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ABSTRACT

We perform one of the first studies into the nonlinear evolution of tidally excited
inertial waves in a uniformly rotating fluid body, exploring a simplified model of the
fluid envelope of a planet (or the convective envelope of a solar-type star) subject to
the gravitational tidal perturbations of an orbiting companion. Our model contains a
perfectly rigid spherical core, which is surrounded by an envelope of incompressible
uniform density fluid. The corresponding linear problem was studied in previous papers
which this work extends into the nonlinear regime, at moderate Ekman numbers (the
ratio of viscous to Coriolis accelerations). By performing high-resolution numerical
simulations, using a combination of pseudo-spectral and spectral element methods, we
investigate the effects of nonlinearities, which lead to time-dependence of the flow and
the corresponding dissipation rate. Angular momentum is deposited non-uniformly,
leading to the generation of significant differential rotation in the initially uniformly
rotating fluid, i.e. the body does not evolve towards synchronism as a simple solid body
rotator. This differential rotation modifies the properties of tidally excited inertial
waves, changes the dissipative properties of the flow, and eventually becomes unstable
to a secondary shear instability provided that the Ekman number is sufficiently small.
Our main result is that the inclusion of nonlinearities eventually modifies the flow
and the resulting dissipation from what linear calculations would predict, which has
important implications for tidal dissipation in fluid bodies. We finally discuss some
limitations of our simplified model, and propose avenues for future research to better
understand the tidal evolution of rotating planets and stars.
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1 INTRODUCTION

Understanding the gravitational tidal interactions between
two orbiting bodies is an important unsolved problem in as-
trophysics. It is often the case that one or more of the bodies
involved in the interaction is wholly or partly composed of
fluid layers, such as a star or giant planet, an ice giant with
a thick atmosphere, or a terrestrial planet with deep ocean.
The processes by which the orbits and spins of these bod-
ies evolve due to tidal interaction are poorly understood.
The continuing discovery of short-period extrasolar plan-
ets makes a theory of tidal interactions very relevant, since
they may have played an important role in producing the
observed properties of these systems.

⋆ Email address: b.favier@damtp.cam.ac.uk

The importance of tidal interactions in a given system,
quantified by the relevant timescale for tides to cause the
orbit and spin of a body to evolve, is related to the rate at
which tidal energy is dissipated. The mechanisms responsi-
ble for this dissipation depend strongly on the internal struc-
ture of the body. For fluid bodies, the hydrostatic response
of a homogeneous fluid body to the varying gravitational po-
tential of the companion is often referred as to the equilib-
rium tide (Darwin 1880). In the convective envelope of a gas
giant planet or low-mass star, the equilibrium tide is thought
to be dissipated by the turbulent motions driven by thermal
convection, though there are significant uncertainties in the
efficiency of this process (Zahn 1966; Goldreich & Nicholson
1977; Penev et al. 2007, 2009; Ogilvie & Lesur 2012). In sta-
bly stratified fluid layers, such as the radiative layers of a
planet or star, the resonant excitation of g-mode oscillations
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(or internal gravity waves) is thought to dominate the tidal
dissipation (Zahn 1970; Goodman & Dickson 1998).

Since all astrophysical fluid bodies rotate, it is impor-
tant to understand the effect that rotation has on the rates of
tidal dissipation. This is particularly important because ro-
tating flows support oscillatory motions called inertial waves
(Greenspan 1968). These waves are restored by the Corio-
lis force and can be excited by low frequency tidal forc-
ing when the absolute value of the forcing frequency (in a
frame rotating with the fluid) is less than twice the spin fre-
quency of the body. The importance of these waves at con-
tributing to tidal dissipation has been emphasised in recent
years (Ogilvie & Lin 2004; Wu 2005; Ogilvie & Lin 2007;
Ivanov & Papaloizou 2007; Goodman & Lackner 2009;
Ivanov & Papaloizou 2010; Papaloizou & Ivanov 2010). In
nearly adiabatically stratified convective regions, internal
gravity waves are not supported and the excitation and dis-
sipation of inertial waves might play a dominant role.

In the case of a full sphere of incompressible fluid, a
complete set of smooth inviscid inertial modes exist, which
can be derived analytically. However, the case of a spher-
ical shell is more relevant for the interiors of giant planets
with solid cores, terrestrial planets with deep oceans, and, to
some extent, the convective envelope of a solar-type star. In
this geometry, regular inviscid inertial modes do not exist,
and the viscous eigenfunctions correspond to rays propagat-
ing along the characteristics of the Poincaré wave equation.
For some frequencies, these wave beams can converge toward
limit cycles, known as wave attractors, as they alternately
reflect from the inner solid core and the outer boundary
(Rieutord & Valdettaro 1997; Rieutord et al. 2001). As a re-
sult, the viscous dissipation rate has a very sensitive depen-
dence on the tidal forcing frequency (Ogilvie & Lin 2004;
Ogilvie 2009; Riertord & Valdettaro 2010). Moreover, this
dissipation is strongly enhanced for particular frequencies,
hence it may play an important role in contributing to tidal
evolution in rotating fluid bodies.

Most of the previous studies of inertial waves in a spher-
ical shell have considered the linear behaviour of these singu-
lar inertial wave solutions. However, as the Ekman number
(the ratio of viscous to Coriolis accelerations) is decreased
towards the values that it is thought to take in planetary or
stellar interiors, and as the amplitude of the tidal forcing is
increased, nonlinearities will play an increasingly important
role. When a wave attractor is present, it is known from
experimental and theoretical studies that the inertial wave
beam can become unstable and break, leading to a turbulent
flow and a different mechanism of dissipation (Scolan et al.
2013; Jouve & Ogilvie 2013). The dissipation rate may be
modified somewhat from that predicted by linear theory.

A related nonlinear mechanism that could contribute
to tidal dissipation is the so-called elliptical instability
(Pierrehumbert 1986; Bayly 1986; Waleffe 1990; Kerswell
2002). This is an instability of elliptical streamlines, such as
those in the equilibrium tidal flow in a rotating fluid body.
The elliptical instability leads to the excitation of inertial
waves through a parametric resonance. The nonlinear out-
come of this instability in isolation has been studied in lab-
oratory experiments (e.g. Lacaze et al. 2004; Le Bars et al.
2007, 2010), as well as local (Barker & Lithwick 2013a,b)
and global numerical simulations (e.g. Cébron et al. 2010;
Cébron et al. 2013). These works suggest that the elliptical

instability could contribute to tidal dissipation at short or-
bital periods. However, the elliptical instability has yet to be
studied in detail in spherical shell geometry (except briefly
in Cébron et al. 2010).

In addition, nonlinearities could generate zonal (net az-
imuthal) flows, which might also alter the dissipative prop-
erties of the flow. An initial study into the effects of cylindri-
cal differential rotation i.e. zonal flows, on inertial waves in a
spherical shell has been undertaken by Baruteau & Rieutord
(2013). They show that a differential rotation can modify the
path of characteristics, and alter the frequency-dependence
of the viscous dissipation. In the case of precessing or librat-
ing flows, it is well known that zonal flows can be driven by
nonlinearities in the Ekman boundary layers (Busse 1968;
Noir et al. 2001; Calkins et al. 2010; Sauret & Dizès 2013).
The weakly nonlinear model of Tilgner (2007) also illus-
trated a mechanism by which nonlinearities of inertial waves
in a spherical shell can generate zonal flows even in the ab-
sence of Ekman boundary layers. Intense axisymmetric flows
were observed experimentally in the case of a rotating de-
formed sphere (Morize et al. 2010). Although the detailed
mechanisms that generate them depend on the type of forc-
ing and on the boundary conditions, the existence of zonal
flows is a generic feature of forced rotating flows, hence it is
important to study their effect on tidal dissipation in fluid
bodies.

In this paper, we consider a simple model of a rotating
fluid body subject to tidal forcing first studied in Ogilvie
(2009). We explore the nonlinear behaviour of this model us-
ing high-resolution three-dimensional numerical simulations.
To our knowledge, this is one of the first attempts to numer-
ically compute forced inertial waves in a spherical shell as an
initial value problem (see also Papaloizou & Ivanov 2010),
and the first to study the nonlinear problem. Our model and
the numerical methods adopted are presented in Section 2.
We first illustrate the model and compare with previous re-
sults in the linear regime in Section 3. The main results
concerning the nonlinear regime are discussed in Section 4.
Finally, our conclusions and future directions are given in
Section 5.

