s, we have

|c(γ(s), γ(t))− |γ(s)− γ(t)|| 6 `+ 15δ.

Proof. The lemma directly follows from (7) and Proposition 2.3 (ii).

Quasi-convex subsets. Let α ∈ R+. A subset Y of X is α-quasi-convex
if for every x ∈ X, for every y, y′ ∈ Y , d(x, Y ) 6 〈y, y′〉x + α. Assume now
that Y is connected by rectifiable paths. The length metric on Y induced by
the restriction of | . |X to Y is denoted by | . |Y . We say that Y is strongly
quasi-convex if it is 2δ-quasi-convex and for every y, y′ ∈ Y ,

|y − y′|X 6 |y − y
′|Y 6 |y − y

′|X + 8δ. (9)

A (1, `)-quasi-geodesic is (` + 3δ)-quasi-convex [9, Proposition 2.4]. More gen-
erally, every L0δ-local (1, `)-quasi-geodesic is (` + 8δ)-quasi-convex, provided
` 6 105δ, see Proposition 2.3 (iii). If Y is an α-quasi-convex subset of X, then
for every A > α, its A-neighborhood, that we denote by Y +A, is 2δ-quasi-convex
[9, Proposition 2.13]. Similarly, for every A > α+ 2δ, the open A-neighborhood
of Y , i.e. the set of points x ∈ X such that d(x, Y ) < A, is strongly quasi-convex
[10, Lemma 2.13].

We adopt the convention that the diameter of the empty set is zero, whereas
the distance from a point to the empty set is infinite. Let x be a point of X. A
point y ∈ Y is an η-projection of x on Y is |x− y| 6 d(x, Y ) + η. A 0-projection
is simply called a projection.

Lemma 2.5 (Projection on a quasi-convex subset [9, Lemma 2.12]). Let α ∈ R+

and Y an α-quasi-convex subset of X. Let x, x′ ∈ X.

(i) If p is an η-projection of x on Y , then for every y ∈ Y , we have 〈x, y〉p 6
α+ η.

(ii) If p and p′ are respectively η- and η′-projection of x and x′ on Y then

|p− p′| 6 max{|x− x′| − |x− p| − |x′ − p′|+ 2ε, ε},

where ε = 2α+ δ + η + η′

Lemma 2.6 ([9, Lemma 2.13]). Let Y1, . . . , Ym be a collection of subsets of X
such that Yj is αj-quasi-convex, for every j ∈ J1,mK. For all A > 0, we have

diam
(
Y +A

1 ∩ . . . ∩ Y +A
m

)
6 diam

(
Y +α1+3δ

1 ∩ . . . ∩ Y +αm+3δ
m

)
+ 2A+ 4δ.
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2.2 Isometries
An isometry g of X is either elliptic (its orbits are bounded) parabolic (its orbits
admit exactly one accumulation point in ∂X) or loxodromic (its orbits admit
exactly two accumulation points in ∂X). In order to measure the action of
g on X we introduce the translation length and the stable translation length
respectively defined by

‖g‖X = inf
x∈X
|gx− x| and ‖g‖∞X = lim

n→∞
1

n
|gnx− x| .

If there is no ambiguity, we will omit the space X in the notation. These lengths
are related by

‖g‖∞ 6 ‖g‖ 6 ‖g‖∞ + 16δ, (10)
see [6, Chapitre 10, Proposition 6.4]. In addition, g is loxodromic if and only if
‖g‖∞ > 0. In such a case the accumulation points of g in ∂X are

g− = lim
n→∞

g−nx and g+ = lim
n→∞

gnx.

They are the only points of X ∪ ∂X, fixed by g. We write Γg for the union of
all L0δ-local (1, δ)-quasi-geodesic joining g− to g+. The cylinder of g, denoted
by Yg is the open 20δ-neighborhood of Γg. It is a strongly quasi-convex subset
of X [10, Proposition 3.13]. It can be thought of as the “smallest” g-invariant
quasi-convex subset.

Lemma 2.7. Let g be a loxodromic isometry of X. Let γ : R → X be a bi-
infinite L0δ-local (1, δ)-quasi-geodesic between g− and g+. Let Z be a non-empty
g-invariant α-quasi-convex subset of X. Then γ lies in the (α+8δ)-neighborhood
of Z. In particular the cylinder Yg of g lies in the (α+ 28δ)-neighborhood of Z.

Proof. Let x be a point on γ. It follows from the stability of quasi-geodesics
that 〈g−, g+〉x 6 6δ (Proposition 2.3). We fix a point z ∈ Z. Since Z is α-
quasi-convex, we have d(x, Z) 6 〈g−nz, gnz〉x +α, for every n ∈ N. We pass to
the limit as n approaches infinity and use (5) to get

d(x, Z) 6
〈
g−, g+

〉
x

+ α+ 2δ 6 α+ 8δ.

The next lemma is a variation on the quasi-convexity of the distance function
in a δ-hyperbolic space.

Lemma 2.8 ([9, Lemma 2.26]). Let x, x′ and y be three points of X. If g is
an isometry of X, then |gy − y| 6 max {|gx− x|, |gx′ − x′|}+ 2〈x, x′〉y + 6δ.

Given a set S of isometries and d ∈ R+, we denote by Mov(S, d) the set of
points which are moved by S by a distance less than d, i.e.

Mov(S, d) = {x ∈ X : ∀g ∈ S, |gx− x| < d} . (11)

If the set S = {g} is reduced to a single isometry, we simply write Mov(g, d) for
Mov(S, d). The characteristic subset of g (or axis of g) is the set

Ag = Mov(g, ‖g‖+ 8δ) = {x ∈ X : |gx− x| < ‖g‖+ 8δ} . (12)

Note that this definition does not require g to be a loxodromic element.
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Lemma 2.9. Let S be a set of isometries and d > 7δ. If Mov(S, d) is non-
empty, then Mov(S, d) is 10δ-quasi-convex. Moreover it satisfies the following
properties.

(i) For every x ∈ X \Mov(S, d), we have

sup
g∈S
|gx− x| > 2d

(
x,Mov(S, d)

)
+ d− 14δ.

(ii) Let x ∈ X and A ∈ R+. If |gx − x| 6 d + 2A for every g ∈ S, then x is
(A+ 7δ)-close to Mov(S, d).

Remark. The converse of (ii) is obvious. Indeed the open A-neighborhood of
Mov(S, d) is contained in Mov(S, d + 2A), for every A ∈ R+. Although the
objects are defined in a slightly different way, the proof works verbatim as in [9,
Proposition 2.28]. Nevertheless for completeness we reproduce it here.

Proof. We first prove Point (i) when S is reduced to a single element, say g, in
which case Mov(S, d) is 〈g〉-invariant. Let x ∈ X \Mov(g, d). Let η > 0 and y
be an η-projection of x on Mov(g, d). Since x does not belongs to Mov(g, d), one
observes that |gy− y| > d− 2η. We now fix ε ∈ (0, η) such that |gy− y|+ ε < d
and choose a (1, ε)-quasi-geodesic γ : I → X joining y to gy, so that γ is entirely
contained in Mov(g, d). In particular y and gy are respective η-projections of x
and gx on γ, which is (ε+ 3δ)-quasi-convex. Consequently Lemma 2.5 yields

d− 2η 6 |gy − y| 6 max {|gx− x| − 2 |x− y|+ 8η + 14δ, 4η + 7δ} . (13)

Recall that d > 7δ. Taking η > 0 arbitrarily small leads to

|gx− x| > 2d(x,Mov(g, d)) + d− 14δ. (14)

We now prove Point (i) for a general set S. Let x ∈ X \Mov(S, d). Note that
Mov(S, d) is exactly the intersection of all Mov(g, d) where g runs over S. Hence
there exists g ∈ S such that x does not belongs to Mov(g, d). Applying (14) we
get

|gx− x| > 2d(x,Mov(g, d)) + d− 14δ > 2d(x,Mov(S, d)) + d− 14δ.

and Point (i) follows. Point (ii) is a direct consequence of Point (i). We are
left to prove that Mov(S, d) is quasi-convex. Let y and y′ be two points of
Mov(S, d). Let x be a point of X. Lemma 2.8 yields for every g ∈ S,

|gx− x| 6 max {|gy − y| , |gy′ − y′|}+ 2 〈y, y′〉x + 6δ < d+ 2 〈y, y′〉x + 6δ.

It follows then from Point (ii) that d(x,Mov(S, d)) 6 〈y, y′〉x + 10δ.

The next statement explicits the relation between the cylinder Yg of a loxo-
dromic isometry g and its axis Ag.
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Lemma 2.10. Let g be a loxodromic isometry of X. Let γ : R → X be a
bi-infinite L0δ-local (1, δ)-quasi-geodesic joining g− to g+.

(i) The path γ is contained in the 18δ-neighborhood of the axis Ag. In partic-
ular, |gy − y| 6 ‖g‖+ 84δ, for every y ∈ Yg.

(ii) Conversely, if ‖g‖ > L0δ, then Ag lies in the 10δ-neighborhood of γ. In
particular Ag is contained in Yg.

Proof. The fist part of the statement is a direct application of Lemma 2.7.
The second half is a consequence of the stability of quasi-geodesics, see [9,
Lemma 2.33].

Lemma 2.11. Let ξ ∈ ∂X and g be an isometry of X fixing ξ. There exists
ε ∈ {±1}, such that for every x ∈ X, we have |c(gx, x) + ε‖g‖∞| 6 6δ.

Proof. Let x ∈ X. Let n ∈ N. Observe that

c(gnx, x) =

n−1∑
k=0

c(gk+1x, gkx) =

n−1∑
k=0

g−kc(gx, x).

Since g fixes ξ, for every k ∈ N, the map g−kc is a Busemann cocycle at ξ, and
therefore differs from c by at most 6δ. Thus |c(gnx, x) − nc(gx, x)| 6 6nδ. As
Busemann cocycles are almost 1-Lipschitz, we get

|c(gx, x)| 6 1

n
|c(gnx, x)|+ 6δ 6

1

n
|gnx− x|+

(
6 +

2

n

)
δ.

Taking the limit yields |c(gx, x)| 6 ‖g‖∞ + 6δ. In particular, the result holds if
g is either elliptic or parabolic.

Assume now that g is loxodromic. There exists ε ∈ {±1} such that ξ is the
attractive point of gε. Moreover, ‖gn‖ > L0δ, for every sufficiently large n ∈ N.
We fix such an exponent n and write h = gεn. Let y ∈ X be a point such that
|hy− y| 6 ‖h‖+ δ. We choose a (1, δ)-quasi-geodesic γ : [0 , T ]→ X joining y to
hy and extend γ to a bi-infinite path γ : R→ X as follows: for every t ∈ [0, T ),
for every n ∈ Z, we let γ(nT + t) = hγ(t). It follows from our choice of y that γ
is an L0δ-local (1, 2δ)-quasi-isometry from h− to h+ = ξ. Applying Lemma 2.4,
we get

|c(y, hy)− |hy − y|| 6 17δ. (15)

Observe that h−1c and c are two cocycles at ξ (since h fixes ξ), hence they differ
by at most 6δ. The cocycle property yields |c(gnx, x) + εc(y, hy)| 6 12δ. Thus
(15) becomes |c(gnx, x) + ε|gny− y|| 6 29δ. Recall that c(gnx, x) and nc(gx, x)
differs by at most 6nδ. Hence∣∣∣c(gx, x) +

ε

n
|gny − y|

∣∣∣ 6 1

n
|c(gnx, x) + ε |gny − y||+ 6δ 6

(
6 +

29

n

)
δ.

The result follows by taking the limit as n approaches infinity.
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Lemma 2.12. Let ξ ∈ ∂X and g be an isometry of X fixing ξ. Let L >
max{L0δ, ‖g‖∞} and ` ∈ [0, 105δ]. Let γ : R+ → X be an L-local (1, `)-quasi-
geodesic ray starting at x = γ(0) and ending at γ(∞) = ξ. There exists ε ∈ {±1}
such that for every t > 2|gx− x|+ 4`+ 16δ we have

|γ(t+ ε ‖g‖∞)− gγ(t)| 6 5`+ 59δ.

Proof. Let p = gγ(t0) be a projection of x on gγ, so that 〈x, gx〉p 6 `+ 8δ and
〈x, ξ〉p 6 ` + 8δ (Lemma 2.5). Since γ is also a global (2, `)-quasi-geodesic, we
get

|gx− x| > |gx− p| − 〈x, gx〉p > |gγ(0)− gγ(t0)| − 〈x, gx〉p >
1

2
t0 − 2`− 8δ.

Hence t0 6 2|gx− x|+ 4`+ 16δ. Let c be a Busemann cocycle at ξ. According
to Lemma 2.11 there exists ε ∈ {±1} such that for every x ∈ X, we have
|c(gx, x) + ε‖g‖∞| 6 6δ. Let t > 2|gx − x| + 4` + 16δ, so that t ∈ [t0,∞). For
simplicity we write y1 = γ(t) and y2 = γ(t + ε‖g‖∞). Since γ is an L-local
(1, `)-quasi-geodesic, we have c(y1, y2) differs from ε‖g‖∞ by at most 2` + 15δ
(Lemma 2.4). Hence

|c(gy1, y2)| 6 |c(gy1, y1) + c(y1, y2)| 6 2`+ 21δ.

Recall that t > t0, hence 〈p, ξ〉gy1 6 `/2 + 5δ. The triangle inequality combined
with (5) yields

〈x, ξ〉gy1 6 〈x, ξ〉p + 〈p, ξ〉gy1 + 2δ 6 3`/2 + 15δ.

Applying Lemma 2.2 we get

|gy1 − y2| 6 |c(gy1, y2)|+ 2 max
{
〈x, ξ〉gy1 , 〈x, ξ〉y2

}
+ 8δ 6 5`+ 59δ.

The same arguments can be used to prove the following lemma.

Lemma 2.13. Let g be a loxodromic isometry. Let L > max{L0δ, ‖g‖∞} and
` ∈ [0, 105δ]. Let γ : R+ → X be an L-local (1, `)-quasi-geodesic from g− to g+.
Then for every t ∈ R, for every n ∈ Z, we have

|γ(t+ n ‖g‖∞)− gnγ(t)| 6 5`+ 59δ.

2.3 Group action
Classification of actions. Let G be a group acting by isometries on X. Its
limit set Λ(G) is the set of accumulation points in ∂X of some (hence any) orbit
of G. The action of G on X is elliptic (respectively parabolic, loxodromic, non-
elementary) if Λ(G) is empty (respectively contains exactly 1 point, exactly 2
points, at least 3 points). If there is no ambiguity regarding the action, we simply
say that G is elliptic (respectively parabolic, loxodromic, non-elementary).
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Elliptic action. Even though X is not necessarily locally compact, a group
G is elliptic if and only if its orbits are bounded [10, Proposition 3.5]. Elliptic
groups actually have very small orbits.

Lemma 2.14 ([9, Corollary 2.38]). Let G be an elliptic group of isometries
of X. If Y is an G-invariant α-quasi-convex subset of X, then Mov(G, 11δ)
intersects the α-neighborhood of Y . In particular, Mov(G, 11δ) is not empty.

Loxodromic action. Let G be a loxodromic group. In particular it contains
a loxodromic isometry, say g [10, Proposition 3.6]. Note that g− and g+ are
the two points of Λ(G). Moreover every element of G preserves {g−, g+}. We
denote by G+ the subgroup of G fixing pointwise {g−, g+}. It has index at most
2 in G. If G = G+ we say that G is preserves the orientation. The cylinder Y
of G is the cylinder of some (hence any) loxodromic element contained in G. By
construction ∂Y = {g−, g+} = Λ(G).

Lemma 2.15. Let G be a loxodromic group of isometries of X and Y its
cylinder. Let E be an elliptic normal subgroup of G. Then Y is contained
in Mov(E, 88δ).

Proof. Since E is a normal subgroup, Mov(E, 11δ) is a G-invariant 10δ-quasi-
convex subset (Lemma 2.9). It follows from Lemma 2.7 that Y is contained in
the 38δ-neighborhood of Mov(E, 11δ), hence in Mov(E, 88δ).

Lemma 2.16. Let G be a loxodromic group of isometries of X and Y its cylin-
der. Let E be an elliptic group preserving ∂Y . If E contains an element permut-
ing the two points of ∂Y , then Y ∩Mov(E, 11δ) is non-empty and its diameter
is at most 141δ.

Proof. Let η and ξ be the two points of Λ(G). By assumption E contains an
element u that permutes η and ξ. Since the cylinder Y is still u-invariant, it
contains a point in Mov(u, 11δ) (Lemma 2.14). Let c be a Busemann cocycle at
ξ. Note that u−1c is a Busemann cocycle at η. Recall that Y is contained in the
27δ-neighborhood of any L0δ-local (1, δ)-quasi-geodesics from η to ξ. Combining
Lemma 2.4 with the fact that Busemann cocycles are almost 1-Lipschitz, we get

2 |x− y| 6
∣∣c(x, y)− u−1c(x, y)

∣∣+ 256δ, ∀x, y ∈ Y.

It follows from the cocycle property that c(x, y)−u−1c(x, y) = c(x, ux)−c(y, uy).
Since c is almost 1-Lipschitz, the previous inequality becomes

2 |x− y| 6 |c(x, ux)|+ |c(y, uy)|+ 256δ 6 |x− ux|+ |y − uy|+ 260δ.

This inequalities hold for every x, y ∈ Y . Hence the diameter of Y ∩Mov(u, 11δ)
is at most 141δ.
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Non elementary action. The next lemma is an improved version of the
classical ping-pong argument. It provides a simple criterion to ensures that a
group is non-elementary.

Lemma 2.17 ([10, Lemma 3.24]). Let A > 0. Let x ∈ X. Let G be a group of
isometries of X generated by two elements u and v such that

(i) 2〈u±1x, v±1x〉x < min{|ux− x|, |vx− x|} −A− 8δ,

(ii) 2〈ux, u−1x〉x < |ux− x|+A,

(iii) 2〈vx, v−1x〉x < |vx− x|+A.

Then G is non-elementary.

Gentle action. In order to complete the description of loxodromic groups
started above, we introduce a (harmless) additional assumption.

Definition 2.18. The action of G on X is gentle if every loxodromic subgroup
H preserving the orientation split as a semi-direct product H = F oZ where F
consists exactly of all elliptic elements of H.

If every loxodromic subgroup is virtually cyclic, then the action of G is
automatically gentle. From now on we assume that the action of G on X is
gentle. Let H be a loxodromic subgroup of G and H+ the subgroup of H fixing
pointwise Λ(H). Let F be the set of all elliptic elements of H+. It follows from
our assumption that F is an elliptic normal subgroup of H and is maximal for
these properties. The quotient H/F is either isomorphic to Z if H preserves the
orientation (i.e. H = H+) or the infinite dihedral group D∞ otherwise. Observe
that if a loxodromic subgroup H ⊂ G is generated by two elliptic subgroups,
then H cannot preserve the orientation.

Lemma 2.19. Let H be a loxodromic subgroup of G. If p : H → D∞ is a
morphism whose kernel is elliptic, then this kernel is exactly the maximal normal
elliptic subgroup F of H.

Proof. By assumption the kernel of p is an elliptic normal subgroup of H, hence
it is contained in F . Let us prove the other inclusion. We fix a loxodromic
element h ∈ H. According to our assumption, the pre-image under p of any
finite subgroup of D∞ is elliptic (as a finite extension of an elliptic subgroup).
Hence p(h) belongs to Z∗ ⊂ D∞. Note also that p(F ) does not contain any
element of Z \ {0}. Indeed otherwise there would exists m ∈ Z \ {0} and u ∈ F
such that p(hm) = p(u). Since the kernel of p is contained in F , the element
hm should belong to F which contradicts the fact that h is loxodromic. Hence
p(F ) is a finite subgroup of D∞. As h normalizes F , its image p(h) normalizes
p(F ) which forces p(F ) to be trivial.

Given a loxodromic element g ∈ G, we write E(g) for the subgroup of G
preserving {g−, g+}. It is the maximal elementary subgroup of G containing g
[10, Lemma 3.28]. The group E+(g) stands for the maximal subgroup of E(g)
fixing pointwise {g−, g+}.
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Definition 2.20. (Primitive element) Let g ∈ G be a loxodromic element. Let
F be the maximal normal elliptic subgroup of E(g). We say that g is primitive
if its image in E+(g)/F ≡ Z generates the group.

3 Invariants of a group action
Let X be a δ-hyperbolic length space and G a group acting gently by isometries
on X. Note that for the moment, we have not made any serious assumption on
the group G or the space X. In order to study the action of G on X we define
several numerical invariants. Those quantities will be useful later to estimate the
small cancellation parameters needed to run the induction leading to Burnside
groups. We define two types of invariants. The first kind, namely the injectivity
radius inj (G,X), the acylindricity constant A(G,X) as well as the ν-invariant
ν(G,X) are purely geometric. Those invariants already appeared in [15, 9, 10].
Unfortunately they are not sharp enough to handle even torsion. More precisely
the ν-invariant, does not behave well when passing to quotient. Therefore we
also define (among others) a strong variation νstg(G,X) of the ν-invariant, which
has a mixed nature: it reflects both the geometric and algebraic features of G.

3.1 Geometric invariants
Definition 3.1 (Injectivity radius). The injectivity radius of G on X is the
quantity

inj (G,X) = inf {‖g‖∞X : g ∈ G loxodromic}

Definition 3.2 (Acylindricity). The acylindricity parameter A(G,X) is defined
as

A(G,X) = sup
S⊂G

diam (Mov(S, 2L0δ)) ,

where S runs over all subsets of G generating a non-elementary subgroup.

We adopt the following terminology borrowed from Lysenok [26]. A chain
of length m is a tuple C = (g0, . . . , gm) of elements of G for which there exists
h ∈ G such that for every k ∈ J0,m−1K, we have gk+1 = hgkh

−1. The element h
is called a conjugating element of C. Note that such an element is not necessarily
unique.

Definition 3.3 (ν-invariant). The quantity ν(G,X) is the smallest integer ν
with the following property: if C = (g0, . . . , gν) is a chain of length ν generating
an elementary subgroup and h a loxodromic conjugating element of C, then
〈g0, h〉 is elementary.

Proposition 3.4. Let g and h be two elements of G which generate a non-
elementary subgroup.

(i) If ‖g‖ 6 L0δ, then

diam
(
Mov(g, L0δ)

+13δ ∩A+13δ
h

)
6 ν(G,X) ‖h‖+A(G,X) + 76δ.
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(ii) Without any assumption on g we have

diam
(
A+13δ
g ∩A+13δ

h

)
6 ‖g‖+‖h‖+ν(G,X) max {‖g‖ , ‖h‖}+A(G,X)+191δ.

Remark. This statement is proved in [10] closely following the ideas of Delzant
and Gromov [15]. For completeness, we reproduce it here.

Proof. For simplicity we let ν = ν(G,X). Assume first that ‖g‖ 6 L0δ. If
‖h‖ 6 L0δ, then the intersection of the 13δ-neighborhood of Mov(g, L0δ) and
Ah respectively is contained in Mov({g, h}, 2L0δ), and thus its diameter is at
most A(G,X). Consequently, we can assume that ‖h‖ > L0δ. In particular, h
is loxodromic. Assume that contrary to our claim

diam
(
Mov(g, L0δ)

+13δ ∩A+13δ
h

)
> ν ‖h‖+A(G,X) + 76δ.

Fix L > max{L0δ, ‖h‖∞, A(G,X) + 2δ} and choose an L-local (1, δ)-quasi-
geodesic γ : R→ X from h− to h+. Since ‖h‖ > L0δ, the axis Ah is contained
in the 10δ-neighborhood of γ (Lemma 2.10). It follows from Lemma 2.6 that

diam
(
Mov(g, L0δ)

+13δ ∩ γ+12δ
)
> ν ‖h‖+A(G,X) + 26δ.

In particular there exists x = γ(s) and x′ = γ(s′) lying in the 25δ-neighborhood
of Mov(g, L0δ) such that |x − x′| > ν‖h‖ + A(G,X) + 2δ. Without loss of
generality we can assume that s < s′, so that

s′ − s > |x− x′| > ν ‖h‖+A(G,X) + 2δ.

Since Mov(g, L0δ) is 10δ-quasi-convex (Lemma 2.9), its 25δ-neighborhood is
2δ-quasi-convex. Consequently γ restricted to [s , s′] lies entirely in the 33δ-
neighborhood of Mov(g, L0δ). We now fix t = s + A(G,X) + 2δ. Let r ∈
[s , t] and k ∈ J0, νK. Note that rk = r + k‖h‖∞ belongs to [s , s′]. Thus
|gγ(rk)− γ(rk)| 6 (L0 + 66)δ. Applying Lemma 2.13 we obtain∣∣h−kghkγ(r)− γ(r)

∣∣ 6 ∣∣ghkγ(r)− hkγ(r)
∣∣ 6 |gγ(rk)− γ(rk)|+ 128δ < 2L0δ.

In other words the restriction of γ to [s , t] is contained Mov(S, 2L0δ), where S is
the set S = {g, h−1gh, . . . , h−νghν}. Consequently the diameter of Mov(S, 2L0δ)
is larger that A(G,X), and thus S generate an elementary subgroup. Recall that
h is loxodromic. It follows from the definition of ν that g and h generate an
elementary subgroup which contradicts our assumption.

We now focus on the general case. According to the previous discussion we
can assume that ‖h‖ > ‖g‖ > L0δ. Suppose again that contrary to our claim
that

diam
(
A+13δ
g ∩A+13δ

h

)
> ‖g‖+ (ν + 1) ‖h‖+A(G,X) + 191δ.

For simplicity we let

` = ν ‖h‖+A(G,X) + 117δ and fix L > `+ ‖g‖+ ‖h‖ .
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Let γg : R → X (respectively γh : R → X) be an L-local (1, δ)-quasi-geodesic
from g− to g+ (respectively h− to h+). Since ‖g‖ > L0δ, the set Ag lies in the
10δ-neighborhood of γg (Lemma 2.10). The same holds for h. It follows from
Lemma 2.6 that

diam
(
γ+12δ
g ∩ γ+12δ

h

)
> ‖g‖+ (ν + 1) ‖h‖+A(G,X) + 141δ.

We fix two points x, y ∈ X lying in the 12δ-neighborhood of both γg and γh
such that

|x− y| > ‖g‖+ (ν + 1) ‖h‖+A(G,X) + 141δ.