2 PHYSICAL MODEL

2.1 Model and governing equations

Our model is based on Ogilvie (2009). We suppose that the
body is in uniform rotation with angular velocity Ω = Ωez

where ez is the unit vector in the vertical direction. The fluid
is incompressible with uniform density ρ, henceforth taken
to be unity, without loss of generality. This assumption is
adopted at this stage for simplicity. We neglect centrifugal
distortion, effectively limiting us to studying bodies that
rotate much slower than their dynamical frequency.

We define a spherical polar coordinate system centred
on the body with coordinates (r, θ, φ) in the rotating frame.
We aim to study the response of the fluid contained within
a spherical shell with ri < r < re to a tidal gravitational
potential Ψ ∝ Aℜ

[

Y m
l (θ, φ)e−iωt

]

. Y m
l is the spherical har-

monic of degree l and order m with l > m, ω is the tidal
frequency in the rotating frame, related to that in the in-
ertial frame ωi by ω = ωi − mΩ. A is an arbitrary real
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Forced inertial waves in rotating fluid bodies 3

amplitude. Our system of units is defined such that ρ = 1,
Ω = 1 and re = 1. The equations of motion are then

∂u

∂t
+ u · ∇u+ 2ez × u = −∇W +E∇2

u (1)

∇ · u = 0 , (2)

where

E =
ν

Ωr2e
(3)

is the Ekman number (the ratio of viscous to Coriolis accel-
erations), ν is kinematic viscosity of the fluid, assumed to be
uniform. W = p+Ψ+Φ′, where p is the pressure, Ψ is the ex-
ternal tidal potential and Φ′ is the internal self-gravitational
potential perturbation. Φ′ is an order-unity multiple of Ψ,
it is in fact (3/2)Ψ for a homogeneous sphere, so it just am-
plifies the tidal potential and increases the amplitude of the
tide.

The linear properties of inertial waves depend strongly
on the size of the core (e.g. the dissipation rate ap-
pears to scale as the fifth power of the core size –
Goodman & Lackner 2009; Ogilvie 2009). Throughout this
paper, the core size is however fixed to ri = 0.5 in order to
reduce the number of parameters. This core size is likely to
limit the appearance of the elliptical instability, which is not
the main focus of this work. This is because the nonlinear
coupling between the equilibrium tide and the singular iner-
tial waves in a spherical shell may be weaker than with the
regular inertial modes of a core-free body. In addition, we
will only consider moderate amplitude tidal forcing in this
paper, with A ≪ 1. At these amplitudes, it is likely that
the elliptical instability will be weak, since the maximum
(inviscid) growth rate of the elliptical instability is propor-
tional to the amplitude of the forcing (∼ A/Ω). Choosing
such a small A is therefore likely to eliminate the elliptical
instability from playing a major role in our calculations. It
may also mean that it is difficult to observe any parametric
subharmonic instabilities of the inertial wave beams, which
are likely to limit the wave amplitudes when E → 0. We
return to this point later in Section 4.

2.2 Boundary conditions

The outer boundary condition is used to drive the flow. Here
we choose to impose a radial velocity on a rigid spherical
boundary at r = re, which represents radial motions asso-
ciated with rising and falling of the equilibrium tide at the
surface of the body. This model is valid in the limit of fre-
quencies low compared to surface gravity wave frequencies
and small Ekman number, as demonstrated for the linear
problem in Ogilvie (2009). In the case of a tidal potential
dominated by the l = m = 2 spherical harmonic, the radial
velocity at the outer boundary can be written as

ur(r = re) =

√

32π

15
Aℜ

{

Y 2

2 (θ, φ)e
−iωt

}

, (4)

where A is an arbitrary (real) amplitude. Using this defini-
tion, the maximum radial velocity at the outer boundary is
equal to unity when A = 1. Note that this choice of bound-
ary condition is compatible with the incompressibility con-
dition, as there is no net mass flux through the boundary.

In reality, as the angular momentum of the system

Figure 1. Response of the fluid due to the boundary forcing
with A = 10−2 for a non-rotating body. Top: Radial velocity in
the equatorial plane. Bottom: Radial velocity in the meridional
plane corresponding the dotted white line in the top figure. With
our scaling, max(ur) = 1 when A = 1. The dominant azimuthal
mode m = 2 and meridional mode l = 2 are clearly visible. As
time evolves, this pattern rotates around the vertical axis at the
frequency ω, following the motion of the companion.

evolves, the amplitude of the tidal forcing will also vary with
time (as the fluid synchronises its spin with the tidal defor-
mation, the radial displacement decreases). Our model does
not capture this effect. However, since we do not intend to
evolve the system until synchronism is reached (the spin typ-
ically evolves by only a few per-cent in our simulations), the
differences between our results and those for which this ef-
fect is taken into account should be minor (we have verified
that this is the case for a couple of example simulations in
which this effect was taken into account.).

If the companion has an eccentric or inclined orbit,
other spherical harmonics than the one present in equation
(4) can be excited at various frequencies (e.g. Ogilvie & Lin
2004; Barker & Ogilvie 2009). However, here we focus on
the particular component of the tidal potential as defined
by equation (4), since it is usually the dominant one. In
particular, this is the sole relevant component for the syn-
chronisation problem, in which a companion on a circular
orbit in the equatorial plane of the primary orbits with an
orbital frequency that is not synchronous with the spin fre-
quency of the fluid, so that ω 6= 0.

c© 2012 RAS, MNRAS 000, 1–17
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At the inner boundary, we neglect the elasticity of the
core, and treat it as a rigid spherical boundary on which an
impenetrability condition is imposed, so that ur(r = ri) = 0.
The radius of the inner core strongly influences the ex-
citation of inertial waves (e.g. Goodman & Lackner 2009;
Ogilvie 2013). We did not change the geometry of the core
in this paper, in order to focus on studying the dominant
nonlinear effects. For numerical simplicity, we assume that
both the inner core and outer boundary are stress-free. We
therefore have er × σer = 0 at r = ri and r = re, where

σ = ν
(

∇u+ (∇u)T
)

is the stress tensor and er is the unit

vector in the radial direction. This is a good approximation
for the outer boundary, but is only a simplification for the
inner boundary, which is adopted mainly to avoid numer-
ical constraints due to the generation of Ekman boundary
layers. We later discuss the case of a no-slip inner core in
section 4.6, since this is probably a better approximation to
the boundary of the solid core of a giant planet.

In the case of a non-rotating body, the response of the
fluid to this boundary forcing can be seen in Fig. 1. In
a uniformly rotating body, inertial waves are generated at
the critical latitude on the inner core (Goodman & Lackner
2009; Sauret 2013) whenever −2 < ω/Ω < 2.

2.3 Energy and angular momentum

To help with the analysis of our simulations, we define the
volume-integrated kinetic energy, work done by the tidal
forcing, and dissipation rate, by

K =
1

2

∫

V

|u|2 dV, (5)

I = −
∫

V

u · ∇W dV, (6)

D = −ν

∫

V

u · ∇2
u dV. (7)

The kinetic energy evolves in time according to

∂tK = I −D. (8)

We have checked that this is satisfied in the numerical sim-
ulations, indicating that our solutions are numerically con-
verged. The total angular momentum, defined as

L =

∫

V

x× u dV, (9)

is another important quantity in calculations with stress-free
boundaries (e.g. Jones et al. (2011)). It evolves according to

∂L

∂t
= −2

∫

V

x× (Ω×u) dV −
∫

V

x× (u · ∇u) dV . (10)

Note that with spherical boundaries, the pressure torque
vanishes, and with stress-free conditions, so does the viscous
torque. Note also that, if we write ũ = u+Ω× x, then the
only contribution to the right hand side of equation (10) is
∫

V

x× (ũ · ∇ũ) dV = −
∫

∂V

(x× ũ) ũ · n dS 6= 0 , (11)

where n is the normal to the outer boundary. This term is
nonzero, in general, because the horizontal components of
the velocity are nonzero at the boundaries, and a nonzero
ur is imposed, i.e., this leads to an angular momentum flux

Table 1. Typical resolutions used within PARODY in the linear
regime. NR is the radial resolution whereas NL is the maximum
degree of the Legendre polynomials. For the linear calculations
we only include one azimuthal mode number, m = 2.

Ekman number NR NL

10−4 240 32
10−6 960 256
10−8 3840 1024

through the outer boundary. Hence, this term is responsible
for causing secular angular momentum evolution. This term
is nonzero even for a linear problem, as long as Ω 6= 0. How-
ever, for a linear problem, the period-averaged contribution
from this term vanishes and there is no net change in the
angular momentum. Note however that linear theories can
still be used to calculate the tidal torque, which is a quantity
of second order in the tidal amplitude.

For linear calculations with l = m = 2 forcing, we cor-
rectly observe only small amplitude oscillatory behaviour
in the components of L, with zero mean. However, in the
nonlinear simulations, we observe net growth in vertical an-
gular momentum |Lz |, as is consistent with our outer bound-
ary condition, and represents the process of tidal synchro-
nisation of the spin and orbit. We do not observe |Lx| and
|Ly | to grow appreciably, which shows that numerical errors
are playing a negligible role in the simulations (simulations
with no-slip boundary conditions have an oscillatory Ekman
layer, which exhibits oscillatory behaviour in Lx, Ly with
zero mean, which we present in section 4.6).

2.4 Numerical methods

In this paper we use two different numerical approaches to
solving equations (1)-(2), which we will now briefly describe.
Since the two numerical methods are very different, a careful
comparison is required, in particular for the nonlinear solu-
tions where previously published results are unavailable.

2.4.1 PARODY

In the following, we adapt and use the code PARODY1

to solve Eqs. (1)–(2). This code was originally written by
E. Dormy (Dormy et al. 1998) and later improved by J.
Aubert (Aubert et al. 2008). PARODY has been bench-
marked against other numerical codes in the context of
a convectively-driven dynamo problem (Christensen et al.
2001). The code is parallelised using both OpenMP and
MPI. The time stepping is achieved using a mix of semi-
implicit Crank-Nicholson scheme for the linear terms and
a second-order Adams-Bashforth scheme for the nonlinear
terms.

The velocity field is written using a poloidal-toroidal
decomposition, thus ensuring incompressibility, with

u = ∇×∇× (Ser) +∇× (Ter) , (12)

where T is the toroidal component and S is the poloidal
component, and er is the unit vector in the radial direction.

1 http://www.ipgp.fr/~aubert/DMFI.html
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Each of these scalars is decomposed onto spherical harmon-
ics,

S =
∑

Sm
l (r)Y m

l (θ, φ) and T =
∑

Tm
l (r)Y m

l (θ, φ) ,

(13)
where the sum is carried over integers such that 0 6 m 6 l.
The radial functions Tm

l (r) and Sm
l (r) are represented by

their discretized values on a non-uniform radial grid between
the inner core located at r = ri and the outer core located
at r = re. The radial derivatives are computed using second
order finite-differences. The grid is denser close to the inner
and outer boundaries in order to appropriately resolve flows
near the boundaries. This mesh refinement at the boundaries
is particularly important when using no-slip boundary con-
ditions in order to accurately resolve thin Ekman boundary
layers.

Due to the poloidal-toroidal decomposition (12), the im-
plementation of a non-vanishing radial velocity at one of the
boundaries is non-trivial. The stress-free condition imposes

∂ (Tm
l /r)

∂r
= 0 (instead of Tm

l = 0 in the no-slip case)

(14)
for all l,m at both r = ri and r = re. We focus here on a
radial forcing corresponding to l = 2 and m = 2 as defined
by equation (4). The boundary condition for the poloidal
component at the outer radius re is in this case

∂2Sm
l

∂r2
= −A

16

r2e

√

2π

15
Sm
l if l = m = 2, (15)

or zero otherwise, and

Sm
l = A

2

3

√

2π

15
ree

iωt if l = m = 2, (16)

or zero otherwise. The inner core is stress-free and impene-
trable, with

∂2Sm
l

∂r2
= Sm

l = 0 (17)

for all l,m at r = ri.
The main advantage of PARODY is the spectral decom-

position in the azimuthal direction, which allows us to focus
on a limited range of azimuthal modes. In the linear case,
one can take advantage of the fact that only modes with
m = 2 are excited, effectively reducing the problem to two
dimensions. The numerical convergence of the code has been
checked for various Ekman numbers and forcing frequencies,
and the typical resolution in the meridional plane used for
production runs is shown in Table 1. In the nonlinear case,
we also checked the numerical convergence with the number
of azimuthal modes and we typically use mmax = 64 (which
is sufficient for amplitudes A . 10−2).

2.4.2 Nek5000

For comparison with the nonlinear solutions obtained using
PARODY, we also use the efficiently parallelised spectral
element code Nek5000, written by Paul Fischer and col-
laborators (Fischer et al. 2007; Fischer et al. 2008). Spec-
tral element methods combine the geometric flexibility of
finite element methods with the accuracy of spectral meth-
ods, and solve the weak variational form of the equations of
motion, similarly to finite element methods (Deville et al.

2002). This method partitions the domain into a set of E
non-overlapping sub-domains, called elements, whose union
is the entire domain. Within each element the velocity com-
ponents and the pressure are represented as tensor product
Lagrange interpolation polynomials of order N and N − 2,
respectively, defined at the Gauss-Lobatto-Legendre and
Gauss-Legendre points. Such a method has algebraic con-
vergence with increasing E , but spectral (exponential) con-
vergence with increasing N (for smooth solutions), with the
total number of grid points in 3D being EN3.

Temporal discretisation is based on a semi-implicit for-
mulation, where the nonlinear and Coriolis terms are treated
explicitly and the viscous terms are treated implicitly. In
particular, a 3rd order backward-difference formula is used
for the viscous & pressure terms, and a 3rd order extrapo-
lation is used for the explicit terms. Dealiasing is used, with
the polynomial order N increased by a factor of 3/2 for the
evaluation of non-linear (advective) terms. In our spherical
shell computations, the points lie on spherical shells, to dou-
ble precision. Typical resolutions adopted are E = 576 and
N = 20 (30 for the nonlinear terms).

For the computations reported in this paper, PARODY
tends to be somewhat more efficient, primarily due its ability
to simulate a restricted range of azimuthal mode numbers
m, which is found to be sufficient when A ≪ 1. However,
Nek5000 is likely to be more efficient at very high resolution,
since the Legendre transform requires global communication
of all spectral coefficients, which is not required in spectral
element methods. Both codes have been compared for both
linear and nonlinear problems, as we will describe below.

3 LINEAR REGIME

In this section, we illustrate the model described in section
2 and compare some of our results with previous works in
the linear regime. This is to illustrate both the transient
phase before our solution converges to a steady state, and
to check that our predictions for the steady state in the
linear regime are consistent with previously published re-
sults. Numerically, the linear regime is recovered by effec-
tively switching off the second term on the left-hand side
of equation (1) and fixing the amplitude A to an arbitrary
value equal to unity. In this section, we primarily use PAR-
ODY, since this allows us to focus on the linear response of
the m = 2 modes. PARODY and Nek5000 have been found
to agree accurately for the linear problem for all frequencies
compared when E = 10−5. Nek5000 was not used to ex-
plore smaller Ekman numbers because the mesh adopted is
fully three-dimensional, whereas PARODY can exploit the
m = 2 symmetry, which reduces the dimensionality of the
linear problem. The typical resolution required for such lin-
ear simulations can be found in Table 1.