Up to changing the origin of γg and γh we can assume that γg(0) and γh(0)
are projections of x on γg and γh respectively. We write γg(s) and γh(s′) for
projections of y on γg and γh respectively. Note that s, s′ ∈ (L,∞). We now
claim that |γg(r) − γh(r)| 6 87δ, for every r ∈ [0 , L]. Since γg is an L-local
(1, δ)-quasi-geodesic, we have 〈γg(0), γg(s)〉γg(r) 6 6δ (Proposition 2.3), thus
〈x, y〉γg(r) 6 30δ. Similarly 〈x, y〉γh(r) 6 30δ. On the other hand, the quantities
|γg(r)− x| and |γh(r)− x| differ by at most 25δ. It follows from the four point
inequality – see for instance [9, Lemma 2.2 (2)] – that |γg(r) − γh(r)| 6 87δ,
which completes the proof of our claim.

According to Lemma 2.13, g (respectively h) acts on γg (respectively γh)
almost like a translation of length ‖g‖∞ (respectively ‖h‖∞). Hence for every
r ∈ [0 , `],

|ghγh(r)− hgγh(r)| 6 603δ < L0δ,

compare with Figure 2. Consequently the path γh restricted to [0 , `] is not only
contained in the 18δ-neighborhood of Ah (Lemma 2.10) but also in Mov(u, L0δ)
where u = g−1h−1gh. Thus, applying Lemma 2.6 we get

diam
(
Mov(u, L0δ)

+13δ ∩A+13δ
h

)
> `− 41δ > ν ‖h‖+A(G,X) + 76δ.

It follows from the previous discussion that u and h generates an elementary
subgroup. Hence g−1hg and h generate an elementary subgroup. Since h is lox-
odromic, g fixes h− and h+, therefore g and h generate an elementary subgroup,
which contradicts our assumption.

The next statement should be seen as an analogue of the Margulis lemma
for manifolds with pinched negative curvature. The invariant ν(G,X) is used
here to compensate the fact that the curvature of X is not necessarily bounded
from below.

Corollary 3.5. Let S be a subset of G. If S does not generate an elementary
subgroup, then for every d ∈ R+, we have

diam (Mov(S, d)) 6 A(G,X) + [ν(G,X) + 3] d+ 209δ.

Proof. For simplicity we write ν for ν(G,X). Without loss of generality we can
assume that S is finite and Mov(S, d) is non-empty. Recall that for every g ∈ S
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the set Mov(g, d) is contained in the (d/2+7δ)-neighborhood of Ag (Lemma 2.9).
It follows from Lemma 2.6 that

diam (Mov(S, d)) 6 diam

⋂
g∈S

A+(d/2+7δ)
g

 6 diam

⋂
g∈S

A+13δ
g

+ d+ 18δ.

(16)
Assume first that no element of S is loxodromic. In particular ‖g‖ 6 16δ, for
every g ∈ S, hence the 13δ-neighborhood of Ag is contained in Mov(g, 2L0δ).
Consequently (16) yields

diam (Mov(S, d)) 6 A(G,X) + d+ 18δ.

Assume now that S contains a loxodromic element, say h. It follows from
our assumption that there exists g ∈ S such that g and h do not generate an
elementary subgroup. Hence applying Proposition 3.4, Inequality (16) becomes

diam (Mov(S, d)) 6 ‖g‖+ ‖h‖+ νmax{‖g‖ , ‖h‖}+A(G,X) + d+ 209δ.

Nevertheless, as Mov(S, d) is non-empty, d > max{‖g‖, ‖h‖}. It follows that

diam (Mov(S, d)) 6 A(G,X) + (ν + 3)d+ 209δ.

Lemma 3.6. Let P be a parabolic subgroup of G. Let ξ ∈ ∂X be the unique
accumulation point of P . If A(G,X) and ν(G,X) are finite, then Stab(ξ) is
parabolic as well.

Proof. For simplicity we let E = Stab(ξ). Assume that contrary to our claim
that E is not parabolic. In particular E contains a loxodromic element h. Let
g ∈ P . We write gk = hkgh−k, for every k ∈ N and let S = {g0, . . . , gν},
where ν = ν(G,X). Note that S fixes ξ. Since S is finite Mov(S, 2L0δ) has
infinite diameter (Lemma 2.12). It follows from the definition of A(G,X) that
the subgroup of G generated by S is elementary. However h is loxodromic. By
the very definition of ν(G,X), the elements g and h generate an elementary
subgroup. Consequently P is contained in the maximal elementary subgroup
E(h) of G containing h. Nevertheless the subgroups of E(h) are either elliptic
or loxodromic, which contradicts our assumption.

3.2 Mixed invariants
As explained in the previous proposition, the combination of the acylindric-
ity parameter and the ν-invariant provides a useful substitute to the Margulis
lemma. Nevertheless this invariant does no behave well when passing to quo-
tient (see Section 4.7). To bypass this difficulty we consider a stronger version
of the ν-invariant whose mixed nature combines both geometric and algebraic
features of G. More precisely the algebraic part captures the properties of a
special class of elementary subgroups that we define now.
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Dihedral germs and dihedral pairs. Recall that D∞ stands for the infinite
dihedral group. Given m ∈ N, we denote by

Dm =
〈
s, r | s2, (sr)2, rm

〉
the dihedral group of order 2m and by Zm the cyclic group of order m. Note
that D1 = Z2. By convention D0 is the trivial group. We think of Dm as
the isometry group of the plane preserving a regular m-gon. This motivates the
following terminology. The subgroup 〈r〉 is a normal subgroup called the rotation
subgroup. Its elements are also called orientation preserving. The signature is
the morphism ε : Dm → Z2, where Z2 is the quotient of Dm by the rotation
subgroup. An element of Dm that does not preserve the orientation is called a
reflection.

We adopt a similar terminology for D∞. In particular its rotation subgroup
(or translation subgroup) is the maximal subgroup isomorphic to Z, which we
also denote sometimes Z∞ to be coherent with the notations of finite groups.

If m 6= 2, the rotation subgroup of Dm is algebraically completely deter-
mined: it is the unique cyclic subgroup of order m. Otherwise it should be
thought an implicit piece of information attached to D2.

Definition 3.7. A subgroup C of G is called a dihedral germ if it contains an
elliptic subgroup C0 which is normalized by a loxodromic element and such that
[C : C0] is a power of 2.

Note that dihedral germs are elliptic. Being a dihedral germ in invariant
under conjugation. Without any further assumption on the structure of loxo-
dromic subgroups, it is not true in general that being a dihedral germ is invariant
by taking subgroup.

Definition 3.8. A dihedral pair is a pair (E,C) such that C is a dihedral
germ which is also normal in E and E/C embeds in a dihedral group (finite or
infinite). A subgroup E of G has dihedral shape if there exists a subgroup C
such that (E,C) is a dihedral pair.

Every subgroup with dihedral shape is elementary. Indeed such a group is
virtually the extension of an elliptic subgroup by a cyclic group. Note that the
morphism from E/C to a dihedral group is in general not unique.

Lemma 3.9. Let E be a loxodromic subgroup of G and C a subgroup of E.
Then (E,C) is a dihedral pair if and only if C is the maximal elliptic normal
subgroup of E.

Proof. Assume that (E,C) is a dihedral pair. In particular E/C embeds in a
dihedral group. Note that this dihedral group cannot be finite. Indeed otherwise
E would be a finite extension of the elliptic subgroup C, hence an elliptic sub-
group as well. Consequently E/C embeds in D∞. It follows from Lemma 2.19
that C = F . The converse statement is obvious.
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Strong ν-invariant.

Definition 3.10 (strong ν-invariant). The quantity νstg(G,X) is the smallest
integer ν with the following property: if C = (g0, . . . , gν) is a chain generating
an elementary subgroup and h a conjugating element of C such that

• either h is loxodromic,

• or 〈g0, . . . , gν−1〉 is contained in a dihedral germ,

then 〈g0, h〉 is elementary with dihedral shape.

One observes easily that ν(G,X) 6 νstg(G,X). Let us mention an example
where these two invariants are not equal.

Example 3.11. Observe first that if G = G1 ∗ G2 is a free product acting
on its Bass-Serre tree T , then ν(G,T ) 6 2. Consider indeed g, h ∈ G with
h loxodromic such that the subgroup E = 〈g, hgh−1, h2gh−2〉 is elementary.
Without loss of generality we can assume that g is non trivial. We first claim
that the subgroup E0 = 〈g, hgh−1〉 cannot be elliptic. Assume on the contrary
that E0 fixes a point say x ∈ T . As G is a free product, x is the unique fixed
point of g. Nevertheless hgh−1 also fixes x (as it belongs to E0), hence g fixes
h−1x. This forces h to fix x which contradicts the fact that h is loxodromic
and completes the proof of the claim. Since T is a tree it does not admit any
finitely generated parabolic subgroup, hence E0 is loxodromic. Observe now that
the elementary subgroup E is generated by E0 and hE0h

−1. Consequently h
necessarily belongs to the maximal elementary loxodromic subgroup containing
E0. Therefore g and h generates an elementary subgroup. This proves that
ν(G,T ) 6 2 as announced.

In this setting, every elliptic subgroup which is normalized by a loxodromic
element is trivial. Hence a subgroup of G is a dihedral germ if an only if it is a
finite 2-group. Let us now consider a more precise example. We fix m ∈ N and
let A = Zm+1

2 . For every i ∈ J0,mK, we write gi for a generator of the (i+ 1)-th
factor Z2 in A. We denote by G1 the following HNN extension of A

G1 =
〈
A, h | hgih−1 = gi+1, ∀i ∈ J0,m− 1K

〉
.

Let G = G1 ∗ Z. It follows from the construction that〈
g0, hg0h

−1, . . . , hmg0h
−m〉 = 〈g0, . . . , gm〉 = A

is a dihedral germ. On the other hand the subgroup 〈g0, h〉 corresponds to G1

which is not virtually cyclic, thus it cannot have dihedral shape. This shows
that νstg(G,T ) > m. In particular it m > 2, then ν(G,T ) < νstg(G,T ).

Note that in this example, the difference between ν(G,X) and νstg(G,X)
comes from the algebraic structure of elliptic subgroups. It emphases the fact
that νstg(G,X) is not a purely geometric invariant.
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Model collections. As we will see later, controlling the strong ν-invariant is
a key ingredient to handle even torsion and which was not needed to study free
Burnside groups with odd exponents. It requires a fine understanding of the
structure of dihedral pairs. We complete this section by a last notion designed
to describe those subgroups.

A model collection is a family E of (abstract) torsion groups. Its exponent
µ = µ(E) is the smallest positive integer such that gµ = 1, for every E ∈ E, for
every g ∈ E.

Definition 3.12. Let p ∈ N and E be a model collection. We say that a dihedral
pair (E,C) has type (E, p) if there exist k ∈ N and a morphism ϕ : E → E,
where E ∈ E such that the map and ϕ extends to an embedding from E into
E/C ×Dk

p ×E.

Remark. A reader only interested in free Burnside groups can read the entire
article by taking for E the collection that consists only of the trivial group. The
exponent of this trivial model collection is 1.

We now fix an integer p ∈ N and a model collection E and write µ = µ(E)
for its exponent. Saying that (E,C) has type (E, p) means that, up to a residual
factor E ∈ E, the group E essentially embeds into a direct product of dihedral
groups. In particular we can exploit the algebraic identities of dihedral groups to
recover information about E. The next two statements give simple but essential
examples of this idea. Other applications will arise later in the article.

Proposition 3.13. Let (E,C) be a dihedral pair with type (E, p). Let C =
(g0, g1, . . . , gµ+2) be a chain of G and h a conjugating element of C. If g0 and
h belong to a subgroup E, then gµ+2 belongs to 〈g0, g1, . . . , gµ+1〉.

Proof. By assumption, there exist k ∈ N, a group E ∈ E, and a morphism
ϕ : E → E, where E ∈ E such that ϕ extends to an embedding E ↪→ E/C ×
Dk
p ×E. For every i ∈ J0, 3K we let

ui = gigi+1 · · · gi+µ−1.

Note that it suffices to prove that u3u
−1
2 u0u

−1
1 = 1. To that end, we have to

check that this identity holds in every factor of E/C×Dk
p ×E. It was observed

by Lysenok [26, Proposition 15.10] that if x and y are two elements of D∞ then(
y3xy−3

) (
y2x−1y−2

)
x
(
yx−1y−1

)
=
[
y2, [y,x]

]
= 1.

Hence the identity u3u
−1
2 u0u

−1
1 = 1 holds in E/C as well as in any factor Dp.

On the other hand we observe that u0 = (g0h)µh−µ. By the very definition of
the exponent µ, the element ϕ(u0) ∈ E is trivial and thus so are its conjugates
ϕ(u1), ϕ(u2) and ϕ(u3). Hence the identity u3u

−1
2 u0u

−1
1 = 1 also holds in E,

and the proof is complete.

Let n ∈ N. Let E ∈ E and Π = Dp1 × · · · ×Dpk × E be a direct product
of of dihedral groups with E where pi divides n for every i ∈ J1, kK. The
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signature εi : Dpi → Z2 induces a morphism Π→ (Z2)k, whose kernel is Π+ =
Zp1 ×· · ·×Zpk ×E is the pure rotation subgroup. Given a subgroup A of Π, its
reflection rank is the dimension of the image of A in Π/Π+ (seen as a Z2-vector
space). The next lemma is a variation on Ivanov [24, Lemma 16.2].

Lemma 3.14. Let A be a subgroup of Π and r its reflection rank. We assume
that 2r+3µ divides n. For every h ∈ Π, normalizing A, there exists a ∈ A with
the following properties.

(i) hn/4a−1 centralizes A

(ii) for every b ∈ Π, [hn/4a−1,b] centralizes Π.

Proof. By assumption, there exist s1, . . . , sr ∈ A such that A is generated by
s1, . . . , sr and A ∩Π+. We let

a =
∏

(ε1,...,εr)∈{0,1}r
[r, sε11 . . . sεrr ] , where r = h2−(r+2)n.

Since h normalizes A, the element a belongs to A. It is sufficient to check that
in each factor of Π the image of hn/4a−1 satisfies the announced properties.
Since the exponent of E divides 2−(r+2)n, the elements hn/4 and a are trivial
in E. Thus so is hn/4a−1. Hence (i) and (ii) hold in E.

We now focus on the dihedral factors. Let i ∈ J1, kK. Assume first that the
image of A is Dpi is contained in the rotation group Zpi . Note that 2 divides
2−(r+2)n. Hence (the image of) r lies in the rotation group of Dpi . Thus a is
trivial in Dpi , while hn/4 belongs to Zpi . Consequently (the image of) hn/4a−1

centralizes Zpi and thus (the image of) A. Moreover for every b ∈ Π, (the image
of) [hn/4a−1,b] which coincide with (the image of) [hn/4,b], centralizes Dpi .
Assume now that the image of A in Dpi contains a reflection. By construction
every element of A∩Π+ is mapped to the rotation subgroup Zpi . Without loss
of generality we can assume that s1 is mapped to a reflection of Dpi . Let Ω be
the subset of all tuples (ε1, . . . , εr) ∈ {0, 1}r such that sε11 . . . sεrr is mapped to
a reflection in Dpi . As previously the image of r in Dpi is a rotation. Hence,
seen in Dpi , we have

[r, sε11 . . . sεrr ] =

{
r2 if (ε1, . . . , εr) ∈ Ω

1 otherwise

Consequently we get in Dpi

a = r2|Ω| = h2−(r+1)|Ω|n.

Observe that the cardinality of Ω is 2r−1. Indeed the map sending (ε1, . . . , εr)
to (ε1 + 1, . . . , εr) induces a bijection from Ω onto {0, 1}r \ Ω. It follows that
hn/4 and a coincide in Dpi . Thus (i) and (ii) hold in Dpi .
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4 Small cancellation theory
Let us recall the main strategy to study free Burnside group Br(n). Starting
from the free group Fr, we are going to build a sequence of non-elementary
hyperbolic groups

Fr = G0 � G1 � G2 � · · ·� Gk � Gk+1 � . . .

whose directly limit is exactly Br(n). The group Gk+1 is obtained from Gk by
adjoining relations of the form hn = 1 where h runs over a subset of “small” lox-
odromic elements of Gk. The main difficulty is to make sure that Gk+1 remains
a non-elementary hyperbolic group although the exponent n has been fixed in
advance. We achieve this by using a geometric approach of small cancellation
theory.

In this section we focus on a single step Gk � Gk+1. We present first an
overview small cancellation theory and develop later the required additional
material. For proving infiniteness of Burnside groups we only need to consider
relations of the form hn = 1. Nevertheless we will work in a slightly more
general setting as the intermediate results can be of independent interest.

4.1 General setting
LetX be a a δ-hyperbolic length space andG a group acting gently by isometries
on X. Let Q be a collection of pairs (H,Y ) where H is a loxodromic subgroup
of G and Y its cylinder (see Section 2.3 for the definitions). We assume that Q
is invariant under the action of G defined by g ·(H,Y ) = (gHg−1, gY ), for every
(H,Y ) ∈ Q and every g ∈ G. We denote by K the (normal) subgroup of G
generated by all H where (H,Y ) runs over Q. The goal is to study the quotient
Ḡ = G/K. To that end, we defined two parameters ∆(Q, X) and inj (Q, X)
which play the role of the lengths of the largest piece and the smallest relation
respectively.

∆(Q, X) = sup
{

diam
(
Y +5δ

1 ∩ Y +5δ
2

)
: (H1, Y1) 6= (H2, Y2) ∈ Q

}
,

inj (Q, X) = inf {‖h‖ : h ∈ H, (H,Y ) ∈ Q} .

Remark. As explained above, we will later focus on a particular set of relations.
More precisely the collection Q will be of the form

Q = {(Yh, 〈hn〉) : h ∈ S}

where n is a large integer and S a subset of “small” loxodromic elements of
G, which is invariant under conjugation. Assuming that ∆(Q, X) is finite will
automatically imply that 〈hn〉 is normal in Stab(Yh), for every h ∈ S.

We now fix once for all a number ρ ∈ R∗+. Its value will be made precise
later (see Theorem 4.7). It should be thought of as a very large length.
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Cones. Let (H,Y ) ∈ Q. The cone of radius ρ over Y , denoted by Zρ(Y )
or simply Z(Y ), is the quotient of Y × [0, ρ] by the equivalence relation that
identifies all the points of the form (y, 0). The equivalence class of (y, 0), denoted
by v, is called the apex or cone point of Z(Y ). By abuse of notation, we still
write (y, r) for the equivalence class of (y, r). The map ι : Y → Z(Y ) that sends
y to (y, ρ) provides a natural embedding from Y to Z(Y ). The radial projection
p : Z(Y ) \ {v} → Y is the map sending (y, r) to y. We denote by | . |Y the
length metric on Y induced by the restriction of | . | to Y . This cone Z(Y ) can
be endowed with a metric as described below.

Proposition 4.1. [4, Chapter I.5, Proposition 5.9] The cone Z(Y ) is endowed
with a metric characterized in the following way. Let x = (y, r) and x′ = (y′, r′)
be two points of Z(Y ) then

ch |x− x′|Z(Y ) = ch r ch r′ − sh r sh r′ cos θ(y, y′), (17)

where θ(y, y′) is the angle at the apex defined by

θ(y, y′) = min

{
π,
|y − y′|Y

sh ρ

}
.

The distance between two points x = (y, r) and x′ = (y′, r′) of Z(Y ) has the
following geometric interpretation. Consider a geodesic triangle in the hyper-
bolic plane H2 such that the lengths of two sides are respectively r and r′ and
the angle between them is θ(y, y′). According to the law of cosines, |x − x′| is
exactly the length of the third side of the triangle (see Figure 3).

v

x

x′

y
y′

r

r′

Y

Z(Y )

ṽ

x̃

x̃′

r
r′

H2

θ(y, y′)

1

Figure 3: Geometric interpretation of the distance in the cone.

Example 4.2. If Y is a circle whose perimeter is 2π sh ρ and endowed with the
length metric, then Z(Y ) is the closed hyperbolic disc of radius ρ. If Y is the
real line, then Z(Y )\{v} is the universal cover of the punctured hyperbolic disc
of radius ρ.
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In order to compare the metric of Y and Z(Y ), we use the map µ : R+ → R+

characterized as follows

chµ(t) = ch2 ρ− sh2 ρ cos

(
min

{
π,

t

sh ρ

})
, ∀t ∈ R+,

so that for every y, y′ ∈ Y we have

|ι(y)− ι(y′)|Z(Y ) = µ(|y − y′|Y ).

The next proposition summarizes the properties of µ.

Proposition 4.3. The map µ is continuous, concave, and non-decreasing. In
addition, for all t ∈ [0 , π sh ρ], we have t 6 π sh(µ(t)/2).

We complete this part with a useful tool to compare two cones.

Lemma 4.4. Let f : Y1 → Y2 a (1, `) quasi-isometric embedding between two
metric spaces. The map Z(Y1) → Z(Y2) sending (y, r) to (f(y), r) is again a
(1, `)-quasi-isometric embedding.

Proof. The result is a direct consequence of the geometric interpretation of the
metric on the cones.

The cone-off space Ẋ. The cone-off of radius ρ over X relative to Q denoted
by Ẋρ(Q) (or simply Ẋ) is obtained by attaching for every (H,Y ) ∈ Q, the cone
Z(Y ) on X along Y according to ι. The subset of X consisting of all apices of
the cones is denoted by V. We endow Ẋ with the largest pseudo-metric | . |Ẋ
for which all the maps X → Ẋ and Z(Y ) → Ẋ – where (H,Y ) runs over Q
– are 1-Lipschitz. It turns out that this pseudo-distance is a length metric on
Ẋ [9, Proposition 5.10]. The next lemmas detail the relationship between the
metrics of X and Ẋ.

Lemma 4.5 ([9, Lemma 5.8]). For every x, x′ ∈ X, we have

µ (|x− x′|X) 6 |x− x′|Ẋ 6 |x− x
′|X .

Lemma 4.6 ([9, Lemma 5.7]). Let (H,Y ) ∈ Q. Let x ∈ Z(Y ). Let d(x, Y )
be the distance between x and ι(Y ) computed with | . |Z(Y ). For all x′ ∈ Ẋ, if
|x−x′|Ẋ < d(x, Y ) then x′ belongs to Z(Y ). Moreover |x−x′|Ẋ = |x−x′|Z(Y ).

Let v be the apex of Z(Y ). It follows from the lemma that, as a set, the ball
B(v, ρ) (for the metric of Ẋ) is nothing but Z(Y ) \ ι(Y ). Moreover the metrics
| . |Ẋ and | . |Z(Y ) coincide on B(v, ρ/3).

The quotient space X̄. The action of G on X naturally extends to an action
on Ẋ as follows. Let (H,Y ) ∈ Q. For every g ∈ G, for every x = (y, r) in Z(Y ),
we define gx to be the point of Z(gY ) given by gx = (gy, r). The space X̄ is
the quotient X̄ = Ẋ/K. The metric on Ẋ induces a pseudo-metric on X̄. We
write ζ : Ẋ → X̄ for the canonical projection from Ẋ to X̄. The quotient Ḡ
naturally acts by isometries on X̄. We denote by V̄ the image of V in X̄. For
every x ∈ Ẋ, we usually write x̄ for its image in X̄.
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Small cancellation theorem. The next statement is a combination of Propo-
sition 6.4, Proposition 6.7, Corollary 3.12 and Proposition 3.15 in [9]

Theorem 4.7. There exists δ0, δ1,∆0, ρ0 ∈ R∗+, which do not depend on X, G
or Q, with the following property. Assume that ρ > ρ0. If δ 6 δ0, ∆(Q, X) 6 ∆0

and inj (Q, X) > 10π sh ρ, then the following holds

(i) The cone-off space Ẋ is δ̇-hyperbolic with δ̇ 6 δ1.

(ii) The quotient space X̄ is δ̄-hyperbolic with δ̄ 6 δ1.

(iii) Let (H,Y ) ∈ Q. Let v̄ be the image in X̄ of the apex v of Z(Y ). The
subgroup Stab(v̄) ⊂ Ḡ is isomorphic to the quotient Stab(Y )/H. Moreover
the projection ζ : Ẋ → X̄ induces an isometry from B(v, ρ/2)/H onto
B(v̄, ρ/2).

(iv) For every r ∈ (0, ρ/20], for every x ∈ Ẋ, if d(x,V) > 2r, then the projec-
tion ζ : Ẋ → X̄ induces an isometry from B(x, r) onto B(x̄, r).

(v) For every x ∈ Ẋ for every g ∈ K \{1}, we have |gx−x|Ẋ > min{2r, ρ/5},
where r = d(v,V). In particular, K acts freely on Ẋ \ V. Moreover, the
projection ζ : Ẋ → X̄ induces a covering map Ẋ \ V → X̄ \ V̄.

Remark. Note that the constants δ0 and ∆0 (respectively ρ0) can be chosen
arbitrarily small (respectively large). From now on, we will always assume that
ρ0 > 1020L0δ1 whereas δ0,∆0 < 10−10δ1. These estimates are absolutely not
optimal. We chose them very generously to ensure that all the inequalities
which we might need later will be satisfied. What really matters is their orders
of magnitude recalled below.

max {δ0,∆0} � δ1 � ρ� π sh ρ.

An other important point to remember is the following. The constants δ0, ∆0

and π sh ρ are used to describe the geometry of X whereas δ1 and ρ refers to the
one of Ẋ or X̄. From now on and until the end of Section 4 we assume that X, G
and Q are as in Theorem 4.7. In particular, Ẋ and X̄ are respectively δ̇- and δ̄-
hyperbolic. Up to increasing one constant or the other, we can actually assume
that δ̇ = δ̄. Nevertheless we still keep two distinct notations, to remember which
space we are working in.

Notations. In this section we work with three metric spaces namely X, its cone-
off Ẋ and the quotient X̄. Since the map X ↪→ Ẋ is an embedding we use the
same letter x to designate a point of X and its image in Ẋ. We write x̄ for
its image in X̄. Unless stated otherwise, we keep the notation | . | (without
mentioning the space) for the distances in X or X̄. The metric on Ẋ will be
denoted by | . |Ẋ .
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4.2 A few additional facts regarding the cone-off space
Radial projection. The radial projection p : Ẋ \ V → X is defined as follows.
Its restriction to X is the identity. Given any (H,Y ) ∈ Q, the restriction
of p to Z(Y ) \ {v}, where v stands for the apex of Z(Y ), coincides with the
radial projection defined in the previous paragraph. This map is G-equivariant.
Observe that |x− p(x)|Ẋ 6 ρ, for every x ∈ Ẋ \ V.

Remark. Recall that neither X, Ẋ or X̄ are supposed to be geodesic. As ex-
plained in Remark 2.1, the Gromov product 〈x, y〉z roughly represents the dis-
tance between z and any “geodesic” joining x and y though. In particular, in the
next statements, assumptions of the form 〈z, z′〉v > d mean that the “geodesic”
in Ẋ between z and z′ stay sufficiently far away from the apex v.

Proposition 4.8. Let x, x′ ∈ X such that 〈x, x′〉v > 0, for every v ∈ V (here
the Gromov product is computed in Ẋ). Then

|x− x′|Ẋ 6 |x− x
′|X 6

π sh ρ

2ρ
|x− x′|Ẋ .

Proof. In this proof all the Gromov products are computed in Ẋ. The first in-
equality directly follows from the fact that the embeddingX → Ẋ is 1-Lipschitz.
Let us focus on the second inequality. Let η > 0 and γ : [a , b]→ Ẋ be a (1, η)-
quasi-geodesic from x to x′. According to our assumption, up to decreasing η
we can assume that for every (H,Y ) ∈ Q, the diameter of γ ∩Z(Y ) is less than
2ρ. Consequently there exists a partition t0 = a 6 t1 6 · · · 6 tm = b of [a , b]
such that

(i) γ(ti) belongs to X for every i ∈ J0,mK;

(ii) |γ(ti+1)− γ(ti)|Ẋ < 2ρ, for every i ∈ J0,m− 1K.

Lemma 4.5 combined with the concavity of the map µ tells us that

2ρ

π sh ρ
|x− x′| 6 2ρ

π sh ρ

m−1∑
i=0

|γ(ti+1)− γ(ti)| 6
m−1∑
i=0

µ
(
|γ(ti+1)− γ(ti)|

)
6
m−1∑
i=0

|γ(ti+1)− γ(ti)|Ẋ

6 |x− x′|Ẋ + η.

This inequality holds for every sufficiently small η > 0, hence the result.

Corollary 4.9. Let Z be a subset of Ẋ such that 〈z, z′〉v > 2δ̇ for every z, z′ ∈ Z
and v ∈ V (here the Gromov product is computed in Ẋ). Then the radial
projection p : Ẋ \ V → X when restricted to Z is a quasi-isometric embedding.

Proof. In this proof all the Gromov products are computed in Ẋ. Let z, z′ ∈ Z.
Let y, y′ ∈ X be the radial projections of z and z′ respectively. It follows from
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the triangle inequality that |z−z′|Ẋ and |y−y′|Ẋ differs by at most 2ρ. In view
of Proposition 4.8 it is sufficient to prove that 〈y, y′〉v > 0 for every v ∈ V. The
four point inequality (3) applied in Ẋ gives

〈y, y′〉v > min
{
〈y, z〉v , 〈z, z

′〉v , 〈z
′, y′〉v

}
− 2δ̇.

Assume that 〈y, z〉v 6 2δ̇. Then z necessarily belongs to the cone Z(Y ) for some
(H,Y ) ∈ Q. Indeed otherwise z = y is a point of X, and thus 〈y, z〉v > 2ρ. It
follows the from the definition of the radial projection and Lemma 4.6 that z
lies on a geodesic between y and the apex of Z(Y ). As the distance between
two apices is at least 2ρ, the point v is necessarily the apex of Z(Y ). Hence

〈z, z〉v = |v − z|Ẋ = 〈y, z〉v
is bounded above by 2δ̇, which contradicts our assumption. We prove in the
same way that 〈y′, z′〉v > 2δ̇. On the other hand, according to our assumption
we have 〈z, z′〉v > 2δ̇. Thus 〈y, y′〉v > 0.

Parabolic subgroups.

Lemma 4.10. Let P be a subgroup of G. If P is parabolic for its action on Ẋ,
then so is its action on X.

Proof. Since the embedding X → Ẋ is 1-Lipschitz, P cannot be elliptic for its
action on X. Hence it suffices to prove that P does not contain any loxodromic
element (for its action on X). We denote by ξ the unique point of Λ(P ) ⊂ ∂Ẋ.
Let γ : R+ → Ẋ be an L0δ̇-local (1, 11δ̇)-quasi-geodesic ray whose endpoint at
infinity is ξ. Let g ∈ P . By Lemma 2.12, there is t0 ∈ R+ such that for every
t > t0, |gγ(t) − γ(t)|Ẋ 6 114δ̇. Since γ is infinite, there exists t > t0 such that
γ(t) belongs to X. It follows then from Lemma 4.5 that

µ (|gγ(t)− γ(t)|) 6 |gγ(t)− γ(t)|Ẋ 6 114δ̇ < 2ρ.

Thus |gγ(t)−γ(t)| 6 π sh(57δ̇) (Proposition 4.3). Consequently ‖g‖ 6 π sh(57δ̇),
for every g ∈ P . In particular, P does not contain any loxodromic element for
its action on X.

4.3 Apex stabilizer in the quotient space.
As we mentioned in the introduction the quotient space M̄ = X̄/Ḡ can be seen
as an orbifold, and Ḡ its fundamental group [15]. Although this is not the point
of view we adopted here, it is a great source of inspiration. According to Theo-
rem 4.7 (iii), for every (H,Y ) ∈ Q, the quotient Stab(Y )/H embeds in Ḡ, which
basically means that M̄ is developable, so that its universal cover is X̄. This
orbifold M̄ also comes with an analog of Margulis’ thin/thick decomposition for
hyperbolic manifolds. The thin part corresponds to the neighborhood of the
cone points (or more precisely their images in M̄). In this section we study
the structure of X̄ around the apices. In particular we prove that the isotropy
group of such a point locally acts as a dihedral group on a hyperbolic disc.
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Local classification of isometries. Let (H,Y ) ∈ Q. Recall that Stab(Y )
is the maximal loxodromic subgroup containing H. We write Stab+(Y ) for the
subgroup of Stab(Y ) fixing pointwise ∂Y . Its index in Stab(Y ) is at most 2.
Since the action of G onX is gentle, the set F of all elliptic elements of Stab+(Y )
is a normal subgroup of Stab(Y ). Moreover Stab+(Y )/F is isomorphic to Z
while Stab(Y )/F embeds in D∞. In other words we have a short exact sequence

1→ F → Stab (Y )
q−→ L→ 1,

where L is either Z or D∞.
As inj (Q, X) > 10π sh ρ, any non-trivial element of H is loxodromic. Thus

its image in L is nZ for some n ∈ N\{0}. We write Ln for L/nZ, i.e. Ln = Dn

if L = D∞ and Ln = Zn, if L = Z. Let v be the apex of Z(Y ) and v̄ its image
in X̄. Recall that, according to the small cancellation theorem (Theorem 4.7)
the subgroup Stab(v̄) is isomorphic to Stab(Y )/H. After taking the quotient
by H we get the following commutative diagram

1 F Stab(Y ) L 1

1 F̄ Stab(v̄) Ln 1
∼

π

where the horizontal lines are short exact sequences. Note that Stab(v̄) → Ln
is a well-defined map (up to post-composing by an inner automorphism of Ln
and/or ± Id). Indeed if (H ′, Y ′) is another pair of Q such that v̄ is this image of
the apex v′ of Z(Y ′), then there exists an element u ∈ K such that (H ′, Y ′) =
(uHu−1, uY ). Thus the maps q : Stab(Y )→ L and q′ : Stab(Y ′)→ L differ at
the source by an conjugation and at the target by an automorphism of L.

By analogy with singularities the integer n is called the order of the cone
point v̄. As we explained before Ln can be either Zn or Dn. In any case it
embeds in Dn. We call the map qv̄ → Dn obtained in this way the geometric
realization of Stab(v̄). Although it is not made explicit in the notation, we allow
for the moment the order to be different from one apex to the other. Recall that
the elements of Dn are called rotations or reflections according to their action
on the regular n-gon (see Section 3.2). This allows us to define similar notion
for the elements of Stab(v̄). More precisely, we say that an element ḡ ∈ Stab(v̄)
is a rotation (respectively a reflection, almost trivial) at v̄ if its image under qv̄
is a rotation (respectively a reflection, trivial). A rotation at v̄ is strict if it does
not belong to F̄ . A central half-turn at v̄ is a strict rotation at v̄ which is an
involution and centralizes Stab(v̄) (note that the existence of such a half-turn
forces n to be even). Given a reflection x ∈ Ln, the pre-image under qv̄ of 〈x〉
is called a reflection group at v̄.
Remark. Being a reflection at v̄ is a local property. Given two distinct apices
v̄, v̄′ ∈ V̄, an element ḡ ∈ Ḡ can be simultaneously a reflection at v̄ and almost
trivial at v̄′. For instance, consider the hyperbolic group

G =
〈
a, b, c | a2, b2, [b, c]

〉
= Z2 ∗ (Z2 × Z)
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where the left factor Z2 is generated by a, whereas the right factor Z2 × Z is
generated by b and c. We consider the action of G on its Bass-Serre tree and
blow up every vertex associated to (a conjugate of) Z2 × Z to a line (on which
Z2 acts trivially). The resulting space X is a tree on which G acts properly
co-compactly by isometries. Fix now a large integer n and define

Ḡ = G/〈〈(ab)n, cn〉〉

One checks easily that Ḡ is a small cancellation quotient of G. Let v̄, v̄′ ∈ X̄
be the apices of the cones attached to the relations (ab)n and cn respectively.
One observes that the image b̄ of b in Ḡ is a reflection at v̄ but almost trivial at
v̄′. This subtlety is a source of difficulty when studying the strong ν-invariant
νstg(Ḡ, X̄).

From now on, we make the following assumption.

Assumption 4.11 (Central half-turn). For every apex v̄ ∈ V̄, if the image of
the geometric realization map qv̄ : Stab(v̄)→ Dn has even torsion, then Stab(v̄)
contains central half-turn at v̄.

Remark. Let us explain quickly how such an assumption can be satisfied. Later,
when building the approximation sequence of Br(n), we will see that every
loxodromic subgroup of G can be assumed to embed in a product of the form
D∞ ×Dn × · · · ×Dn. In particular if g ∈ Stab(Y ) is a primitive element of E,
then gn/2 is almost central: it commutes with every element in E+ and anti-
commutes with the ones of E\E+ (i.e. ugn/2u−1 = g−n/2, for every u ∈ E\E+).
Consequenlty, if H is the subgroup generated by h = gn, then the image of gn/2
in Stab(Y )/H is a central half-turn.

Geometric realization. As suggested by the above terminology, the projec-
tion qv̄ : Stab(v̄) → Dn captures how Stab(v̄) acts geometrically on the ball
B(v̄, ρ). To make this idea more precise, we are going to build a quasi-isometry
between B(v̄, ρ) and a comparison hyperbolic cone D (endowed with the obvious
action of Dn) which is almost qv̄-equivariant.

We first define a morphism L→ Isom(R). Let ξ be one of the endpoints at
infinity of Y . Let h0 be a primitive element of Stab(Y ) whose attractive point
is ξ.

• If L is cyclic, then we map the positive generator t of L to the translation
by ‖h0‖∞.

• If L is the dihedral group D∞ =
〈
x,y | x2,y2

〉
, then we map x to the

symmetry at 0 and y to the symmetry at ‖h0‖∞/2. In particular t = xy
is mapped to the translation by ‖h0‖∞.

Note that the resulting morphism L→ Isom(R) does not depend on the choice
of h0. The quotient R/nZ is a circle whose perimeter is ` = n‖h0‖∞. We denote
by D the cone of radius ρ over R/nZ and write o of its apex. The action of L
on R induces an action by isometries of Ln on D which fixes o. Observe that
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the space D is a hyperbolic cone (i.e. with constant sectional curvature equal
to −1 everywhere except maybe at the apex) whose total angle at the apex o is

Ω =
n‖h0‖∞

sh ρ
.

It follows from the small cancellation assumption that Ω > 10π. Said differently
D can be decomposed into n copies of a sector of the hyperbolic disc of radius ρ
whose angle is ‖h0‖∞/ sh ρ, so that Dn is the group of isometries of D preserving
this decomposition (see Figure 4).

x

y

t

‖h0‖∞
π sh ρ

o

Figure 4: The comparison D cone for n = 8.

Let us now compare the hyperbolic cone D to the ball B(v̄, ρ). Let cξ be a
Busemann cocycle at ξ. Recall that H ∩ F is trivial, hence H is cyclic. This
allows us to build an H-invariant cocycle c : X ×X → R which is at bounded
distance from cξ. Indeed as H is amenable there exists an H-invariant mean
M : `∞(H) → R. For every x, y ∈ X, we write fx,y : H → R for the map
sending h to hcξ(x, y) and define c(x, y) as the mean of fx,y. One checks easily
that c is an H-invariant cocycle. Recall that H fixes ξ, hence hcξ and cξ differ
by at most 6δ, for every h ∈ H. Consequently c and cξ differs by at most 6δ as
well. In particular, Lemma 2.11 yields |c(hx, x)| = ‖h‖∞, for every x ∈ X and
h ∈ H.

We now fix an arbitrary base point y0 ∈ Y . If L is the infinite dihedral
group, we choose y0 in Mov(A, 11δ) where A ⊂ Stab(Y ) is the pre-image of
〈x〉 by q. Recall that Y is contained in the 27δ-neighborhood of any L0δ-local
(1, δ)-quasi-geodesic joining the endpoints of Y . It follows from Lemma 2.4 that
the map ϕ : Y → R sending y to c(y0, y) is an H-equivariant (1, 150δ)-quasi-
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isometric embedding. Moreover, this application is almost q-equivariant, in the
sense that for every y ∈ Y , for every g ∈ Stab(Y ), we have

|ϕ(gy)− q(g)ϕ(y)| 6 200δ.

Consequently ϕ induces a map ϕ̄ : Y/H → R/nZ, such that for every ḡ ∈
Stab(Y )/H, for every ȳ ∈ Y/H,

|ϕ̄(ḡȳ)− qv̄(ḡ)ϕ̄(ȳ)| 6 200δ.

By Lemma 4.4, ϕ̄ induces a (1, 150δ)-quasi-isometric embedding Z(Y/H)→ D,
that we again still denote ϕ̄, so that for every ḡ ∈ Stab(Y )/H, for every x̄ ∈
Z(Y/H), we have

|ϕ̄(ḡx̄)− qv̄(ḡ)ϕ̄(x̄)|D 6 200δ. (18)

Roughly speaking, this means that Stab(Y )/H acts on Z(Y/H) as Ln does on
D.

Note that Z(Y/H) – which is actually isometric to Z(Y )/H – is endowed
here with the metric defined by (17). Although, as a set of points, Z(Y )/H can
be identified with the closed ball of X̄ of radius ρ centered at v̄ (Theorem 4.7),
the distance we considered so far is not the exactly the one coming from X̄.
Nevertheless the embedding Z(Y )→ Ẋ is 1-Lipschitz. It follows that the map
ϕ̄ : B(v̄, ρ) → D induced by ϕ̄ : Z(Y/H) → D is such that for every x̄, x̄′ ∈
B(v̄, ρ) we have

|x̄− x̄′|X̄ 6 |ϕ̄(x̄)− ϕ̄(x̄′)|D + 150δ (19)

As we observed previously, the metrics of Z(Y ) and Ẋ coincide on B(v, ρ/3).
It follows that the metric on Z(Y/H) and X̄ coincide on B(v̄, ρ/3). Hence the
map ϕ̄ : B(v̄, ρ) → D is a (1, 150δ)-quasi-isometric embedding when restricted
to B(v̄, ρ/3).

Proposition 4.12. Let v̄ ∈ V̄.

(i) If ḡ ∈ Stab(v̄) is almost trivial at v̄, then B(v̄, ρ) is contained in Mov(ḡ, δ̄).

(ii) If Ā is a reflection group at v̄, then there exists a point x̄ ∈ Mov(Ā, δ̄)
with |v̄ − x̄| = ρ such that for every z̄ ∈ Mov(Ā, δ̄) ∩B(v̄, ρ/3) we have

min {〈x̄, v̄〉z̄ , 〈ḡx̄, v̄〉z̄} 6 δ̄,

where ḡ is a central half-turn at v̄.

(iii) If ḡ ∈ Stab(v̄) is a strict rotation at v̄, then there exists k ∈ Z, such that
Mov(ḡk, δ̄) is contained in the δ̄-neighborhood of v̄. In particular v̄ is the
unique vertex fixed by ḡ.

Remark 4.13. Roughly speaking Point (ii) is saying that any point of B(v̄, ρ/3)
that is fixed by A lies on the geodesic [x̄, ḡx̄] – which goes through v̄ by Point (iii).
Nevertheless, in our setting, X̄ does not need to be geodesic. Thus a rigorous
statement is the one formulated above.
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Remark 4.14. It follows from Point (iii) that if F̄ is an elliptic subgroup of Ḡ
containing a strict rotation at v̄, then Mov(F̄ , 11δ̄) is contained in B(v̄, δ̄). In
particular F̄ is a subgroup of Stab(v̄).

Proof. We use the comparison map ϕ̄ : B(v̄, ρ)→ D defined during the previous
discussion. Assume first that ḡ is almost trivial at v̄, i.e. qv̄(ḡ) = 1. In other
words qv̄(ḡ) acts trivially on D. Combining (18) and (19) we get |ḡx̄ − x̄|X̄ 6
350δ, for every x̄ ∈ B(v̄, ρ). Hence B(v̄, ρ) is contained in Mov(ḡ, δ̄), which
completes the proof of (i).

Assume now that ḡ is a strict rotation at v̄. For simplicity, we let r = qv̄(ḡ).
Since r is a non trivial rotation, one checks easily that there exists k ∈ Z such
that rk acts on D as a rotation centered at o whose angle belongs to [Ω/4, 3Ω/4]
We noticed before that thanks to the small cancellation assumption Ω > 10π.
In particular for every x̄ ∈ D, the angle at o between x̄ and rkx̄ is larger than
π. Consequently ∣∣rkx̄− x̄∣∣D = 2 |x̄− o|D .

Recall that ϕ induces an almost qv̄-equivariant (1, 150δ)-quasi-isometric embed-
ding from B(v̄, ρ/3) into D. Hence for every x̄ ∈ B(v̄, ρ/3),∣∣ḡkx̄− x̄∣∣

X̄
> 2 |x̄− v̄|X̄ − 750δ.

In particular Mov(ḡk, δ̄)∩B(v̄, ρ/3) is contained in B(v̄, δ̄). Since Mov(ḡk, δ̄) is
10δ̄-quasi-convex (Lemma 2.9) the set Mov(ḡk, δ̄) is entirely contained in B(v̄, δ̄),
which completes the proof of (iii).

We are left to prove Point (ii). Let Ā be a reflection group at v̄. Without loss
of generality we can assume that qv̄(A) = 〈x〉. It follows from Assumption 4.11
that n is even and Stab(v̄) contains a central-half turn ḡ. We write r for its
image in Ln. Recall that y0 is a base point in Y ∩Mov(A, 11δ) chosen to define
the map ϕ̄. Let ȳ0 its image in X̄. It follows from the construction that the
set of fixed point of x is exactly the geodesic of D between ϕ̄(ȳ0) and rϕ̄(ȳ0).
Note that this geodesic passes through o as the angle Ω at the apex of D is
larger that 2π. Consequently for every d > 0, for every x̄ ∈ B(v̄, ρ/3), such that
|xϕ̄(x̄)− ϕ̄(x̄)| 6 d, we have either 〈o, ϕ̄(ȳ0)〉ϕ̄(x̄) 6 d/2 or 〈o, rϕ̄(ȳ0)〉ϕ̄(x̄) 6 d/2.
We carry again this observation in X̄ using the map ϕ̄ : B(v̄, ρ)→ D to get the
conclusion of (ii).

Vocabulary. In view of the previous statement, we can say that an element
ḡ ∈ Ḡ is a strict rotation if there is an apex v̄ such that ḡ is a strict rotation at
v̄. Indeed in such a case, ḡ cannot be almost trivial or a reflection at any other
vertex. Note that being a strict rotation is invariant under conjugation.

4.4 Lifting properties
In Theorem 4.7 (iv) we mention a very important fact: small cancellation does
not affect the small scale geometry of the space. More precisely the projection
ζ : Ẋ → X̄ is an isometry when restricted on small ball lying sufficiently far
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away from apices. This is a key ingredient to lift several figures from X̄ to
Ẋ. We complete this picture with other properties of the map ζ : Ẋ → X̄.
Exceptionally, in this section all the distances are measured either in Ẋ or X̄.

The first step is to explain how one can lift isometrically in Ẋ a quasi-convex
subset Z̄ ⊂ X̄ as well as its (partial) stabilizer, provided it stays far away from
the apex set V̄.

Lemma 4.15. Let x, y ∈ Ẋ such that 〈x, y〉v > 3L0δ̇, for every v ∈ V. Then
|x− y|Ẋ = |x̄− ȳ|.

Remark. Recall that the space Ẋ is not necessarily geodesic. Nevertheless, our
assumption means that any “geodesic” from x to y stays sufficiently far away
from the apex v.

Proof. Since the projection ζ : Ẋ → X̄ is 1-Lipschitz, |x̄ − ȳ| 6 |x − y|. Let us
prove the converse inequality. We first claim that 〈x̄, ȳ〉v̄ > (3L0−9)δ̄, for every
v̄ ∈ V̄. To that end we fix a (1, δ̇)-quasi-geodesic γ1 : [a1 , b1] → Ẋ joining x to
y. According to our assumption, for every v ∈ V, d(v, γ1) > 〈x, y〉v > 3L0δ̇. It
follows from Theorem 4.7 (iv) that the image γ̄1 : [a1 , b1]→ X̄ of γ1 in X̄ is an
L0δ̄-local (1, δ̄)-quasi-geodesic joining x̄ to ȳ. Let v ∈ V. Applying the stability
of quasi-geodesics to γ̄1 (Proposition 2.3) we get

3L0δ̇ 6 inf
g∈K

d(gv, γ1) 6 d(v̄, γ̄1) 6 〈x̄, ȳ〉v̄ + 9δ̄,

which completes the proof of our first claim.
Let η ∈ (0, δ̇). There exists a pre-image y′ ∈ Ẋ of ȳ such that |x − y′| 6

|x̄− ȳ|+ 2η. In particular 〈x, y′〉v > 〈x̄, ȳ〉v̄ − η, for every v ∈ V. We claim that
y and y′ are very close. Let γ2 : [a2 , b2]→ Ẋ be a (1, η)-quasi-geodesic joining y
to y′. Let v ∈ V. Applying the four point inequality (3) in Ẋ, we observe that

〈y, y′〉v > min {〈x, y〉v , 〈x, y
′〉v}−δ̇ > min {〈x, y〉v , 〈x̄, ȳ〉v̄ − η}−δ̇ > (3L0−11)δ̇.

Reasoning as previously we see that the image γ̄2 : [a2 , b2]→ X̄ of γ2 in X̄ is an
L0δ̄-local (1, η)-quasi-geodesic from ȳ to ȳ′. Thus it is also a (global) (2, η)-quasi-
geodesic (Proposition 2.3) joining ȳ to itself. Therefore |y−y′| 6 |b2−a2| 6 2η.
If follows for the definition of y′ that |x−y| 6 |x̄− ȳ|+4η. This holds for every
sufficiently small η ∈ R∗+, hence |x− y| 6 |x̄− ȳ|.

Lemma 4.16. Let Z be a subset of Ẋ such that 〈z, z′〉v > 4L0δ̇, for every
z, z′ ∈ Z and every v ∈ V. The map ζ : Ẋ → X̄ induces an isometry from Z
onto its image Z̄. In addition, the following holds.

(i) Let ḡ ∈ G and z1, z2 ∈ Z such that ḡz̄1 = z̄2. Then there exists unique
pre-image g ∈ G of ḡ such that gz1 = z2. Moreover for every z, z′ ∈ Z, if
ḡz̄ = z̄′, then gz = z′.

(ii) The projection π : G → Ḡ induces an isomorphism form Stab(Z) onto
Stab(Z̄).
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Remark. The statement apply in particular if Z is α-quasi-convex and satisfies
d(v, Z) > α + 4L0δ̇, for every v ∈ V. This slightly weaker version will be more
flexible for later use, though.

Proof. By Lemma 4.15, the projection ζ : Ẋ → X̄ induces an isometry from Z
onto Z̄. Let ḡ ∈ G and z1, z2 ∈ Z such that ḡz̄1 = z̄2. By the very definition of
X̄, there exists a pre-image g ∈ G of ḡ, such that gz1 = z2. Uniqueness follows
from the fact that K acts freely on Ẋ \ V – see Theorem 4.7 (v). We now prove
that g satisfies the announced property. Let z, z′ ∈ Z such that ḡz̄ = z̄′. Let
v ∈ V. Applying the four point inequality (3) in Ẋ we have

〈gz, z′〉v > min {〈gz, gz1〉v , 〈z2, z
′〉v} − δ̇ > min

{
〈z, z1〉g−1v , 〈z2, z

′〉v
}
− δ̇

Note that z1, z2, z and z′ belongs to Z. Hence

〈z, z1〉g−1v > 4L0δ̇ and 〈z2, z
′〉v > 4L0δ̇.

Consequently 〈gz, z′〉v > 3L0δ̇, for every v ∈ V. It follows from Lemma 4.15
that |gz − z′| = |ḡz̄ − z̄′| = 0. This completes the proof of (i). Point (ii) follows
directly from (i).

Lemma 4.17. Let Z̄ be a subset of X̄ such that 〈z̄, z̄′〉v̄ > 4L0δ̄, for every
z̄, z̄′ ∈ Z̄ and every v̄ ∈ V̄. Let z̄0 be a point of Z̄ and z0 ∈ Ẋ a pre-image of z̄0

Then there exists a unique subset Z of Ẋ containing z0 such that the projection
ζ : Ẋ → X̄, induces an isometry from Z onto Z̄. Moreover, 〈z, z′〉v > 4L0δ̇ for
every z, z′ ∈ Z and every v ∈ V.

Remark. Note that Lemma 4.16 applies to the lifted set Z. Hence, we can lift
any isometry ḡ ∈ Ḡ which (partially) preserves Z̄ to an isometry g ∈ G with
the same properties. Lemma 4.17 holds in particular if Z̄ is α-quasi-convex and
satisfies d(v̄, Z̄) > α + 4L0δ̄, for every v̄ ∈ V̄, in which case one can prove that
Z is quasi-convex as well. Nevertheless we will not use this fact here.