3.1 Illustration of the model

We first illustrate how this model behaves for a particu-
lar frequency ω/Ω =

√
2. This frequency was considered by

Riertord & Valdettaro (2010), because the path of charac-
teristics generated at the critical latitude converges towards
a simple rectangular shape (see the right panel in Fig. 3).
The group velocity of an inertial wave is proportional to its

c© 2012 RAS, MNRAS 000, 1–17
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E = 10
−5 E = 10

−6 E = 10
−7

Figure 3. Azimuthally-averaged velocity magnitude |u| is the meridional plane. The solution is symmetric with respect to the equator

so that only the upper quadrant is shown. In all cases, black corresponds to zero whereas red corresponds to the largest value. The
frequency is ω/Ω =

√
2 and the Ekman number is E = 10−5, 10−6 and 10−7 moving from left to right in the panels. The black straight

line shows the location of the critical latitude defined by the polar angle θc = arccos(ω/2) at the inner core. The dotted white line is
tangent to the inner core and corresponds to the direction of propagation of the inertial waves emitted at the critical latitude on the
inner core. On the right, we show the path of characteristics initialised at the inner critical latitude.

Figure 2. Kinetic energy (in units of ρr3eA
2) and dissipation rate

(in units of ρr3eA
2Ω) versus time for ω/Ω =

√
2 and various Ek-

man numbers. The time is expressed in units of the spin frequency
Ω.

wavelength and is inclined at an angle arcsin(ω/2Ω) to the
rotation axis, which is the angle at which the (inviscid) rays
propagate. The critical latitude is the location where the
inertial waves propagate tangentially to the boundary. We
compute the response of the fluid for four different Ekman
numbers from E = 10−4 down to E = 10−7.

We plot in Fig. 2 the total kinetic energy and the total

dissipation rate versus time. In all cases, the system reaches
a steady-state after a significant fraction of a global vis-
cous timescale. Note that while we reach a steady state for
E = 10−4, E = 10−5 and E = 10−6, transients are still
present at the end of our E = 10−7 simulation. For this
particular frequency, the dissipation rate decreases (not lin-
early) as the Ekman number is decreased. As we will see
in the next section, this is not the case for all frequencies.
As already discussed in section 2.3, there is no net evolu-
tion in the vertical component of the angular momentum.
We show the azimuthally-averaged velocity magnitude |u| in
the meridional plane in Fig. 3. This flow pattern corresponds
to the steady state in each case.

As the Ekman number decreases, it becomes particu-
larly clear that an inertial wave beam is emitted at the criti-
cal circle at the inner boundary defined by θ = arccos(ω/2Ω)
and r = ri. The emergence of waves from the critical circle
has been noticed before (Tilgner 1999; Ogilvie & Lin 2004;
Ogilvie 2009). In the inviscid limit, the flow is singular there
(Stewartson & Rickard 1969) and the solution is regularised
by viscosity. The path of characteristics emerging from the
inner critical latitude in the inviscid limit is shown in the
rightmost panel in Fig. 3.

3.2 Comparison with previous works

In this section, we compare our results with Ogilvie (2009).
Three close frequencies are compared: ω/Ω = 1.05, ω/Ω =
1.1 and ω/Ω = 1.15. While these frequencies are very sim-
ilar, the dissipation rate was shown to crucially depend on
the Ekman number in a very different way for each of these
frequencies. More specifically, the dissipation was roughly in-
dependent of the Ekman number for ω/Ω = 1.1, whereas it
increases as the Ekman number is decreased for ω/Ω = 1.05,
with the opposite behaviour for ω/Ω = 1.15. We reproduce
this result here using our initial value approach. The Ekman
number is varied from E = 10−2 down to E = 10−8 and the
aspect ratio of the spherical shell is again ri/re = 0.5. The
simulations are run until a steady state is reached, and we
then measure the corresponding dissipation rates. We show
in Fig. 4 the results reproduced from Ogilvie (2009) superim-
posed with the results from our initial value approach. The
agreement with the results from PARODY is excellent, with
slight differences at the smallest Ekman number of 10−8, for
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Figure 4. Dissipation rate (in units of ρr3eA
2Ω) for ω/Ω = 1.05,

1.1 and 1.15 and various Ekman numbers. Lines are reproduced
from the Fig.7 of Ogilvie (2009) whereas symbols correspond the
steady-state of our initial value problem solved with PARODY.

which the high resolution used (see table 1) implies millions
of iterations before reaching a steady-state. This compari-
son is to be considered as a consistency check only, as our
initial value problem is much more numerically demanding
than the associated direct linear calculation of a steady-state
response.

3.3 Scalings with the Ekman number:

nonlinearities in the astrophysical regime

Stewartson (1972) showed that the singularities associated
with the solutions to the Poincaré equation should turn into
oscillating shear layers through viscosity. The width of these
regions depends on the mechanism that generates them and
must scale with the Ekman number. Finding scalings of this
kind is important because it allows us to extrapolate our
results to the astrophysically relevant regime, in which the
Ekman number takes extremely small values Most of the
previous analytical studies were derived in the context of
no-slip boundaries so that Ekman boundary layers scaling
as E1/2 are present, which are not expected in our prob-
lem with stress-free boundaries. However, we can numeri-
cally determine the scalings from the results of the linear
calculations presented in Section 3.1 for ω/Ω =

√
2. From

Fig. 3, it is clear that the width of the shear layers scales as
a positive power of the Ekman number. In order to quan-
tify this scaling, we plot in Fig. 5 the azimuthally averaged
velocity amplitude along two lines inclined with an angle
arcsin(ω/2Ω) = π/4 with respect to the vertical axis. One
of the lines intersects the origin r = 0 and passes through
the inner critical latitude whereas the second one intersects
the z-axis at z = 0.4 (see embedded plot in Fig. 5). In each
of these plots, the spatial coordinate and the amplitude are
compensated by some power of the Ekman number.

As expected from previous analysis (Kerswell 1995), the
radial width of the shear layer at the critical latitude on the
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Figure 5. Scalings with the Ekman number E. Top: Azimuthally-
averaged velocity amplitude along radius at fixed polar angle
θ = π/4 which corresponds to the critical latitude. We focus on
the region close to r = ri which corresponds to the critical latitude
for ω/Ω =

√
2. The radius is normalised by E2/5 whereas the am-

plitude is normalised by E−1/5. Bottom: Azimuthally-averaged
velocity amplitude along the blue line shown in the embedded
panel. The spatial coordinate along this line s is centred around
the second intersection with the path of characteristics shown in
the embedded figure and normalised by E1/3. The amplitude is
normalised by E−1/6.

inner boundary scales as E2/5 while the width of the internal
shear layers in the direction normal to the path of charac-
teristics scales as E1/3. Note that E1/4 is another expected
scaling but our results do not allow us to distinguish be-
tween E1/3 and E1/4 (Rieutord et al. 2001). The amplitude
of the flow at the critical latitude and in the shear layers is
another important issue. The amplitude of the velocity at
the critical latitude scales as E−1/5 whereas the amplitude
of the velocity inside the shear layers scales as E−1/6 (see
the scalings used in Fig. 5). Note that we could not check
the dependence of these scalings on the Doppler-shifted fre-
quency ω. We only manage to unambiguously determine the
scalings for ω/Ω =

√
2 because the path of characteristics is

spatially very simple in that particular case (see Fig. 3). For
other frequencies, the proximity and intersection between
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different wave beams make the scaling analysis difficult, es-
pecially at the Ekman numbers available numerically.

We may use the scalings determined above to predict at
what values of the input parameters, and at what location in
the flow, nonlinearities are likely to become important first.
To do this, we can compare the wave velocity amplitude u
with the phase velocity of the local wave packet ω/k, where
k ∼ l−1 is the perpendicular wave number, and l is the width
of the wave beam, and suppose that nonlinear terms become
important when uk

ω
& 1. This can be thought of as a di-

mensionless measure of the nonlinearity in the wave beams,
and it is very likely that an inertial wave beam with an
amplitude larger than this will become unstable and break
(see Clark & Sutherland 2010; Scolan et al. 2013 for iner-
tial gravity waves and Bordes et al. 2012; Jouve & Ogilvie
2013 for inertial waves). Similar estimates are also appropri-
ate for internal gravity waves (e.g. Barker & Ogilvie 2010;
Bourget et al. 2013).