Proof. We define Z as the set of points z ∈ Ẋ being the pre-image of a point
z̄ ∈ Z̄ and such that |z−z0| = |z̄−z̄0|. Let z̄ ∈ Z. We claim that z̄ ∈ Z̄ has a pre-
image in Z. There exists a pre-image z ∈ Ẋ of z̄ such that |z−z0| 6 |z̄− z̄0|+ δ̄.
In particular 〈z, z0〉v > 〈z̄, z̄0〉v̄ − δ̄ > 3L0δ̇, for every v ∈ V. It follows from
Lemma 4.15 that |z− z0| = |z̄− z̄0|. Hence z belongs to Z, which completes the
proof of our claim. In other words the projection ζ : Ẋ → X̄ maps Z onto Z̄.

We now prove that 〈z, z′〉v > 3L0δ̇, for every z, z′ ∈ Z and every v ∈ V.
It follows from the very definition of Z that 〈z, z0〉v > 〈z̄, z̄0〉v̄ and 〈z′, z0〉v >
〈z̄′, z̄0〉v̄. Combining the four point inequality (3) with our assumption on Z̄,
we get

〈z, z′〉v > min {〈z, z0〉v , 〈z
′, z0〉v} − δ̇ > min {〈z̄, z̄0〉v̄ , 〈z̄

′, z̄0〉v̄} − δ̄ > 3L0δ̇.

It now follows from Lemma 4.15 that the projection ζ : Ẋ → X̄ induces an
isometry from Z onto its image, i.e. Z̄. This proves the existence of the set Z.
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The uniqueness directly follows from the definition of Z. Since Z → Z̄ is an
isometry, 〈z, z′〉v > 〈z̄, z̄′〉v̄ > 4L0δ̄, for every z, z′ ∈ Z, for every v ∈ V.

The previous statements explain how to lift in Ẋ a quasi-convex subset
Z̄ ⊂ X̄, as well as its (partial) stabilizer, as soon as its stays away from the
apex set V̄. In particular it applies to any (1, η)-quasi-geodesic path of X̄ that
avoid the cone points. We focus now on a more delicate operation which consists
in lifting paths of X̄ (and their almost stabilizers) going through one or several
apices. The next statement follows [10, Proposition 5.13].

Proposition 4.18. Let x and y be two points of X. Let γ : [a , b] → Ẋ be a
path from x to y whose image γ̄ : [a , b] → X̄ is a (1, δ̄)-quasi-geodesic. Let S
be a subset of G and S̄ its image in Ḡ. We assume that |gx − x|Ẋ 6 ρ/100
and |ḡȳ − ȳ| 6 ρ/100, for every g ∈ S. In addition we suppose that for every
apex v̄ ∈ V̄ satisfying 〈x̄, ȳ〉v̄ 6 ρ/4, the set S̄ lies in the local kernel at v̄. Then
|gy − y|Ẋ = |ḡȳ − ȳ| for every g ∈ S.

Proof. Since γ̄ is a (1, δ̄)-quasi-geodesic and the projection ζ : Ẋ → X̄ is 1-
Lipschitz, the path γ̇ is a (1, δ̇)-quasi-geodesic. Let v1, . . . , vm be the apices of V
which are ρ/5-close to γ. For every j ∈ J1,mK, we denote by γ(cj) a projection of
vj on γ. By reordering the apices we can always assume that c1 6 c2 6 · · · 6 cm.
For simplicity of notation we put c0 = a and cm+1 = b. Let j ∈ J1,mK. Since γ
is a (1, δ̇)-quasi-geodesic, we can find bj−1 ∈ (cj−1, cj ] and aj ∈ [cj , cj+1) with
the following properties.

(i) |vj − γ(bj−1)|Ẋ = 9ρ/10 and |vj − γ(aj)|Ẋ = 9ρ/10,

(ii) γ ∩B(vj , 4ρ/5) is contained in γ((bj−1, aj))

In addition, we let a0 = a, bm = am+1 = b (see Figure 5). We claim that for

v1

vj vj+1

vm

x y�(c1) �(cj) �(cj+1) �(cm)

�(bj�1) �(aj) �(bj) �(aj+1)

B(vj , ⇢) B(vj+1, ⇢)

�

Figure 5: The cones intersecting γ.

every j ∈ J0,m+ 1K, for every g ∈ S, we have

|ḡγ̄(aj)− γ̄(aj)| = |gγ(aj)− γ(aj)| .
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The proof is by induction on j. If j = 0 then γ(aj) = x. The claim follows
from the fact that the map ζ : Ẋ → X̄ induces an isometry from B(x, ρ/20)
onto B(x̄, ρ/20) – see Theorem 4.7 (iv). Assume now that our claim is true
for some j ∈ J0,mK. Since γ is a local quasi-geodesic, aj 6 bj . We denote
by γj the restriction of γ to [aj , bj ] and by γ̄j its image in X̄. In addition we
write Zj (respectively Z̄j) for the ρ/50-neighborhood of γj (respectively γ̄j). It
follows from the construction that γj and thus γ̄j stay away from any cone point.
Consequently ζ : Ẋ → X̄ is an isometry when restricted to the Zj (Lemma 4.16).
Moreover, it induces an isometry from Zj onto Z̄j (Lemma 4.17).

Let g ∈ S. By assumption its image ḡ in Ḡ moves x̄ and ȳ by at most ρ/100.
Recall that we required γ̄ to be (1, δ̄)-quasi-geodesic. It follows from Lemma 2.8
that ḡ moves γ̄(aj) and γ̄(bj) by at most ρ/50. In particular ḡγ̄(aj) and ḡγ̄(bj)
belongs to Z̄j . Nevertheless, according to our induction assumption, gγ(aj) is
the (unique) lift of ḡγ̄(aj) that belongs to Zj . Applying Lemma 4.16 (i) we
observe that gγ(bj) is the unique pre-image in Zj of ḡγ̄(bj). In particular

|gγ(bj)− γ(bj)|Ẋ = |ḡγ̄(bj)− γ̄(bj)| 6 ρ/50.

If j = m, then am+1 = bm, thus the claim holds for j + 1. Otherwise, |vj+1 −
γ(bj)| = 9ρ/10, thus g necessarily belongs to Stab(vj+1). Moreover

〈x̄, ȳ〉v̄j+1
6 d(v̄j+1, γ̄) + 4δ̄ 6 d(vj+1, γ) + 4δ̇ 6 ρ/4,

see for instance by [9, Lemma 2.4]. Hence by assumption, ḡ is trivial at v̄j+1.
Therefore it moves all the points of B(vj+1, ρ) by a distance at most δ̄ (Propo-
sition 4.12). In particular, |gγ(aj+1) − γ(aj+1)|Ẋ 6 δ̄. However, the map
ζ : Ẋ → X̄ induces an isometry from the ball B(γ(aj+1), ρ/20) onto its image,
hence |gγ(aj+1)− γ(aj+1)|Ẋ = |ḡγ̄(aj+1)− γ̄(aj+1)|. This proves our claim for
j + 1. The statement of the lemma follows from our claim for j = m+ 1.

In the previous statement, we assumed that any isometry ḡ ∈ S̄ which hardly
move the endpoints of γ̄, is actually in the local kernel of every vertex v̄ lying
close to γ̄. We now explore the situation where some element ḡ might be a
reflection at v̄.

Proposition 4.19. Let x and y be two points of X. Let S be a subset of G
and S̄ its image in Ḡ. We assume that |gx− x| 6 ρ/100 and |ḡȳ − ȳ| 6 ρ/100,
for every g ∈ S. In addition we suppose that for every apex v̄ ∈ V̄, the set
S̄∩Stab(v̄) is contained in a reflection group at v̄. Then there exists an element
u ∈ G with the following properties.

(i) ū commutes with every element in S̄;

(ii) |guy − uy|Ẋ = |ḡȳ − ȳ| for every g ∈ S;

(iii) either ū is trivial, or S̄ lies in a reflection group at some apex v̄ ∈ V̄.
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Remark 4.20. Note that if S̄∩Stab(v̄) is not contained in a reflection group at v̄,
then there is a strict rotation at v̄ which is the product of at most two elements of
S̄. Indeed given any reflection x of Dn, the geometric realization qv̄ : Stab(v̄)→
Dn cannot map S̄ ∩ Stab(v̄) into 〈x〉. Consequently the image of S̄ ∩ Stab(v̄)
either contains a non-trivial rotation or two distinct reflections, whence the
claim. This observation will be useful later to check that the assumptions of the
proposition are fulfilled.

Proof. Assume first that for every apex v̄ ∈ V̄ satisfying 〈x̄, ȳ〉v̄ 6 ρ/4, the set
S̄ lies in the local kernel at v̄. We fix ε > 0 and u ∈ K such that |x − uy|Ẋ 6
|x̄− ȳ|+ ε. In addition we take a (1, ε)-quasi-geodesic γ : [a , b]→ Ẋ from x to
uy. It follows from our choice of u that the image γ̄ : [a , b]→ X̄ of γ is a (1, 2ε)-
quasi-geodesic from x̄ to ȳ. Hence if ε is sufficiently small, Proposition 4.18
applies, which completes the proof.

Assume now that there exists a vertex v̄ ∈ V̄ satisfying 〈x̄, ȳ〉v̄ 6 ρ/4 such
that the set S̄ does not in the local kernel at v̄. Any element ḡ ∈ S̄ moves x̄
and ȳ by at most ρ/100. Hence ḡ moves v̄ by at most ρ (Lemma 2.8). It follows
that S̄ is contained in Stab(v̄). According to our assumption S̄ is contained
in a reflection group at v̄. We now denote by U the set of all elements u ∈ G
whose image ū in Ḡ commutes with S̄. This set is non-empty as it contains the
identity. We chose u0 ∈ U such that |ū0ȳ − x̄| 6 |ūȳ − x̄|+ δ̄, for every u ∈ U .

We are going to prove that for every v̄ ∈ V̄, if 〈x̄, ū0ȳ〉v̄ 6 ρ/4, then S̄ lies in
the local kernel at v̄. Consider indeed an apex v̄ ∈ V̄ such that 〈x̄, ū0ȳ〉v̄ 6 ρ/4.
As ū0 commutes with S̄, the distance |ḡū0ȳ − ū0ȳ| = |ḡȳ − ȳ| is bounded above
by ρ/100 for every ḡ ∈ S̄. We prove as above that S̄ is contained in a reflection
group at v̄. Suppose now that contrary to our claim S̄ is not in the local kernel at
v̄. We fix s̄ ∈ S̄ a reflection at v̄. According to Proposition 4.12 (ii), there exists
a point z̄0 ∈ X̄ with |v̄ − z̄0| = ρ such that for every z̄ ∈ Mov(S̄, δ̄) ∩ B(v̄, ρ/3)
we have

min
{
〈z̄0, v̄〉z̄ ,

〈
h̄z̄0, v̄

〉
z̄

}
6 δ̄,

where h̄ is a central half-turn at v̄. Observe that ū1 = h̄ū0 belongs to U .
Indeed, as h̄ centralizes Stab(v̄), it commutes with S̄. We now claim that
|ū1ȳ− x̄| < |ū0ȳ− x̄| − 2ρ/15. Let γ̄ : [a , b]→ X̄ be a (1, δ̄)-quasi-geodesic from
x̄ to ū0ȳ. Let γ̄(t) be the projection of v̄ onto γ̄. By assumption 〈x̄, ū0ȳ〉v̄ 6 ρ/4,
hence |γ̄(t)− v̄| 6 ρ/4 + 4δ̄, see for instance [9, Lemma 2.4]. Let

s− = sup {s ∈ [a , t] : |γ̄(s)− v̄| > ρ/3} ,
s+ = inf {s ∈ [t , b] : |γ̄(s)− v̄| > ρ/3} ,

so that ȳ− = γ̄(s−) and ȳ+ = γ̄(s+) are at distance exactly ρ/3 from v̄ and

|ȳ− − ȳ+| > ρ/6− 8δ̄.

Since any element of S̄ moves the endpoint of γ̄ by at most ρ/100, the path
γ̄ restricted to [s− , s+] is contained in Mov(S, ρ/50) (Lemma 2.8) hence in
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the (ρ/100 + 7δ̄)-neighborhood of Mov(S̄, δ̄) (Lemma 2.9). Hence for every
s ∈ (s−, s+) we have

min
{
〈z̄0, v̄〉γ̄(s) ,

〈
h̄z̄0, v̄

〉
γ̄(s)

}
6 ρ/100 + 8δ̄.

See Figure 6. By continuity it also applies to s− and s+. Recall that |ȳ−− ȳ+| >

h̄

ρ

x̄

ḡx̄

ū0ȳ

ḡū0ȳ

h̄ū0ȳ
z̄0

h̄z̄0
v̄

Figure 6: The path γ̄ going through the ball B(v̄, ρ). The grey area corresponds
to Mov(S̄, δ̄) ∩B(v̄, ρ).

ρ/10. Up to permuting z̄0 and h̄z̄0, it forces

〈z̄0, v̄〉ȳ− 6 ρ/100 + 8δ̄, and 〈z̄0, v̄〉h̄ȳ+ =
〈
h̄z̄0, v̄

〉
ȳ+
6 ρ/100 + 8δ̄.

Hence |ȳ− − h̄ȳ+| 6 ρ/50 + 18δ̄ [9, Lemma 2.2 (ii)]. On the other hand, since
ȳ− and ȳ+ lie on a (1, δ̄)-quasi-geodesic between x̄ and ū0ȳ we have

|x̄− ū0ȳ| > |x̄− ȳ−|+ |ȳ− − ȳ+|+ |ȳ+ − ū0ȳ| − δ̄
> |x̄− ȳ−|+ |ȳ+ − ū0ȳ|+ ρ/6− 7δ̄

Combined with the triangle inequality, it yields

|x̄− ū1ȳ| 6 |x̄− ȳ−|+
∣∣ȳ− − h̄y+

∣∣+ |ȳ+ − ū0ȳ| 6 |x̄− ū0ȳ| − 2ρ/15.

which completes the proof our claim and contradicts the minimality of u0. Con-
sequently for every v̄ ∈ V̄, if 〈x̄, ū0ȳ〉v̄ 6 ρ/4, then S̄ lies the local kernel at v̄.
The conclusion now follows from Proposition 4.18.

4.5 The action of Ḡ on X̄

We now study the general properties of the action of Ḡ on X̄.

Proposition 4.21. The action of Ḡ on X̄ is gentle.

Remark. Recall that the action of Ḡ on X̄ is gentle if every loxodromic subgroup
Ē preserving the orientation splits as Ē = F̄oZ, where F̄ is the set of all elliptic
elements of Ē.
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Proof. Let Ē be a loxodromic subgroup of Ḡ, preserving the orientation. We
write Z̄ for the cylinder of Ē (see Section 2.3 for the definition). Assume first
that there exists an apex v̄ ∈ V̄ such that d(v̄, Z̄) 6 5L0δ̄. Let F̄ be the set
of all elliptic elements of Ē. Since Ē preserves the orientation, Z̄ is contained
in Mov(F̄ , 88δ̄) (Lemma 2.15). It follows that |ūv̄ − v̄| < 2ρ, for every ū ∈ F̄ .
Consequently F̄ is coincide with Ē∩Stab(v̄) and is therefore a (normal) subgroup
of Ē. We now prove that Ē/F̄ is cyclic. To that end, we fix a loxodromic element
ḡ0 ∈ Ē such that ‖ḡ0‖ 6 ‖ḡ‖ + δ̄, for every loxodromic element ḡ ∈ Ē. Since
ḡ0 is a loxodromic element of Ē, it sends v̄ to a distinct apex. It follows that
‖ḡ0‖ > ρ. Let ḡ ∈ Ē. The element ḡ0 acts on Z̄ by translation of length
approximately ‖ḡ0‖ (Lemma 2.10). Hence there exists k ∈ Z such that ‖ḡk0 ḡ‖ 6
‖ḡ0‖/2+ρ/10 < ‖ḡ0‖−ρ/10. It follows from our choice of ḡ0, that ḡk0 ḡ is elliptic
and thus belongs to F̄ . Hence Ē/F̄ is a cyclic group generated by the image of
ḡ0.

Assume now that d(v̄, Z̄) > 5L0δ̄ for every apex v̄ ∈ V̄. Since Z̄ is 2δ̄-quasi-
convex, there exists a subset Z of Ẋ such that the projection ζ : Ẋ → X̄ induces
an isometry from Z onto Z̄ (Lemma 4.17). It follows then from Lemma 4.16 that
there exists an subgroup E of G such that π : G → Ḡ induces an isomorphism
form E onto Ē. By construction 〈z, z′〉v > 4L0δ̇, for every z, z′ ∈ Z, for every
apex v ∈ V (the Gromov product is computed in Ẋ here). Consequently the
radial projection p : Ẋ \ V → X induces a E-equivariant quasi-isometry from Z
onto p(Z) (Corollary 4.9). This produces a πE-equivariant quasi-isometry from
p(Z) to Z̄ where πE stands for the map π restricted to E. Since Ē is loxodromic
and preserves the orientation, the same holds for E. Moreover if F (respectively
F̄ ) stands for the set of elliptic elements of E (respectively Ē), then π sends F
onto F̄ . As the action of G is gentle, E splits as E = F o Z. Hence Ē splits as
well as E = F̄ o Z.

Lemma 4.22. The set V̄ contains at least two apices.

Proof. In this proof all the distances are measured in Ẋ or X̄. Let v1 be an
apex of V and v̄1 its image in X̄. We denote by v2 another apex such that
|v1 − v2| 6 |v1 − v|+ δ̇, for every v ∈ V \ {v1}. We are going to prove that the
image v̄2 of v2 in X̄ is distinct from v̄1. Let γ : [a1 , a2] → Ẋ be a (1, δ̇)-quasi-
geodesic from v1 to v2. Let b1 = a1 + ρ/4 and b2 = a2 − ρ/4. For simplicity
we write x1 = γ(b1) and x2 = γ(b2). Note that |x1 − x2| > 3ρ/2. Moreover,
〈x1, x2〉v > 3L0δ̇, for every v ∈ V. Indeed otherwise v would be a cone distinct
from v1 but much closer to v1 than v2. According to Lemma 4.15, we have
|x̄1 − x̄2| = |x1 − x2|, hence |x̄1 − x̄2| > 3ρ/2. Combined with the triangle
inequality we obtain |v̄1 − v̄2| > ρ.

Proposition 4.23. Assume that for every v̄ ∈ V̄, the order of v̄ is at least 3.
Then the action of Ḡ on X̄ is non-elementary.

Proof. According to Lemma 4.22 that V̄ contains two distinct apices say v̄1

and v̄2. We fix a point x̄ ∈ X̄ such that 〈v̄1, v̄2〉x̄ 6 δ̄ whereas |x̄ − v̄1| > ρ
and |x̄ − v̄2| > ρ. Reasoning as in Proposition 4.12 (iii) we see that Stab(v̄i)
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contains a rotation ḡi at v̄i such that Mov(S̄i, δ̄) is contained in B(v̄i, δ̄), where
S̄i = {ḡi, ḡ2

i }, see Figure 7. Applying Lemma 2.9, we get

ḡ1 ḡ2

v̄1 v̄2
x̄

ḡ1x̄

ḡ−11 x̄

ḡ2x̄

ḡ−12 x̄

Figure 7: The element ḡ1 and ḡ2 acting on x̄. The shaded discs represent
B(v̄1, ρ) and B(v̄2, ρ) respectively.

2
〈
ḡix̄, ḡ

−1
i x̄

〉
x̄
6 |ḡix̄− x̄|+ 30δ̄ while |ḡix̄− x̄| > 2 |x̄− v̄i|−15δ̄ > 2ρ−15δ̄

Combined with the four point inequality (3) it yields 〈ḡ±1
1 x̄, ḡ±1

2 x̄〉x̄ 6 3δ̄. It
follows from Lemma 2.17 that ḡ1 and ḡ2 generate a non-elementary subgroup.
Hence Ḡ is non-elementary.

4.6 Structure of elementary subgroups
An important step to study further the action of Ḡ on X̄ (and its invariants)
is to understand the algebraic structure of its elementary subgroups. As the
map X → X̄ is 1-Lipschitz, the projection π : G � Ḡ maps every elementary
subgroup of G to an elementary subgroup of Ḡ. More precisely it sends every
elliptic (respectively parabolic, loxodromic) to an elliptic (respectively elliptic or
parabolic, elementary) subgroup of Ḡ. However the nature of these subgroups
(i.e. whether they are elliptic, parabolic, or loxodromic) may change. Indeed
given any element g ∈ G, there always exists h ∈ K such that gh is a loxodromic
element of G. Thus 〈gh〉 is loxodromic whereas its image 〈ḡ〉 in Ḡ could be
anything. New elementary subgroups may also appear in Ḡ. This motivates the
following definition.

Definition 4.24. Let Ē be an elliptic (respectively parabolic, loxodromic) sub-
group of Ḡ. We say that Ē can be lifted if there exists an elliptic (respectively
parabolic, loxodromic) subgroup E of G (for its action on X) such that the quo-
tient map π : G� Ḡ induces an isomorphism from E onto Ē. In this situation
E is a lift of Ē.
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Note that in this definition we ask E and Ē to have the same nature. The
idea is that the subgroups of Ḡ that can be lifted are as “easy” as the elementary
subgroups of G. Complicated algebraic structures necessarily come for the “new”
elementary subgroups. In the next paragraphs we discuss whether an elementary
subgroup of Ḡ can be lifted. If not we use the geometry of small cancellation
theory to describe their properties.

Comparing lifts. We start by proving that the lift of an elliptic subgroup
of Ḡ is essentially unique. More precisely, if F1 and F2 are two lifts of the
same elliptic subgroup F̄ ⊂ Ḡ, then F1 and F2 are conjugated. This result is a
particular case of a more general statement (see Corollary 4.27) that allows to
consider both elliptic and parabolic subgroups.

Lemma 4.25. Let S be a subset of G such that Mov(S, ρ/10) is non-empty.
Then the projection π : G � Ḡ is one-to-one when restricted to S. In par-
ticular if E is an elliptic or a parabolic subgroup, the projection π induces an
isomorphism from E onto its image.

Proof. The first part of the statement is a consequence of Theorem 4.7 (v).
Since E is elliptic or parabolic, Mov({1, g}, 17δ) is non-empty for every g ∈ E
– see for instance (10). Hence the result.

Proposition 4.26. Let E be an elliptic or a parabolic subgroup of G (for its
action on X). Let S1 be a subset of E such that Mov(S1, ρ/100) is non-empty
and S̄1 its image in Ḡ. Let h̄ ∈ Ḡ. Let S2 be a pre-image in G of h̄S̄1h̄

−1 such
that Mov(S2, ρ/100) is non-empty. Then there exists h0 ∈ G with the following
properties

(i) For every g ∈ S1, the element h0gh
−1
0 is the (unique) pre-image of h̄ḡh̄−1

in S2.

(ii) If h̄ is loxodromic, then either h0 is loxodromic, or S̄1 is contained in a
reflection group.

Remark. Observe that h0 is not necessarily the pre-image of h̄.

Proof. Let h ∈ G be an arbitrary pre-image of h̄. We fix two points x1, x2 ∈ X
lying respectively in Mov(S1, ρ/100) and Mov(S2, ρ/100). Note that both x̄1

and h̄−1x̄2 belongs to Mov(S̄1, ρ/100). We claim that S̄1 ∩ Stab(v̄) is contained
in a reflection group at v̄, for every v̄ ∈ V̄. Assume on the contrary that it is not
the case. There exists g ∈ E whose image ḡ is a strict rotation (Remark 4.20).
According to Proposition 4.12 (iii) there exists k ∈ N such that Mov(ḡk, δ̄) is
contained in B(v̄, δ̄). On the other hand, since g belongs to E, the element gk
is elliptic or parabolic (as an isometry of X). Hence there exists x ∈ X such
that |gkx − x| 6 17δ – see for instance (10) – and thus |ḡkx̄ − x̄| 6 δ̄. This
contradicts the previous point an complete the proof of our claim. It follows
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from Proposition 4.19 applied with x = x1 and y = h−1x2 that there exists
u ∈ G, such that ū centralizes S̄1 and∣∣guh−1x2 − uh−1x2

∣∣
Ẋ

=
∣∣ḡh̄−1x̄2 − h̄−1x̄2

∣∣ , ∀g ∈ S1. (20)

Moreover either ū is trivial or S̄1 lies in a reflection group. We let h0 = hu−1.
Let g ∈ S1 and g′ the (unique) pre-image of h̄ḡh̄−1 in S2. It follows from
(20) that h0gh

−1
0 and g′ are two pre-images of h̄ḡh̄−1 that move x2 by at most

ρ/100. Thus h0gh
−1
0 = g′, which proves (i). Assume now that h̄ is loxodromic.

If ū is trivial, then h0 is a pre-image of h̄, hence a loxodromic element (recall
that ζ : X → X̄ is 1-Lipschitz). On the contrary if ū is not trivial, then S̄1 is
contained in a reflection group.

Corollary 4.27. Let F1 and F2 be two subgroups of G. We assume that F1 is
elliptic and F2 generated by a set S2 such that Mov(S2, ρ/100) is non-empty.
Let F̄1 and F̄2 be their respective images in Ḡ. If F̄1 = F̄2, then there exists
u ∈ G whose image in Ḡ centralizes F̄1 and such that F2 = uF1u

−1.

Remark. Note that the assumption on F2 is automatically satisfied if F2 is
elliptic. In particular if F1 and F2 are two elliptic subgroups of G whose images
in Ḡ coincide, then they are conjugate.

Proof. Let S̄ be the image of S2 in F̄1 = F̄2 and S1 the pre-image of S̄ in F1.
Note that Mov(S1, ρ/100) is non-empty (Lemma 2.14). According to Proposi-
tion 4.26 applied with S1 and S2, there exits u ∈ G such that for every s ∈ S1,
the element usu−1 is the pre-image of s̄ in S2. In particular ū commutes with
S̄, hence F̄1. Moreover since S2 generates F2, the group u−1F2u is contained in
F1. Nevertheless the projection π : G → Ḡ is one-to-one when restricted to F1

(Lemma 4.25). Thus F2 = uF1u
−1.

Corollary 4.28. Let F1 and F2 be two subgroups of G. We assume that F1 is
elliptic and F2 generated by a set S2 such that Mov(S2, ρ/100) is non-empty.
Let F̄1 and F̄2 be their respective images in Ḡ. If F̄1 and F̄2, are conjugated in
Ḡ, then so are F1 and F2 in G.

Lifting elliptic subgroups. We now characterize the elliptic subgroups of Ḡ
that can be lifted and explore the structure of the one that cannot be lifted.

Proposition 4.29 (Lifting elliptic subgroups). An elliptic subgroup F̄ of Ḡ
cannot be lifted if and only if it contains a strict rotation. In this case, F̄ fixes
an apex v̄ ∈ V̄. Moreover, Mov(F̄ , δ̄) is contained in B(v̄, δ̄). In particular, v̄ is
the only apex fixed by F̄ .

Proof. Recall that Mov(F̄ , 11δ̄) is a non-empty 10δ̄-quasi-convex subset of X̄
(Lemmas 2.14 and 2.9). Assume first that there exists a point x̄ ∈ Mov(F̄ , 1̄1δ)
such that d(x̄, V̄) > ρ/3. By Proposition 4.12 (iii), F̄ does not contain a strict
rotation. We are going to prove that F̄ can be lifted. We write Z̄ for the F̄ -
orbit of x̄. It is F̄ -invariant and its diameter is at most 11δ̄. It follows that
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〈z̄, z̄′〉v̄ > ρ/4, for every z̄, z̄′ ∈ Z̄, for every v̄ ∈ V̄. According to Lemmas 4.17
and 4.16, there exists a subgroup F of G and an F -invariant subset Z of Ẋ with
the following properties: the map ζ : Ẋ → X̄ induces an isometry from Z onto
Z̄; the projection π : G→ Ḡ induces an isomorphism from F onto F̄ ; moreover
〈z, z′〉v > 4L0δ̇ for every z, z′ ∈ Z, for every v ∈ V (the Gromov product in
computed in Ẋ here). In particular Z is bounded. It follows from Corollary 4.9
that the radial projection p(Z) is a bounded F -invariant subset of X. Hence F
is an elliptic subgroup of G (for its action on X), lifting F̄ .

Assume now that d(x̄, V̄) < ρ/3 for every x̄ ∈ Mov(F̄ , 11δ̄). Since the set
Mov(F̄ , 11δ̄) is 10δ̄-quasi-convex, there exists v̄ ∈ V̄ such that Mov(F̄ , 11δ̄) is
contained in B(v̄, ρ/3). In particular, F̄ fixes v̄. In addition, F̄ cannot be lifted.
Indeed if F was a lift of F̄ , then the image in X̄ of Mov(F, 11δ) ⊂ X would be
contained in Mov(F̄ , 11δ̄) \ B(v̄, ρ/3). We now claim that F̄ contains a strict
rotation ḡ at v̄. If it was not the case, then F̄ would be contained in a reflection
group at v̄. Thus, there would exist a point x̄′ ∈ Mov(F̄ , 11δ̄) such that |x̄− v̄| >
ρ/2, see Proposition 4.12 (ii), which contradicts the previous observation. It
follows then from Proposition 4.12 (iii) that Mov(F̄ , δ̄) is contained in B(v̄, δ̄).

Corollary 4.30. Let (H,Y ) ∈ Q. Let v̄ be the image in X̄ of the apex v of
Z(Y ). Let C̄ be a subgroup of Stab(v̄). If C̄ can be lifted, then it admits a lift
which is contained in Stab(Y ).

Proof. Let F be the maximal elliptic normal subgroup of Stab(Y ) and F̄ its
image in Ḡ. Recall that we have the following commutative diagram

1 F Stab(Y ) L 1

1 F̄ Stab(v̄) Ln 1
qv̄

∼

π

where (L,Ln) is either (Z,Zn) or (D∞,Dn). Since C̄ can be lifted, its image
under qv̄ does not contain a non-trivial rotation (Proposition 4.29). The result
follows from diagram chasing.

We continue with a study of dihedral germs. Let F be an elliptic subgroup
of G and F̄ its image in Ḡ. Observe that if F is a dihedral germ, then the same
does not necessarily hold for F̄ . Indeed it may happen that the only loxodromic
elements that are normalizing (a finite index subgroup of) F became elliptic
in Ḡ. Nevertheless the converse statement holds. This is the aim of the next
lemmas.

Lemma 4.31. Let (H,Y ) ∈ Q. Every elliptic subgroup of Stab(Y ) is a dihedral
germ.

Proof. For simplicity we let E = Stab(Y ). Let E+ be the maximal subgroup of
E preserving the orientation and F the maximal elliptic subgroup of E+. Let
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C be an elliptic subgroup of E. The intersection C0 = C ∩E+ is a subgroup of
C with index at most 2. Let h be a (loxodromic) element in H. Let c ∈ C0. It
follows from the small cancellation assumption that H is a normal subgroup of
E. In particular chc−1 = hk for some k ∈ Z. Recall that E+/F is isomorphic
to Z. Pushing the previous identity in Z, we get that k = 1. In other words h
commutes with C0. Hence C is a dihedral germ.

Lemma 4.32. Let C be an elliptic subgroup of G (for its action on X). Let
v̄ ∈ V̄. If the image of C in Ḡ is contained in a reflection group at v̄, then C is
a dihedral germ.

Proof. Let C̄ be the image of C in Ḡ. Let (H,Y ) ∈ Q such that the apex v of the
cone Z(Y ) is a pre-image of v̄. There exists an elliptic subgroup C ′ of Stab(Y )
such that the projection π : G→ Ḡ maps C ′ onto C̄ (Corollary 4.30). In other
words C and C ′ are two lifts of C̄, hence they are conjugated (Corollary 4.27).
Being a dihedral germ is invariant under conjugacy. The conclusion follows from
Lemma 4.31.

Lemma 4.33 (Lifting dihedral germs). Let C be an elliptic subgroup of G and
C̄ (for its action on X) its image in Ḡ. If C̄ is a dihedral germ, then so is C.

Proof. By assumption there exists a subgroup C̄0 of C̄ which is normalized by
a loxodromic element, say h̄, and such that [C̄ : C̄0] = 2k for some k ∈ N.
We write C0 for the pre-image of C̄0 in C. Note that [C : C0] = 2k. It
follows from Proposition 4.26 applied with S1 = S2 = C0 that there exists
h0 ∈ G normalizing C0. Moreover either h0 is loxodromic or C̄0 is contained
in a reflection group at some apex v̄ ∈ V̄. If h0 is loxodromic, then C is
automatically a dihedral germ. Assume now that C̄0 is contained in a reflection
group at v̄. If follows from Lemma 4.32 that C0 is a dihedral germ. Hence it
contains a subgroup C1 which is normalized by a loxodromic element of G and
such that [C0 : C1] = 2m for some m ∈ N. Thus [C : C1] = 2k+m and C is a
dihedral germ.

The next lemma is formally not needed. However it illustrates the role
played by dihedral germs. As we observed earlier, every elliptic subgroup F of
G yields an elliptic subgroup F̄ of Ḡ. However it could happen that F̄ is strictly
contained in an elliptic subgroup, which does not already come from a subgroup
of G containing F . In this case F is necessarily a dihedral germ. As suggested
by the name, dihedral germs are exactly the elliptic subgroups of G which can
eventually “grow” when passing to the quotient Ḡ.

Lemma 4.34. Let C be a an elliptic subgroup of G (for its action on X) and
C̄ its image in Ḡ. Assume that there exists an elliptic subgroup Ā containing C̄
which cannot be lifted. Then C is a dihedral germ.

Proof. This is just a reformulation of Lemma 4.32. Indeed according to Propo-
sition 4.29, there exists v̄ ∈ V̄ such that Ā is contained in Stab(v̄). Since C̄ can
be lifted, it does not contain a strict rotation at v̄ (Proposition 4.29) and thus
lies in a reflection group at v̄.
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We complete our discussion on elliptic subgroups with some preparatory
work for the study of loxodromic. If such group Ē does not preserve the orien-
tation, it can be decomposed as Ē = Ā ∗C̄ B̄, where C̄ has index 2 in both Ā
and B̄. As the cylinder of Ē is contained in Mov(C̄, 88δ̄) (Lemma 2.15), C̄ can
also be lifted. We describe in this context what is the structure of Ā or B̄.

Lemma 4.35. Let Ā be an elliptic subgroup of Ḡ. Assume that Ā contains a
subgroup C̄ of index 2 that can be lifted. Let ā ∈ Ā\ C̄. Then there exists ū ∈ Ḡ
such that

(i) 〈C̄, ū〉 is an elliptic subgroup that can be lifted;

(ii) āū−1 centralizes C̄; and

(iii) ā2 = ū2.

Remark. Observe that if ū is trivial, then Ā is isomorphic to C̄ ×〈ā〉 = C̄ ×Z2.
In general the map ā 7→ ū extends to an (abstract) isomorphism from Ā onto
〈C̄, ū〉.

Proof. If Ā can be lifted, then the statement obviously holds. Assume now that
Ā cannot be lifted. There exists v̄ ∈ V̄ such that Ā is contained in Stab(v̄)
(Proposition 4.29). Let qv̄ : Stab(v̄) → Dn be corresponding the geometric
realization. Since C̄ can be lifted, qv̄(C̄) is either trivial or equal to 〈x〉 where
x is a reflection of Dn. Let t be a generator of the rotation group Zn ⊂ Dn.
Recall that C̄ has index 2 in Ā and Ā cannot be lifted in G. It follows that n is
even and

qv̄(Ā) =
〈
qv̄(C̄), tn/2

〉
.

In particular, tn/2qv̄(ā) belongs to qv̄(C̄). According to Assumption 4.11, Stab(v̄)
contains a central half-turn at v̄ that we denote by ḡ. Note that qv̄ maps ḡ to
tn/2. We let ū = ḡā. We observe that āū−1 = ḡ centralizes C̄ and ā2 = ū2. By
construction 〈C̄, ū〉 is contained in a reflection group at v̄, hence can be lifted,
which completes the proof.

Another crucial ingredient to describe loxodromic subgroups of Ḡ, is to un-
derstand the normalizer of elliptic subgroups that can be lifted, see for instance
Proposition 4.41. This is the purpose of the next proposition.

Proposition 4.36 (Lifting normalizer). Let F be an elliptic subgroup of G and
F̄ its image in Ḡ. For every h̄ ∈ Norm(F̄ ) there exists h0 ∈ Norm(F ) such that
h̄−1h̄0 centralizes F̄ . If in addition h̄2 belongs to F̄ , then one can choose h0

such that h2
0 ∈ F and h̄2 = h̄2

0.

Remark 4.37. The result can be reformulated in the following way. Let N(F )
and C(F ) the the respective normalizer and centralizer of F in G. We define
N(F̄ ) and C(F̄ ) in the same way. The projection π : G � Ḡ does not nec-
essarily map N(F ) onto N(F̄ ). Nevertheless it induces a epimorphism from
N(F )/C(F ) onto N(F̄ )/C(F̄ ). Actually Lemma 4.25 implies that this map is
an isomorphism, but we will not need this fact here.
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Proof. Applying Proposition 4.26 with S1 = S2 = F , we see that there exists
h0 ∈ G such that for every g ∈ G, the element h0gh

−1
0 is the pre-image of h̄ḡh̄−1

in F . In particular h0 normalizes F and h̄−1h̄0 centralizes F̄ . Let us now focus
on the second part of the statement. We assume that h̄ ∈ Ḡ normalizes F̄ and
h̄2 ∈ F̄ . In particular F̄ ′ = 〈F̄ , h̄〉 is an elliptic subgroup of Ḡ. Assume first that
F̄ ′ can be lifted in G. Let F ′ be a lift of F̄ ′ and h the pre-image of h̄ in F ′. There
exists u ∈ G such that ū centralizes F̄ and hFh−1 = uFu−1(Corollary 4.27).
We choose h0 = u−1hu. Since h2 belongs to F , the element h2

0 is a pre-image in
F ′ of h̄2, hence h2

0 = h2. If F̄ ′ cannot be lifted, then the lemma is a consequence
of Lemma 4.35.

Lifting parabolic subgroups. The first result is not needed for the rest of
the study. However, we believe that it may help the reader by clarifying the
structure of parabolic subgroups in G. As we mentioned earlier, since ζ : X → X̄
is 1-Lipschitz, the image by the projection π : G � Ḡ of a parabolic subgroup
of G is either elliptic or parabolic. The next statement tells us that the former
case does not happen.

Lemma 4.38. Let E be an elementary subgroup of G and Ē its image in Ḡ. As-
sume that there exists d ∈ R+ and a subset S generating E such that Mov(S, d)
is non-empty. If E is parabolic (for its action on X) then Ē is parabolic (for
its action on X̄).

Remark. Note that the assumption automatically holds if E is finitely generated.

Proof. Since E is parabolic, it has a unique fixed point in ∂X. Thus according
to Lemma 2.12 we can assume that Mov(S, ρ/100) is non-empty. We just need
to prove that Ē cannot be elliptic. Assume on the contrary that it is. We
distinguish two cases. Suppose first that Ē be be lifted and let E′ be a lift of Ē
(recall that by definition E′ is elliptic). Applying Corollary 4.27 with S2 = S,
we get that E and E′ are conjugate, which contradicts the fact that E and
E′ have different nature. Suppose now that Ē cannot be lifted. In particular,
there exists g ∈ E whose image ḡ in Ē is a strict rotation (Proposition 4.29).
By Proposition 4.12 (iii), there exists k ∈ Z such that Mov(ḡk, δ̄) is contained
in B(v̄, δ̄) for some apex v̄ ∈ V̄. On the other hand gk cannot be loxodromic,
hence ‖gk‖X 6 16δ. Thus there exists x ∈ X such that |gkx− x| 6 17δ, thus x̄
belongs to Mov(ḡk, δ̄) \B(v̄, δ̄), which yields another contradiction.

Proposition 4.39 (Lifting parabolic subgroups). Let P̄ be parabolic subgroup
of Ḡ. Assume that there exist d ∈ R+ and a subset S̄ generating P̄ such that
Mov(S̄, d) is non-empty. Then P̄ can be lifted.

Proof. Let ξ̄ be the unique point of ∂X̄ fixed by P̄ and x̄ be a point in the set
Mov(S̄, d). Let γ̄ : R+ → X̄ be an L0δ̄-local (1, 11δ̄)-quasi-geodesic ray starting
at x̄ whose endpoint at infinity is ξ. According to Lemma 2.12, there exists t0
such that for every t > t0, for every g ∈ S, we have |ḡγ̄(t) − γ̄(t)| 6 114δ̄. It
follows that d(γ̄(t), V̄) > ρ/2, for every t > t0. Indeed otherwise, there would
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exit v̄ ∈ V̄ such that S̄, and thus P̄ , is contained in Stab(v̄), which contradicts
our assumption.

Let Z̄ be a the ρ/10-neighborhood of γ̄ restricted to [t0,∞). It is a 2δ̄-
quasi-convex subset. According to our claim that 〈z̄, z̄′〉v̄ > 4L0δ̄ for every
z̄, z̄′ ∈ Z̄ and v̄ ∈ V̄. It follows from Lemma 4.17 that there exist a subset
Z of Ẋ such that the map ζ : Ẋ → X̄ induces an isometry from Z onto Z̄.
Moreover 〈z, s′〉v > 4L0δ̇ for every z, z′ ∈ Z and v ∈ V (the Gromov product
are computed in Ẋ here). In particular, there exists an L0δ̇-local (1, 11δ̇)-quasi-
geodesic ray γ : [t0,∞) → Ẋ contained in Z such that π ◦ γ = γ̄ and Z is its
ρ/10 neighborhood. We write ξ ∈ ∂Ẋ for the endpoint at infinity of γ.

We now claim that P̄ is contained in the image of Stab(ξ) by the projection
π : G→ Ḡ. Let ḡ ∈ P̄ . As we observed, |ḡγ̄(t)− γ̄(t)| 6 114δ̄, for every t > t0.
It follows from Lemma 4.16 applied to Z that there exists a pre-image g ∈ G of
ḡ such that for every t > t0, we have |gγ(t) − γ(t)|Ẋ 6 114δ̇. In particular, g
fixes ξ, which completes the proof our first claim.

We denote by P the pre-image of P̄ in Stab(ξ). We now claim that P
is parabolic for its action on X. To that end, it suffices to show that P is
parabolic for its action on Ẋ (Lemma 4.10). We are going to prove that P is
not elliptic and does not contain a loxodromic element. As P̄ is parabolic, it
has unbounded orbits. The map ζ : Ẋ → X̄ being 1-Lipschitz, the group P has
unbounded orbits, ans thus cannot be elliptic (for its action on Ẋ). Let g ∈ P
and ḡ its image in P̄ . According to Lemma 2.12 that there exists t1 > t0 and
ε ∈ {±1} such that for every t > t1 we have |gγ(t) − γ(t + ε‖g‖∞

Ẋ
)|Ẋ 6 114δ̇.

In particular if t is sufficiently large both γ(t) and gγ(t) belong to Z. Since
ζ : Ẋ → X̄ is an isometry when restricted to Z, we get

‖g‖Ẋ 6 |gγ(t)− γ(t)|Ẋ 6 |ḡγ̄(t)− γ̄(t)| 6 114δ̄.

This inequality holds for every g ∈ P . Therefore P cannot contain a loxodromic
element for its action on Ẋ, which completes the proof of our second claim.
As P is a parabolic subgroup, the projection π : G → Ḡ is one-to-one when
restricted to P (Lemma 4.25). Hence P is a lift of P̄ .

Lifting loxodromic subgroups. It Ḡ does not contain any element of order
2, then one can prove that all its loxodromic subgroups can be lifted. This is
typically what is happening when studying Burnside groups of odd exponent.
As shown by the next example this is unfortunately no more the case in the
presence of even torsion.

Example 4.40. Assume for instance that Ḡ is the group defined by

Ḡ = Zn ∗ Zn = 〈a, b | an = bn = 1〉 .

If n is a sufficiently large even integer, it is a small cancellation quotient of
the free group F2 generated by a and b. The subgroup 〈an/2, bn/2〉 ≡ D∞ is
loxodromic but cannot be lifted.
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In general we show that every loxodromic subgroup of Ḡ is an (abstract)
subdirect product of an elementary subgroup of G and either Z or D∞.

Proposition 4.41 (Lifting loxodromic subgroups). Let Ē be a loxodromic sub-
group of Ḡ and F̄ the maximal normal elliptic subgroup of Ē. There exist a lift
F of F̄ , an elementary subgroup E′ of G containing F , and an epimorphism
θ : Ē � E′ with the following properties.

(i) (E′, F ) is a dihedral pair.

(ii) The morphism π ◦ θ is the identity when restricted to F̄ .

(iii) The map θ induces an embedding from Ē into Ē/F̄ × E′.

Proof. Since the action of Ḡ on X̄ is gentle (Proposition 4.21), the group Ē fits
in a short exact sequence

1→ F̄ → Ē
q−→ L→ 1,

where L is either Z or D∞. The cylinder Z̄ of Ē is contained in Mov(F̄ , 88δ̄)
(Lemma 2.15). In particular Mov(F̄ , 88δ̄) ∩ ζ(X) is non-empty. It follows from
Proposition 4.29 that F̄ admits a lift in G that we denote by F . The subgroup
F̄ is a dihedral germ, hence so is F (Lemma 4.33). We now claim that there
exists an elementary subgroup E′ of G containing F as a normal subgroup such
that the canonical section F̄ → F extends to an epimorphism θ : Ē � E′. To
that end we distinguish two cases.

Case 1. Assume that Ē preserves the orientation, i.e. L = Z. Then Ē splits
as a semi-direct product Ē = F̄ oL. Let h̄ be a primitive element of Ē (i.e. an
element whose image under q generates L). According to Proposition 4.36 there
exists h0 ∈ Norm(F ) such that h̄−1h̄0 centralizes F̄ . Let E′ be the subgroup of
G generated by F and h0. As an extension of an elliptic subgroup by a cyclic
group, E′ is elementary. Moreover the canonical section F̄ → F extends to an
epimorphism θ : Ē → E′ sending h̄ to h0.

Case 2. Assume that Ē does not preserve the orientation, so that L = D∞.
Let x1,x2 ∈ D∞ be two reflections generating L. Let ā1, ā2 ∈ Ē be pre-images
of x1 and x2 respectively. By construction āi normalizes F̄ and ā2

i belongs to
F̄ . According to Proposition 4.36 there exists bi ∈ Norm(F ) with the following
properties: ā−1

i b̄i centralizes F̄ ; b2i belongs to F ; and ā2
i = b̄2i . Let E′ be

the subgroup of G generated by F , a1, and a2. As an extension of an elliptic
subgroup by a cyclic group, 〈b1b2, F 〉 is elementary. Nevertheless its index in
E′ is at most 2, thus E′ is elementary. Moreover the canonical isomorphism
F̄ → F extends to an epimorphism θ : Ē → E′ sending āi to bi.

In both cases we have build the map announced in the claim. As θ extends
the canonical section F̄ → F , the composition π◦θ is the identity when restricted
to F̄ . Moreover θ induces an epimorphism Ē/F̄ � E′/F . Any quotient of a
dihedral group is still a dihedral group. Hence (E′, F ) is a dihedral pair. One
checks easily that the map Ē → Ē/F̄ × E′ induced by θ is an embedding.
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In the remainder of this section we revisit the previous statement and ex-
plore further the structure certain loxodromic subgroups that cannot be lifted.
As suggested by Example 4.40 such a group Ē often does not preserves the ori-
entation. In particular it splits as Ē = Ā ∗C̄ B̄ where C̄ is the maximal elliptic
normal subgroup of Ē and has index 2 in both Ā and B̄. It Ē could be lifted,
then obviously so would Ā and B̄. Nevertheless the converse is false. This is
the purpose of the first proposition. The second one discusses the case where Ā
or B̄ cannot be lifted.

Proposition 4.42. Let A and B be two elliptic subgroups of G. Denote by Ā
and B̄ their respective images in Ḡ. Assume that their intersection C̄ = Ā ∩ B̄
has index 2 in both Ā and B̄ so that Ē = Ā ∗C̄ B̄ is elementary. There exists
u ∈ G with the following properties.

(i) The image ū of u in Ḡ centralizes C̄.

(ii) The subgroup A∩uBu−1 contains the pre-image of C̄ in A, and 〈A, uBu−1〉
is elementary.

Proof. Recall that the quotient map π : G � Ḡ induces an isomorphism from
A and B onto Ā and B̄ respectively (Lemma 4.25). Let CA (respectively CB)
be the pre-image of C̄ in A (respectively B). According to Corollary 4.27, there
exits u ∈ G whose image ū in Ḡ centralizes C̄ such that CA = uCBu

−1. It
follows that CA ⊂ A ∩ uBu−1. Moreover this elliptic subgroup has index 2 in
both A and uBu−1, hence Eu is elementary.

Before moving to the case where Ā or B̄ cannot be lifted, let us illustrate
the previous statement with an example.

Example 4.43. Let G be the group defined by

G =
〈
a1, a2, b, c | a2

1, a
2
2, b

2, c2, [a1, c], [a2, c]
〉

= (D∞ × Z2) ∗Z2
D∞.

acting on its Cayley graph X. In this description the elements a1, a2 and
c (respectively b and c) generate the factor D∞ × Z2 (respectively D∞). In
particular the amalgamated subgroup if Z2 = 〈c〉. Set s = a1a2 and r = bc. If n
is a sufficiently large integer the group Ḡ = G/〈〈sn, rn〉〉 is a small cancellation
quotient of G.

Assume in addition that n is even. It follows that ū = r̄n/2 commutes with
c̄. Consequently the subgroup Ē generated by ā1, ū−1ā1ū and c̄ is loxodromic
and isomorphic to D∞ × Z2. Note that Ē cannot be lifted in G. Indeed since
Z2 = 〈c〉 is malnormal in D∞ = 〈b, c〉 every loxodromic subgroup of G is
isomorphic to either Z or D∞. Observe that Ē also splits as Ē = Ā ∗C̄ B̄ where
Ā = 〈ā1, c̄〉, B̄ = 〈ū−1ā1ū, c̄〉, and C̄ = 〈c̄〉. As ū commutes with b̄, the group
B̄ is actually B̄ = ū−1Āū. We are in a configuration where both Ā and B̄ are
elliptic subgroups which can be lifted.

As described in Proposition 4.42, a partial conjugation by ū maps Ē to a
new elementary subgroup Ēu = Ā which is not necessarily loxodromic. In this
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precise example, it turns out that Ēu can be lifted in G. This is not always the
case though. Indeed we can run the same construction with Ē′ = 〈ā1, ū

−1ā2ū, c̄〉.
It is a loxodromic subgroup of Ḡ isomorphic to D∞ × Z2. On the other hands
it splits as Ē′ = ĀC̄B̄

′ where B̄′ = 〈ū−1ā2ū, c̄〉. In this case Ē′u = 〈ā1, ā2, c̄〉
is an elliptic subgroup of Ḡ, which is isomorphic to Dn × Z2, and thus cannot
be lifted. Nevertheless, in both cases, Ēu or Ē′u is the image (by the natural
quotient map) of an elementary subgroup of G.

Proposition 4.44. Let Ē be a loxodromic subgroup of Ḡ that splits as Ē =
Ā ∗C̄ B̄, where C̄ is the maximal elliptic normal subgroup of Ē and has index 2
in both Ā and B̄. Assume that there exists v̄ ∈ V̄ such that Ā contains a strict
rotation at v̄. Let qv̄ : Stab(v̄) → Dn be the associated geometric realization
map and r ∈ Dn a generator of the rotation group. If n is divisible by 4, then
one of the following holds

(i) qv̄(C̄) is trivial and
qv̄
(
Ā
)

=
〈
rn/2

〉
(ii) qv̄(C̄) is a reflection group generated by say x ∈ Dn and

qv̄
(
Ā
)

=
〈
x, rn/4xr−n/4

〉
Suppose now that there exists a subgroup Ē0 ⊂ Ā and an element h̄ ∈ Ḡ such
that h̄Ē0h̄

−1 is contained in Ā and Ā = 〈Ē0, C̄〉. Then either Ē0 contains a
strict rotation, in which case h̄ fixes v̄ or the first case above fails and qv̄ maps
Ē0 onto 〈rn/4xr−n/4〉

Remark. Our assumption on Ā exactly means that Ā cannot be lifted (Propo-
sition 4.29). It follows from Remark 4.14 that Ā is contained in Stab(v̄), hence
the image under qv̄ of C̄ or Ā is well defined. It is important to note that in
the second part of the statement h̄ is not necessarily an element of Stab(v̄). In
particular if h̄ does not fix v̄, the last conclusion tells us that C̄ and Ē0 are two
reflection group at v̄; geometrically we can think that one is the conjugate of
the other by a quarter-turn.