Using the scalings determined above, the nonlinearity
scales as E−3/5 at the critical latitude and E−1/2, at most,
in the internal shear layers/wave beams (taking the thinnest
E1/3 scaling). This suggests that in the astrophysical regime,
in which E → 0, the nonlinearity in the vicinity of the crit-
ical latitude is probably the most important. We therefore
expect this location to be the one with the dominant nonlin-
ear interactions. Inertial waves launched from this location
might undergo instabilities and break before they can re-
flect from the boundaries. If this occurs, this will very likely
modify the frequency dependence of the dissipation rate
(Goodman & Lackner 2009). However, this might be diffi-
cult to capture numerically, since these instabilities proba-
bly have much smaller scales than the primary wave beams,
therefore these instabilities might be difficult to capture in
our simulations. Nevertheless, the aforementioned scalings
give some insight into when non-linearities should become
prevalent. From now on, we simulate the effects of these
nonlinearities directly.

4 NONLINEAR REGIME

We now move on to the main focus of this work, which is
to study the effects of nonlinearities. The nonlinear term in
equation (1) is now taken into account. This leads to ad-
ditional numerical constraints. In particular, it is necessary
to include a range of azimuthal wave numbers in PARODY,
since the m = 2 symmetry is no longer preserved in the
presence of nonlinear couplings. The typical resolution in
the meridional plane must be also increased for the same
reason. In addition, the Courant-Friedrichs-Lewy stability
constraint requires a smaller time step. Consequently, it is
not possible to numerically reach the very low Ekman num-
bers that were obtainable in the purely linear regime. Most
of the nonlinear simulations presented in this section cor-
respond to E > 10−5. The next subsections are devoted to
the effect of nonlinearities while varying some of the relevant
parameters. Our aim is to determine how nonlinear effects
modify the solution from the predictions of linear theory.
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Figure 6. Comparison between the two codes for a simulation
with A = 0.00386 and E = 10−5 for the three frequencies 1.05,
1.10 and 1.15. The solid lines correspond to the results obtained
with PARODY whereas the symbols correspond to the results
obtained with Nek5000. The viscous dissipation rate D is shown
in units of r3eA

2Ω whereas the kinetic energy K is shown in units
of r3eA

2. The thin dotted lines correspond to the linear results
already presented in Fig. 4

4.1 Illustration for three frequencies and

comparison of the two codes

To validate the results of our numerical simulations in the
nonlinear regime, we compare the results using both codes,
for the following simulations. The Ekman number is fixed
to be E = 10−5 whereas the amplitude of the forcing is
A = 3.86× 10−3. We compare the three frequencies already
discussed in Section 3.2, namely ω/Ω = 1.05, ω/Ω = 1.1 and
ω/Ω = 1.15. For PARODY, the resolution used is 32 Fourier
modes in the azimuthal direction, 194 Legendre polynomi-
als and 480 grid-points in the radial direction. For Nek5000,
the resolution is E = 576 and N = 20 (30 for the nonlin-
ear terms). Note the advantage of using a spectral method
in the azimuthal direction, nonlinear couplings are weak for
this particular amplitude, so that a relatively small number
of azimuthal modes are required in order to reach numerical
convergence. The total kinetic energy and viscous dissipa-
tion rate are plotted versus time in Fig. 6. The solid lines cor-
respond to the results obtained with PARODY whereas the
symbols correspond to the results obtained with Nek5000.
The thin dotted lines correspond to the previous linear re-
sults. Note that in the case ω/Ω = 1.15, the dissipation is
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Figure 7. Dissipation rate (in units of ρr3eA
2Ω) and spin fre-

quency of the fluid δΩ in the rotating frame for ω/Ω =
√
2 and

various amplitudes A of the forcing. The horizontal line shows the
transition between two different regimes as soon as δΩ > 10−2.
This transition occurs for amplitudes A = 10−2 and A = 5×10−2

at times Ωt ≈ 300 and Ωt ≈ 3000 respectively. Note that during
the early evolution of the solution, δΩ scales like A2.

much lower than for the two other frequencies and there are
barely any differences between the linear and nonlinear so-
lutions for this amplitude. The agreement between the two
codes is excellent, even after 500 periods (O(104) time steps),
bearing in mind that the two numerical schemes are based
on very different approaches2. We can therefore explore the
nonlinear behaviour of the model with confidence.

4.2 Increasing the amplitude

In this section, we fix ω/Ω =
√
2. This frequency was al-

ready considered in the linear regime in Section 3. We now
consider the nonlinear regime by progressively increasing the
amplitude of the forcing from A = 10−4 to A = 10−2. The
dissipation rate versus time is shown in Fig. 7 for the var-
ious amplitudes along with the purely linear result. Con-

2 The most likely source of discrepancy between the two codes is
that the incompressibility condition is exactly satisfied in PAR-
ODY, as a result of the poloidal-toroidal decomposition of the ve-
locity field. On the other hand, Nek5000 solves a discrete Poisson
equation for pressure, which it solves by preconditioned conjugate
gradient iteration with a given tolerance, which usually results in
errors . 10−7 per time step. However, these errors can accumu-
late over long duration simulations with ∼ 105 time steps, which
could explain this minor discrepancy.

Figure 8. Normalised tangential velocity uθ in a meridional slice
for ω/Ω =

√
2 and E = 10−5. We compare the linear results

(top) during the steady state and the nonlinear regime (bottom)
with A = 5× 10−3 at the arbitrary time Ωt ≈ 3000, well into the
nonlinear regime.

trary to the linear regime, no steady state is reached and
the dissipation rate is now a time-dependent quantity, with
variations of more than one order of magnitude. This is pri-
marily because angular momentum is continuously injected
through the outer boundary, as we discussed in Section 2.3,
which is an effect not present in the linear calculations. This
can be seen in Fig. 7, where we plot the increase in the
mean rotation rate of the fluid versus time. In the frame
initially rotating at a frequency Ω, we define the increase in
the volume-averaged rotation rate of the fluid as

δΩ =
1

V

∫

uφ

r sin θ
dV , (18)

where uφ is the azimuthal velocity and V is the volume of
the spherical shell. δΩ is initially zero, and evolves with time
so that the total rotation rate of the fluid at a given time
is Ω∗(t) = Ω + δΩ(t). Contrary to the linear regime, the
contributions from the forcing do not average out over one
period so that angular momentum is injected into the fluid
(if ω > 0, extracted otherwise, see Section 4.7). This process
will continue until the fluid is spinning synchronously with
the forcing, i.e. when ω = ωi − 2(Ω+ δΩ) = 0. Even if both
the amplitude and the Ekman number in our simulations
are typically larger than we would expect in stellar or plan-
etary interiors, it is not possible computationally to run the
simulation until complete synchronisation is achieved.

By changing the spin frequency Ω+ δΩ of the fluid, we
continuously sweep across different values for the Doppler-
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〈uφ〉φ
ω/Ω = 0.6 ω/Ω = 1.0 ω/Ω = 1.87

ω/Ω = −0.2 ω/Ω = −0.8 ω/Ω = −1.6

Figure 9. Azimuthally averaged azimuthal velocity in a meridional plane at various times for various forcing frequencies. In all cases,
the amplitude of the forcing is A = 10−2 whereas the Ekman number is E = 10−5. Black corresponds to the minimum of the azimuthal
velocity whereas red corresponds to the maximum. The black lines perpendicular to the inner core shows the location of the critical
latitude at t = 0 whereas the white lines shows some of the ray paths emitted from that particular latitude assuming uniform rotation.
This shows that tidal forcing generates cylindrical differential rotation in the body in the synchronisation process, and the fluid certainly
does not spin up as a solid body.

shifted forcing frequency ω, so that the properties of the
linear excitation of inertial waves varies with time. It is
known from previous linear calculations that the dissipa-
tion rate at low Ekman number is a complicated function
of the forcing frequency (Ogilvie 2009). By spinning up the
fluid, it is therefore unsurprising to observe strong variation
in the dissipation rate as time evolves. In addition, the gen-
eration of differential rotation in the bulk i.e. zonal flows,
also changes the properties of the inertial wave response
(Baruteau & Rieutord 2013). This is discussed further in
section 4.3.

As can be seen in Fig. 8, the wave structure observed
in Fig. 3 in the linear regime is still visible in the nonlin-
ear regime, even after thousands of periods. In fact, there
are barely any differences between the linear and nonlinear
regimes when looking at the radial or tangent components
of the velocity at the same time. As will be discussed in
Section 4.3, the main difference between the linear and non-
linear regimes is related to mean zonal flows. This is partly
because the total rotation rate Ω + δΩ does not vary sig-
nificantly during this simulation (see the amplitudes in the
bottom panel of Fig. 7). In addition, the internal shear lay-
ers or the flow near the critical latitude do not appear to be
unstable to small-scale instabilities. Instead, the dominant
nonlinearities in the regime probed by these simulations, ap-
pear to be associated with the generation of zonal flows, as
we will now describe.

4.3 Generation of zonal flows

In all of our nonlinear simulations, we observe a non-uniform
deposition of angular momentum in the fluid. Since this an-
gular momentum injection (or extraction) by the forcing is
not distributed homogeneously in the fluid, this leads to the
generation of differential rotation in the form of zonal flows,
which is a generic feature of all nonlinear simulations re-
ported in this paper. We show in Fig. 9 an example of such
zonal flows for various positive and negative Doppler-shifted
frequencies ω. The azimuthal component of the velocity is
azimuthally-averaged and plotted in the meridional plane.
The results shown in Fig. 9 correspond to A = 10−2 and
E = 10−5 in all cases, and are plotted at an arbitrary time
in the range 500 < Ωt < 1300. We stress, however, that these
results are time-dependent and the azimuthal flows evolve
significantly during the course of a given simulation.

It is clear that the azimuthal flow significantly departs
from a purely solid body rotation. The white lines in Fig. 9
correspond to the path of characteristics emitted at the in-
ner critical latitude. Angular momentum seems to be pref-
erentially deposited where the inertial waves reflect on the
outer boundary (this is particularly visible for ω/Ω = −0.2,
ω/Ω = −0.8 and ω/Ω = 1.87). This differential rotation
affects the local properties of inertial waves, since the fre-
quency ω, and therefore the local direction of propagation
of inertial waves, now depends on the cylindrical radius.
The azimuthal component of the velocity is indeed nearly
vertically invariant in most of our simulations, correspond-
ing to geostrophic flows with rotation constant on cylin-
ders. The properties of small-amplitude inertial waves prop-
agating in a differentially rotating incompressible fluid con-
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Figure 10. Averaged zonal velocity for ω/Ω = 1 and ω/Ω =
√
2

and various amplitudes of the forcing. 〈.〉 corresponds to a vertical
and azimuthal average. Both plots correspond to Ωt = 50. The
zonal velocities are scaled with the square of the amplitude of the
boundary forcing. The two vertical dotted lines correspond to
the location of the reflections (see Fig. 3) on the outer boundary
whereas the solid line corresponds to the critical latitude on the
outer boundary.

tained in a spherical shell have been recently investigated by
Baruteau & Rieutord (2013), who note that inertial waves
can now propagate along curved paths since the Doppler-
shifted frequency is now a function of space.

It has been suggested that the interactions of m = 2
inertial modes in a spherical shell can generate a zonal flow
(Tilgner 2007). As expected from the weakly nonlinear ori-
gin of these zonal flows, their amplitudes scale as the square
of the amplitude of the forcing. This is confirmed by the re-
sults presented in Fig. 10. The azimuthal component of the
velocity is averaged along the vertical and azimuthal direc-
tions and plotted against the cylindrical radius s = r sin θ.
We plot the results for two different frequencies, ω/Ω = 1
and

√
2, at E = 10−5 and various amplitudes. All results

corresponds to the early time Ωt = 50. As the zonal veloci-
ties are scaled with A2, they all collapse onto approximately
the same curve. Note that this scaling was already observed
in Fig. 7 at early times. At later times, the complicated
frequency dependence of the inertial wave excitation, as ob-
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Figure 11. Energy in the differential rotation as defined by equa-
tion (19). The error bars correspond to the maximum and min-
imum values between Ωt = 103 and Ωt = 104. A large Ekman
numbers (i.e. E > 105), a nonlinear steady state is reached for
Ωt > 103 which is why no error bars are present in that case.

served in the linear problem, makes these solutions depart
from each other more strongly.

These results also give an indication as to where the
nonlinearities are dominant. The case ω/Ω = 1 is pecu-
liar, since the location where the waves reflect on the outer
boundary is the critical latitude of the outer sphere, i.e.

s = 0.87. In any case, the angular momentum seems to
be dominantly deposited near to that radius. The case
ω/Ω =

√
2 is more representative, since the locations of

the wave reflection (see Fig. 3) are distinct from the outer
critical latitude. The former are shown in Fig. 10 as dotted
lines whereas the latter is shown as a solid line. Clearly, the
wave reflections on the outer boundary close to the equator
play a dominant role compared to the outer critical latitude.

The mechanism responsible for the zonal flows in our
case is at odds with the no-slip librating case where it has
been shown that the torque in the Ekman boundary layers
and its eruption at the outer critical latitude are dominant
and drive the zonal flow (Calkins et al. 2010). In that case,
the amplitude of the zonal flow scales as the square of the
amplitude of the forcing but is independent of the Ekman
number. In our case however, there are no Ekman boundary
layers since we adopt stress-free boundaries. We therefore
do no expect the same mechanism to drive zonal winds. As
already mentioned, the reflection of the waves generated at
the inner critical latitude on the outer boundary seems to
be responsible for the generation of the zonal flow. While
our result depends strongly on the nature of wave reflection
at the boundaries, it is known that these reflections are very
similar between a solid wall and a free surface as long as the
frequency is much smaller than the one of surface gravity
waves (Phillips 1963). However, since we allow for a radial
flow across the outer boundary, it is not clear to what extent
our choice of boundary conditions influences the nonlinear
behaviour of the waves. This can only be resolved by con-
sidering a more realistic ellipsoidal geometry or by changing
the way the waves are forced. This is left for future work.

We now attempt to quantify the variation of the ampli-
tude of the differential rotation as a function of the Ekman
number. It is difficult to define the amplitude of the differen-
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tial rotation at low Ekman numbers, since there is generally
no quasi-steady state. Nevertheless, it is still helpful to de-
fine the energy in the differential rotation as (Tilgner 2007),

Edr =
1

2

∫

V

[

〈uφ〉φ − δΩ r sin θ
]2

dV , (19)

where 〈uφ〉φ is the azimuthal average of the zonal veloc-
ity and δΩ is the rotation rate of the fluid at a particu-
lar time, as seen in the frame rotating at the rate Ω. In
Fig. 11, we plot this quantity versus the Ekman number
for A = 10−2 and three different frequencies ω/Ω = 0.88,
ω/Ω = 1 and ω/Ω = 1.1. At large enough Ekman numbers
(i.e. E > 5×10−4), the system can reach a nonlinear steady
state allowing for an unambiguous measure of the amplitude
of the zonal flows. As one decreases the Ekman number, the
system becomes periodic or chaotic which explains the pres-
ence of error bars in Fig. 11. In any case, the energy in
the differential rotation increases as a negative power of the
Ekman number, as is also found in the numerical model of
Tilgner (2007) and in the experiments of a coreless deformed
sphere by Sauret (2013) and Sauret et al. (2013). The two
straight lines in Fig. 11 correspond to the arbitrary scalings
E−3/2 and E−1/2, and are shown for illustration. Note that
the amplitude of forcing of A = 0.01 that we are considering
in Fig. 11 can be considered to roughly represent the ampli-
tude of the synchronisation tide inside a hot Jupiter orbiting
a solar-type star in a one day orbit (if the tidal frequency
is comparable with the spin frequency). A naive extrapo-
lation of our results (for any scaling exponent in the given
range) inside a hot Jupiter (taking an approximate value
of E ≈ 10−18) would suggest that the energy in the dif-
ferential rotation would far exceed that associated with the
solid body rotational kinetic energy, i.e. very large shears
would be predicted. However, it is very likely that shear in-
stabilities would become important as the Ekman number
is decreased (see section 4.5 below), thereby modifying the
scaling behaviours and preventing such large shears from
developing. In addition, angular momentum redistribution
by turbulent convection or magnetic fields, which we have
omitted, could limit the amplitude of these zonal flows.