Proof. The first part of the proof is essentially a variation on Lemma 4.35. Since
the cylinder of Ē is contained in Mov(C̄, 88δ̄) (Lemma 2.15) the subgroup C̄
can be lifted and thus does not contain a strict rotation (Proposition 4.29). In
particular, C̄ is either almost trivial at v̄ or a reflection group at v̄. Assume first
that qv̄ maps C̄ to the trivial group. By assumption Ā contains a strict rotation
at v̄ whereas [Ā : C̄] = 2, which forces

qv̄(Ā) =
〈
rn/2

〉
.

Assume now that qv̄ maps C̄ to a reflection group generated by say x ∈ Dn.
Reasoning as above we observe that

qv̄(Ā) =
〈
x, rn/2

〉
=
〈
x, rn/4xr−n/4

〉
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This completes the first part of the statement.
Let us focus now on the second half of the proposition. Suppose first that

Ē0 contains a strict rotation (which is necessarily at v̄). Then h̄Ē0h̄
−1 contains

a strict rotation at h̄v̄. However as a subgroup of Ā, it fixes v̄. Strict rotations
having a single fixed vertex (Proposition 4.12) it yields h̄v̄ = v̄. Suppose now
that Ē0 does not contain a strict rotation. In particular qv̄ maps both Ē0 and
C̄ to subgroups of Dn which are trivial or reflection groups. Since Ē0 and C̄
generates Ā, the only possible configuration for qv̄(Ā) to contain a non-trivial
rotation is the one where qv̄(Ē0) and qv̄(C̄) are two distinct reflection groups.
Consequently the first case above fails, and qv̄(Ē0) = 〈rn/4xr−n/4〉, see Figure 8

Ē0

C̄

v̄

Figure 8: The action of Ē on B(v̄, ρ). One assumes here that Ē0 does not
contain a strict rotation. The shaded areas represent Mov(C̄, δ̄) and Mov(Ē0, δ̄)
respectively.

4.7 Invariants of Ḡ acting on X̄

This section is devoted to the study of the numerical invariants associated to
the action of Ḡ on X̄, namely inj

(
Ḡ, X̄

)
, ∆(Ḡ, X̄) and νstg(Ḡ, X̄) (see Section 3

for the definitions). As we explained earlier, the first two are purely geomet-
ric, whereas the last one has a mixed nature and captures both geometric and
algebraic features of Ḡ.

4.7.1 Geometric invariants

The injectivity radius.

Proposition 4.45. Let N be a subgroup of G containing K and N̄ its image
in Ḡ. We denote by ` the infimum over the stable translation length (in X) of
loxodromic elements of N which do not belong to Stab(Y ) for some (H,Y ) ∈ Q.
Then

inj
(
N̄ , X̄

)
> min

{
κ`, δ̄

}
,
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where κ = δ̄/π sh(25δ̄).

Remark. By convention, if N̄ does not contain any loxodromic element then
inj
(
N̄ , X̄

)
is infinite, in which case the statement is void.

Proof. Let ḡ be a loxodromic element of N̄ . We need to show that ‖ḡ‖∞ >
min

{
κ`, δ̄

}
. By (10) we havem‖ḡ‖∞ > ‖ḡm‖−16δ̄, for everym ∈ N. Therefore

it suffices to find an integer m such that

‖ḡm‖ > mmin
{
κ`, δ̄

}
+ 16δ̄.

We denote by m the largest integer satisfying mmin
{
κ`, δ̄

}
6 2δ̄. Assume

that ‖ḡm‖ is smaller than mmin
{
κ`, δ̄

}
+ 16δ̄. In particular, ‖ḡm‖ 6 18δ̄.

Thus Mov(ḡm, 20δ̄) is non empty. Moreover d(x̄, V̄) > ρ − 10δ̄, for every x̄ ∈
Mov(ḡm, 20δ̄). Indeed if it was not the case, ḡm would fix an apex v̄ ∈ V̄ which
contradicts the fact that ḡ is loxodromic. Hence Z̄ = Mov(ḡm, 50δ̄) contains
a point in ζ(X). Note also that Z̄ is a 10δ̄-quasi-convex subset lying the the
22δ̄-neighborhood of Mov(ḡn, 20δ̄) (Lemma 2.9). Thus 〈z̄, z̄′〉v̄ > ρ/2, for every
z̄, z̄′ ∈ Z̄ and v̄ ∈ V̄. By Lemma 4.17, there exists a subset Z of Ẋ such that
the map ζ : Ẋ → X̄ induces an isometry from Z onto Z̄ and the projection
π : G � Ḡ induces an isomorphism from Stab(Z) onto Stab(Z̄). Observe
that ḡ preserves Z̄. We denote by g the preimage of ḡ in Stab(Z). Since the
kernel K is contained in N , the element g belongs to N . By construction g is a
loxodromic element which does not belong to any Stab(Y ) where (H,Y ) ∈ Q.
Hence ‖g‖∞ > `. As we noticed before Z̄ contains a point in z̄ ∈ ζ(X). Let
z ∈ X be its pre-image in Z. It follows from Lemma 4.5, that

µ (|gmz − z|X) 6 |gmz − z|Ẋ 6 |ḡ
mz̄ − z̄|X̄ 6 50δ̄ < 2ρ.

By Proposition 4.3,

m` 6 m ‖g‖∞ 6 |gmz − z|X 6 π sh(25δ̄) = κ−1δ̄,

which contradicts the maximality of m.

Acylindricity.

Proposition 4.46. The acylindricity parameter for the action of Ḡ on X̄ sat-
isfies

A(Ḡ, X̄) 6 A(G,X) + [ν(G,X) + 4]π sh(4L0δ̄).

Proof. Let S̄ be a subset of Ḡ generating a non-elementary subgroup. The goal
is to bound from above the diameter of Z̄0 = Mov(S̄, 2L0δ̄). Without loss of
generality we can assume that this set is non-empty. Observe that d(x̄, V̄) >
ρ − L0δ̄ for every x̄ ∈ Z̄. Indeed if it was not the case, every element of S̄
would fix an common apex v̄ ∈ V̄, contradicting the fact that S̄ generate a
non-elementary subgroup. We denote by Z̄ the 2L0δ̄-neighborhood of Z̄0. It
is a 2δ̄-quasi-convex. Hence 〈z̄, z̄′〉v̄ > ρ/2, for every z̄, z̄′ ∈ Z̄ and v̄ ∈ V̄.

58



According to Lemma 4.17 there exists a subset Z of Ẋ such that the projection
ζ : Ẋ → X̄ induces an isometry from Z onto Z̄. Moreover 〈z, z′〉v > 4L0δ̇, for
every z, z′ ∈ Z and v ∈ V (the Gromov product is computed here in Ẋ). We
write Z0 for the pre-image of Z̄0 in Z. Let ḡ ∈ S̄. By construction ḡz̄ belongs
to Z̄ for every z̄ ∈ Z̄0. Consequently there exists a (unique) g ∈ G such that
for every z ∈ Z0 we have |gz − z|Ẋ = |ḡz̄ − z̄| (Lemma 4.16). We denote by
S the set of all g ∈ G obtained in this way. Note that S does not generate
an elementary subgroup, otherwise so would S̄. Let z̄ ∈ Z̄0 and z ∈ Ẋ its
pre-image in Z0. Let y = p(z) be the radial projection of z. Since Z̄ lies in the
3L0δ̄-neighborhood of ζ(X) we have |z − y|Ẋ 6 3L0δ̄. Combining the triangle
inequality with Lemma 4.5, we get for every g ∈ S,

µ (|gy − y|) 6 |gy − y|Ẋ 6 |gz − z|Ẋ + 6L0δ̄ 6 |ḡz̄ − z̄|+ 6L0δ̄ 6 8L0δ̄ < 2ρ.

By Proposition 4.3, we get that y lies in Mov(S, d) where d = π sh(4L0δ̄).
Assume that z̄′ is another point in Z̄0. As previously we denote by z′ ∈ Ẋ its
pre-image in Z0 and by y′ = p(z′) the radial projection of z′. In particular, y′
also belongs to Mov(S, d) and |z′ − y′|Ẋ 6 3L0δ̄. It follows from the triangle
inequality that

|z̄ − z̄′| 6 |z − z′|Ẋ 6 |y − y
′|+ 6L0δ̄ 6 diam (Mov(S, d)) + 6L0δ̄.

This inequality holds for every z̄, z̄′ ∈ Mov(S̄, 2L0δ̄). Hence

diam
(
Mov(S̄, 2L0δ̄)

)
6 diam (Mov(S, d)) + 6L0δ̄.

The conclusion now follows from Corollary 3.5.

4.7.2 Mixed invariants

In view of Proposition 4.46 the ν-invariant of G can be used to control the
acylindricity invariant A(Ḡ, X̄) of the quotient Ḡ. If we want to iterate the
procedure we need to control as well the ν-invariant of Ḡ. Let us start with an
informal discussion to emphasizes the difficulties that may arise along the way.
For simplicity let us assume that G (hence Ḡ) does not contain any parabolic
subgroup. Indeed those subgroups will not be a source of trouble.

If Ḡ has no even torsion, one can prove using only geometrical arguments
the following dichotomy – see for instance the proof of [10, Proposition 5.28].
Given any chain C̄ = (ḡ0, . . . , ḡm) generating an elementary subgroup of Ḡ and
h̄ ∈ Ḡ a loxodromic conjugating element of C̄,

(i) either 〈ḡ0, h̄〉 is elementary,

(ii) or the chain C̄ can be lifted to a chain C = (g0, . . . , gm) in G which generate
an elementary subgroup of G and where (one of) the conjugating element
h of C is a pre-image of h̄.

In the latter case, h is necessarily loxodromic. If in addition m > ν(G,X), we
can conclude that 〈g0, h〉 and thus 〈ḡ0, h̄〉 is elementary. It follows then that
ν(Ḡ, X̄) 6 ν(G,X).
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Unfortunately this strategy fails in the presence of even torsion. In Proposi-
tion 4.36 we observed the following phenomenon. Let F be an elliptic subgroup
of G and F̄ its image in Ḡ. If h̄ is an element of Ḡ normalizing F̄ , then there
exists an element h0 ∈ G normalizing F whose action by conjugation on F co-
incide with the one of h̄ on F̄ . However h0 is not necessarily a pre-image of h̄.
In particular if h̄ is loxodromic, there is no reason that h0 should be loxodromic
as well. The same issue arises when lifting chain. If a chain in Ḡ admits a
loxodromic conjugating element, there is not reason that its lift in G (provided
it exists) has a loxodromic conjugating element. This motivates the definition
of the strong ν-invariant (see Definition 3.10). However this is not the only
obstruction. As illustrated by the next example, the above dichotomy may fail
as well.

Example 4.47. Start with the hyperbolic group

G =
〈
a, b, c | a2, b2, c2, [a, c] = 1

〉
= D∞ ∗Z2

(Z2 × Z2) ,

acting on its Cayley graph X. In this description a and b (respectively a and
c) generate the factor D∞ (respectively Z2 × Z2). The amalgamated group is
Z2 = 〈a〉. Set r = ab. Let n ∈ N be large integer divisible by 4, so that the
group

Ḡ = G/〈〈rn〉〉.

is a small cancellation quotient of G. It follows from the additional relations
that ā and b̄ generate a copy of Dn. In particular, r̄−n/4ār̄n/4 is an involution
which commutes with ā, so that the subgroup

Ē =
〈
ā, r̄−n/4ār̄n/4, c̄

〉
= Z2 ×D∞

is loxodromic. We denote by t̄ = (r̄−n/4ār̄n/4)c̄ the translation in the dihedral
factor of Ē. Finally set

ḡ0 = r̄−n/4ār̄n/4, ḡ1 = ā, and ḡ2 = t̄ḡ0t̄
−1

Note that 〈ḡ0, ḡ1, ḡ2〉 is a subgroup of Ē which is also isomorphic to Z2 ×D∞
(see Figure 9). As t̄ commutes with ḡ1, we observe that

ḡ1 = h̄ḡ0h̄
−1 and ḡ2 = h̄ḡ1h̄

−1, where h̄ = t̄r̄n/4.

Hence (ḡ0, ḡ1, ḡ2) is a chain which generates an elementary subgroup of Ḡ. The
reader can check that 〈ḡ0, h̄〉 is not an elementary subgroup of Ḡ. It cannot
either be lifted to a chain which generates an elementary subgroup of G.

In the previous example, the difficulty comes from the fact that the subgroup
〈ḡ0, ḡ1, ḡ2〉 generated by the chain is a loxodromic subgroup of Ḡ that cannot
be lifted. Note that 〈ḡ0, ḡ1〉 is an elliptic subgroup that cannot be lifted either.
As described in Proposition 4.44, ḡ1 is obtained from ḡ0 by conjugation by a
quarter turn.
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r̄n/4

t̄
v̄ t̄v̄

ḡ1

ḡ0 ḡ2

Figure 9: The action of Ē and r̄n/4 on the space X̄. The shaded discs respec-
tively represent B(v̄, ρ) and B(t̄v̄, ρ) where v̄ is the cone point associated to
the relation r̄n = 1.

This discussion suggests that the conjugation by a quarter turn rotation
plays an important role. This is the place where algebra enters the stage. Take
v̄ ∈ V̄. Let F̄ be the kernel of the geometric realization map qv̄ � Dn. Assume
as in our example that n is divisible by 4. Let r̄ be strict rotation at v̄. From a
geometric point of view, conjugating F̄ by r̄ is not a trackable operation. Indeed
this will send an element ḡ which is almost trivial at v̄ to r̄ḡr̄−1 which is still
almost trivial at v̄. Hence one cannot distinguish ḡ and r̄ḡr̄−1 from their action
on B(v̄, ρ). This does not mean that ḡ and r̄ commutes though. Nevertheless
if we had a better understanding of the algebraic structure of Stab(v̄), more
precisely if we knew that Stab(v̄) is essentially a subproduct of dihedral groups,
it could be possible to find a suitable quarter turn at v̄ which truly commutes
with a prescribed subset of F̄ (see Lemma 3.14).

With additional algebraic hypotheses we are actually able to prove that if m
is sufficiently large, any chain C̄ = (ḡ0, . . . , ḡm) will satisfy (a variation of) the
above dichotomy, which salvages the original strategy.

Additional assumption. We now begin a systematic study of the mixed
invariants. As we pointed out above, we require some additional hypothesis on
the algebraic structure of elementary subgroup.

We fix once for all an integer n and write n2 for the largest power of 2
dividing n. We also choose a model collection E, i.e. a family of (abstract)
torsion groups and assume that its exponent µ = µ(E) divides n. We suppose
in addition that for every E ∈ E, the exponent of E/Z(E) divides n/2, where
Z(E) stands for the center of E. From now on, we substitute Assumption 4.11
on vertex stabilizer for the following stronger hypotheses. Recall that a dihedral
pair (E,C) has type (E, n2) if there exist k ∈ N, and a morphism ϕ : E → E,
where E ∈ E such that ϕ extends to an embedding from E into E/C×Dk

n2
×E

(see Definition 3.12).

Assumption 4.48 (Structure of elementary subgroups). Every dihedral pair of
G has type (E, n2).
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Assumption 4.49 (Relations). For every (H,Y ) ∈ Q, there exists a primitive
element g ∈ G such that H = 〈gn〉.

Let us now mention a few consequences of these new assumptions.

Lemma 4.50. Every elliptic subgroup of a loxodromic subgroup of G is a dihe-
dral germ.

Proof. Let E be a loxodromic subgroup of G and F its maximal elliptic normal
subgroup. Let g ∈ E be a loxodromic element. In particular the target of any
marking of (E,F ) is D∞. Moreover such a marking maps g to an element of
the rotation group Z ⊂ D∞. It follows from Assumption 4.48 that some large
power of g centralizes F . We conclude as in Lemma 4.31.

Lemma 4.51. Let v̄ ∈ V̄. The cone point v̄ has order n. The group Stab(v̄) con-
tains a central half-turn at v̄. There exist k ∈ N and a morphism ϕ̄ : Stab(v̄)→
E, where E ∈ E such that the geometric realization qv̄ : Stab(v̄)→ Dn together
with ϕ̄ extend to an embedding from Stab(v̄) into Dn ×Dk

n2
×E.

Remark. In particular Assumption 4.11 holds.

Proof. Fix (H,Y ) ∈ Q such that π : G → Ḡ maps E = Stab(Y ) onto Stab(v̄).
Let F be the maximal elliptic normal subgroup of E. According to Assump-
tion 4.48, there exist an integer k ∈ N, and a morphism ϕ : E → E, where
E ∈ E, such that ϕ extends to an embedding from E into E/F ×Dk

n2
×E.

We write α : E → Dk
n2
×E for the map obtained by composing the embedding

E ↪→ D∞ ×Dk
n2
× E with the natural projection onto Dk

n2
× E. Note that α

is one-to-one when restricted to F . Recall that E/F is either Z or D∞. We
denote by t a generator of the maximal infinite cyclic subgroup of E/F . By
Assumption 4.49, there exists a pre-image g ∈ E of t such that H = 〈gn〉. In
particular, n is the order of v̄. By assumption, the exponent of Dk

n2
×E divides n.

Hence α(H) is trivial. It follows that α induces a map ᾱ : Stab(v̄)→ Dk
n2
× E

whose restriction to F̄ (the image of F in Ḡ) is an embedding. Hence the
morphism Stab(v̄)→ Dn ×Dk

n2
×E given by qv̄ and ᾱ is an embedding.

We are left to prove existence of a central half turn. To that end we claim
that for every u ∈ E,

gn/2ug−n/2 ∈ uH. (21)

Let u in E. Recall that the exponents of E and E/Z(E) respectively divide n
and n/2, hence

gn/2ug−n/2 = u = ug−n, where g = ϕ(g) and u = ϕ(u).

The same identities are also satisfied by the images of g and u is any factor Dn2 .
Assume now that u belongs to E+ (the maximal subgroup of E preserving the
orientation). Then gn/2 commutes with u (one checks indeed that in each factor
of E/F ×Dk

n2
× E, we have gn/2ug−n/2 = u). Assume now that u ∈ E \ E+.

In other words the image of u in E/F is a reflection. We similarly check that
gn/2ug−n/2 = ugn, which completes the proves of our claim. As we already

62



observed α(gn) = 1, hence the image of gn/2 in Stab(v̄) is a non trivial rotation
of order 2 at v̄. It follows from (21) that it is also central in Stab(v̄), thus it is
a central half-turn at v̄.

Model collection for Ḡ. We now prove that the elementary subgroups of Ḡ
satisfy an condition similar to Assumption 4.48.

Proposition 4.52. Dihedral pairs of Ḡ (for its action on X̄) have type (E, n2).

Remark. Note that the model collection E is the same as the one of Assump-
tion 4.48.

Proof. Let (Ē, C̄) be a dihedral pair. We distinguish several cases. Assume
first that Ē is either an elliptic subgroup that can be lifted in G or a parabolic
subgroup. Note that in the latter case Ē can still be lifted in G. Indeed Ē is the
extension of an elliptic subgroup, namely C̄, by a finitely generated subgroup.
Thus there exit d ∈ R+ and a finite subset S̄ generated Ē such that Mov(S̄, d)
is non-empty. It follows then from Proposition 4.39 that Ē can be lifted. Let
E be a lift of Ē and C the pre-image of C̄ in E. According to Lemma 4.33, C
is a dihedral germ. It follows that (E,C) is a dihedral pair. Hence the result
follows from Assumption 4.48 applied to (E,C).

Assume now that Ē is a loxodromic subgroup. In particular C̄ is its maximal
elliptic normal subgroup (Lemma 3.9). According to Proposition 4.41 there
exists a dihedral pair (E′, C) in G where C is an elliptic subgroup lifting C̄ and
an epimorphism θ : Ē � E′ with the following properties.

(i) The morphism π ◦ θ is the identity when restricted to C̄.

(ii) The map θ induces an embedding from Ē into Ē/C̄ × E′.

Our assumption applied to (E′, C) says that there exist k ∈ N, and a morphism
ϕ : E′ → E where E ∈ E, which extends to an embedding E′ ↪→ E′/C×Dk

n2
×E.

We claim that ϕ ◦ θ : Ē → E extends to a embedding Ē → Ē/C̄ × Dk
n2
× E.

For simplicity we write ψ : E′ → Dk
n2
×E for the composition of E′ → E′/C ×

Dk
n2
×E with the canonical projection onto Dk

n2
×E. It suffices to shows that

ψ ◦ θ : Ē → Dk
n2
× E induces an embedding from Ē into Ē/C̄ × Dk

n2
× E.

Consider an element ḡ ∈ Ē which is trivial in Ē/C̄ ×Dk
n2
× E. In particular ḡ

belongs to C̄, hence θ(ḡ) ∈ C. Moreover ψ ◦ θ(ḡ) is trivial. Since ψ extends to
an embedding from E′ ↪→ E′/C ×Dk

n2
×E, the element θ(ḡ) is trivial. On the

other hand θ induces an embedding from Ē into Ē/C̄ × E′, thus ḡ = 1, which
completes the proof our claim.

We finally assume that Ē is an elliptic subgroup that cannot be lifted in
G. In particular there exists an apex v̄ ∈ V̄ such that Ē is contained in
Stab(v̄) (Proposition 4.29). According to Lemma 4.51 there exists k ∈ N,
and a morphism ϕ̄ : Stab(v̄)→ E, where E ∈ E, which combined with the geo-
metric realization qv̄ : Stab(v̄)→ Dn provides an embedding from Stab(v̄) into
Dn ×Dk

n2
×E. For simplicity we write ψ̄ : Stab(v̄)→ Dk

n2
×E for the compo-

sition of Stab(v̄) ↪→ Dn ×Dk
n2
× E with the natural projection onto Dk

n2
× E.
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Composing the geometric realization qv̄ : Stab(v̄)→ Dn with the canonical pro-
jection Dn → Dn2 leads to a morphism that we denote q′v̄ : Stab(v̄) → Dn2 .
We are going to prove that q′v̄ and ψ̄ extend to an embedding from Ē into
Ē/C̄ ×Dn2

×Dk
n2
×E.

Let F̄ be the kernel of qv̄ : Stab(v̄) → Dn. We first claim that [C̄ : C̄ ∩ F̄ ]
is a power of 2. Since C̄ is a dihedral germ, it contains a subgroup C̄0 which
is normalized by a loxodromic element and such that [C̄ : C̄0] = 2m for some
m ∈ N. Observe that C̄0 is contained in a reflection group at v̄. Indeed
otherwise, any element normalizing C̄0 would belong to Stab(v̄) thus they would
be no loxodromic element centralizing C̄0. In particular [C̄0 : C̄0 ∩ F̄ ] is at most
2. On the other hand

[C̄ : C̄ ∩ F̄ ][C̄ ∩ F̄ : C̄0 ∩ F̄ ] = [C̄ : C̄0 ∩ F̄ ] = [C̄ : C̄0][C̄0 : C̄0 ∩ F̄ ]

Consequently [C̄ : C̄ ∩ F̄ ] divides [C̄ : C̄0 ∩ F̄ ]. In particular it is a power of 2
which completes the proof of our claim.

Consider now ḡ ∈ Ē whose image in Ē/C̄ ×Dn2 ×Dk
n2
×E is trivial. First

observe that ḡ belongs to C̄. It follows from the previous claim that the order
of qv̄(ḡ) is a power of 2. Nevertheless the kernel of the projection Dn → Dn2

,
which contains qv̄(ḡ), consists only of element with odd order. Therefore qv̄(ḡ)
is trivial, i.e. ḡ belongs to F̄ . Observe that the map ψ̄ : Stab(v̄) → Dk

n2
× E

is an embedding when restricted to F̄ . Since ψ̄(ḡ) = 1, the element ḡ is trivial.
This shows that Ē embeds in Ē/C̄ ×Dn2 ×Dk

n2
×E.

The strong ν-invariant. We now start our study of the strong ν-invariant.
The ultimate goal is to prove the following statement.

Proposition 4.53. Assume that 2ν+2µ divides n where ν = νstg(G,X). Then

νstg(Ḡ, X̄) 6 max {νstg(G,X), µ+ 4}

For simplicity we adopt the following terminology.

Definition 4.54. A chain C = (g0, . . . , gm) of G is a strong chain if it satisfies
the following holds

(i) g0, . . . , gm generate an elementary subgroup of G (for its action on X).

(ii) either C admits a loxodromic conjugating element or 〈g0, . . . , gm−1〉 is a
dihedral germ.

We define strong chains of Ḡ in the exact same way. A strong chain C̄ =
(ḡ0, . . . , ḡm) can be lifted if there exists a strong chain C = (g0, . . . , gm) of G
such that the quotient map π : G � Ḡ sends gk to ḡk for every k ∈ J0,mK. In
this situation we also says that C lifts C̄. As suggested at the beginning of this
section we first prove the following dichotomy.

Proposition 4.55. Let m > 3 such that 2m+2µ divides n. Let C̄ = (ḡ0, . . . , ḡm)
be a strong chain of Ḡ and h̄ a conjugating element of C̄. Then one of the
following holds.

64



(i) There exists v̄ ∈ V̄ such that 〈ḡ0, h̄〉 is contained in Stab(v̄).

(ii) The subgroup 〈ḡ0, h̄〉 is loxodromic.

(iii) There exists a strong chain C̄′ = (ḡ′0, . . . , ḡ
′
m) of Ḡ which can be lifted and

such that (ḡ′1, . . . , ḡ
′
m−1) = (ḡ1, . . . , ḡm−1).

We split the proof into several lemmas depending on the nature of the group
generated by C̄.

Lemma 4.56. Let C̄ = (ḡ0, . . . , ḡm) be a strong chain of Ḡ. If the subgroup Ē
of Ḡ generated by C̄ is either elliptic and can be lifted or parabolic, then C̄ can
be lifted.