Finally, in order to show that the differential rotation is
indeed the dominant nonlinear feature observed in our sim-
ulations, we further compare our nonlinear results with pre-
dictions obtained from direct linear calculations. In particu-
lar, we focus on the total viscous dissipation rate calculated
as a function of the Doppler-shifted frequency of the forcing.
During the course of our nonlinear simulations, we monitor
the total rotation rate of the fluid Ω∗ = Ω+ δΩ, the viscous
dissipation rate and the energy in the differential rotation as
defined by equation (19). In Fig. 12, we plot the dissipation
rate as a function of the normalised frequency ω/Ω∗. In the
linear case, the rotation rate of the fluid is fixed and the
curved is obtained by direct linear calculation for each value
of ω/Ω∗ (using the same method as in section 3.2 and in
Ogilvie 2009). In the nonlinear case, the total rotation rate
and the viscous dissipation rate are changing with time. We
show the results corresponding to three different initial fre-
quencies: ω/Ω = −1.8, ω/Ω = 0.6 and ω/Ω = 1.275. In all
cases, we observe an initial transient phase where the dissi-
pation rapidly increases (as observed in Fig. 7 and Fig. 13).
The dissipation then saturates close to the value predicted
by linear theory. As time increases, the differential rotation
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Figure 12. Dissipation rate as a function of ω/Ω∗, where Ω∗ =
Ω + δΩ is the total rotation rate of the fluid. The linear predic-
tion is shown as a black line whereas the time evolution obtained
from nonlinear simulations is shown as a colored line, where the
color corresponds to the amplitude of the differential rotation, as
defined by equation (19). From top to bottom, the initial Doppler-
shifted frequencies are ω/Ω = −1.8, ω/Ω = 0.6 and ω/Ω = 1.275

builds up and the dissipation rate predicted by our nonlin-
ear simulations departs from that predicted by linear theory
at the same Doppler-shifted frequency. This indicates that
the linear predictions are accurate in the early stage of the
synchronisation process, but that the nonlinear path to syn-
chronisation will be very different, for example due to the
differential rotation driven by nonlinearities. Note however
that for some frequencies, departure or similarities between
linear and nonlinear predictions are observed irrespective of
the differential rotation (see ω/Ω = 0.6 in Fig.12 for exam-
ple, where a relatively strong differential rotation does not
result in a dissipation rate very different from linear predic-
tions).

4.4 Varying the frequency

While it is not possible to consider every frequency within
the range −2 < ω/Ω < 2 in the nonlinear case, we con-
sider several frequencies while fixing the forcing amplitude
to be A = 10−2. The viscous dissipation rates versus time
are shown in Fig. 13. Note that for all frequencies consid-
ered here, no steady state is obtained for E = 10−5 even
after 5000 periods. For ω/Ω = 0.4, 0.6 and 0.8, we also plot
the linear results as dotted lines for comparison. The dis-
sipation in the nonlinear regime can be larger than in the
linear regime (as it is the case for ω/Ω = 0.4), smaller (as it
is the case for ω/Ω = 0.8) or both depending on time. The
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Figure 13. Dissipation rate (in units of ρr3eA
2Ω) versus time

for various positive frequencies, E = 10−5 and A = 10−2. For
ω/Ω = 0.4, 0.6 and 0.8, we also plot the linear results as dotted
lines for comparison.

complicated dependence of the viscous dissipation on fre-
quency was already observed in the linear regime (Ogilvie
2009) and is also a property of the nonlinear regime. This is
related to the fact that the dynamics is still strongly domi-
nated by wave beams generated at the inner critical latitude
and reflecting on the boundaries.

4.5 Secondary shear instabilities

We have observed the amplitude of the zonal flows to in-
crease as we decrease the Ekman number in Fig. 11. This
suggests that strong localised shear could be generated in
the regime of very small Ekman numbers, which might be
unstable to hydrodynamical shear instabilities. In this sec-
tion we present the results from a particular simulation with
A = 0.02, ω/Ω =

√
2 and E = 10−5. As already observed,

we find an increase in the vertical component of the angular
momentum, and a zonal flow is driven, primarily close to
the location of the reflection on the outer boundary, which
in this case in close to the equator. We show on the left
four panels of Fig. 14 the amplitude of the velocity |u| is
a meridional slice and in the equatorial plane at Ωt ≈ 118
and Ωt ≈ 137. We also show the time evolution of the to-
tal viscous dissipation on the bottom right panel of Fig. 14.
At time Ωt ≈ 130, we observe a sudden increase in the total
dissipation. This corresponds to the onset of a hydrodynami-
cal shear instability, which preferentially excites modes with
large azimuthal wave numbers m. The kinetic energy spec-
trum in the azimuthal direction is shown on the top right
panel of Fig. 14. We observe the growth of large m compo-
nents in the flow in both the spectrum and the equatorial
slice. Large m components were not present during the early
nonlinear evolution, where the slope is much steeper in spec-
tral space, indicating only weak nonlinear transfers to modes
with smaller azimuthal scales thanm = 2. The axisymmetric
m = 0 component of the flow continuously grows until en-
ergy is transferred into these non-axisymmetric modes, after
which is appears to saturate. After the instability saturates,
the energy at small azimuthal wavelength is dissipated, lead-
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ing to a steeper kinetic energy spectrum (see the spectrum
at Ωt ≈ 300 in Fig. 14). Although we didn’t pursue the
simulation further, it is possible that once the turbulence
is dissipated, another shear instability kicks in, leading to a
cyclic behaviour between the laminar and turbulent states.

To our knowledge, this is the first numerical evi-
dence of unstable zonal flows driven by inertial waves in
spherical shells. Similar secondary shear instabilities have
been recently observed experimentally in a rotating de-
formed sphere with or without an inner core (Sauret 2013;
Sauret et al. 2013). In an astrophysical object, it is possi-
ble that magnetic stresses, magnetohydrodynamical shear
instabilities, or convection could suppress this differential
rotation before it could become unstable to such a hydrody-
namical shear instability.

4.6 No-slip inner core

In this section we briefly present our results varying the inner
boundary condition on the core. In particular, we choose to
adopt no-slip, rather than stress-free conditions. This might
be more relevant to terrestrial planets and the solid cores
of a giant planet, as well as to laboratory experiments. In
Fig. 15, we plot the normalised kinetic energy K and vis-
cous dissipation rate D for a set of nonlinear simulations
with A = 3.86× 10−3 , for the three frequencies ω/Ω = 1.05,
1.10 and 1.15. Again, we compare the results from both nu-
merical methods described in Section 2.4. The kinetic energy
evolves very similarly to the stress-free core case. There are
some differences in D, primarily due to the presence of os-
cillatory Ekman boundary layers that cause periodic oscilla-
tions in Lx and Ly . The similarity between Fig. 6 and Fig. 15
however indicates that the generic nonlinear properties that
we have observed in the rest of this paper seem to be robust
to this change in the inner boundary condition.

We show the azimuthal velocity in a meridional plane
for ω/Ω = 1.1 and 0.6 and both boundary conditions in
Fig. 16. The time is the same in both cases, Ωt = 1225.
The zonal flow is initially generated locally where the waves
reflect from the outer boundary and then spreads in cylin-
drical radius due to viscosity. In the no-slip case, the zonal
flow only exists outside the cylinder tangent to the inner core
whereas it continues to spread in the stress-free case. Note
however that for ω/Ω = 0.6, a weak zonal flow is generated
within the tangent cylinder in both cases. This shows that a
no-slip inner core has only a weak effect on the dissipation
mechanism and generation of zonal flows for the parameters
considered in this paper.

4.7 Limitation of the model

When the Doppler-shifted frequency ω is positive, one would
expect the fluid to spin up as the forcing injects angular mo-
mentum into the system. This can be thought to represent
the synchronisation of the spin of the body with the or-
bit of its companion when the companion is orbiting at a
faster rate than the primary body is spinning, so that the
tidal torque causes the angular momentum of the body to in-
crease. The opposite is supposed to happen for ω < 0, which
corresponds to the case of a companion orbiting at a slower
rate than the spin of the body, so that the tidal torque acts
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Figure 15. Same as in Fig. 6 but with no-slip boundary condition
at the inner core.

to spin down the body. While this is true for most of the
frequencies and amplitudes that we have investigated, some
striking exceptions were observed. This is the case when
ω/Ω = 0.75, for example. In this case, the angular momen-
tum should increase, whereas the opposite is observed in
our simulations, leading to a desynchronisation of the fluid,
which is unexpected. This anomalous evolution of the angu-
lar momentum is also observed for ω/Ω = 1.87, see Fig. 9,
where the vertical angular momentum is mostly negative.
We compare the time evolution of the vertical component
of the angular momentum Lz in Fig. 17. The results from
both codes are shown for E = 10−5 and A = 3.68 × 10−3.
Note that this unexpected result persists for other Ekman
numbers and forcing amplitudes. Although there is a slight
disagreement between the codes at large times, the fact that
the vertical component of the angular momentum is nega-
tive is a robust feature (the discrepancy between the codes
appears to be caused by differences in the excitation of tran-
sients at t = 0, as the forcing is instantaneously switched
on).

This behaviour is observed for particular frequencies
only. It is not a result of numerical errors, since both codes
exhibit the same behaviour, and the spatial and temporal
resolution of these results has been carefully checked for
convergence. In addition, this does not appear to be only
a transient phase in the simulations, and is observed to per-
sist after several thousand rotation periods. It is therefore a
surprising property of the model for our nonlinear simula-
tions at certain specific frequencies.

This behaviour is ultimately due to the fact that we
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Figure 16. Azimuthally-averaged zonal velocity for ω/Ω = 1.1
(top) and ω/Ω = 0.6 (bottom). The amplitude of the forcing is
A = 10−2 and E = 10−5. The boundary condition on the inner
core is stress-free on the left and no-slip on the right. The poloidal
component of the flow is very similar in both cases.

consider an open system with a non-vanishing radial veloc-
ity at the outer boundary. While we constrain the velocity
of the fluid going in and out of the system to mimic the
elliptical tidal deformation of the body, we do not constrain
the ingoing (vertical) angular momentum flux. The angu-
lar momentum injected in the system is related to Reynolds
stresses 〈uruφ〉φ at the outer surface as described in Section
2.3. While the radial velocity is imposed at r = re, the az-
imuthal component is not constrained, since we adopt stress-
free boundary conditions on a sphere instead of an ellipsoid.
This seems to be insufficient to realistically constrain the an-
gular momentum evolution in some cases. In addition, while
we clearly observe a zonal flow driven by the wave reflection
on the outer boundary, it is not clear to what extent this
conclusion depends on our choice of boundary conditions.
Recent experimental results seem to be qualitatively consis-
tent with our conclusions (Sauret 2013; Sauret et al. 2013),
but the mechanism responsible for the zonal flows ought to
be clarified in a more realistic model, either using the realis-
tic ellipsoidal geometry, or introducing a body force in order
to avoid the unrealistic angular momentum source term at
the outer boundary.

These examples clearly illustrate the limitations of the
current model. Nevertheless, the qualitative behaviour of
the nonlinear system described by our simulations is very
likely to be robust, as the similitude between our results
and the ones reported by Tilgner (2007) and Sauret (2013);
Sauret et al. (2013) suggests. This includes the generation
of zonal flows, complicated time evolution of the dissipation
rates with time and secondary shear instability, which are
expected to all persist in a more realistic model.

5 DISCUSSION

In this paper, we have investigated numerically, for the first
time, the nonlinear behaviour of tidally forced inertial waves
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Figure 17. Vertical component of the angular momentum for
E = 10−5, A = 10−2 and ω/Ω = 0.75. Although the forcing
frequency is positive, we observe a decrease in the spin frequency
of the fluid. We show the results from both numerical methods.

in a spherical shell, as an initial value problem. The forc-
ing corresponds to an imposed radial velocity at the outer
boundary, mimicking the radial displacement the fluid would
experience in response to a tidal gravitational potential. We
have focused here on the dominant l = m = 2 spherical har-
monic, which is usually the dominant one for astrophysical
applications, such as tidal synchronisation. This intention-
ally simplified model is designed to be an idealised repre-
sentation of the convective regions of a giant planet, the
fluid regions of a lower mass planet such as a Neptune mass
planet, or to the convective envelope of a solar-type star.
This allows us to perform a detailed study of the nonlinear
evolution of tidally forced inertial waves.

First, the purely linear regime is studied, and we re-
cover previous results obtained using a direct solution of
the steady-state response (Ogilvie 2009). In the nonlinear
regime, the forcing injects or extracts angular momentum
(depending on the sign of the Doppler-shifted frequency ω)
in a non-uniform manner, leading to the generation of sig-
nificant differential rotation in the interior of the body. As
the fluid spins up (or down), the fluid experiences highly
time-dependent dissipation rates, which are a complicated
function of the forcing frequency. The amplitude of these
zonal flows scales as A2E−γ where γ is some positive num-
ber depending on the frequency of the forcing. This suggests
possible shear instabilities in the low Ekman number or large
amplitude regime that may be expected in the interiors of
short-period extrasolar planets. A hydrodynamical shear in-
stability was indeed observed in some of our simulations,
which is similar to an instability recently observed in labo-
ratory experiments (Sauret 2013; Sauret et al. 2013). Note
however that we cannot at this stage perform a quantitative
comparison between experiments and numerical simulations
as there are significant differences between the two, the most
important being the different type of boundary conditions
used (stress-free plus inflow on a sphere in our simulations
versus no-slip on a deformed sphere in experiments).

We have so far considered the regime of moderate Ek-
man numbers, which is the regime that is possible to access
numerically, as well as relatively low amplitudes, to try to
understand the dominant nonlinearities. It is possible that
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this restriction constrains the nonlinearities to promote the
importance of zonal flows. This restriction might also elimi-
nate the possibility of the internal wave beams becoming un-
stable to small-scale parametric instabilities. At larger am-
plitudes, and more importantly, at lower Ekman numbers,
parametric subharmonic instabilities, as recently observed
by Bordes et al. (2012) in the laboratory, or nonlinearities
at the critical latitude itself (Goodman & Lackner 2009),
might become more important, and might wash out some
of the frequency dependence of the dissipation rate. These
possibilities will be explored in future studies. Nevertheless,
the ultimate nonlinear outcome of these instabilities is likely
to also result in the formation of zonal flows such as those
that we have observed.

Due to the complexity of this problem and the limita-
tions of our intentionally simplified model, we cannot cur-
rently compare our results directly to astrophysical obser-
vations. However, it is worth mentioning those aspects that
are likely to be relevant for the astrophysical problem. When
nonlinearities are considered, the flow can depart signifi-
cantly from what would be predicted from linear theory,
primarily due to the generation of differential rotation in the
initially uniformly rotating body, in the form of zonal flows.
These zonal flows can play a role in modifying the subse-
quent dissipation rate, which is what is important in relating
our work to astrophysical observations. This is one example
to illustrate that the simple picture assuming the body ap-
proaches synchronism as a uniformly rotating body is likely
to be incorrect. This is also true when tidal forcing is able to
excite internal gravity waves (Goldreich & Nicholson 1989;
Barker & Ogilvie 2010). In all cases, the inclusion of nonlin-
earities and time evolution of the angular momentum leads
to complicated time-dependence of the flow and the dissipa-
tion rate. There are large differences between the dissipation
rate as the amplitude and frequency of the tidal forcing is
varied, as well as the Ekman number of the body. There does
not appear to be a general trend for the normalised dissipa-
tion rate: sometimes nonlinear terms increase the dissipation
rate over the linear prediction, and they sometimes decrease
it.

Tidal forcing is likely to lead to complicated (cylindri-
cal) differential rotation in the interior of the body. Such
differential rotation could be acted on by hydrodynamical
or magnetohydrodynamical shear instabilities, or suppressed
by magnetic stresses and convection. Those secondary pro-
cesses could play an important role by contributing to tidal
dissipation in fluid bodies. Future work will include study-
ing more realistic mechanisms of tidal forcing, which do not
exhibit the limitations of the current model discussed in Sec-
tion 4.7, in order to more accurately capture the tidal forcing
of inertial waves in fluid stars and planets. In addition, topics
of further study include studying the influence of stratifica-
tion and convection, the latter of which could play a role in
dissipating inertial waves, and the internal structure of the
body and the imperfect rigidity of the core.
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