Proof. We first claim that Ē can always be lifted even if Ē is parabolic. Indeed
since Ē is finitely generated Proposition 4.39 applies. Let E be a lift of Ē.
For every k ∈ J0,mK, we denote by gk the pre-image of ḡk in E. Note that,
contrary to (ḡ0, . . . , ḡm), the tuple (g0, . . . , gm) could not be a chain. Never-
theless, according to Proposition 4.26 applied with S1 = {g0, . . . , gm−1} and
S2 = {g1, . . . , gm}, there exists h0 ∈ G with the following properties

(i) for every k ∈ J0,m− 1K, we have gk+1 = h0gkh
−1
0 .

(ii) if h̄ is loxodromic, then either h0 is loxodromic of 〈ḡ0, . . . , ḡν−1〉 is con-
tained in a reflection group.

Thus C = (g0, . . . , gν) is actually a chain and h0 a conjugating element of C.
Obviously C generates an elementary subgroup of G. Note that either h0 is
loxodromic or 〈g0, . . . , gν−1〉 is a dihedral germ (Lemmas 4.33 and 4.32) hence
the proof is complete.

Lemma 4.57. Let C̄ = (ḡ0, . . . , ḡm) be a strong chain of Ḡ which generates an
elliptic subgroup Ē of Ḡ which cannot be lifted. Let h̄ be a conjugating element
of C̄. Then either Ē0 = 〈ḡ0, . . . , ḡm−1〉 contains a strict rotation and 〈ḡ0, h̄〉 is
contained in Stab(v̄) for some v̄ ∈ V̄, or C̄ can be lifted.

Proof. There exists a (unique) apex v̄ ∈ V̄ such that Ē is a subgroup of Stab(v̄)
(Proposition 4.29). Let qv̄ : Stab(v̄) → Dn be the canonical geometric realiza-
tion map. Assume first that Ē0 = 〈ḡ0, . . . , ḡm−1〉 contains a strict rotation at v̄.
Consequently h̄Ē0h̄

−1 contains a strict rotation at h̄v̄. Since strict rotations fix
a unique cone point we get h̄v̄ = v̄. Thus 〈ḡ0, h̄〉 is contained in Stab(v̄), hence
is elementary.

Assume now that Ē0 does not contain a strict rotation at v̄. Since Ē can-
not be lifted, qv̄ maps ḡ0 and ḡm to two distinct reflections, and ḡ1, . . . , ḡm−1

to the identity. We denote by C̄ the intersection of Ē with the kernel of qv̄
and let Ā = 〈ḡ0, C̄〉 and B̄ = 〈ḡm, C̄〉. Note that C̄ is a subgroup of index 2
in both Ā and B̄. Let (H,Y ) ∈ Q such that the projection π : G → Ḡ maps
Stab(Y ) onto Stab(v̄). We choose a lift A (respectively B) of Ā (respectively
B̄) contained in Stab(Y ) so that A ∩ B is a lift of C̄ that we denote by C
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(see Corollary 4.30). Let a0, . . . , am−1 (respectively b1, . . . , bm) the pre-images
of ḡ0, . . . , ḡm−1 (respectively ḡ1, . . . , ḡm) in A (respectively B). As we already
observed ḡ1, . . . , ḡm−1 belong to C̄, thus ak = bk, for all k ∈ J1,m − 1K. Ap-
plying Proposition 4.26 with S1 = A and S2 = B, we get that there exists
h0 ∈ G such that for every k ∈ J0,m − 1K we have bk+1 = h0akh

−1
0 . If follows

that C = (a0, a1, . . . , aν−1, bν) is a chain and h0 a conjugating element of C. In
addition this chain generates a subgroup of Stab(Y ), which is therefore elemen-
tary. Recall that 〈a0, . . . , aν−1〉 is an elliptic subgroup of Stab(Y ). Hence it is
a dihedral germ (Lemma 4.31). Consequently C is a strong chain of G lifting
C̄.

Lemma 4.58. Let C̄ = (ḡ0, . . . , ḡm) be a strong chain generating a loxodromic
subgroup Ē of Ḡ. Let h̄ be a conjugating element of C̄. If 2m+2µ divides n then
one of the following holds

(i) The subgroup 〈ḡ0, h̄〉 is either loxodromic or contained in Stab(v̄) for some
v̄ ∈ V̄.

(ii) There exists a strong chain C̄′ = (ḡ′0, . . . , ḡ
′
m) which can be lifted and such

that (ḡ′1, . . . , ḡ
′
m−1) = (ḡ1, . . . , ḡm−1).

Proof. Assume firs that Ē0 = 〈ḡ0, . . . , ḡm−1〉 contains a loxodromic element say
t̄. Since Ē0 and h̄Ē0h̄

−1 generate an elementary subgroup, namely Ē, both
ḡ0 and h̄ are contained in the maximal elementary subgroup containing t̄. In
particular, 〈ḡ0, h̄〉 is loxodromic.

Assume now that Ē0 is elliptic (a subgroup of a loxodromic subgroup cannot
be parabolic). Let C̄ be the maximal normal elliptic subgroup of Ē. Since Ē is
generated by two elliptic subgroup (namely Ē0 and h̄Ē0h̄

−1) it does not preserve
the orientation. Hence the quotient Ē/C̄ is isomorphic to D∞. We write

1→ C̄ → Ē
q−→ D∞ → 1

for the corresponding short exact sequence. One observes that q maps ḡ0 and
ḡm to two distinct reflections, while C̄ is the normal subgroup of Ē generated
by ḡ2

0 , ḡ1, . . . , ḡm−1, ḡ
2
m. We let Ā = 〈ḡ0, C̄〉 and B̄ = 〈ḡm, C̄〉 so that Ē is

isomorphic to Ā ∗C̄ B̄. We now distinguish two cases.

Case 1. Assume first that both Ā and B̄ can be lifted in G. We denote by
A and B a lift of Ā and B̄ respectively. According to Proposition 4.42 there
exists u ∈ G whose image ū in Ḡ centralizes C̄ such that Eu = 〈A, uBu−1〉
is elementary. We let ḡ′k = ḡk, for every k ∈ J0,m − 1K and ḡ′m = ūḡmū

−1.
Since ū centralizes C̄ we observe that C̄′ = (ḡ′0, . . . , ḡ

′
m) is a chain and h̄0 = ūh̄ a

conjugating element of C̄′. Note also that C̄ and C̄′ only differ on the last element.
We now focus on this new chain. Let a′0, . . . , a′m−1 be the lift of ḡ′0, . . . , ḡ′m−1 in
A and b′1, . . . , b′m the lifts of ḡ′1, . . . , ḡ′m in uBu−1. We now proceed exactly as
in the proof of Lemma 4.57. We first observe that C′ = (a′0, a

′
1, . . . , a

′
m−1, b

′
m) is

a chain for some conjugating element h′0 ∈ G. Moreover it generate a subgroup
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of Eu which is therefore elementary. Recall that Ē0 = 〈ḡ0, . . . , ḡm−1〉 is an
elliptic subgroup of the loxodromic subgroup Ē, therefore it is a dihedral germ
(Lemma 4.50). As a lift of 〈ḡ0, . . . , ḡm−1〉, the subgroup 〈a′0, . . . , a′m−1〉 is a
dihedral germ as well (Lemma 4.33). Hence C′ is a strong chain of G lifting C̄′.

Case 2. Assume that either Ā or B̄ cannot be lifted in G. Up to replacing
(ḡ0, . . . , ḡm) by (ḡm, . . . , ḡ0), we can assume that Ā cannot be lifted in G. In
particular there exists a (unique) apex v̄ ∈ V̄ such that Ā contains a strict
rotation at v̄ (Proposition 4.29). We write qv̄ : Stab(v̄)→ Dn for the geometric
realization map associated to v̄ and r ∈ Dn for a generator of the rotation
group. Let Ē1 = 〈ḡ1, . . . , ḡm−2〉. Observe that Ā is generated by h̄−1Ē1h̄ and
C̄. Moreover Ē1 is contained in Ā. If follows from Proposition 4.44 that either
Ē1 contains a strict rotation, in which case 〈ḡ0, h̄〉 is a subgroup of Stab(v̄), or
there exists a reflection x ∈ Dn such that

qv̄(C̄) = 〈x〉 and qv̄(Ē1) = 〈x′〉 , where x′ = rn/4xr−n/4,

See Figure 10. Let us explore further this second configuration. Recall also

ā

F̄0, ḡ1, . . . , ḡm−2

v̄

C̄

ḡ0 ḡm

Figure 10: Lifting chains. The shared areas represent Mov(Ā, 11δ̄),
Mov(B̄, 11δ̄), and Mov(C̄, 11δ̄) respectively. The isomometry ḡm−1 is not on
the picture. It is not clear a priori whether it is a reflection or trivial at v̄.

that there exists k ∈ N, and an abstract group E ∈ E, such that Stab(v̄)
embeds in Dn × Dk

n2
× E (Lemma 4.51). Let F̄0 be the normal subgroup of

Stab(v̄) generated by ḡ2
0 , ḡ1, . . . , ḡm−1. Seen as a subgroup of Dn×Dk

n2
×E, the

reflection rank of F̄0 is at most m− 1. Recall that 2m+2µ divides n. According
to Lemma 3.14 there exists a pre-image ā ∈ Stab(v̄) of rn/4 such that

(i) ā centralizes F̄0

(ii) [[ā, ū1], ū2] = 1, for every ū1, ū2 ∈ Stab(v̄).

We now let ḡ′0 = āḡ0ā
−1 and ḡ′k = ḡk for every k ∈ J1,mK. By construction ā

commutes with ḡ1, . . . , ḡm−1. Hence C̄′ = (ḡ′0, . . . , ḡ
′
m) is a chain with h̄0 = h̄ā−1
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as conjugating element. Identity (ii) also tells us that given c̄ ∈ C̄ and ε ∈ {±1},
we have [[ā, ḡε0], c̄] = 1, which can be reformulated as

(ḡ′0)−εc̄(ḡ′0)ε =
(
āḡ−ε0 ā−1

)
c̄
(
āḡε0ā

−1
)

= ḡ−ε0 c̄ḡε0.

As ḡ0 normalizes C̄, so does ḡ′0. Since ā commutes with ḡ2
0 , we have (ḡ′0)2 =

ḡ2
0 , hence (ḡ′0)2 belongs to C̄. Consequently C̄ is a subgroup of index 2 of
Ā′ = 〈ḡ′0, C̄〉. In particular Ē′ = 〈Ā′, B̄〉 is elementary. Hence C̄′ generates an
elementary subgroup. Recall that ā is a preimage of rn/4. Hence

qv̄(ḡ
′
0) = rn/4x′r−n/4 = x

On the other hand qv̄ maps C̄ to 〈x〉. Consequently qv̄(Ā′) = 〈x〉 and Ā′ can
be lifted in G. As observed above C̄′ generates a subgroup Ē′, which is either
elliptic, parabolic or loxodromic. We let Ē′0 = 〈ḡ′0, . . . , ḡ′m−1〉 and distinguish
again two cases.

Case 2.1 Assume that Ē′ is not loxodromic. Note that Ē′0 is contained in
Ā′. Since Ā′ can be lifted Ē′0 does not contain a strict rotation. If Ē′ is elliptic
or loxodromic, then Lemmas 4.56 and 4.57 tell us that there exists a strong
chain C′ lifting C̄′.

Case 2.2 Assume that Ē′ is loxodromic. Observe that Ē′0 does not con-
tain a loxodromic element (it lies in the elliptic subgroup Ā′). We rerun the
previous discussion replacing C̄ and Ē = Ā ∗C̄ B̄ by C̄′ and Ē′ = Ā′ ∗C̄ B̄. In
particular, if B̄ can be lifted, we are back to Case 1. This means that there
exist a strong chain C′ lifting C̄′. Assume now that B̄ cannot be lifted. Note
that Ē′1 = 〈ḡ′1, . . . , ḡ′m−1〉 coincides with Ē1, and therefore does not contain a
strict rotation. We permute in Case 2 the role of Ā and B̄ and produce a new
strong chain C̄′′ = (ḡ′′0 , . . . , ḡ

′′
m) such that (ḡ′′1 , . . . , ḡ

′′
m−1) = (ḡ1, . . . , ḡm−1) which

generates an elementary subgroup of the form Ē′′ = Ā′ ∗C̄ B̄′ where both Ā′

and B̄′ are elliptic subgroups which can be lifted. Following Case 1. we observe
that there exists a strong chain C′′ of G which lifts C̄′′.

Observe that Proposition 4.55 is combination of Lemmas 4.56, 4.57 and 4.58

Proof of Proposition 4.53. Let m > max{ν, µ + 4}. Let C̄ = (ḡ0, . . . , ḡm) be a
strong chain of Ḡ. Let h̄ be a conjugating element of C̄. According to Proposi-
tion 4.55 one of the following holds.

(i) There exists v̄ ∈ V̄ such that 〈ḡ0, h̄〉 is contained in Stab(v̄).

(ii) The subgroup 〈ḡ0, h̄〉 is loxodromic,

(iii) There exists a strong chain C̄′ = (ḡ′0, . . . , ḡ
′
m) of Ḡ which can be lifted such

that (ḡ′1, . . . , ḡ
′
m−1) = (ḡ1, . . . , ḡm−1).
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We study each case separately. Assume first that 〈ḡ0, h̄〉 is contained in Stab(v̄)
for some v̄ ∈ V̄. Note that h̄ cannot be loxodromic (it fixes v̄). By the very defini-
tion of strong chain 〈ḡ0, . . . , ḡm−1〉 is a dihedral germ. According to Lemma 4.51
there exist k ∈ N and E ∈ E such that Stab(v̄) embeds in Dn×Dk

n2
×E. Since

m > µ+ 2, it follows from Proposition 3.13 that ḡ0 and ḡm respectively belong
to 〈ḡ1, . . . , ḡm〉 and 〈ḡ0, . . . , ḡm−1〉. In other words h̄ normalizes 〈ḡ0, . . . , ḡm−1〉.
Hence 〈ḡ0, h̄〉 is a cyclic extension of the dihedral germ 〈ḡ0, . . . , ḡm−1〉, therefore
it has dihedral shape.

Assume now that 〈ḡ0, h̄〉 is loxodromic. Then it automatically has dihedral
shape (Lemma 3.9).

We are left with the last case. Let C′ = (g′0, . . . , g
′
m) be a strong chain of

G lifting the chain C̄′ given by Point (iii). Let h0 be a conjugating element of
C′. Recall that m > ν. Thus 〈g′0, h0〉 is an elementary subgroup with dihe-
dral shape. Recall that by Assumption 4.48 every dihedral pair of G has type
(E, n2). Since m− 2 > µ+ 2, it follows form Proposition 3.13 that g′1 and g′m−1

respectively belong to 〈g′2, . . . , g′m−1〉 and 〈g′1, . . . , g′m−2〉. Recall that C̄ and C̄′
coincide everywhere but except maybe on the first and the last element. Push-
ing the previous observation in Ḡ we get that ḡ1 and ḡm−1 respectively belong
to 〈ḡ2, . . . , ḡm−1〉 and 〈ḡ1, . . . , ḡm−2〉. Hence h̄ normalizes 〈ḡ1, . . . , ḡm−2〉 and a
fortiori 〈ḡ0, . . . , ḡm−1〉. In particular 〈ḡ0, h̄〉 is elementary. If h̄ is loxodromic,
then 〈ḡ0, h̄〉 has automatically dihedral shape (Lemma 3.9) Otherwise 〈ḡ0, h̄〉 is
a cyclic extension of the dihedral germ 〈ḡ0, . . . , ḡm−1〉, and thus it has dihedral
shape.

5 Periodic groups

5.1 Induction step
Proposition 5.1. There exist positive constants δ1, C0 and C1 such that for
every positive integer ν0, there exists a critical exponent N0 ∈ N with the fol-
lowing properties. Let E be a model collection of abstract groups whose exponent
µ = µ(E) is finite. Let N1 > N0 and n > N1 a multiple of 2ν0+2µ.

Let G be a group acting by isometries on a δ1-hyperbolic length space X and
satisfying the following assumptions.

(i) The action of G on X is gentle and non-elementary.

(ii) Dihedral pairs of G have type (E, n2).

(iii) A(G,X) 6 (ν0 + 5)C0,
inj (G,X) > 1/C0

√
N1,

max{νstg(G,X), µ+ 4} 6 ν0.

We denote by P the set of all primitive loxodromic elements h ∈ G such that
‖h‖ < C0. Let K be the (normal) subgroup of G generated by {hn : h ∈ P} and
Ḡ the quotient of G by K. We write π : G � Ḡ for the corresponding quotient
map.
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Then there exists a δ1-hyperbolic length space X̄ on which Ḡ acts by isome-
tries satisfying (i)-(iii). In addition there exists a π-equivariant map X → X̄
with the following properties.

• The map X → X̄ is C1/
√
N1-Lipschitz.

• If F is an elliptic (respectively parabolic) subgroup of G, then π induces an
isomorphism from F onto its image F̄ which is also elliptic (respectively
elliptic or parabolic).

• Any elliptic subgroup of Ḡ, is either the isomorphic image of an elliptic
subgroup of G, or has finite exponent dividing n.

• Any finitely generated parabolic subgroup of Ḡ is the isomorphic image of
a parabolic subgroup of G.

• Let F1 and F2 be two subgroups of G. Assume that F1 is elliptic and F2 is
generated by a set S2 such that Mov(S2, C0) is non-empty. If the images
of F1 and F2 are conjugated in Ḡ, then F1 and F2 are conjugated in G.

Vocabulary. Assume that ν0, n and the model collection E have been already
fixed. If G is a group acting on a metric space X satisfying the assumptions
of the proposition, including Points (i)-(iii), we say that (G,X) satisfies the
induction hypotheses relative to (ν0, n,E). The proposition says among others
that if (G,X) satisfies the induction hypotheses relative to (ν0, n,E), then so
does (Ḡ, X̄)

Proof. We start by defining the several constants appearing in the statement.
Recall that L0 stands for the constant given by the stability of local quasi-
geodesics (Proposition 2.3). Let δ0, δ1, ∆0, and ρ0 be the parameter given by
the small cancellation theorem (Theorem 4.7). We define κ = δ1/π sh(25δ1) (so
that we can apply Proposition 4.45). We choose ρ > ρ0 such that

1
3
√

5κπ sh ρ
< δ1.

We now fix C0 and C1 as follows.

C0 = π sh(4L0δ1) and C1 = 10C0π sh ρ.

Observe that δ1 � C0 � ρ� C1. For every integer N ∈ N we define a rescaling
parameter λN as follows

λN =
C1√
N

=
10C0π sh ρ√

N

Let ν0 ∈ N. The sequence (λN ) converges to 0 as N tends to infinity. Therefore
there exists a critical exponent N0 ∈ N, such that for every integer N > N0 we
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have

λNδ1 6 δ0, (22)
λNλ [(2ν0 + 8)C0 + (95ν0 + 494)δ1] 6 ∆0, (23)

λN (ν0 + 5)C0 6 C0, (24)
λNκC0 6 2δ1. (25)

Let E be a collection of (abstract) groups and µ its exponent. We now fix
N1 > N0. Let n > N1 be a multiple of 2ν0+2µ. In particular µ divides n/2.
Consequently for every E ∈ E, then exponent of E and E/Z(E) respectively
divide n and n/2, which means that the model collection E satisfies the as-
sumptions stated in Section 4.7.2. For simplicity we write λ instead of λN1

.
Let G be a group acting on a δ1-hyperbolic spaceX such that (G,X) satisfies

the induction hypotheses relative to (ν0, n,E). We denote by P the set of all
primitive loxodromic elements h ∈ G such that ‖h‖ < C0. LetK be the (normal)
subgroup of G generated by {hn : h ∈ P} and Ḡ the quotient of G by K. If
P is empty, then Ḡ = G. Thus X̄ = λX obviously satisfies the conclusion of
the proposition. Otherwise, we are going to prove that Ḡ is a small cancellation
quotient of G. To that end we consider the action of G on the rescaled space
λX. According to (22) this space is δ-hyperbolic with δ 6 λδ1 6 δ0. We define
the family Q by

Q =
{(
〈hn〉 , Yh

)
: h ∈ P

}
.

Lemma 5.2. The family Q satisfies the small cancellation hypotheses, i.e.
∆(Q, λX) 6 ∆0 and inj (Q, λX) > 10π sh ρ.

Proof. We start with the upper bound of ∆(Q, λX). Let h1 and h2 be two
elements of P such that (〈hn1 〉, Yh1

) and (〈hn2 〉, Yh2
) are distinct. We first claim

that h1 and h2 generate a non-elementary subgroup. Assume on the contrary
that it is not the case. Let E be the maximal elementary subgroup containing h1

and h2. This subgroup is necessarily loxodromic. We denote by F its maximal
elliptic normal subgroup, so that (E,F ) is a dihedral pair. According to our
assumption there exists k ∈ N and E ∈ E such that E embeds in E/F×Dk

n2
×E,

where n2 is the largest power of 2 dividing n. Recall that h1 and h2 are primitive.
Hence up to replacing h2 by its inverse, we may assume that h1 and h2 have
the same image in E/F . Since the exponents of Dn2 and E divides n, the
images of hn1 and hn2 are trivial in Dn

n2
× E. Consequently hn1 = hn2 and thus

Yh1
= Yh2

. This contradicts the fact that (〈hn1 〉, Yh1
) and (〈hn2 〉, Yh2

) are distinct
and completes the proof of our claim. Recall that hi moves the points of Yhi

by
at most ‖hi‖λX + 84δ (Lemma 2.10), while ‖hi‖λX 6 λC0. Consequently

Y +5δ
h1
∩ Y +5δ

h2
⊂ Mov({h1, h2}, λC0 + 95δ).

Since h1 and h2 generate a non-elementary subgroup we get from Corollary 3.5
that

diam
(
Y +5δ
h1
∩ Y +5δ

h2

)
6 A(G,λX) + [ν(G,X) + 3] (λC0 + 95δ) + 209δ.
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Recall that ν(G,X) is bounded above by νstg(G,X), hence by ν0. Moreover by
assumption A(G,λX) 6 λ(ν0 + 5)C0, hence

diam
(
Y +5δ
h1
∩ Y +5δ

h2

)
6 λ [(2ν0 + 8)C0 + (95ν0 + 494)δ1] .

Using (23) we get ∆(Q, λX) 6 ∆0. Let us now focus on inj (Q, λX). It follows
from our assumption on inj (Q, X) that

inj (G,λX) > λ inj (G,X) >
C1√
N1

1

C0

√
N1

>
10π sh ρ

N1
>

10π sh ρ

n
.

Let (H,Y ) ∈ Q. By construction, any element g ∈ H is the n-th power of a
loxodromic element of G. Consequently

‖g‖λX > n inj (G,λX) > 10π sh ρ.

It follows that inj (Q, λX) > 10π sh ρ.

On account of the previous lemma, we can now apply the small cancellation
theorem (Theorem 4.7) to the action of G on the rescaled space λX and the
family Q. We denote by Ẋ the space obtained by attaching on λX for every
(H,Y ) ∈ Q, a cone of radius ρ over the set Y . The space X̄ is the quotient of Ẋ
by K. According to Theorem 4.7, X̄ is a δ1-hyperbolic length space and Ḡ acts
by isometries on it. As usual we write V for the set of apices in Ẋ and V̄ for
its image in X̄. We now prove that the action of Ḡ on X̄ satisfies the induction
hypotheses relative to (ν0, n,E). This action is gentle (Proposition 4.21) and
non-elementary (Proposition 4.23), which provides (i). In addition dihedral
pairs of Ḡ have type (E, n2) (Proposition 4.52). Thus (ii) holds. Point (iii) is a
consequence of the following lemma.

Lemma 5.3. The parameters A(Ḡ, X̄), inj
(
Ḡ, X̄

)
and νstg(Ḡ, X̄) satisfy

(i) A(Ḡ, X̄) 6 (ν0 + 5)C0;

(ii) inj
(
Ḡ, X̄

)
> 1/C0

√
N1;

(iii) max{νstg(Ḡ, X̄), µ+ 4} 6 ν0.

Proof. We start with the upper bound of A(Ḡ, X̄). Recall that C0 is bounded
below by π sh(4L0δ1). Hence Proposition 4.46 yields

A(Ḡ, X̄) 6 A(G,λX)+[ν(G,X)+4]π sh(4L0δ1) 6 λ(ν0+5)C0+[ν(G,X)+4]C0.

Since ν(G,X) is bounded above by νstg(G,X), hence by ν0 we get that

A(Ḡ, X̄) 6 λ(ν0 + 5)C0 + (ν0 + 4)C0.

Using (24) we obtain A(Ḡ, X̄) 6 (ν0 + 5)C0. We now focus on the injectivity
radius of Ḡ. Let g be a loxodromic isometry of G. Since dihedral pairs have
type (E, n2) we can write g = gk0u where k is a positive integer, g0 a primitive
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element and u an elliptic element centralized by some large power of by g0. In
particular, ‖g‖∞λX > ‖g0‖∞λX . Assume now that g does not stabilize any cylinder
Yh, where h ∈ P . It follows that g0 does not belong to P . Thus by (10)

‖g0‖∞λX > ‖g0‖λX − 16δ > λC0 − 16λδ1

Recall that C0 > 32δ1, hence ‖g‖∞λX > λC0/2. Proposition 4.45 applied with
N = G yields

inj
(
Ḡ, X̄

)
> min

{
λκC0

2
, δ1

}
Combined with (25) we obtain

inj
(
Ḡ, X̄

)
>
λκC0

2
>

5κC2
0π sh ρ√
N1

.

However C3
0 > 1/5πκ sh ρ, hence inj

(
Ḡ, X̄

)
> 1/C0

√
N1. The upper bound for

νstg(Ḡ, X̄) directly follows from Proposition 4.53.

We now study the properties of the projection π : G → Ḡ. Recall that the
map ζ : λX → X̄ is 1-Lipschitz. HenceX → X̄ is λ-Lipschitz (and π-equivariant
by construction). If F is an elliptic (respectively parabolic) subgroup of G, then
it follows from Lemma 4.25 that π : G → Ḡ induces an isomorphism from F
onto its image F̄ . Moreover, F̄ is elliptic (respectively elliptic or parabolic). Let
F̄ be an elliptic subgroup of Ḡ. If F̄ is not the isomorphic image of an elliptic
subgroup of G, then there exists an apex v̄ ∈ V̄ such that F̄ is contained in
Stab(v̄) (Proposition 4.29). On the other hand there exists k ∈ N and E ∈ E
such that Stab(v̄) embeds in Dn×Dk

n2
×E (Lemma 4.51). Since the exponent of

E divides n, the exponent of F̄ is finite and divides n as well. By Proposition 4.39
any finitely generated parabolic subgroup of Ḡ is the isomorphic image of a
parabolic subgroup of G. Let F1 and F2 be two subgroups of G. Assume that
F1 is elliptic and F2 is generated by a finite set S2 such that Mov(S2, C0) is
non-empty. It follows from our choice of C0 and ρ, that C0 6 ρ/100. Thus, if
the respective images F̄1 and F̄2 are conjugated in Ḡ, then so are F1 and F2

(Corollary 4.28). We have checked all the announced properties of the projection
π : G→ Ḡ, and the proof of the proposition is completed.

5.2 Construction of periodic groups
The number of variables in the next statement can be confusing at first sight.
Basically we are stating the fact that the critical exponent N1 does not de-
pend on the group G, but only on certain parameters related to its action on a
hyperbolic space X. More precisely N1 is a function of

• the hyperbolicity constant δ of X;

• the invariants A(G,X), inj (G,X) and νstg(G,X);

• the structure of subgroup of G with dihedral shape.
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Theorem 5.4. Let δ, r ∈ R∗+, ν, µ ∈ N and set ν1 = max{ν + 2, µ+ 6}. There
exist N1 ∈ N such that for every integer n > N1 which is a multiple of 2ν1µ,
the following holds.

Let E be a model collection of groups whose exponent divides µ. Let G be a
group acting on a δ-hyperbolic length space X such that

• the action of G on X is gentle and non-elementary;

• for every dihedral pair (E,C) the group E embeds in E/C × E for some
E ∈ E.

• A(G,X) 6 r, νstg(G,X) 6 ν, and inj (G,X) > 1/r

Then there exists a quotient Q of G with the following properties.

(i) For every elliptic (respectively parabolic) subgroup F of G, the projection
G� Q induces an embedding from F into Q.

(ii) For every q ∈ Q, either qn = 1 or q is the image of an elliptic or parabolic
element of G.

(iii) The projection G � G/Gn induces an epimorphism Q � G/Gn. In
particular, if G has no parabolic element, and every elliptic element of G
has finite order dividing n, then Q = G/Gn.

(iv) For every x ∈ X, the map G→ Q is one-to-one when restricted to

{g ∈ G : |gx− x| < r} .

(v) There are infinitely many elements of Q which are not the image of an
elliptic or a parabolic element of G.

(vi) The kernel K of G � Q is purely loxodromic (i.e. all its non-trivial ele-
ments are loxodromic). As a normal subgroup K is not finitely generated.

Proof. The main ideas of the proof are the following. Using Proposition 5.1 we
construct by induction a sequence of groups G = G0 → G1 → G2 → . . . where
Gk+1 is obtained from Gk by adding new relations of the form hn where h is
a primitive element of G. Then we chose for the quotient Q = G/K the direct
limit of these groups.

Critical exponent. Let us define first all the parameters leading to the crit-
ical exponent. For simplicity we let ν0 = max{ν, µ + 4} and ν1 = ν0 + 2. The
parameters δ1, C0, C1, and N0 are the one given by Proposition 5.1. We choose
ε > 0 and N1 ∈ N such that

εδ 6 δ1, εr 6 min

{
(ν0 + 5)C0,

C0

2

}
,

ε

r
>

1

C0

√
N1

, and
C1√
N1

< 1.

We now a fix an integer n > N1 which is divisible by 2ν1µ.
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The initialization. Let E be a model collection of groups and G be a group
acting on a δ-hyperbolic length space X as in the theorem. Let X0 be the space
X whose metric has been rescaled by ε. It follows from our choice of ε and N1

that X0 is δ1-hyperbolic, A(G,X0) 6 (ν0 + 5)C0, and inj (G,X0) > 1/C0

√
N1.

In addition max{νstg(G,X0), µ + 4} 6 ν0. In other words, if G0 = G, then
(G0, X0) satisfies the induction hypotheses relative to (ν0, n,E).

The induction step. Let k ∈ N. We assume that we already constructed
the group Gk and the space Xk such that (Gk, Xk) satisfies the induction hy-
potheses relative to (ν0, n,E). We denote by Pk the set of primitive loxodromic
elements h ∈ Gk such that ‖h‖Xk

< C0. Let Kk be the normal subgroup
of Gk generated by {hn, h ∈ Pk}. We write Gk+1 for the quotient of Gk by
Kk. According to Proposition 5.1, there exists a metric space Xk+1 such that
(Gk+1, Xk+1) satisfies the induction hypotheses relative to (ν0, n,E). Moreover
Xk+1 comes with a C1/

√
N1-Lipschitz map Xk → Xk+1 which is πk-equivariant,

where πk : Gk � Gk+1 is the canonical projection, and fulfills the following
properties.

(P1) If F is an elliptic (respectively parabolic) subgroup of Gk, then πk induces
an isomorphism from F onto its image which is also elliptic (respectively
elliptic or parabolic).

(P2) Any elliptic subgroup of Gk+1 is either isomorphic to an elliptic subgroup
of Gk or a finite group whose exponent divides n.

(P3) Any finitely generated parabolic subgroup of Gk+1 is the isomorphic image
of a parabolic subgroup of Gk.

(P4) Let F1 and F2 be two subgroups of Gk. Assume that F1 is elliptic and
F2 is generated by a finite set S2 such that Mov(S2, C0) is non-empty.
If the images of F1 and F2 are conjugated in Gk+1, then F1 and F2 are
conjugated in Gk.

Direct limit. The direct limit of the sequence (Gk) is a quotient Q = G/K
of G. We claim that this group satisfies the announced properties. Let E be
a subgroup of G which is either elliptic or parabolic. A proof by induction on
k ∈ N using (P1) shows that for every k ∈ N, the map G � Gk induces an
isomorphism from E onto its image which is either elliptic or parabolic for the
action of Gk on Xk. It follows that G � Q induces an isomorphism from E
onto its image, which proves (i).

A proof by induction on k ∈ N using (P2) and (P3) shows that if g ∈ Gk is
elliptic or parabolic (for its action on Xk) then either gn = 1 or g is the image
of an elliptic or a parabolic element of G (for its action on X). Let q ∈ Q and
g ∈ G be a pre-image of q. For simplicity we still write g for the image of g in
Gk. Since the map Xk → Xk+1 is C1/

√
N1-Lipschitz, we get for every k ∈ N,

‖g‖∞Xk
6

(
C1√
N1

)k
‖g‖∞X .
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As C1/
√
N1 < 1, there exists k ∈ N such that

‖g‖∞Xk
<

1

C0

√
N1

6 inj (Gk, Xk) .

Consequently g is elliptic or parabolic as an element of Gk. It follows from the
previous observation that one of the following holds.

• The element g coincide in Gk with an elliptic or a parabolic element of G,
hence q is the image of an elliptic or a parabolic element of G.

• We have gn = 1 (in Gk), hence qn = 1.

This completes the proof of (ii).
All the relation we added to built the sequence of groups (Gk) have the form

hn = 1. Hence the projection G → Q induces an epimorphism Q → G/Gn,
which gives (iii).

Let g be an elliptic or a parabolic element of K. It follows from (i) that the
map G � G/K induces an isomorphism from 〈g〉 onto its image. Hence g is
trivial. Consequently K is purely loxodromic. For every k ∈ N, the action of Gk
on Xk is non-elementary. It follows that the sequence (Gk) does not ultimately
stabilize. Indeed, otherwise (ii) would fail. Thus K is infinitely generated as a
normal subgroup, which completes the proof of (vi).

Let x ∈ X. Let g1, g2 ∈ G such that |gix − x|X < r. It follows from our
choice of ε that Mov(g, C0) ⊂ X0 is non empty, where g = g−1

1 g2. Assume now
that g1 and g2 have the same image in Q, i.e. g is trivial in Q. In particular
there exists i ∈ N such that the image of g in Gi is trivial. Recall that the map
Xk → Xk+1 is 1-Lipschitz for every k ∈ N. In particular Mov(g, C0) ⊂ Xk is
non-empty for every k ∈ N. A proof by induction using (P4) show that g = 1.
Hence the quotient map G� Q is one-to-one when restricted to the set

{g ∈ G : |gx− x| < r} ,

whence (iv).
We are left to prove (v). Let S be the collection of all elements of Q which

are not the image of an elliptic or a parabolic element of G. Assume contrary
to our claim that S is finite. Let S0 be a finite pre-image of S in G0. Using
the same argument as above we observe that there exists i ∈ N, such that
the image of S0 in Gi only consists of elliptic and parabolic elements. As we
already observed, the sequence is (Gk) is not ultimately constant. Consequently
there exists j > i such that Pj is non-empty (recall that Pj is a set of primitive
elements of Gj such that ‖h‖Xj

< C0). We fix g ∈ Pj . We claim that g does
not coincide in Q with an elliptic or a parabolic element of Gj . Assume on
the contrary that it is the case. There exists an elliptic or a parabolic element
u ∈ Gj as well as an index k > j such that g and u coincide in Gk. Note that
the set Mov(g, C0) ⊂ X` is non empty, for every ` > j. A proof by induction
using (P4) shows that g and u are conjugated as elements of Gj . It contradicts
the fact that g is loxodromic and u is not, hence the claim is proved. Our claim

76



has two consequences for the image q of g in Q. First q is not the image of an
elliptic or parabolic element of G, hence q ∈ S. Since every element of S0 is
elliptic in Gj , q does not belong to S, a contradiction.

5.3 Examples
One source of examples comes from groups acting acylindrically on a δ-hyperbolic
length spaceX. Let us recall first the definition of acylindricity. For our purpose
we need to keep in mind the parameters that appear in the definition.

Definition 5.5 (Acylindrical action). Let N,L, d ∈ R∗+. The group G acts
(d, L,N)-acylindrically on X if the following holds: for every x, y ∈ X with
|x−y| > L, the number of elements u ∈ G satisfying |ux−x| 6 d and |uy−y| 6 d
is bounded above by N . The group G acts acylindrically on X if for every d > 0
there exist N,L > 0 such that G acts (d, L,N)-acylindrically on X.

Since X is a hyperbolic space, one can decide whether an action is acylin-
drical by looking at a single value of d.

Proposition 5.6 (Dahmani-Guirardel-Osin [13, Proposition 5.31]). The action
of G on X is acylindrical if and only if there exists N,L > 0 such that the action
is (100δ, L,N)-acylindrical.

Remark. Dahmani, Guirardel and Osin work in a class of geodesic spaces. Nev-
ertheless, following the proof of [13, Proposition 5.31] one observes that the
statement also holds for length spaces. Moreover one gets the following quanti-
tative statement. Assume that the action of G on X is (100δ, L,N)-acylindrical,
then for every d > 0 the action is (d, L(d), N(d))-acylindrical where

L(d) = L+ 4d+ 100δ,

N(d) =

(
d

5δ
+ 3

)
N.

Assume now that the action of G on X is (100δ, L,N)-acylindrical. One
can obtain the following estimates of the various invariants defined in Section 3.
More precisely

(i) inj (G,X) > δ/N , [12, Lemma 3.9]

(ii) ν(G,X) 6 N(2 + L/δ) [10, Lemmas 6.12]

(iii) A(G,X) 6 10L2
SN

3(L+ 5δ), [10, Lemma 6.14].

The statements given in [10] do not mention an explicit upper bound for
ν(G,X) and A(G,X). However following the proofs yields directly to the result.
Our estimates are very generous. The important point to notice is that they
only depend on δ, L and N .

Recall that given a group E, its holomorph is the semi-direct product Hol(E) =
Aut(E) n E. If E0 stands for a collection of groups, we let

Hol(E0) = {Hol(E) : E ∈ E0} .
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Theorem 5.7. Let δ, L, r ∈ R∗+ and N ∈ N. Let E0 be a finite collection of
finite groups. We write µ for the exponent of Hol(E0). There exists ν1, N1 ∈ N
such that for every integer n > N1 which is a multiple of 2ν1µ the following
holds.

Let G be a group acting by isometries on a δ-hyperbolic length space X.
We assume that this action is (100δ, L,N)-acylindrical and non-elementary. In
addition we suppose that every finite subgroups of G with dihedral shape is iso-
morphic to a group of E0. Then there exists a quotient Q of G with the following
properties.

(i) For every elliptic subgroup F of G, the projection G � Q induces an
embedding from F into Q.

(ii) For every q ∈ Q, either qn = 1 or q is the image of an elliptic element of
G.

(iii) The projection G� G/Gn induces an epimorphism Q� G/Gn.

(iv) For every x ∈ X, the map G→ Q is one-to-one when restricted to

{g ∈ G : |gx− x| < r} .

(v) There are infinitely many elements of Q which are not the image of an
elliptic element of G.

(vi) The kernel K of G� Q is purely loxodromic. As a normal subgroup K is
not finitely generated.

Proof. We are going to apply Theorem 5.4. To that end we let we denote by M
the cardinality of the biggest group in E0. Up to replacing r by a largest value,
we can assume that

r > 10L2
SN

3(L+ 5δ) and
1

r
6

δ

N
.

Recall that µ is the exponent of Hol(E0). We now set

ν = max{N(2 + L/δ),M + 1} and ν1 = max{ν + 2, µ+ 6}.

and denote by N1 the critical exponent given by Theorem 5.4. Let n > N1 be
an integer divisible by 2ν1µ.

Let G be a group acting on a δ-hyperbolic length space X as in the theorem.
It follows from our previous discussion that A(G,X) 6 r, inj (G,X) > 1/r and
ν(G,X) 6 ν. Let us prove that νstg(G,X) 6 ν. Let g, h ∈ G and m > ν.
For every k ∈ N, we write gk = hkgh−k. Suppose that E = 〈g0, . . . , gm〉 is
elementary. Assume first that h is loxodromic. According to our choice of ν, we
have m > ν(G,X), thus the elements g and h generate an elementary subgroup
of G. Note that this group is necessarily loxodromic, hence has dihedral shape.
Assume now that E0 = 〈g0, . . . , gm−1〉 is a dihedral germ. Since the action of
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G is acylindrical, every loxodromic subgroup of G is virtually cyclic. Hence
E0 is finite. As a dihedral germ it also has dihedral shape. Consequently
E0 is isomorphic to a group in E0 hence contains at most M element. Since
m > M + 1, there exists i, j ∈ J0,m − 1K with i < j such that gi = gj .
In particular gj−i = g0. It follows that h normalizes 〈g0, . . . , gm−1〉. Hence the
group generated by g and h is elementary. More precisely, it is a cyclic extension
of the dihedral germ 〈g0, . . . , gm−1〉, thus it has dihedral shape. This proves that
ν > νstg(G,X) and completes the proof of our claim.

We now build an appropriate model collection E. Let (E,C) be a dihedral
pair where E is infinite. Since C is finite, it fits into the following short exact
sequence

1→ C → E → L→ 1,

where L is either Z or D∞. We choose an element g ∈ E whose image in
L generates the maximal infinite cyclic subgroup of L. Recall that µ is the
exponent of Hol(E0). We claim that 〈gµ〉 is a normal subgroup of E. Let
u ∈ E. There exists ε ∈ {±1} and c ∈ C such that ugu−1 = gεc. The value of ε
depends whether the image of u in L is a reflection or not. Since g normalizes
C its action by conjugation on C induces an automorphism of C that we denote
by ϕ. One checks that for every p ∈ N,

ugpu−1 = (gεc)p = gεpϕε(p−1)(c) · · ·ϕε(c)c.

However in the holomorph Hol(C), whose exponent divides µ, we have

1 = (ϕε, c)µ = (ϕεµ, ϕε(µ−1)(c) · · ·ϕε(c)c).

Hence ugµu−1 = gεµ. Consequently 〈gµ〉 is a normal subgroup of E as we
announced. Note also that the exponent of E/〈gµ〉 divides µ. Moreover E
embeds in E/C × E/〈gµ〉.

We denote by E1 the collection of quotients E/〈gµ〉 obtained as above, where
(E,C) runs over all dihedral pairs with E infinite. In addition we let E = E0∪E1.
It follows from the construction that the exponent of E divides µ. Moreover, for
every dihedral pair (E,C) there exists E ∈ E such that E embeds in E/C ×E.
All the assumptions of Theorem 5.4 are satisfied and the result follows.

Free Burnside groups and periodic groups.

Theorem 5.8. Let r > 2. There exists N1 ∈ N such that for every integer
n > N1 that is a multiple of 128, the free Burnside group Br(n) is not finitely
presented and therefore infinite. Moreover if n2 stands for the largest power of
2 dividing n, then every finite subgroup of Br(n) embeds in Dn×Dk

n2
for some

k ∈ N.

Proof. Let X be the Cayley graph of the free group Fr of rank r. It is δ-
hyperbolic with δ ∈ R∗+ such that L0δ < 1. It follows that A(Fr, X) = 0.
Moreover inj (Fr, X) > 1. Every dihedral germ is trivial. Hence νstg(G,X) = 1.
We choose for E the class of group reduced to the trivial one. Its exponent µ =
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µ(E) is 1. Every subgroup with dihedral shape is trivial or infinite cyclic. Hence
the assumption of Theorem 5.4 are fulfilled. Note that ν1 = max{νstg(G,X) +
2, µ + 6} = 7. Hence there exists N1 ∈ N such that for every n > N1 that is
a multiple of 128, the group Br(n) is not finitely presented, hence infinite. We
now prove the second assertion. Let

G0 = Fr � G1 � G2 � · · ·� Gk � Gk+1 � . . .

be the sequence of of groups produced in the proof of Theorem 5.4, whose direct
limit is Br(n). Let F be a finite subgroup of Br(n). By construction there exists
` ∈ N and an elliptic subgroup F` of G` such that G` � Br(n) maps F` onto
F . We assume that ` is the smallest for this property. Recall that each map
Gk � Gk+1 is one-to-one when restricted to an elliptic subgroup. Hence F` is
actually isomorphic to F . According to our choice of `, the subgroup F` cannot
be lifted. Therefore there exists v in the vertex set V` of X` such that F` is
contained in Stab(v). It follows from Lemma 4.51 that F` embeds in Dn×Dk

n2

for some k ∈ N.

Remark. Although we have not written the details here, a careful reader can
follow the induction in the proof of Theorem 5.4 to show that the the word and
the conjugacy problems are solvable in Br(n). With the previous notations, the
solution of the word problem is based on the following observation. Given an
element g ∈ Fr, there exists k ∈ N, which only depends on the words length of
g, such that g is trivial in Br(n) is trivial if and only if so is it in Gk. Hence
it suffices to run the solution of the word problem in the hyperbolic group Gk.
The conjugacy problem can be solved as follows. Given g1, g2 ∈ Fr, there exists
k ∈ N, which only depends on the word length of g1 and g2, such that both g1

and g2 are elliptic in Gk. A proof by induction based on Corollary 4.28 shows
that g1 and g2 are conjugated in Br(n) if and only if so are they in Gk. Hence
it suffices to run the solution of the conjugacy problem in Gk.

Corollary 5.9. Let r > 2. There exists N1 ∈ N, such that for every integer
n > N1, the group Br(n) is infinite.

Proof. Recall that free Burnside groups of sufficiently large odd exponents are
infinite, see for instance [15, 9] for a geometric proof. Hence it suffices to observe
that given two integers p, n ∈ N , the group Br(pn) maps onto Br(n).

Theorem 5.10. Let G be a non-elementary hyperbolic group. There exists
p,N1 ∈ N such that for every integer n > N1 that is a multiple of p, the
quotient G/Gn is infinite. Moreover⋂

n>1

Gn = {1}.

Proof. Let E0 be the collection of all isomorphism classes of finite subgroups of
G. Since G is hyperbolic, E0 is finite. We write µ for its exponent. Let X be
the Cayley graph of G relative to some finite generating set. The action of G
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on this hyperbolic space is acylindrical hence the assumptions of Theorem 5.7
holds. Let ν1, N1 ∈ N be the parameters given by Theorem 5.7 and set p = 2ν1µ.
Observe that the order of every elliptic element of G divides µ, hence p. Assume
now that n > N1 is a multiple of p. According to Theorem 5.7 there exists an
infinite quotient Q of G such that the projection G � G/Gn induces a map
Q � G/Gn. Moreover every element q ∈ Q satisfies the following dichotomy.
Either qn = 1, or q is the image of an elliptic element of G. In the latter case we
have qp = 1, and thus qn = 1. In other words Q is a quotient of G/Gn, hence
Q is isomorphic to G/Gn which is therefore infinite.

According to Theorem 5.7 the quotient map G→ G/Gn can be made one-to-
one on arbitrarily large balls by enlarging the value of n. Hence the intersection
of all the subgroups Gn is trivial.

Remark. As for free Burnside groups, one can give a precise description of the
finite subgroups of G/Gn, provided n is sufficiently large and divisible by p.
One can also prove that the word and the conjugacy problem are solvable in
there periodic quotients.

Relatively hyperbolic groups. Since Gromov’s original paper [19], several
different definitions of relatively hyperbolic groups have emerged, see for in-
stance [3, 16]. These definitions have been shown to be almost equivalent
[3, 34, 23]. For our purpose we will use the following one.

Definition 5.11 ([23, Definition 3.3]). Let G be a group and {P1, . . . , Pm} be a
collection of subgroups ofG. We say thatG is hyperbolic relative to {P1, . . . , Pm}
if there exists a proper geodesic hyperbolic space X and a collection Y of disjoint
open horoballs satisfying the following properties.

(i) G acts properly by isometries on X and Y is G-invariant.

(ii) If U stands for the union of the horoballs of Y then G acts co-compactly
on X \ U .

(iii) {P1, . . . , Pm} is a set of representatives of the G-orbits of {Stab(Y ) : Y ∈
Y}.

The action of G on the space X given by Definition 5.11 is not acylindrical.
Indeed the subgroups Pj can be parabolic. This cannot happen with an acylin-
drical action [2, Lemma 2.2]. More generally, the elementary subgroups of G are
exactly the virtually cyclic subgroups of G and the ones which are conjugated to
a subgroup of some Pj . As in the case of groups with an acylindrical action, one
can prove that inj (G,X) is positive whereas ν(G,X) and A(G,X) are finite.
Proceeding as in Theorem 5.7 we get the following result.

Theorem 5.12. Let G be a group and {P1, . . . , Pm} be a collection of subgroups
of G such that G is hyperbolic relatively to {P1, . . . , Pm}. Assume that there are
only finitely many isomorphism classes of finite subgroups with dihedral shape.
There exist p,N1 ∈ N such that every integer n > N1 multiple of p, there exists
a quotient Q of G with the following properties.
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(i) if E is a finite subgroup of G or conjugated to some Pj, then the projection
G� Q induces an isomorphism from E onto its image;

(ii) for every element g ∈ Q, either gn = 1 or g is the image a non-loxodromic
element of G;

(iii) there are infinitely many elements in Q which do not belong to the image
of an elementary non-loxodromic subgroup of G.

Mapping class groups. Let Σ be a compact surface of genus g with p bound-
ary components. In the rest of this paragraph we assume that its complexity
3g+ p− 3 is larger than 1. The mapping class group MCG(Σ) of Σ is the group
of orientation preserving self homeomorphisms of Σ defined up to homotopy. A
mapping class f ∈ MCG(Σ) is

(i) periodic, if it has finite order;

(ii) reducible, if it permutes a collection of essential non-peripheral curves (up
to isotopy);

(iii) pseudo-Anosov, if there exists an homotopy in the class of f that preserves
a pair of transverse foliations and rescale these foliations in an appropriate
way.

It follows from Thurston’s work that any element of MCG(Σ) falls into one
these three categories [35, Theorem 4]. The complex of curves X is a simplicial
complex associated to Σ. It has been first introduced by Harvey [22]. A k-
simplex of X is a collection of k+ 1 homotopy classes of curves of Σ that can be
disjointly realized. Masur and Minsky proved that this new space is hyperbolic
[28]. By construction, X is endowed with an action by isometries of MCG(Σ).
Moreover Bowditch showed that this action is acylindrical [2, Theorem 1.3].
This action provides an other characterization of the elements of MCG(Σ). An
element of MCG(Σ) is periodic or reducible (respectively pseudo-Anosov) if
and only it is elliptic (respectively loxodromic) for the action on the complex of
curves [28]. Recall that MCG(Σ) contains only finitely many conjugacy classes
of finite subgroups [17, Theorem 7.14]. Hence the next statement is a direct
application of Theorem 5.7.

Theorem 5.13. Let Σ be a compact surface of genus g with p boundary com-
ponents such that 3g + p− 3 > 1. There exist p,N1 such that for every integer
n > N1 which is a multiple of p, there exists a quotient Q of MCG(Σ) with the
following properties.

(i) If E is a subgroup of MCG(Σ) that does not contain a pseudo-Anosov
element, then the projection MCG(Σ)� Q induces an isomorphism from
E onto its image.

(ii) Let f be a pseudo-Anosov element of MCG(Σ). Either fn = 1 in Q or f
coincide in Q with a periodic or a reducible element.
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(iii) There are infinitely many elements in Q which are not the image of a
periodic or reducible element of MCG(Σ).

Amalgamated product. Let G be a group. A subgroupH of G ismalnormal
if for every g ∈ G, gHg1 ∩H = {1} unless g belongs to H.

Theorem 5.14. Let A and B be two groups. Let C be a subgroup of A and B
malnormal in A or B. Assume that there existsM ∈ N such that every subgroup
of A (respectively B) that is isomorphic to the extension of a 2-group by finite
cyclic or dihedral group contains at most M elements. There exist p,N1 such
that for every integer n > N1 which is a multiple of p, there exists a quotient Q
of A ∗C B with the following properties.

(i) The natural projection A ∗C B � Q induces an embedding of A and B
into Q.

(ii) For every g ∈ Q, if g is not a conjugate of an element of A or B then
gn = 1.

(iii) There are infinitely many elements in Q which are not conjugates of ele-
ments of A or B.

Proof. We denote by X the Bass-Serre tree associated to the amalgamated
product G = A ∗C B [33]. As C is malnormal in A, the action of G on X is
acylindrical. Moreover every loxodromic subgroup is either Z or D∞. Hence
every dihedral germ is necessarily a 2-group. Consequently, a finite group with
dihedral shape is isomorphic to the extension of a 2-group by a finite cyclic
or dihedral group. Being finite, such a group is contained in a conjugate of A
or B. Thus is follows from our assumption that G admits only finitely many
isomorphism classes of finite subgroup with dihedral shape. The conclusion
follows from Theorem 5.7.
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